Choose the correct answer

a) Mg	b) S	c) Br	when forming ion? d) Al
D-2 How many ele	ectrons and neutrons a	re there in an atom of ber	yllium ⁹ Be?
a) 4, 9	(b) 4,5	c) 9, 4	d) 3, 4
D-3 Calculate the	molar mass of a compo	ound if 2 mole of it has a r	nass of 150 g?
a) 8.12 g/mole	b) 410 g/mole	c) 75 g/mole	d) 20 g/mole
D-4 Which pair o	of the following compou	ands has the same empiric	al formula?
a) C ₂ H ₄ O ₄ and C ₃	3H ₂ O ₂ b) NO ₂ and NO	c) C ₂ H ₄ and CH ₄	d) C ₂ H ₆ and CH ₃
is 180 g/mol	?	0 g of glucose (C ₆ H ₁₂ O ₆), t	
a) 7.2 x 10 ²¹ atom	b) 6.02 x 10 ²⁴ ato	oms (c) 2.01 x 10 ²⁴ atoms	d) 1.4 x 10 ²³ atoms
	percent composition of		
(a) 11.32 %)	b) 10%	c) 7.21%	d) 21.8%
D2131N2 + U112N	$O \rightarrow 3Ba(OH)_2 + 2NH_3$		
a) 3 molecules of Ba(OH) ₂ and 2 m b) 1 molecules of Ba(OH) ₂ and 2 at c) 1 moles of Ba ₃ moles of NH ₃ d) 1 g of Ba ₃ N ₂ re D-8 A 42.0 mL sar What is the am	olecules of NH ₃ FBa ₃ N ₂ reacts with 6 moleoms of NH ₃ N ₂ reacts with 6 moles of eacts with 6 g of H ₂ O to people of 0.746 M NH ₄ NG monium nitrate concer	lecules of H ₂ O to produce 3 f H ₂ O to produce 3 moles of produce 3 g of Ba(OH) ₂ and O ₃ is diluted with water to partial on the resulting so	molecules of Ba(OH) ₂ and 2 2 g of NH ₃ a total volume of 300 ml
a) 3 molecules of Ba(OH) ₂ and 2 m b) 1 molecules of Ba(OH) ₂ and 2 at c) 1 moles of Ba ₃ moles of NH ₃ d) 1 g of Ba ₃ N ₂ re D-8 A 42.0 mL sar What is the am a) 0.01 M	Ba ₃ N ₂ reacts with 6 molecules of NH ₃ Ba ₃ N ₂ reacts with 6 moleoms of NH ₃ N ₂ reacts with 6 moles of the moles of the moles of the molecule of the	lecules of H ₂ O to produce 3 f H ₂ O to produce 3 moles of produce 3 g of Ba(OH) ₂ and O ₃ is diluted with water to a tration in the resulting so c) 0.23 M	molecules of Ba(OH) ₂ and 2 2 g of NH ₃ a total volume of 300 ml lution? d) 0.56 M
a) 3 molecules of Ba(OH) ₂ and 2 m b) 1 molecules of Ba(OH) ₂ and 2 at c) 1 moles of Ba ₃ moles of NH ₃ d) 1 g of Ba ₃ N ₂ re D-8 A 42.0 mL sar What is the am a) 0.01 M	Ba ₃ N ₂ reacts with 6 molecules of NH ₃ Ba ₃ N ₂ reacts with 6 moleoms of NH ₃ N ₂ reacts with 6 moles of the seattle with 6 g of H ₂ O to the seattle with 6 g	lecules of H ₂ O to produce 3 f H ₂ O to produce 3 moles of produce 3 g of Ba(OH) ₂ and O ₃ is diluted with water to a tration in the resulting so c) 0.23 M	molecules of Ba(OH) ₂ and 2 2 g of NH ₃ a total volume of 300 ml lution? d) 0.56 M as is 0.72 g/L at 80°C. Th
a) 3 molecules of Ba(OH) ₂ and 2 m b) 1 molecules of Ba(OH) ₂ and 2 at c) 1 moles of Ba ₃ moles of NH ₃ d) 1 g of Ba ₃ N ₂ re D-8 A 42.0 mL sar What is the am a) 0.01 M Determine the m pressure of the ga	Ba ₃ N ₂ reacts with 6 molecules of NH ₃ Ba ₃ N ₂ reacts with 6 moleoms of NH ₃ N ₂ reacts with 6 moles of the seattle with 6 g of H ₂ O to the seattle with 6 g	lecules of H ₂ O to produce 3 f H ₂ O to produce 3 moles of produce 3 g of Ba(OH) ₂ and O ₃ is diluted with water to partial on the resulting so	molecules of Ba(OH) ₂ and 2 2 g of NH ₃ a total volume of 300 ml lution? d) 0.56 M
a) 3 molecules of Ba(OH) ₂ and 2 mb) 1 molecules of Ba(OH) ₂ and 2 at c) 1 moles of Ba ₃ moles of NH ₃ d) 1 g of Ba ₃ N ₂ re D-8 A 42.0 mL sar What is the am a) 0.01 M Determine the m pressure of the gan 130 g/mol	Ba ₃ N ₂ reacts with 6 molecules of NH ₃ Ba ₃ N ₂ reacts with 6 moleoms of NH ₃ N ₂ reacts with 6 moles of the property o	lecules of H ₂ O to produce 3 f H ₂ O to produce 3 moles of produce 3 g of Ba(OH) ₂ and O ₃ is diluted with water to a tration in the resulting so c) 0.23 M	molecules of Ba(OH) ₂ and 2 2 g of NH ₃ a total volume of 300 mI lution? d) 0.56 M as is 0.72 g/L at 80°C. Th

