

.

السلسلة المختارة

:

 (

2! 45

$1+$

寝
.

الوحدة الوْله

صنين العناصر في الجدول الدوري

 .

 :

Joll lan

لذا يشذ الككرو :
 ₹ IT ©
4f 10 (${ }^{5} \mathrm{La}$)
 (الموزب

P2

" " موصلح جيدة للحرارة والكهرياء
" مرجاتانصهارما وعليانها عالية

 " اعداد تاكهـلدها يوحي

i

$\because 20 \rightarrow \omega \rightarrow-2 p^{\prime}$

اللانتانبياه الدررة المطادم2 < المزيادة Zn

 $2 /(00)$
 -

 O nS^{2},

هتارينة بين

-
 . .
(d, f) (الفزلزاتالانتقالية
" تثيزي بتعدد حالاص الثاكسد " عواملعِيتزلة (اتلن نشاطا)
" "جهرد تاكهسها اتلّل
.
$\mathrm{nS}^{2}(\mathrm{n}-1) \mathrm{d}^{10}$ (IIB)

 $\mathrm{nS}^{2}(\mathrm{n}-1) \mathrm{d}^{2}$ (IVB)

$$
\Rightarrow \mathrm{nS}^{7}(\mathrm{n}-1) \mathrm{d}^{10} \text { (IB) }
$$

$n S^{1}(n-1) d^{5}$ (VIB)

 حاغ "
 " النديد |l الحنو

S

$$
{ }^{26} \mathrm{Fe}:[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~S}^{2}
$$

) -

 $3 \mathrm{FeO} \xrightarrow{\Delta} \mathrm{Fe}+\mathrm{Fe}_{2} \mathrm{O}_{3}:(\mathrm{FeO})$)
 أهـر خامات الحديد

($\left.\mathrm{Fe} \mathrm{e}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}\right) \mathrm{g}\left(\mathrm{Fe}_{2} \mathrm{O}_{3} . \mathrm{FeO}\right)$ ($\pi / 2 / 10$
A يد منا
 \% م $=$ (2)
iimech

الخخالصة

e - 0
 " ${ }^{\circ}$

$\mathrm{Fe}_{3} \mathrm{O}_{4}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ FeO
 $\mathrm{Fe}_{3} \mathrm{O}_{4}$: ك $\mathrm{Fe}_{2} \mathrm{O}_{3} . \mathrm{nH}_{2} \mathrm{O}$
" الميـاتيت ((اكـيد الكديديك اللاهائي) :
" الليسونايت (اكسيد الكديديك الانائي) :

تحلدين الحليـد (استخخاصهd) في الفرن الالافي

e
 a JC \triangleright (

Moballileline (a)

" تُضصاف الشحنة من الفتحه الحليا للفرئ

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-394 \mathrm{KJ} / \mathrm{mole}
$$

 $\mathrm{CO}_{2}+\mathrm{C} \xrightarrow{\Delta} 2 \mathrm{CO} . \Delta \mathrm{H}=+173 \mathrm{KJ} /$ mole

，

> ت気
> CO
$\mathrm{Al}_{2} \mathrm{O}_{3}$ ：

4．Weyll
CO Ineront

1）3Fn O＋CO TaO if in O $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}$ 2） $\mathrm{Fe}_{\mathrm{B}} \mathrm{O}+\mathrm{CO}-$
 －）Iamile．
多 $\mathrm{FeO}+\mathrm{CO}_{2} \mathrm{CO}$ －

2way
: لحتعد هـناءغائوأ|
رورا |فقبية
وسـط نُاثدي التنا CaCO_{3} \square $\mathrm{CaD}+\mathrm{CO}_{2}$ 4asil buy ：بلي

 －Crite＊ghat LL Y 0 ＋ ＂ 11

الخالاصه

[Mn , AI , P . S

 4）
ジ

 اكسيد الحديد المناطينـي $\xrightarrow{4 \mathrm{H} \text { 它 }} \quad 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \xrightarrow{\Delta} \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}^{\dagger}$

$4 \mathrm{Fe}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2} \longrightarrow 2\left(\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right):$ والتُاعل

 FeBr_{3} ． $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \xrightarrow{\Delta} 2 \mathrm{FeCl}_{3}:$

$$
\text { Fe + S } \xrightarrow{\Delta} \mathrm{FeS} \quad: \text { مع الكبربت : يكرن كبربيد الحديد ((II) }
$$

$$
\mathrm{Fe}+2 \mathrm{HCl} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}^{\hat{1}}
$$

$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{\text {（（da）})} \xrightarrow{H} \mathrm{FeSO}_{4}+\mathrm{H}_{2}^{\dagger}$

 $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (dii) $\longrightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$: $\mathrm{FeSO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \underset{\substack{\text { jult-12 }}}{\mathrm{Fe}(\mathrm{OH})_{2}}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$\mathrm{FeCl}_{3}+3 \mathrm{NaOH} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaCl}$
راسبائيعمر

الخلاصة

$\mathrm{Fe}_{3} \mathrm{O}_{4}$. ($\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$) (

 ه 0 cor (تركيز (Fer)

${ }^{30} \mathrm{Zn}$ الترئ
 ${ }^{10} \mathrm{Hg}$ 等

 "

-

 (CO ج

 -

 :

: اسنخدامات هـامـا

 (KSCN) (-- يسيس :
-
 -

 11 11 (لال

 -

($\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$) الأوه: خليط-
: بالبال
EYaler : wle

$\mathrm{NH}_{2} \mathrm{OH}, 1 \mathrm{NaOH}$ ت
¢
IIIA , IIA © مسا T ا

 :
. bat ما

e : ج

保 $\mathrm{Fe}_{3} \mathrm{O}_{4}$:

بَ (VHBB () ج :
 :
 "

 FROO4 : ما [S,p f $45^{2} \mathrm{~d}^{20}$:

 | " تحصين خَ [$\mathrm{FeS}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{FeO}-\mathrm{Fe}_{3} \mathrm{O}_{4}$] : الحدبد الم

${ }^{26} \mathrm{Fe}^{+3}$ - ${ }^{47} \mathrm{Ag}-{ }^{25} \mathrm{Mn}^{+2}-{ }^{42} \mathrm{Mo}:$: - - يمنف التعاس (

 Sc-Ag $=$:

 (.) :
 ($\mathrm{FeO}, \mathrm{S}, \mathrm{Cl}_{2}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{HCl}, \mathrm{CO}$) : Fe $(\mathrm{OH})_{3}$ "
FeCl_{3}, $\mathrm{FeSO}_{4}:$: 11

] ת :
وَ بلاحظ من الشكل السابق انْ :

 < (学)
-

كيبيالي (الشطام) :

共 " الِ

- العلاتة بين المرارةودرجة المرارة :

 "

السعة الحرارية والحرارة النوعية
الدسالثاني

$\Delta{ }^{\text {T السمع الحرارية }}$ - الحرارة اللوعية :كبية الطاتة اللازهة لرنع درجة هرارة جرام واهد مى اللارة درجة مُوبة واههة
i. . 17
：نا

 حرارتها سن Yo＂ا $p^{\circ} T r=r 0-1 A=\Delta T$

${ }^{\top}{ }^{\top}=$

الـحر

> 2 2 禹立
> $(r 1=$ at lllate $)$
－الملاتد يين السعه المرارية والمرارة اللوعية ：

 المرارة اللوعية
 $\stackrel{p}{ }^{\prime} 1$ ج

ب）السعدالمراري2＝المراردة اللوعية \times الكتلد
 <
 متارنة بين الحمليه الاديباتية والا
وجه المقارنة

 (الحطار (الو1) :

 <

يصساحب حدوث التفاعلات الكيمياليح تفير يِ الحرارة (امتماص او انطلاق)) حرارة
ب؛ يختف الماحتوى الحرالري باختلاف المادة -
 او " '

-

「Y)
珢

(

 $\Delta H=H_{2}-H_{1}=+$
)
.
: :
.)

