
1

Dr. George Karraz, Ph. D.

Artificial Intelligence

Lecture III

First-Order Logic

Dr. George Karraz, Ph. D.

Limitations of propositional logic

 So far we studied propositional logic

 Some English statements are hard to model in propositional

logic:

 “If your roommate is wet because of rain, your roommate

must not be carrying any umbrella”

 Pathetic attempt at modeling this:

 RoommateWetBecauseOfRain =>

(NOT(RoommateCarryingUmbrella0) AND

NOT(RoommateCarryingUmbrella1) AND

NOT(RoommateCarryingUmbrella2) AND …)

Problems with propositional logic

 No notion of objects

 No notion of relations among objects

 RoommateCarryingUmbrella0 is instructive to us, suggesting

 there is an object we call Roommate,

 there is an object we call Umbrella0,

 there is a relationship Carrying between these two objects

 Formally, none of this meaning is there

 Might as well have replaced RoommateCarryingUmbrella0 by P

Elements of first-order logic

 Objects: can give these names such as Umbrella0, Person0,

John, Earth, …

 Relations: Carrying(., .), IsAnUmbrella(.)

Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)

Relations with one object = unary relations = properties

 Functions: Roommate(.)

Roommate(Person0)

 Equality: Roommate(Person0) = Person1

Things to note about functions

 It could be that we have a separate name for Roommate(Person0)

 E.g., Roommate(Person0) = Person1

 … but we do not need to have such a name

 A function can be applied to any object

 E.g., Roommate(Umbrella0)

Reasoning about many objects at once

 Variables: x, y, z, … can refer to multiple objects

 New operators “for all” and “there exists”

 Universal quantifier and existential quantifier

 for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))

 Completely white objects are never partially black

 there exists x: PartiallyWhite(x) AND PartiallyBlack(x)

 There exists some object in the world that is partially white and partially

black

Practice converting English to first-

order logic

 “John has Jane’s umbrella”

 Has(John, Umbrella(Jane))

 “John has an umbrella”

 there exists y: (Has(John, y) AND IsUmbrella(y))

 “Anything that has an umbrella is not wet”

 for all x: ((there exists y: (Has(x, y) AND IsUmbrella(y))) =>

NOT(IsWet(x)))

 “Any person who has an umbrella is not wet”

 for all x: (IsPerson(x) => ((there exists y: (Has(x, y) AND

IsUmbrella(y))) => NOT(IsWet(x))))

More practice converting English to

first-order logic

 “John has at least two umbrellas”

 there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x)

AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y))

 “John has at most two umbrellas”

 for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND

Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND

IsUmbrella(z)) => (x=y OR x=z OR y=z))

Even more practice converting

English to first-order logic…

 “Duke’s basketball team defeats any other basketball team”

 for all x: ((IsBasketballTeam(x) AND

NOT(x=BasketballTeamOf(Duke))) =>

Defeats(BasketballTeamOf(Duke), x))

 “Every team defeats some other team”

 for all x: (IsTeam(x) => (there exists y: (IsTeam(y) AND NOT(x=y)

AND Defeats(x,y))))

More realistically…

 “Any basketball team that defeats Duke’s basketball team in one year

will be defeated by Duke’s basketball team in a future year”

 for all x,y: (IsBasketballTeam(x) AND IsYear(y) AND DefeatsIn(x,

BasketballTeamOf(Duke), y)) => there exists z: (IsYear(z) AND

IsLaterThan(z,y) AND DefeatsIn(BasketballTeamOf(Duke), x, z))

Is this a tautology?

 “Property P implies property Q, or propery Q implies

property P ”

 for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

 (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) =>

P(x)))

Relationship between universal and

existential

 for all x: a

 is equivalent to

 NOT(there exists x: NOT(a))

Something we cannot do in first-

order logic

 We are not allowed to reason in general about relations and functions

 The following would correspond to higher-order logic (which is more powerful):

 “If John is Jack’s roommate, then any property of John is also a property of Jack’s

roommate”

 (John=Roommate(Jack)) => for all p: (p(John) => p(Roommate(Jack)))

 “If a property is inherited by children, then for any thing, if that property is true of it,

it must also be true for any child of it”

 for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) AND p(y)) =>

p(x))))

Axioms and theorems

 Axioms: basic facts about the domain, our “initial”

knowledge base

 Theorems: statements that are logically derived from

axioms

SUBST
 SUBST replaces one or more variables with something else

 For example:

 SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) gives us

 IsHealthy(John) => NOT(HasACold(John))

Instantiating quantifiers
 From

for all x: a

we can obtain

SUBST({x/g}, a)

 From

there exists x: a

we can obtain

SUBST({x/k}, a)

where k is a constant that does not appear elsewhere in the knowledge

base (Skolem constant)

 Don’t need original sentence anymore

Instantiating existentials after

universals

 for all x: there exists y: IsParentOf(y,x)

 WRONG: for all x: IsParentOf(k, x)

 RIGHT: for all x: IsParentOf(k(x), x)

 Introduces a new function (Skolem function)

 … again, assuming k has not been used previously

Generalized modus ponens

 for all x: Loves(John, x)

 John loves every thing

 for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))

 Jane feels appreciated by every thing that loves her

 Can infer from this:

 FeelsAppreciatedBy(Jane, John)

 Here, we used the substitution {x/Jane, y/John}

 Note we used different variables for the different sentences

 General UNIFY algorithms for finding a good substitution

Keeping things as general as possible in

unification

 Consider EdibleByWith

 e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon

 for all x: for all y: EdibleByWith(Bread, x, y)