	ram for a ground state nit	rogen (N) atom is	
)-11 The orbital diagr	2s 2p		
Row 1 1s			
Row 2 1	1		
Row 3 1	11 11 11		
Row 4			d) Row 4
a) Row 1	b) Row 2	c) Row 3	
n 12 An element with	the general electron confi	iguration for its outers	nost electrons of ns ² np ²
would be in which	ch element group?		(d) 4A)
a) 2A	b) 3A	c) 6A	47
D-13 A gas has a volum	ne of 2 L at 25 °C and 3 a	tm. Calculate the volu	me of the gas if the
a) 1.55 L	pressure were 35 °C and b) 2.5 L	c) 0.45 L	d) 3.12 L
-14 0.500 mole of amn		.2 L flask at 150°C. C	alculate the pressure of the
a) 10.56 atm	b) 1.4 atm	c) 12.34 atm	d) 14.47 atm
15 What is the total n	umber of valence electro	ons in PCl ₃ ?	
a) 12)	b) 26	c) 20	d) 18
6 Which of these spe	cies make an isoelectron	ic pair: Br -1, S -2, Cl,	K+, Ni+?
a) K ⁺ and S ⁻²	b)S ⁻² and Br ⁻¹	c) Cl and Ni ⁺	d) Br ⁻¹ and K ⁺
O-17 Which is the co $C(s) + H_2O(g)$	orrect equilibrium const H ₂ (g) + CO(g)	ant expression for the	e following reaction?
a) $K_c = [H_2O] / [H_2] [CO]$ c) $K_c = [H_2] [CO] / [H_2O]$		b) $K_c = [H_2] [CC]$ d) $K_c = [H_2O][C]$	O] / [H ₂ O][C]] / [H ₂] [CO]
gases, phosgene an	d chlorine. $O_2(g) \rightleftharpoons COCl_2(g) + COCl_2$		gen to produce two toxic

c) 3.82 x 10¹¹

d) 4.8 x 10¹⁰

a) Yes, the mixture is at equilibrium

c) No, right to left

d) There is not enough information to be able to predict the direction.

D-22 For the following reaction at equilibrium, which choice gives a change that will shift the position of equilibrium to favor formation of more reactant (right to left)?

 $2NOBr(g) \rightleftharpoons 2NO(g) + Br_2(g), \Delta H^{o}_{rxn} = 30 \text{ kJ/mol}$

a) Remove NO.