$\Delta H=H_{2}-H_{1}=-$

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(9)} \longrightarrow \mathrm{CO}_{2(9)} \Delta \mathrm{H}=-393.5 \mathrm{KJ} / \mathrm{mole}: \text { : كناعل طارد المرارة : }
$$

 المتوى المراري للمواتج
 $\Delta H=H_{2}-H_{1}=-393.5 \quad$ rar,

/

لle \uparrow §
$\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2(9)}+1 / 2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(m)} \Delta \mathrm{H}=-286 \mathrm{KJ} / \mathrm{mole}$
: Jtion棈 مول والتاعد 0 ا ا or
 $\Delta H=H_{2}=H_{2,5}+241.8$

H_{1}

- كنلك : $1 / 2 \mathrm{~N}_{2(9)}+1 / 2 \mathrm{O}_{2(g)} \rightarrow \mathrm{NO}_{(g)} \quad \Delta \mathrm{H}=+90.4 \mathrm{KJ} /$ mole
 " تك "

 4) كابتابة قيعة (o)
$\mathrm{C}_{(5)}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{4(9)} \Delta \mathrm{H}=-75 \mathrm{KJ} / \mathrm{mole}:$: $\mathrm{CH}_{4(\mathrm{~g})} \longrightarrow \mathrm{C}_{(3)}+2 \mathrm{H}_{2(9)} \Delta \mathrm{H}= \pm 75 \mathrm{KJ} /$ mole : $\underset{\text { : }}{\text { : }}$路 ($2 \mathrm{SO}_{2(9)}+\mathrm{O}_{2(9)} \rightarrow 2 \mathrm{SO}_{3(9)} \Delta \mathrm{H}=-180 \mathrm{KJ}$

 $\mathrm{CS}_{2(1)}+3 \mathrm{O}_{2(9)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{SO}_{2(g)} \quad \Delta \mathrm{H}=-1077 \mathrm{KJ} / \mathrm{mole}$ $\mathrm{HI} \longrightarrow 1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{I}_{2} \Delta \mathrm{H}=-25.9 \mathrm{KJ} /$ mole 0 اككب معادلح لككين ${ }^{\text {" }}$
γ.

 < () • حرارة التكيض : كبة الحرارة
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(1)} \Delta \mathrm{H}=-44 \mathrm{KJ} /$ mole : : لألأه (8)

 dero 0 oftrainlenth $1 \rightarrow$

｜／ال $/$

（i）

：
 1）

 2athel ，lathan عun屄
有 اللسبيع ：المr ： $\mathrm{NH}_{4} \mathrm{OH}$ • تيدل حرارة التصا左 ： $\stackrel{H X+M g H}{ } \rightarrow \mathrm{MX}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-57.7 \mathrm{KJ} / \mathrm{mole}$

1） $\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-57.7 \mathrm{KJ} /$ mole ：\quad ：
2） $\mathrm{KOH}+\mathrm{HCl} \longrightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-57.7 \mathrm{KJ} /$ mole
3） $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-115.4 \mathrm{KJ}$

مe

 ميدروكميد（الصوديرم

NH0
il

＊
 ＂

）
者
者
 $\xrightarrow{2}-\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2} \quad \Delta \mathrm{H}=-297 \mathrm{KJ} / \mathrm{mole}$ （3）
 Nu $\mathrm{CH}+\mathrm{nO}_{2} \rightarrow \mathrm{mCO}_{2}+\mathrm{xH}_{2} \mathrm{O}+\Delta \mathrm{H}$ ：argal sloal g̈l isy oflal ableal 。 عدa n，m，X
鲑 $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-890 \mathrm{~kJ} / \mathrm{mole}$ ：aliol． vallaljal $-\mathrm{C}_{6} \mathrm{H}_{6}+{ }^{15} / 2 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-3268 \mathrm{KJ} / \mathrm{mole}$ 4，laljal $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-2816 \mathrm{KJ} / \mathrm{mole}$

 3، وعاه الثناعل الصلب（وعاه التّبلا ） ）（r جِّ

أ

（1）ليم｜and浣 $(1,1-1) \equiv(\Delta T)$（ $)$（ ${ }^{\circ}$
 －
 （ ΔT ）

مiol （ $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16:$ ：
（4）
－أهرارة （2 （r

$$
\begin{aligned}
& \text { (} \mathrm{r} \cdot \mathrm{.}, 00,1 \text {) } \times \mathrm{ra}=
\end{aligned}
$$

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}=-890 \mathrm{KJ} / \mathrm{mole}$ 7 ${ }^{T}$／r عرارة احتراق t，＇مول مناليثان

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \underline{\mathrm{H}}=-890$ ．
 くこ ro
e)

: ils
"المرازة المصاحمجا
 ($\Delta H_{f}=+$))

$\left(\ldots\right.$, Fe , $\mathrm{AI}, \mathrm{O}_{2}, \mathrm{H}_{2}$):

 SQ = $\quad 6 \mathrm{C}+3 \mathrm{H}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6} \Delta \mathrm{H}_{\mathrm{F}}= \pm 49 \mathrm{KJ} /$ mole $\square:$: حرارة التثاعل (
 $\mathrm{C}+2 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{4} \Delta \mathrm{H}_{\mathrm{f}}=-75 \mathrm{KJ} /$ mole : تناعل تكوين الايثان (طارد) للاحرارة) : $2 \mathrm{C}+3 \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad \Delta \mathrm{H}_{\mathrm{f}}=-278 \mathrm{KJ} / \mathrm{mole}$
: هو

$\mathrm{Al}_{2} \mathrm{O}_{3}$ 范 O

$J \times 1 \mathrm{~J}_{1} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{p}$

($\mathrm{NO}_{2}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$) : له : لمركب لـا لان انرارد

 بت

حرارة اللحاعل
: ـ) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe} \Delta \mathrm{H}=$? $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ (

حرارة التناعل (A (A) $(\Delta r r, r-)-(1719, \lambda-)=\Delta H$
((المثاعل طلارد للحرارة)

 الــحـل : حرارة التناعل (

$$
(r \times \| 1,0,)-(r \times r a r, 0-)=\Delta H
$$

الـناعل طارد للحرارة [اللواتجاككر استحرار من المتداعلام]
(${ }^{\text {(}}$

 $\mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-1256 \mathrm{KJ} / \mathrm{mole}$:

س (حرارة تكوين الاسيتيلين) = =
有

$[(r \times r i)+(r \times r \cdot)]-\left[\left(r \times \mathrm{HNO}_{3}\right)+(\mathrm{a}, \mathrm{r})\right]=1 r, \mathrm{r}-$

$$
1, r-r \wedge\urcorner+m+1, r=1 r q, v-
$$

$$
w r+r v, r=1 r, v
$$

 $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=$?? : حرارJالمنائل (

 $2 \mathrm{NH}_{3}+{ }^{7} / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-566 \mathrm{KJ}$
الـحـل : حرارة الحناعل (C)

س(حرارIT تكوين الامونيا)
$\mathrm{CO}+{ }^{1} / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \Delta \mathrm{H}=-283 \mathrm{KJ} / \mathrm{mole}$:
 ($C=12, ~ O=16$ () :

س
$(\mathrm{Na}=23, \mathrm{Cl}=35.5): \underset{2_{1,2}+\mathrm{NaOH}}{\mathrm{Cl}} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \underline{\mathrm{NH}=-57.7 \mathrm{KJ} / \mathrm{mole}}$

" الحسب حرارة الثكويم)

 قَانون هس (هـاتون الجمع الجبري) : حرارة التُناعل(

عالن: تَيسة (

 هد كانون هس من التوانيني اهاهمة جا الكيمياه الحرارارية ؟ علل
 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(0)}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(9)}+3 \mathrm{H}_{2} \mathrm{O}$: يحترق : .