 Anything can eat bread with anything

 for all u: for all v: (EdibleByWith(u, v, Spoon) =>

CanBeServedInBowlTo(u,v))

 Anything that is edible with a spoon by something can be served in a bowl to that something

 Substitution: {x/z, y/Spoon, u/Bread, v/z}

 Gives: for all z: CanBeServedInBowlTo(Bread, z)

 Alternative substitution {x/John, y/Spoon, u/Bread, v/John} would only

have given CanBeServedInBowlTo(Bread, John), which is not as general

Resolution for first-order logic

 for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))

 John loves everything he knows, with the possible exception of mean things

 for all y: (Loves(Jane, y) OR Knows(y, Jane))

 Jane loves everything that does not know her

 What can we unify? What can we conclude?

 Use the substitution: {x/Jane, y/John}

 Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)

 Complete (i.e., if not satisfiable, will find a proof of this), if we can

remove literals that are duplicates after unification

 Also need to put everything in canonical form first

Notes on inference in first-order logic

 Deciding whether a sentence is entailed is semidecidable:

there are algorithms that will eventually produce a proof of

any entailed sentence

 It is not decidable: we cannot always conclude that a sentence

is not entailed

(Extremely informal statement of) Gödel’s

Incompleteness Theorem

 First-order logic is not rich enough to model basic arithmetic

 For any consistent system of axioms that is rich enough to

capture basic arithmetic (in particular, mathematical

induction), there exist true sentences that cannot be proved

from those axioms

A more challenging exercise

 Suppose:
 There are exactly 3 objects in the world,

 If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e.,

everything has a spouse)

 Prove:
 Something is its own spouse

More challenging exercise
 there exist x, y, z: (NOT(x=y) AND NOT(x=z) AND NOT

(y=z))

 for all w, x, y, z: (w=x OR w=y OR w=z OR x=y OR x=z

OR y=z)

 for all x, y: ((Spouse(x)=y) => (Spouse(y)=x))

 for all x, y: ((Spouse(x)=y) => NOT(x=y)) (for the sake of

contradiction)

Umbrellas in first-order logic

 You know the following things:
 You have exactly one other person living in your house, who is wet

 If a person is wet, it is because of the rain, the sprinklers, or both

 If a person is wet because of the sprinklers, the sprinklers must be on

 If a person is wet because of rain, that person must not be carrying any umbrella

 There is an umbrella that “lives in” your house, which is not in its house

 An umbrella that is not in its house must be carried by some person who lives in

that house

 You are not carrying any umbrella

 Can you conclude that the sprinklers are on?

Theorem prover on the web
 http://www.spass-prover.org/webspass/index.html (use -DocProof option)

 begin_problem(TinyProblem).

 list_of_descriptions.

 name({*TinyProblem*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Just a test*}).

 end_of_list.

 list_of_symbols.

 predicates[(F,1),(G,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([U],F(U))).

 formula(forall([V],implies(F(V),G(V)))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([W],G(W))).

 end_of_list.

 end_problem.

http://www.spass-prover.org/webspass/index.html

Theorem prover on the web…
 begin_problem(ThreeSpouses).

 list_of_descriptions.

 name({*ThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Three Spouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.

Theorem prover on the web…

 begin_problem(TwoOrThreeSpouses).

 list_of_descriptions.

 name({*TwoOrThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*TwoOrThreeSpouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],not(equal(X,Y))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.

Theorem prover on the web…
 begin_problem(Umbrellas).

 list_of_descriptions.

 name({*Umbrellas*}).

 author({*CPS270*}).

 status(unknown).

 description({*Umbrellas*}).

 end_of_list.

 list_of_symbols.

 functions[(House,1),(You,0)].

 predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(

You))))))),equal(X,Y))))).

 formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))).

 formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).

 formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).

 formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).

 formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X))))).

 formula(forall([X],implies(and(Umbrella(X),NotAtHome(X)),exists([Y],and(Person(Y),and(equal(House(X),House(Y)),Carrying(Y,X))))))).

 formula(forall([X],implies(Umbrella(X),not(Carrying(You,X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(SprinklersOn).

 end_of_list.

 end_problem.

Applications

 Some serious novel mathematical results proved

 Verification of hardware and software

 Prove outputs satisfy required properties for all inputs

 Synthesis of hardware and software

 Try to prove that there exists a program satisfying such and such

properties, in a constructive way

 Also: contributions to planning (up next)

	Slide 1
	Artificial Intelligence Lecture III First-Order Logic
	Limitations of propositional logic
	Problems with propositional logic
	Elements of first-order logic
	Things to note about functions
	Reasoning about many objects at once
	Practice converting English to first-order logic
	More practice converting English to first-order logic
	Even more practice converting English to first-order logic…
	More realistically…
	Is this a tautology?
	Relationship between universal and existential
	Something we cannot do in first-order logic
	Axioms and theorems
	SUBST
	Instantiating quantifiers
	Instantiating existentials after universals
	Generalized modus ponens
	Keeping things as general as possible in unification
	Resolution for first-order logic
	Notes on inference in first-order logic
	(Extremely informal statement of) Gödel’s Incompleteness Theorem
	A more challenging exercise
	More challenging exercise
	Umbrellas in first-order logic
	Theorem prover on the web
	Theorem prover on the web…
	Theorem prover on the web…
	Theorem prover on the web…
	Applications