(b) Decrease the temperature)

c) Remove Bra

d) Add NOBr

D-23 In which of these gas-phase equilibria is the yield of products increase by decreasing the total pressure on the reaction mixture?

a)
$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

b)
$$2NO(g) + Cl_2(g) \Rightarrow 2NOCl(g)$$

c)
$$2SO_2(g) + O_2(g) = 2SO_3(g)$$

d)
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

D-24 Identify the conjugate base of HClO3 in the reaction

$$ClO_3^{-1} + HSO_4^{-1} \rightleftharpoons HClO_3 + SO_4^{2}$$

a) HSO4-1

b) H₂O

d) ClO₃-1

O-25 One liter of an aqueous solution contains $6.022 \times 10^{24} \, \text{H}_3\text{O}^+$ ions. Therefore, its H_3O^+

ion concentration is

b) 0.001 mole/L

c) 6.02 mole/L

d) 10 mol/L

D-26 The OH: or	nn		
Ba(OH) ₂	oncentration in a 2.1 × 10 Ba ⁺² + 2OH ⁻¹	0.2 M Racorn	
a) 0.43×10^{-5} M	Ba** + 20H-1	Ba(OH)2 solution is	5
	b) 0.06×10^{-2} M	612	
D-27 A 0.30 M H	IF only	© 4.2 × 10 ⁻² M	d) 2.1 × 10 ⁻² M
a) 5.2 M.	r solution is 1% ionized	. Calculate the Tre :	
	IF solution is 1% ionized	c) 0.3 M	ncentration.
D-28 Calculate ti		-) 0.0 141	d) 4.1×10^{-3} M
a) 5.6	ne pH of 9.3 × 10 ⁻² M KO	Н. КОН —	
	0) 11./	c) 12.2	► K+1 + OH-1
D-29 Calculate the hy	drogen ion concentration b) 0.51 M	,	(d) 12.97
a) 0.05 M	b) 0.51 M	n in a solution of fruit jui	ce having a nH of 1 3 2
			d) 0.09 M
D-30 What is the pH of	of a 4M HF solution (at 2	50C) :6X:	
a) 13.4	b) 2.5	$5^{\circ}C)$ If $K_a = 7.1 \times 10^{-4}$?	
		0 1.27)	d) 3.72
D-31 Which one of the	e following combinations	can function as a burs	
		b) HCl (strong acid	Solution?
c) HClO ₄ (strong a	acid)/NaNO ₃	d) HNO ₂ (weak acid	J/KBI
Dag			
D-32 Calculate the pH	of a buffer solution that	contains 0.63 M benzoic	acid (CcHcCOcH) and
	inzoate (Conscoona). [$K_a = 6.5 \times 10^{-5}$ for benzoi	c acidl
a) 6.92	(b) 3.79	c) 1.7	d) 12.3
D 22 m			
D-33 The molar solubil	ity of magnesium carbor	nate (MgCO ₃) is $3.2 \times 10^{\circ}$	mol/L. What is Ksp for
this compound?	$MgCO_3(s)$ \longrightarrow Mg^*	² (aq)+ CO ₃ - ² (aq)	
a) 1.02×10^{-5}	b) 2.8×10^{-2}	c) 7.2 × 10 ⁻⁵	d) 6.3×10^{-4}
D-34 Which of these mo			
a) C ₃ H ₈	b) C ₄ H ₈	c) C ₆ H ₁₂	d) C ₂ H ₄
D-35 The alkane with fiv	ve carbon atoms is calle	d	
a) butane	b) hexane	c) heptane	d) pentane
D-36 Which of these is th	e systematic name for	the compound represen	nted below?
	CH	t ₃	
	HC	CH ₃	
		0113	
		H ₃ C	
a) 2 other 6 mother 0	octene	b) 6-ethyl-3-me	thyl-1-octene
a) 3-ethyl-6-methyl-8-octene		d) 3-ethyl-6-me	thyl-8-octyne
c) 6-ethyl-3-methyl-1	-octyne	u) 5-ctilyi o me	