1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(0)}+1 / 2 \mathrm{O}_{2(9)} \longrightarrow \mathrm{CH}_{3} \mathrm{CHO}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Delta \mathrm{H}=-175 \mathrm{KJ} / \mathrm{mole}$ 2) $\mathrm{CH}_{3} \mathrm{CHO}_{(i)}+1 / 2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CH}_{3} \mathrm{C}_{\mathrm{Cl}} \mathrm{OH}_{(1)} \quad \Delta \mathrm{H}=-320 \mathrm{~kJ} / \mathrm{mole}$ 3) $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g}}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-872 \mathrm{KJ} /$ mole $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(1)}+3 \mathrm{O}_{2(9)} \longrightarrow 2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(0)} \Delta \mathrm{H}=-1367 \mathrm{~kJ} / \mathrm{mole}$
r.
2) $\mathrm{H}_{2(9)}+1 / 2 \mathrm{O}_{2(9)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(9)} \Delta \mathrm{H}=-285.8 \mathrm{KJ} /$ mole
3) $\mathrm{H}_{2(g)}+1 / 2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta \mathrm{H}=-241.8 \mathrm{KJ} /$ mole : الـحـل :

4) $\mathrm{H}_{2} \mathrm{O}_{(0)} \longrightarrow \mathrm{H}_{2(g)}+1 / 2 \phi_{2(g)} \quad \Delta \mathrm{H}=+285.8 \mathrm{KJ} / \mathrm{mole}$
5) $\mathrm{H}_{2(g)}+1 / 2 \phi_{2(g)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(g)} \Delta \mathrm{H}=-241.8 \mathrm{KJ} / \mathrm{mole}$ $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$$
\Delta H=+44 \mathrm{KJ} / \mathrm{mole}
$$

تطبيقات على تانون Aس

1) $\mathrm{C}+2 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{4} \quad \Delta \mathrm{H}=-74.3 \mathrm{KJ} /$ mole
2) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ} /$ mole
3) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-285.8 \mathrm{KJ} /$ mole
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}:$: C (3) : Cd
4) $\mathrm{CH}_{4} \longrightarrow \mathrm{C}+2 \mathrm{H}_{2} \quad \Delta \mathrm{H}=+74.3 \mathrm{KJ} / \mathrm{mole}$
5) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=393.5 \mathrm{KJ} / \mathrm{mole}$
6) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-571.6 \mathrm{KJ}$
 $\Delta H^{\text {Pr }}$
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-890.8 \mathrm{KJ} / \mathrm{mole}$
:
Then
7) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-1367 \mathrm{KJ} /$ mole
${ }^{\circ} \mathrm{x}$ unis 2$) \mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
rx , 3) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$ $\Delta H=-393.5 \mathrm{KJ} /$ mole $\Delta H=-285.8 \mathrm{KJ} /$ mole
$2 \mathrm{C}+3 \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ¢
8) $2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \quad \Delta \mathrm{H}=+1367 \mathrm{KJ} /$ mole
9) $2 \mathrm{C}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}$
$\Delta \mathrm{H}=-787 \mathrm{KJ}$
10) $3 \mathrm{H}_{2}+3 / 2 \mathrm{O}_{2} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}$
$\Delta H=-857.4 \mathrm{KJ}$
Corr $2 \mathrm{C}+3 \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad \Delta \mathrm{H}=-277.4 \mathrm{KJ} /$ mole
11) $\mathrm{CO}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ} / \mathrm{mole}$
$\mathrm{C}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO} \quad \Delta \mathrm{H}=-283 \mathrm{KJI}$ mole
12) $\mathrm{C}+\dot{\mathrm{O}}_{2} \longrightarrow \mathrm{CO}_{2}$
13) $\mathrm{CO}_{2} \longrightarrow \mathrm{CO}+1 / \mathrm{O}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ} /$ mole
$\mathrm{C}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}$
$\Delta H=+283 \mathrm{~kJ} /$ mole
2, 将 Ni xu
: (2vidil) $\Delta H=-110.5 \mathrm{KJ} / \mathrm{mole}$

صرارة الـحاعل

$4 \mathrm{H}_{2} \mathrm{O}$:

14) $\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow 3 \mathrm{C}+4 \mathrm{H}_{2} \Delta \mathrm{H}=+105 \mathrm{~kJ} / \mathrm{mole}$
15) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ} /$ mole
16) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-286 \mathrm{KJ} /$ mole

17) $\mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow 3 \mathrm{C}+4 \mathrm{H}_{2} \Delta \mathrm{H}=+105 \mathrm{~kJ} /$ mole
18) $3 \mathrm{C}+3 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-1180.5 \mathrm{KJ}$
19) $4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \longrightarrow 4 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-1144 \mathrm{KJ}$

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-2219.5 \mathrm{KJ} / \mathrm{mole}
$$

 $\Delta H_{4}, \Delta H_{3}, \Delta H_{1}:$:

$\gamma \gamma$

$\Delta H_{5}+\Delta H_{4}=\Delta H_{1}$ $\Delta H_{5}+\lambda \ldots=14 \cdots$

2ian 2) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} \quad \Delta \mathrm{H}=-853 \mathrm{~kJ}$

1) $2 \mathrm{Al}+{ }^{3} / 2 \mathrm{O}_{2} \longrightarrow \mathrm{AX}_{2}^{\prime} \mathrm{O}_{3}$ $\Delta H=-1676 \mathrm{~kJ} / \mathrm{mole}$
2) $2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \quad \Delta \mathrm{H}=+853 \mathrm{KJ}$ mole $2 \mathrm{Fe}+{ }_{3} \mathrm{IO}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$ $\Delta \mathrm{H}=-823 \mathrm{~kJ} / \mathrm{mole}$

> ات ورصطلحات فـامه :
-

 "

 ΔT anlume ， ΔT ه
كِ
 م

 e ص
（ $\left.)^{\prime}\right)^{\prime}$ ） 0齐
测 م

الطاردة للحراوة ＂ اكلاص2
（ ${ }^{T!\%}=$＝$=$

 （ الماص المحرارة Dil

 الطارد بلفحرارة
 $\left(\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{KOH}, \mathrm{NaOH}\right)$)

 -
" " " *

 $\mathrm{C}_{3} \mathrm{H}_{2} \longrightarrow 3 \mathrm{C}+4 \mathrm{H}_{2} \Delta \mathrm{H}=+105:$ الحسك $=3 \mathrm{C}+4 \mathrm{H}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{8} \Delta \mathrm{H}=-105$:

$$
\begin{aligned}
& \text { < } \\
& \text { • تانون هس (تانور البمع الجبري) : }
\end{aligned}
$$

 (
 $\mathrm{C}_{3} \mathrm{H}_{8}$ البيوناه $\mathrm{CH}_{3} \mathrm{COOH}$ الكمول اليميلبي

انواع التغيرات الحرارية :

r

「

"

较

 " الحرارة النوعيت : .
 "

$$
\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2} \quad \Delta \mathrm{H}=-297 \mathrm{KJ} / \text { mole }
$$

 $\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \triangle \mathrm{H}=+180 \mathrm{KJ} \quad$ Jliw

 $\mathrm{NO}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{NO}_{2} \Delta \mathrm{H}=-56.5 \mathrm{KJ} /$ mole (1): اللإبابة

| / ملعرل الشوالبِ

ها ها d

A

 (ب)
 $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ $\Delta H=-65.2 \mathrm{KJ} / \mathrm{mole}$ (1) :الٍ $2 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ $\Delta H=+129 \mathrm{KJ}$
ب|

$$
\Delta H=-2219.2 \mathrm{KJ} / \text { mole (c) }
$$

() $\mathrm{NO}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{NO}_{2}$
$2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

$$
(4 \cdot r v+)-r i+=
$$

ب) حرارة التداعل ($(r \times \leq 9, t+)-(N r x r a r, 0-)+\left(Y \times \times \wedge 0, \Lambda_{-}\right)=$

(1)
$\mathrm{CH}_{4}+2 \mathrm{O}_{3} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-890.8 \mathrm{KJ} /$ mole
 $\mathrm{CH}_{4} \longrightarrow \mathrm{C}+2 \mathrm{H}_{2} \quad \Delta \mathrm{H}=+74.3 \mathrm{KJ} /$ mole
 $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-571.6 \mathrm{KJ}$:

1) $\mathrm{CH}_{4} \longrightarrow \& 4+2 \mathrm{H}_{2} \quad \Delta \mathrm{H}=+74.3 \mathrm{KJ} / \mathrm{mole}$
2) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ} /$ mole
3) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-571.6 \mathrm{KJ}$
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-890.8 \mathrm{KJ} / \mathrm{mole}$
：

 ：（ ：A O． － 1 ：

 －س •

 й

隹
保较
㥩

 f．

／

原 0 7－7
 dereg \qquad ：ا ：بnthell كيلو عبل \qquad ： سيلو جرل／مول ：

$$
\begin{aligned}
& 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}=-484 \mathrm{KJ} \quad: \quad \text { : } \\
& \text { : } \\
& \text { 「 }
\end{aligned}
$$

