
1

Dr. George Karraz, Ph. D.

Artificial Intelligence

Lecture III

First-Order Logic

Dr. George Karraz, Ph. D.

Limitations of propositional logic

 So far we studied propositional logic

 Some English statements are hard to model in propositional

logic:

 “If your roommate is wet because of rain, your roommate

must not be carrying any umbrella”

 Pathetic attempt at modeling this:

 RoommateWetBecauseOfRain =>

(NOT(RoommateCarryingUmbrella0) AND

NOT(RoommateCarryingUmbrella1) AND

NOT(RoommateCarryingUmbrella2) AND …)

Problems with propositional logic

 No notion of objects

 No notion of relations among objects

 RoommateCarryingUmbrella0 is instructive to us, suggesting

 there is an object we call Roommate,

 there is an object we call Umbrella0,

 there is a relationship Carrying between these two objects

 Formally, none of this meaning is there

 Might as well have replaced RoommateCarryingUmbrella0 by P

Elements of first-order logic

 Objects: can give these names such as Umbrella0, Person0,

John, Earth, …

 Relations: Carrying(., .), IsAnUmbrella(.)

Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)

Relations with one object = unary relations = properties

 Functions: Roommate(.)

Roommate(Person0)

 Equality: Roommate(Person0) = Person1

Things to note about functions

 It could be that we have a separate name for Roommate(Person0)

 E.g., Roommate(Person0) = Person1

 … but we do not need to have such a name

 A function can be applied to any object

 E.g., Roommate(Umbrella0)

Reasoning about many objects at once

 Variables: x, y, z, … can refer to multiple objects

 New operators “for all” and “there exists”

 Universal quantifier and existential quantifier

 for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))

 Completely white objects are never partially black

 there exists x: PartiallyWhite(x) AND PartiallyBlack(x)

 There exists some object in the world that is partially white and partially

black

Practice converting English to first-

order logic

 “John has Jane’s umbrella”

 Has(John, Umbrella(Jane))

 “John has an umbrella”

 there exists y: (Has(John, y) AND IsUmbrella(y))

 “Anything that has an umbrella is not wet”

 for all x: ((there exists y: (Has(x, y) AND IsUmbrella(y))) =>

NOT(IsWet(x)))

 “Any person who has an umbrella is not wet”

 for all x: (IsPerson(x) => ((there exists y: (Has(x, y) AND

IsUmbrella(y))) => NOT(IsWet(x))))

More practice converting English to

first-order logic

 “John has at least two umbrellas”

 there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x)

AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y))

 “John has at most two umbrellas”

 for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND

Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND

IsUmbrella(z)) => (x=y OR x=z OR y=z))

Even more practice converting

English to first-order logic…

 “Duke’s basketball team defeats any other basketball team”

 for all x: ((IsBasketballTeam(x) AND

NOT(x=BasketballTeamOf(Duke))) =>

Defeats(BasketballTeamOf(Duke), x))

 “Every team defeats some other team”

 for all x: (IsTeam(x) => (there exists y: (IsTeam(y) AND NOT(x=y)

AND Defeats(x,y))))

More realistically…

 “Any basketball team that defeats Duke’s basketball team in one year

will be defeated by Duke’s basketball team in a future year”

 for all x,y: (IsBasketballTeam(x) AND IsYear(y) AND DefeatsIn(x,

BasketballTeamOf(Duke), y)) => there exists z: (IsYear(z) AND

IsLaterThan(z,y) AND DefeatsIn(BasketballTeamOf(Duke), x, z))

Is this a tautology?

 “Property P implies property Q, or propery Q implies

property P ”

 for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

 (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) =>

P(x)))

Relationship between universal and

existential

 for all x: a

 is equivalent to

 NOT(there exists x: NOT(a))

Something we cannot do in first-

order logic

 We are not allowed to reason in general about relations and functions

 The following would correspond to higher-order logic (which is more powerful):

 “If John is Jack’s roommate, then any property of John is also a property of Jack’s

roommate”

 (John=Roommate(Jack)) => for all p: (p(John) => p(Roommate(Jack)))

 “If a property is inherited by children, then for any thing, if that property is true of it,

it must also be true for any child of it”

 for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) AND p(y)) =>

p(x))))

Axioms and theorems

 Axioms: basic facts about the domain, our “initial”

knowledge base

 Theorems: statements that are logically derived from

axioms

SUBST
 SUBST replaces one or more variables with something else

 For example:

 SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) gives us

 IsHealthy(John) => NOT(HasACold(John))

Instantiating quantifiers
 From

for all x: a

we can obtain

SUBST({x/g}, a)

 From

there exists x: a

we can obtain

SUBST({x/k}, a)

where k is a constant that does not appear elsewhere in the knowledge

base (Skolem constant)

 Don’t need original sentence anymore

Instantiating existentials after

universals

 for all x: there exists y: IsParentOf(y,x)

 WRONG: for all x: IsParentOf(k, x)

 RIGHT: for all x: IsParentOf(k(x), x)

 Introduces a new function (Skolem function)

 … again, assuming k has not been used previously

Generalized modus ponens

 for all x: Loves(John, x)

 John loves every thing

 for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))

 Jane feels appreciated by every thing that loves her

 Can infer from this:

 FeelsAppreciatedBy(Jane, John)

 Here, we used the substitution {x/Jane, y/John}

 Note we used different variables for the different sentences

 General UNIFY algorithms for finding a good substitution

Keeping things as general as possible in

unification

 Consider EdibleByWith

 e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon

 for all x: for all y: EdibleByWith(Bread, x, y)