هيلو جول／مول
 سيلو جول \qquad

 تran NaOH تادل

＂
 ＂

 $2 \Delta H=294 \mathrm{~kJ} / \mathrm{mole}$

(AVY) () (
 - (

 ملى الترتيب) , Ju/ J /

《考 الشال 1
居 الوحدة الثاللية
俍

الأكسـة والاختّزال－أعداد النآكس．

＊ 2病

 －

$$
\mathrm{HCl} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{(a q)}+\mathrm{Cl}_{(\mathrm{aq)}} \quad: \underline{\mathrm{llip}_{0}}
$$

＂

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{(\mathrm{aq})}^{+} \quad: \underline{\mathrm{Jlin}}
$$

－

1） $2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Mg}$ O ：ل ：：

ب）

3） $2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}$

－الأكسدة：والانتزال حسب النظرية الإلكترونية）：

 -

$$
\xrightarrow[(2,6)]{\substack{\text { 地 }}}
$$

(عا عالك (ع
$2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-} \xrightarrow{(\gamma)}: \frac{\mathrm{dNo}}{2}$ $2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}_{-}^{-} \rightarrow-\mathrm{C}^{-}$

$$
\begin{array}{r}
O^{8}: \frac{j \mathrm{l} Y}{} \\
{ }^{2} \mathrm{~S}^{2} / 2 \mathrm{~S}^{2} \frac{2 P^{4}}{} \\
\hline
\end{array}
$$

竍 4 <

 -

-
 o
 Cl2, ${ }^{4}$ عدد

[^0]
\lll

$\mathrm{T}_{\mathrm{*}}=\mathrm{u}^{\mathrm{t}}+\left(1 \mathrm{x}^{+}-1\right.$ $1+=0$ か $\%$ " $=$ "
 $i+=S \quad r_{-}=S+1+x+1$

$=N+1+\quad \times 1$
$\Gamma=N e$
 " اللكمبتاعداد تاكسد : ا

دردير

الخلايا

 تتيجة انتّال الالكترونات من المادة المخترلا إلا المادة الموكسية -
 : (1)
 : يحد ي

"

=

$$
\mathrm{Zn}_{(\mathrm{s})}+\mathrm{CuSO}_{4} \longrightarrow \mathrm{ZnSO}_{4} \longrightarrow \mathrm{apq}^{(\mathrm{aq})} \mathrm{Cu}(\mathrm{~s})
$$

: 27 2

- خلية كهروكيميائية في إناه واحد :

 : $\mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}_{(\mathrm{sq})}^{+2} \longrightarrow \mathrm{Zn}_{(\mathrm{sq})}^{+2}+\mathrm{Cu}_{(\mathrm{s})}$

خلية كمروكيـياليه في إناه واحد
$\mathrm{Zn} / \mathrm{Zn}^{+2} / \mathrm{Cu}^{+2} / \mathrm{Cu}$ رمز الحكلية

- الحلايا الجلفانية (النولتية) : "
 - تركيب الحلية الجلثانية :

خلية (الحارمهين - المامامن)

 "
a باسترال برور التيار الكهربالئي :

ZnSO_{4} الثهر :

$$
\mathrm{SO}_{4}{ }^{2-}
$$

U التحا . او بداو

 ت عند غلت الدايرة الكهربائي2ج : تستل الالكتروناه
ويحدث تناعلات (اكسدة - الخترال) كما يلي
ويكدث تناعلات (اكسدة - الخترال) كها يله :
If

$$
1
$$

2 2

: ند
--

 - . -

 *

-

(ΔE^{0}) : مرجبـ)
 /

|lالدسها

 -

؟ :
: حيثغ

جهد البالية = جهد الختزال المهبط (Cu) - صفر
من المولتميتز (معلوم)
(Cu))
 "
 "
$\mathrm{H}_{2}+\mathrm{Cu}^{+2} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{Cu}$:
$\mathrm{H}_{2} / 2 \mathrm{H}^{+} / / \mathrm{Cu}^{+2} / \mathrm{Cu}$:
"
ك

 تياس جهد إخترال الكارارصين علما ان : جهد العالبا

< بد $<$ الاخختزال القطبية ورتبت بالنسبة اللهيدروجين بعا يعرف بالسلسلة الكهروكيميائية

الaارس الإابع

- Jin e (3)
$\mathrm{Zn} / \mathrm{Zn}^{+2} / / 2 \mathrm{H}^{+} / \mathrm{H}_{2}$
† اء أحسب جها إختّال الخارص
湤 $\mathrm{Zn} \longrightarrow \mathrm{Zn}^{+2}+26^{\circ}$
$2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2}$
اللناعل الكلى اللفلية $\mathrm{Zn}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Zn}^{+2}+\mathrm{H}_{2}$

$$
\begin{aligned}
& \text { (} \mathrm{Zn} \text {) } \\
& \text { جهد الختزال المارهين (Zn) }
\end{aligned}
$$

$\mathrm{H}_{2} / 2 \mathrm{H}^{+} / \mid \mathrm{Cl}_{2} / 2 \mathrm{Cl}$:
 5cas

 $2 \mathrm{H}^{+}+2 \mathrm{Fe}^{+2} \longrightarrow \mathrm{H}_{2}+2 \mathrm{Fe}^{+3}$ $\Delta \mathrm{E}^{\circ}=-0.77 \mathrm{~V}$(0) 唯
$\left.2 \mathrm{Fe}^{+2} / 2 \mathrm{Fe}^{+3} / / 2 \mathrm{H}^{+} / \mathrm{H}_{2}:(3) 1\right)_{0}$ I
 © ${ }^{2}$ A

(Fe) $=$

د)

> بدلالة جهرد الاغتزال الثُياسية

) B

- •
 : للرهاص والطغيس (r, rv ("
 " حدد إتجاه إنتقال إإلكترونات رسربان الشيّر الكهرباتي

) $\mathrm{Mg} \longrightarrow \mathrm{Mg}^{+2}+2 \mathrm{e}^{-}$) $\mathrm{Pb}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}$

هـ ا)

$\mathrm{HH}^{+}+\mathrm{Cu} \longrightarrow \mathrm{H}_{2}+\mathrm{Cu}^{+2}$

ق 3. 3 . Cu .

ب) برمز الحليد :
(5) بدلالة جهود الأكسدة القياسية
 ب) بحول جهود الأكسدة : إلى جهود لخترال
 " أحسب

 (A) = $=\Delta E^{\circ}$

$$
\text { = }=
$$

$$
\text { A/ A } / \text { | } / \text { B }
$$

$\mathrm{Fe}+3 \mathrm{Ag}^{+} \longrightarrow \mathrm{Fe}^{+3}+3 \mathrm{Ag} \quad: \quad$:

$$
\begin{aligned}
& \text { (1) } \\
& \mathrm{Fe}+3 \mathrm{Ag}^{+} \longrightarrow \mathrm{Fe}^{+3}+3 \mathrm{Ag} \\
& \text { إلتززال (}
\end{aligned}
$$

بت

س

$-\mathrm{H}_{2}-\mathrm{Br}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{Br}^{-}-\mathrm{O}$

4

$$
\begin{aligned}
& \text { س } \\
& \mathrm{Co} \rightarrow \mathrm{Co}^{+2}+2 \mathrm{e}^{-} \quad \stackrel{\circ}{\mathrm{E}}=+0.28 \mathrm{~V} \\
& \text { الحسب جهد البلية الملفالهي التي بعكن تكويلها من المنصرين }
\end{aligned}
$$

 "جمد اكهـدة الكوبله

$$
3 X^{+2}+2 M \longrightarrow 3 X+2 M^{+3}
$$

 ـ أكثب ربز الظلية
مـانوع الثناعل
(M) (X) -
 "

$$
\text { 2M / } 2 \mathrm{M}^{+3} / \mid 3 \mathrm{X}^{+2} / 3 \mathrm{X} \text { : }
$$

- خواص المهبط (الكالثود) : :

友 . "*

الدرس الخامس

ومن أملاتها الثلاثد الانواع الحالية :

- العحلول (اצلكتروليت) : : عجيلتي المصعد والمهيط

 $\mathrm{Zn}+\mathrm{HO} \rightarrow \mathrm{Hg}+2 \mathrm{OH}$ "

 PbO تنصل الكألواح صنائم عازلا
- اليحلرِ (الهكتزورليت) : علول مشض الكبريتيك (

 $\mathrm{Pb}+\mathrm{SO}_{4}{ }^{-2} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{a}^{-}$ $\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}+\mathrm{Ze} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}:$
$\mathrm{Pb}+\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{SO}_{4}{ }^{-2} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$: التفاعل الـكـر
-

$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\text { 等 }}$
(000
"

"

人

 -

-
 إبتاج الطاتح ومياه الثرب
$:$
or §

 "

 09

 :

-
$X \rightarrow X+e^{-}$

"

$$
\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

 \& $\mathrm{H}_{2} \mathrm{SO}_{4}, 1 \mathrm{HCl}_{\text {م }}$ السيبر : لزيادة تاين الماء ونيادة ثوميلف لالتيار الكهريالي

"

(المكصل بالمالب للمصعدر) "

() -

 " " يسمى مصعدأ لصعود إبإكتزونات دـد

- المعادلات العامة للكسيدة والإختّزال :

$2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \mathrm{E}=+1.23 \quad: \quad$:
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$E응 0.83 :

لهو "年

$$
\begin{aligned}
& M \longrightarrow M^{+2}+2 e^{-} \text {: } \\
& M^{+2}+2 e^{-} \longrightarrow M \quad: \quad \text { : }
\end{aligned}
$$

"

 مichl المال $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Z}^{\circ} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$

$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}+\mathrm{Cl}_{2}$

؟
 نيزداد درة المهد لإزال2 الاسـتططاب

 - التفاعلات التّى تعدث في الخليةً :
 $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$(
 $\mathrm{Cu}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} \quad$ (يترسب المحاس)

$$
\mathrm{CuCl}_{2} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \text { : التفاعل الملي }:
$$

(CuCC/2 (1

- تطبيقات التحليل الكهرباني في الصناعية : a (1)

 " المحلول (الهكتروليت) : يتتوى على نفس ايوناتات الدعلدن العراد تثقيته

告
 -
CuSO 4.

(

\% 91,90 a 10 a
:
共

AgNO 3 - الـعحلول : نهيَرات اللضا
 $\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} \quad:$: أكسة علد الكول

－القانون الأول لفارادايا

（ e（ ）اللاراداي

$$
=\frac{r, A \Lambda \times \wedge 90}{\cdot, 74}=r u
$$

R90 $r a \cdot 0,50=\frac{r, \Delta A \times \wedge 90}{\cdot, 17}=u$

ه القانون الثانى لما راداي

ر

$$
\text { - المثلة : " فع العنامر أحاديت التكاهز مثل : ... } \mathrm{Ag}^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}
$$ ．．．， $\mathrm{Ag}^{+}, \mathrm{K}^{+}, \mathrm{Na}^{+}$：مثلة ：＂فم العناصر أحاديح التكاهوز مثل

$$
\begin{aligned}
& \mathrm{Ag}^{+}+\mathrm{e}^{+} \longrightarrow \mathrm{Ag}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 原 } 11 \\
& \text { 仿 }
\end{aligned}
$$

.

: أهِثلة.

-
Agial.i

$$
1,1 \pi, 1.4:=
$$

:

an $14 \times r=r 40 \times 14]$

i $\ldots, \mathrm{Fe}^{+2}, \mathrm{Cu}^{+2}, \mathrm{Zn}^{+2}, \mathrm{Mg}^{+2}=\mathrm{M} \leftrightarrows \mathrm{M}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M}$保 ... $, \mathrm{Fe}^{+3}, \mathrm{Cr}^{+3}, \mathrm{Au}^{+3}, \mathrm{Al}^{+3}=\mathrm{X} \mathrm{X}^{+3}+3 \mathrm{e}^{-} \longrightarrow \mathrm{X}$品

وس
ألو

$j \times$ (ش)

$$
\frac{4 \times 2 \times ت}{990 . .}=2
$$

الكلة = عدد الناراداي ×

عد2 المارإداي

$$
\begin{aligned}
& \mathrm{Cu}^{+2}+2 \mathrm{e}^{+} \longrightarrow \mathrm{Cu}
\end{aligned}
$$

جrl, r

كشة IV

(p) $i=\frac{r \times i \Lambda}{r i}=v$

(f) (p ه

 ($\mathrm{Mg}=24$)

$$
\mu \quad i r=\frac{r i}{r}=M g \text { dus }
$$

هاردايا
 (T) لترسيب
 () صن الفضض2 (Ag=108)
 (TAT...)

 .1 : ا .

隹 $470 \cdot x+\vec{X} T V$
(2) $\operatorname{con}^{X} \xrightarrow{X} 11$
$=\frac{190 \cdots \times r \times 1 A}{r V}=u$

$$
\text { كولوم } 147 \ldots=\frac{470 \cdots \times 14}{9}=0
$$

 ($\mathrm{Na}=23$)

）
الـحلي:

عدا الفاراداي
إلكثران
 سن ：：

国 $=\mathrm{r} \times \mathrm{r}=$

م

	الـحــل
	كتلة البول نين
	$1,1=\frac{r 0,0 \times r \ldots}{190 \ldots}=$

$$
\text { () } j \times ت=\Delta
$$

和

$\frac{s_{0} \times j \times ت}{190 \ldots}=2$ and 2105
 $\frac{3, \times 1 \times 9 . \times, 1}{110 \cdots}=r, 110$
$1, \mathrm{~V}, 9=4$

المنيبيوم عند التحليل المرم
م
(Mg ${ }^{+2}$)
 §

$$
\text { عدد ألجرامك (الكتلة) = عدر أفلفراداي } \times \text { مت }
$$

عد

(1)

 م لترميب(

$$
\therefore \frac{\lambda Y 404,00}{Y .}=\frac{14 r \ldots}{r, r}=\frac{\omega^{*}}{\sigma}=j
$$

$$
\begin{aligned}
& 1 . V_{1}=\frac{170 \cdots \times{ }^{1}, 110}{19}=5 \\
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A_{1} \times 15}{190}=1,110
\end{aligned}
$$

أ / لمبل الشراني

م

$\xrightarrow{3} 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{\circ}$

 كتكة الكسبين = علد المولة x كتلة المول ب $\cdot, \cdot 1=r r \times \cdot, \cdots r=$

الـصلـ
 ب) بالزاداد في كتـة الكاثوثو =

- تماعلات غير مرغوبت للتأكسل (التآكلـ)

 " كمايكث : عغد تاس الحديد بع الماء او الواء الرطب او اي سطع كالترية او الفشب

 اكسيد المديد البالي (الصدا) : $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{nH}_{2} \mathrm{C}$

$$
4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Hz}_{z}^{+} \quad: \quad \underset{\text { | }}{\text { | }}$
 "

 ＂
目 ＂ 1．$=\mathrm{OH}^{\circ}$ ل I ．

边 （
 － ＂
人 <
＂ ＜

.