 Anything can eat bread with anything

 for all u: for all v: (EdibleByWith(u, v, Spoon) =>

CanBeServedInBowlTo(u,v))

 Anything that is edible with a spoon by something can be served in a bowl to that something

 Substitution: {x/z, y/Spoon, u/Bread, v/z}

 Gives: for all z: CanBeServedInBowlTo(Bread, z)

 Alternative substitution {x/John, y/Spoon, u/Bread, v/John} would only

have given CanBeServedInBowlTo(Bread, John), which is not as general

Resolution for first-order logic

 for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))

 John loves everything he knows, with the possible exception of mean things

 for all y: (Loves(Jane, y) OR Knows(y, Jane))

 Jane loves everything that does not know her

 What can we unify? What can we conclude?

 Use the substitution: {x/Jane, y/John}

 Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)

 Complete (i.e., if not satisfiable, will find a proof of this), if we can

remove literals that are duplicates after unification

 Also need to put everything in canonical form first

Notes on inference in first-order logic

 Deciding whether a sentence is entailed is semidecidable:

there are algorithms that will eventually produce a proof of

any entailed sentence

 It is not decidable: we cannot always conclude that a sentence

is not entailed

(Extremely informal statement of) Gödel’s

Incompleteness Theorem

 First-order logic is not rich enough to model basic arithmetic

 For any consistent system of axioms that is rich enough to

capture basic arithmetic (in particular, mathematical

induction), there exist true sentences that cannot be proved

from those axioms

A more challenging exercise

 Suppose:
 There are exactly 3 objects in the world,

 If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e.,

everything has a spouse)

 Prove:
 Something is its own spouse

More challenging exercise
 there exist x, y, z: (NOT(x=y) AND NOT(x=z) AND NOT

(y=z))

 for all w, x, y, z: (w=x OR w=y OR w=z OR x=y OR x=z

OR y=z)

 for all x, y: ((Spouse(x)=y) => (Spouse(y)=x))

 for all x, y: ((Spouse(x)=y) => NOT(x=y)) (for the sake of

contradiction)

Umbrellas in first-order logic

 You know the following things:
 You have exactly one other person living in your house, who is wet

 If a person is wet, it is because of the rain, the sprinklers, or both

 If a person is wet because of the sprinklers, the sprinklers must be on

 If a person is wet because of rain, that person must not be carrying any umbrella

 There is an umbrella that “lives in” your house, which is not in its house

 An umbrella that is not in its house must be carried by some person who lives in

that house

 You are not carrying any umbrella

 Can you conclude that the sprinklers are on?

Theorem prover on the web
 http://www.spass-prover.org/webspass/index.html (use -DocProof option)

 begin_problem(TinyProblem).

 list_of_descriptions.

 name({*TinyProblem*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Just a test*}).

 end_of_list.

 list_of_symbols.

 predicates[(F,1),(G,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([U],F(U))).

 formula(forall([V],implies(F(V),G(V)))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([W],G(W))).

 end_of_list.

 end_problem.

http://www.spass-prover.org/webspass/index.html

Theorem prover on the web…
 begin_problem(ThreeSpouses).

 list_of_descriptions.

 name({*ThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Three Spouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.

Theorem prover on the web…

 begin_problem(TwoOrThreeSpouses).

 list_of_descriptions.

 name({*TwoOrThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*TwoOrThreeSpouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],not(equal(X,Y))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.

Theorem prover on the web…
 begin_problem(Umbrellas).

 list_of_descriptions.

 name({*Umbrellas*}).

 author({*CPS270*}).

 status(unknown).

 description({*Umbrellas*}).

 end_of_list.

 list_of_symbols.

 functions[(House,1),(You,0)].

 predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(

You))))))),equal(X,Y))))).

 formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))).

 formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).

 formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).

 formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).

 formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X))))).

 formula(forall([X],implies(and(Umbrella(X),NotAtHome(X)),exists([Y],and(Person(Y),and(equal(House(X),House(Y)),Carrying(Y,X))))))).

 formula(forall([X],implies(Umbrella(X),not(Carrying(You,X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(SprinklersOn).

 end_of_list.

 end_problem.

Applications

 Some serious novel mathematical results proved

 Verification of hardware and software

 Prove outputs satisfy required properties for all inputs

 Synthesis of hardware and software

 Try to prove that there exists a program satisfying such and such

properties, in a constructive way

 Also: contributions to planning (up next)

	Slide 1
	Artificial Intelligence Lecture III First-Order Logic
	Limitations of propositional logic
	Problems with propositional logic
	Elements of first-order logic
	Things to note about functions
	Reasoning about many objects at once
	Practice converting English to first-order logic
	More practice converting English to first-order logic
	Even more practice converting English to first-order logic…
	More realistically…
	Is this a tautology?
	Relationship between universal and existential
	Something we cannot do in first-order logic
	Axioms and theorems
	SUBST
	Instantiating quantifiers
	Instantiating existentials after universals
	Generalized modus ponens
	Keeping things as general as possible in unification
	Resolution for first-order logic
	Notes on inference in first-order logic
	(Extremely informal statement of) Gödel’s Incompleteness Theorem
	A more challenging exercise
	More challenging exercise
	Umbrellas in first-order logic
	Theorem prover on the web
	Theorem prover on the web…
	Theorem prover on the web…
	Theorem prover on the web…
	Applications