 " -

ΔE°
" التِيشا

"

 في نَايا التثيل

ग

 Nuthilill共 ＂ 8， 4 8 8 ．
害 （0） （1）لو لو ）

据 （1）داد U yeiall والم
 Fe ${ }^{+2}$ 0 0

 |

 ($\mathrm{Al}^{+3}, \mathrm{Na}^{+}{ }^{4}$ (لأن

 الت الـل

بسبي لالن الخارصين اكثم باعلية (جهد الختزاله آلل) لا يؤكسد الخديا

 -- تعد بملارحمالنسيارة انمكاسيح (لولتي2 والكتروليتي2)
 - تستشخد - خلية الززبق -
 - - -- - خلية الوظود (الميدروجين) غير ملودة (مديقة للبينة) - يستخدم تيار مستصر 2 خلايا التحليل الكهريالي

 - يترسب Ag ، Cu عند التحليل الكهربي لمحاليلهـا - يفشنل ان يكون شكل خلية الطلاء الكهريالئي اسطواني - - يـ ععلية تلتية اللحاس شوانب (Zn, Fe) هيلة ايونات ، شوائب (Au , Ag) تيزل تاع الحلية - إختخناء لوت CuSO - لحهاية الحديد من التاكسل (التآكل) يطلى بطبت2 مني الحارمعين (الززيك)

 seas An
 ti $1, \cdots+=\cdot, r o+\cdot, \Lambda+=弓\left(\cdot, r 0_{-}\right) \cdot \cdot, \Lambda+=$

	2) $2 \mathrm{~F}^{-}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{F}_{2}$ (أ) قَ
(1i)	vy

- السؤال الأول : ضع عالامتَ (

 () ()
 . Fe^{+3}) ${ }^{4}$)
.
(V

 .
- السؤال الثاني : اختر الإجابتَالصحيحتَ من بين القوسين فيبا بِلي :

 - [$\left.\mathrm{Ni}^{+2} / \mathrm{Cl}^{2} / \mathrm{NH}_{4}^{+} / \mathrm{Ag}^{\circ}\right]$ (r

 - $\left[\mathrm{Mg}^{+2} / \mathrm{Mg}^{2} / / \mathrm{Br}_{2} / 2 \mathrm{Br}^{*}, \mathrm{Mg}^{+2} / \mathrm{Mg} / / 2 \mathrm{Br}^{*} / \mathrm{Br}_{2}, \mathrm{Mg}^{2} / \mathrm{Mg}^{+2} / / \mathrm{Br}_{2} / 2 \mathrm{Br}^{*}\right.$,

1 HV
 [${ }^{[} \mathrm{PbO}_{2} / \mathrm{MnO}_{2} / \mathrm{HgO} / \mathrm{Zn}-\mathrm{KOH}$] (A

أ
[$\left[\mathrm{O}_{2} / \mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{~S} / \mathrm{KBrO}_{3}\right]$
 .

 :
 $\left.{ }^{1} \mathrm{O}_{2} / \mathrm{H}_{2} / \mathrm{Cu} / \mathrm{Cl}_{2}\right] \ldots$...

 |r (
皇

$\mathrm{NO}_{4}{ }^{-}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{KMnO}_{4}, \underline{\mathrm{FeO}}, \mathrm{LiAlH}_{4}, \mathrm{Al}^{+3}, \mathrm{Na}_{2} \mathrm{CO}_{3},\left(\mathrm{PO}_{4}\right)^{-3}$ $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7},\left[\underline{\mathrm{Cr}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}, \mathrm{Ag}, \mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}{ }_{4} \mathrm{~K}_{2} \mathrm{Cr}_{3} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$

 - 0 س م مردتيارشهربادی شدتل

 |sFA .

. "

 P

 - -

$\mathrm{Mg} / \mathrm{Mg}^{+2} \cdot \mathrm{E}^{0}=2.37$	$\mathrm{I}_{2} / 2 \mathrm{I}^{\prime} \mathrm{E}^{0}=0.54$	$\mathrm{Cd} / / \mathrm{Cd}^{+2} \mathrm{E}^{0}=0.4$
$\mathrm{Fe}^{+2} / \mathrm{Fe} \mathrm{E}^{0}=-0.45$	$\mathrm{Ag}^{+} / \mathrm{Ag}^{0}=0.8$	$2 \mathrm{Cl}^{-} / \mathrm{Cl}_{2} \mathrm{E}^{0}=-1.36$

"• "

ه الكتثان النظانر : وجد انذ ذراتالعنصر الواحد غير متساوي2

 يرجع سـبب وجود كتل دُرتَت لبعض العناصر على هينتَ كسور إلى وجود خاميتَالنظانر

الْ الـلا

(2)

${ }_{1}^{1} H{ }_{1}^{2} H{ }_{1}^{3} H$: نطائر علصر الميبررجيد :

الــــــلـ

انتظانر نوعين

- بيكّ •

$$
(\varepsilon \Delta \mu \nu) X_{Z}^{A}+\prod_{0}^{1}{ }_{(\alpha, k)} \longrightarrow X_{Z}^{A+1}(\varepsilon \Delta)+\gamma_{(L a l)}
$$

$\xrightarrow{\text { (}}$)
 \lceil Zalme
 ()

بی "

$$
\begin{equation*}
{ }_{92}^{238} \mathrm{H} \longrightarrow{ }_{90}^{234} \mathrm{TH}+{ }_{2}^{4} \mathrm{He}(\mathrm{r} \tag{1}
\end{equation*}
$$

6

:

。

 علل : نظالر المنصر تتشابه بإ الخواص الكيميالية ولختلف

 " تختلف في : الخواص الفيزياثية (الطييعية) - العدد الكتلي - عدد النيوتروناه .
 (النيركليونات) ا

 F)

 = =

$$
\frac{b}{r_{\varepsilon}}=s\left\langle r_{\varepsilon} \times s=b\right.
$$

细
$(\mathrm{P}+\mathrm{n}) \mathrm{n}$) $16=$
 البروتون + النيوترون ، الإلاكترون على الترتيب ($p^{17+1} \cdot \times 1,7=1$ m $1 \cdot p^{\prime} p^{\prime}$ '

局
$\Rightarrow 6$

3.

А7

الـ كجم بالفُري 2 :
「V. $1 . \times 1,17.0$

$$
\text { YV. } 1, x,, 0,540=
$$

(

$$
r \varepsilon \times s=b
$$

$$
11, \times 9 x^{\text {TV. }} 1, x \cdot, 0,140=
$$

$$
\text { جول }{ }^{11} 1 \cdot x \cdot,\{0 \varepsilon=
$$

 تساوي (V,

 جول ${ }^{T \pi} 1 \cdot \times \mathrm{YA} \mathrm{\circ V}, 7=$

ir. $1 \cdot x$.
e
 - يعتعد إستشرار النواء على عد .
0.

- ثانيا: علاقة متوبلط مطاقة الترابط النووي والعدد الكتلم باستّرار النواة:

 8

 علل : كتلد

 حسب منحنى متوسط طاتج الترابط (ص AA) يلاحط انٍ:

$$
{ }_{8}^{16} \mathrm{O} \text { نواة الحديد }
$$

(「 بدلالة العدد الكتلي وnتوسط طاتهد الترابيط:
 a الانوية الحنيطة: كتلتها أتل nن

 ${ }^{16}{ }_{6}^{16}{ }_{6}^{12} \mathrm{C}{ }_{7}^{14} \mathrm{~N}:$:迬 - 80

(اققل مز حدالاسترار
 تِي الطبيعة بيطاء بدرن مؤر خارجي ع انطلان أشعع
.

.

 वם مناعية :

ه أولا : التحولات النووية الطبيمية الذاتية (التلقاثية) : "

 () التحمل النووي المصحوب بفقدان جسيمات بيتا السالبة :

 : ${ }_{0}^{1} n \rightarrow{ }_{1}^{1} P+{ }_{1}^{1} B$ B

1

 ${ }_{15}^{30} \mathrm{P} \rightarrow{ }_{14}^{30} \mathrm{Si}+{ }_{11}^{10} \mathrm{~B} \quad(\mathrm{n})$ (D (D)

 " ${ }_{13}^{26} \mathrm{Al}+{ }_{-1} \mathrm{e}^{0} \longrightarrow{ }_{12}^{26} \mathrm{Mg} \quad:$ atiol. ${ }_{11}^{36} \mathrm{Cl}+{ }_{1} \mathrm{e}^{0} \longrightarrow{ }_{15}^{36} \mathrm{~S}$
 "

o) التحول النوعى المصحوب بانطلاق اشعة جاما (
 441 و ال

$$
\mathrm{C}_{27}^{60} \rightarrow \mathrm{Nii}_{28}^{60}+{ }_{-1} \mathrm{~B}^{0}+\gamma
$$

أ / طلبل الشُراني الكيبِاء النورية

 -
 2.
-

1) ${ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \underline{\mathrm{He}} \rightarrow{ }_{15}^{30} \mathrm{P}+{ }_{0}^{1} n \quad$: Ulifin
2) ${ }_{13}^{27} \mathrm{Al}+{ }_{0}^{1} \underline{n} \longrightarrow{ }_{11}^{24} \mathrm{Na}+{ }_{2} \mathrm{He}$

3) ${ }_{13}^{27} \mathrm{Al}+{ }_{0}^{1} \mathrm{n}\left(8, e_{0}\right) \rightarrow{ }_{11}^{24} \mathrm{Na}+{ }_{2}^{1} \mathrm{He}$
4) $, \underline{\mathrm{Li}}+\sqrt{ } \mathrm{P} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{2}^{3} \mathrm{He} \quad: \underline{\mathrm{Jlio}}$.
5) ${ }_{3}^{7} \mathrm{Di}+1 \mathrm{P} \rightarrow 2{ }_{2}^{4} \mathrm{He}$

أُتواع التُناعلات النووِهة الصناعِهَ

الدرسالخامس
 : 2

 - كـما يعكن انَ يحفز ${ }_{92}^{25} U+{ }_{0}^{1} n \longrightarrow{ }_{56}^{141} B a+{ }_{36}^{92} K r+3{ }_{0}^{1} n+$ يحدث حسب المعادلة التالية :

 --

原 -

 ${ }^{238} \mathrm{U}$ من اليورانيوم اللتي الذي يكتوي على (

- علل : التفاعالات والمفاهالات النووية سلاح ذو حدين ؟

. أهمية التفاعلات النووية : تستخلم التفاعلات والمفاعلات النووية

 مبل : أأكراض الورالثية واللدوهاه| الخلتي2

الوتود اللووى \$التنايل

 '
 الوترد اللوروي الهالتايل

 - علل : يصحب تطبيق الצندماج النووي على الوافـع ؟ ؟

 $4{ }_{1}^{1} H \rightarrow{ }_{2}^{4} H e+2{ }_{+1}^{0} \beta \quad: \quad$ كا في المعادلة التالية

/

2r|ant -
< متارنة عامة بين التفألاتلا

 < $<$ تحدث التفاعلات الكيميانية خارج النواة في مبتوريات الطاتة بواسططة إلكَرونات المستوى الأغير <تحدث التفاعلات النووية في النواة بباسطط النيوكليونات (p+n) -
 < بزيادة عدد النيوكليونات تزداد طاقة الترابط النووي تزداد الككلة المغقودة (ك) 1

" " مرعدها كليلة (1, '

${ }_{2}^{4} \mathrm{He}(\alpha)$

بالـال الشُولأذ

\rightarrow 走

ic．atl

2yiz！
2
 وع الخaty الثـذود ＊بوy

㥩 $ل$者
若

 بوg

（Lإ2

 －زمن عمر الدنسف ：الزمن اللا

 －إنتاج اللظطأر المشعة：：تّوير ＜ ＜ －الانتشمار المتسلسل ：إساتمر ＜\llني الانشطار النووي المت．
 ＜ －تنميب اليورانيوم ：نَّويرا ＂، يحدث الاندهاج النووي بي －الطاتهد الثابِه من الالندماج ＂ －وrتمد حدوث الاندهاج على الا －

据

" " تعريض كتلة =

الإجـابت

 (n
 A $4 \cdot \uparrow \frac{\Lambda_{1} V}{2}$,
 -
 -
"

الســؤال

- بسبب -	
${ }_{2}^{4} \mathrm{He}$ 隹	¢
- بسبب -	
-	-
)	隹
	-
- 	-
-	-
- 	
لا لأن)	
	- يصعبا -
4 ${ }^{1} \mathrm{H}_{\text {¢ }}$	

	2terliotan
-	
	2atal
(1) - - - -	(${ }^{14} \mathrm{C}$)
-	
-	(P) (\%)
-	(I) (1)
ع -	(C0) (\%)

الترما
 والتتجارب المُورية

 2 2 告
相（ －
俍左 الصرارة الناتجة
 Itha 210 －الولحود التنوبي（اليورانيوr）

الإجابـت على أسئلةً الوحلدة ．التفاعل المستلسل

 ＂

ج）إـا تحورك نواة5（

أ / ملرل الشُرانج الكِيباء النورية

 ب) تمتبر النيوترونات من المشنل المذالضالنالنويوية
 ع) اهعح جالما الها عالـارة عاليد على النفاد . د) الانوية الوالفع2 حانح حزام الآستقرار فير مستدرة (Ar (Ar) ل
a) ${ }_{12}^{14} T e+{ }_{0}^{1} n \longrightarrow \ldots{ }_{1}{ }^{1 \prime \prime} T e_{2} \ldots . .+\gamma$
b) ${ }_{11}^{"} \mathrm{Al}+{ }_{\mathrm{n}}{ }^{1} n(\mathrm{~m}) \longrightarrow{ }_{11}^{2} \mathrm{Na}+\ldots . .{ }_{2}^{4} \mathrm{He}+\ldots$.

d) ${ }_{15}^{20} \mathrm{P} \longrightarrow{ }_{14}^{30} \mathrm{Si}+\ldots{ }_{4}^{0} \beta \ldots$
e) ${ }_{7}^{13} N \longrightarrow{ }_{6}^{13} C+\ldots .{ }^{1}{ }^{0} \beta \ldots$.
f) ${ }_{11}^{24} \mathrm{Na} \longrightarrow{ }_{12}^{24} \mathrm{Mg}+\ldots{ }_{-1}^{0} \beta \ldots$
 (c) (

") "الْ مثارنة ين التنبلا النيهية والتنبلة الميدروجينية

 1.1

6 : 6 : ${ }_{38} S_{r}{ }^{1}$
ج) (

1i(i) alm Y Y wive

()))

- (V ^)

 . ${ }^{13} \mathrm{Al}^{27}$ (I Y

 .

i
(Ra / I / Co / P) / / / Pb / 17 (IV

 (V) () Tr

 ((Y Y V
 $\left({ }_{6} \mathrm{C}^{13} /{ }_{7} \mathrm{~N}^{14} /{ }_{6} \mathrm{C}^{14} /{ }_{6} \mathrm{C}^{12}\right)$ (r) (r)

س

 س

 ما الهلد الاذرى للعنعريني (

: الميثان
 ablsill thelg
$\left[\begin{array}{l}-1- \\ -1\end{array}\right] \quad$ C.泿

 $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}-2$:
 - الميغة اليناثية (التركيبي) : توضح عدد ونوو الذرات وطرية 2 ارتباطها (〇), $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{CH}_{3}=$ diop
 الالكاناتات العشرة الأساسية

- المجسوعة الوظيفية (الفـالة) : المجموعة المثيزة لنوع من المركبات العضوية وتحسث عليها الثفاعلات

$$
1.0
$$

.

「 : تواعد الأتسمية العنجرية

 بعض المركبات العضوية الهاهة
 تم الثفرع منها
? *
 اللرقّم - الكيل - الكان远

$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ it
(O). $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{COOH}$ t- أ فينيل يبوتانويك
$\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}-\mathrm{COOH}$ $\mathrm{Nl}_{\mathrm{CH}}$ $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{COOH}$ CH_{3}
$\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}$
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{OH}$

- . .

الصيغ العامة لمركبات النينِيجرc العضوِية الـاهة

$$
1 . v
$$

الوحدة الخاميسة

 (0)-NH2 :

$\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \quad \mathrm{CH}_{3} \mathrm{NH}_{2}$ $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NH}_{2} \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NH}_{2}$ البئ ميثان

(0). $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2} \quad \mathrm{CH}_{3} \mathrm{CH}_{6} \mathrm{H}_{5}$

$$
\begin{aligned}
& \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-\mathrm{NH}_{2} \\
& \mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{NH}_{2} \quad \mathrm{NH}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ((اليزو يرويبل المين) البتيل البين) }
\end{aligned}
$$

النيلين

(مئو هكسان الحيا

(${ }^{\text {(}}$

 (Y (F)

(O)- $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

(

 تاعدي

—
 الكتروني حر على درَ
-
.
 هِ

HCNH_{2} .
$\mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}-\mathrm{NH}_{2} \quad \mathrm{CH}_{3} \mathrm{C}-\mathrm{NH}_{2}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2} \quad \mathrm{CH}_{3} \mathrm{CONH}_{2}$ إيثانايد((لميتاميد)

OH_{3}
C C- NH
(O)- $-\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3} \quad \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{O}$

$\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CHCOOH}$ NH_{2}
الفا البين بيورتال大يه

(O) $-\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{COOH}$ (

 e

 تنجذب نحو الأنور

ثاثابية التطب (متعادد a)
لا تتجذب نحو الأنود الو الكاثود

R-CN النبتريلا
م مركبات نيتّرجين الاميدات غير المستبا
 بك ,

PH < 7 في المحلول الحفضي 0
توجد على هيئة ايون موجب تنجذب نحو الكاثوقد

PH < 7.

$$
\mathrm{R}-\mathrm{X}+\mathrm{NH}_{3} \longrightarrow \mathrm{R}-\mathrm{NH}_{3}^{+} \mathrm{X}^{-} \xrightarrow{\mathrm{NH}_{3}} \mathrm{R}-\mathrm{NH}_{2}+\mathrm{NH}_{4}^{+} \mathrm{X}^{-}
$$

$\mathrm{R}-\mathrm{X}+2 \mathrm{NH}_{3} \longrightarrow$ R- $\mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{X} \quad \underset{\text { a }}{\text { a }}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{C}$: : لحفصير اليثيل المين من الامونيا : U $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \xrightarrow[-\mathrm{NH}_{4} \mathrm{Br}]{\mathrm{NH}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}^{2} \xrightarrow{\mathrm{CH}_{3}}$

 (Zn+HCl) الو
 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$: الختزال نيترو ايثان يتّع ايثيل امين

「
 < 111
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+} \mathrm{Cl}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
CH_{3}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}+\mathrm{HCl} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{R}-\mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{R}-\mathrm{OH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}^{+}$

1) $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}^{+}$
2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

$\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{CH}+\mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{O} \xrightarrow{\mathrm{O}} \mathrm{CH}$ $\mathrm{CH}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3}-\mathrm{C}-\mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\longrightarrow} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ -

 $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{NH}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CON}^{\mathrm{H}}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad:$ atol $\mathrm{CH}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{NH}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{O} \mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}+\mathrm{HCl}$

 3/أكمين الكالكي بهيلروجيني "

- تثاعلات الاميدات :

$\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{NH}_{3}$

حو
$\mathrm{CH}_{3} \mathrm{C}-\mathrm{NH}_{2} \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} \mathrm{CH}_{3} \mathrm{CN}$
 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH} 2 \underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{H}_{5} \mathrm{O}} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CN}$:

 الكربوكبيل غ

- رابعا : الـذاصية الامفوتيرية :

OH
$\mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{CH}_{2} \mathrm{COOH}$

 $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O}$: HCl بئفاعل الجلإبسم $\xrightarrow{\mathrm{NaOH}} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}: \mathrm{NaOH}$ ع § : لlla

 - بمعادلات كيمياينة وضح الخامية الامفوتيرية اللجلايسبن (الساوك الحعفي والقاعدي للجلايسيني))

 "

R－CN जnill

（部 ：

 ئتئت ： $\mathrm{HNO}_{2}+$
，

 （－NH
品

 －告

 ＋

 7居
掊 y_{1}
 （الخامبا
有 ＂حد3 عدد ذّرات㥩

() " (الحا ${ }^{1} \mathrm{NH}_{2}$)告
$\mathrm{R}-\mathrm{X}+2 \mathrm{NH}_{3} \longrightarrow$ S Sivi $R-\mathrm{NH}_{2}+\mathrm{R}-X \mathrm{NH}_{3}$: $\mathrm{R}-\mathrm{NH}+\mathrm{R}-\mathrm{NH}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{NH}+\mathrm{NH}_{4}{ }^{+} \mathrm{X}^{+}$ $\mathrm{R}_{2}-\mathrm{NH}+\mathrm{R}-\mathrm{X} \xrightarrow{\mathrm{NH}_{3}} \mathrm{R}_{3}-\mathrm{N}+\mathrm{NH}_{4}{ }^{+} \mathrm{X}^{-}$
 Sive

دهدمى ميثيل الصين
 (11) ()

秋

 ج $\mathrm{CH} \mathrm{CH}_{3} \mathrm{OH}$ $-\left(\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{CH}_{3}-\mathrm{CONa}^{\mathrm{O}}+\right.$

 .

(7) سنم المركبات الشيتورجيني2الداليا
$\stackrel{O}{0}$ $4)$
(O) $-\frac{\mathrm{O}}{\mathrm{C}}-\mathrm{NH}_{2}$ هينيل ميداناميد (بنزاميد)
(O)- $\mathrm{NH}_{2} \quad-\mathrm{NH}_{2}$
 ((بتتيل حلقي امين) (1)

R-CHCOOH

)
 "
"

. .

1) ا) وضح المقصود بالخاميةالامفوتيرية ؟

الوحدة السـادسة

 - الكيـميـاء الـحـيـويـة : فرع الكيباء

" 2 ithir

 -

 - بناء النسج البسم

 …

$\mathrm{CH}_{2} \mathrm{O}$: م

-

تصنيف الكربويديدرات (

宛
$\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}}$:
者

م ميغتها الجزينية العامة :

 $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{\mathrm{n}}$: الميفة العاة
 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:

الصيفة الجزئية العامة:
C

" سكريات لحادية لها بنـي
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:

الفركتر (
贸

 .

§
 (5)
-

 "

الكِبياء المبية

مالثوذ هـلثنّن جاوكوز＋جلوكون

 a

a －－

 جز

．
 لرينا أنر

> I丷 (

 ميك ．
 － ． ．

（
䚡

： ：测

, ,

 - \quad :

--

Pbenylalanine نيلي ألإين

 -
" متوفرة في اليروقين الحيوانی
-

2

.

بالمة

- تحفير جلا يسيل الجلايسين (بيتيد ثثائي) :

أ / كلكلل الـُــا

 . .

(COOH (-
 $\mathrm{CH}_{5}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}$ [$\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}-\mathrm{OH}\right]$

 بتارنة بين الزيوت والدهون

-الخقاص الغيزياية| (لليبدات : •

- تناعلات الليبيدات :

:

尼
（

 E

A：abo
人 4الدريانيبا园

- تخرق عنطكيكة|لوبون
－

－

年

．لابتورلـري البات

أ 1 ململدل الشباني		兂
		-الانزيعات : نوع من البروتينات تعمل الهي الخلايا بسرعوع عالية جا

" :

 $\mathrm{H}_{2} \mathrm{CO}_{3(\text { aq })} \xrightarrow{\text { 道 }} \mathrm{Ha}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
 نشـا إنزبع

- تريب الإنزيمات (طبيع الجنزيعات) : يتكون الانزيزم من جزلين

.

 [: ع' إي السعوم - الواد الحانـةif

$$
\text { (} \left.\mathrm{CH}_{2} \mathrm{O}\right) n \text { I }
$$ C. H $_{6} \mathrm{O}_{3}$:

 0) 20
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$: ملاحه " السكريات الـحدودة :

 < $<$ <
 -الميغة الحامة :

 =

 ه (1.

隹

 \ll $<$ <
 <
 - الفيتامينات : موال

H）الما
（1） － （1）据－

 （ بوليمرات حيويه اككر تعتيد ）

 احتراج السكر
بسيب ：ككون الدليداه وكيتوناه وووق اكاسيد تؤدى الل ردله：

السؤال

 －
高
20 －
－ （
－

لمساد المزيت الو الدین عند تصرفث وهواء رطب وحرارة عالية

استخرامات فامة ：

الدور او اللأهمية او الاستخدام

－
－
－ －

المادة أو المصطلح
الأحهاض الالمينية
السكريات（جلوصرز）
البروتينات
الدحون والزيوت
الإنزيـات
الفبتامينات
فيتامين
A
新 12
－ النيكل Ni
برمنجنات البوتاسيوم

: whityaliont

$\mathrm{j}_{3 \mathrm{Jr}} \mathrm{t} \quad \mathrm{CH}_{2}-\mathrm{OH}$
4,

NH2

 ") إيا الجزيثاتالتالبيليهل حعشنأ امينياً :
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$

OH
c) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$

d) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

:
 | (|

ج) الكربوهيدرات - الليبيدات من حيث : الطاتر الثاتجة من الأكسطدا د) الزيوت - الدهون هن حيث : نوع الاكمعاضى الدهنية - تناعل الهدرجية
 أ) النثا - سكر الحادي الو ثثاني بطريتينين ب) شخص مصاب بالسكر - ثـخصس اليم ج) الزيوت - الدهون
2) السكروز : الجلوكيذ

[^0]: (\ddagger

