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Limitations of propositional logic

 So far we studied propositional logic

 Some English statements are hard to model in propositional 

logic:

 “If your roommate is wet because of rain, your roommate 

must not be carrying any umbrella”

 Pathetic attempt at modeling this:

 RoommateWetBecauseOfRain => 

(NOT(RoommateCarryingUmbrella0) AND 

NOT(RoommateCarryingUmbrella1) AND 

NOT(RoommateCarryingUmbrella2) AND …)



Problems with propositional logic

 No notion of objects

 No notion of relations among objects

 RoommateCarryingUmbrella0 is instructive to us, suggesting 

 there is an object we call Roommate,

 there is an object we call Umbrella0,

 there is a relationship Carrying between these two objects

 Formally, none of this meaning is there

 Might as well have replaced RoommateCarryingUmbrella0  by P



Elements of first-order logic

 Objects: can give these names such as Umbrella0, Person0, 

John, Earth, …

 Relations: Carrying(., .), IsAnUmbrella(.)

Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)

Relations with one object = unary relations = properties

 Functions: Roommate(.)

Roommate(Person0)

 Equality: Roommate(Person0) = Person1



Things to note about functions

 It could be that we have a separate name for Roommate(Person0)

 E.g., Roommate(Person0) = Person1

 … but we do not need to have such a name

 A function can be applied to any object

 E.g., Roommate(Umbrella0)



Reasoning about many objects at once

 Variables: x, y, z, … can refer to multiple objects

 New operators “for all” and “there exists”

 Universal quantifier and existential quantifier

 for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))

 Completely white objects are never partially black

 there exists x: PartiallyWhite(x) AND PartiallyBlack(x)

 There exists some object in the world that is partially white and partially 

black



Practice converting English to first-

order logic

 “John has Jane’s umbrella”

 Has(John, Umbrella(Jane))

 “John has an umbrella”

 there exists y: (Has(John, y) AND IsUmbrella(y))

 “Anything that has an umbrella is not wet”

 for all x: ((there exists y: (Has(x, y) AND IsUmbrella(y))) => 

NOT(IsWet(x)))

 “Any person who has an umbrella is not wet”

 for all x: (IsPerson(x) => ((there exists y: (Has(x, y) AND 

IsUmbrella(y))) => NOT(IsWet(x))))



More practice converting English to 

first-order logic

 “John has at least two umbrellas”

 there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x) 

AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y))

 “John has at most two umbrellas”

 for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND 

Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND 

IsUmbrella(z)) => (x=y OR x=z OR y=z))



Even more practice converting 

English to first-order logic…

 “Duke’s basketball team defeats any other basketball team”

 for all x: ((IsBasketballTeam(x) AND 

NOT(x=BasketballTeamOf(Duke))) => 

Defeats(BasketballTeamOf(Duke), x))

 “Every team defeats some other team”

 for all x: (IsTeam(x) => (there exists y: (IsTeam(y) AND NOT(x=y) 

AND Defeats(x,y))))



More realistically…

 “Any basketball team that defeats Duke’s basketball team in one year 

will be defeated by Duke’s basketball team in a future year”

 for all x,y: (IsBasketballTeam(x) AND IsYear(y) AND DefeatsIn(x, 

BasketballTeamOf(Duke), y)) => there exists z: (IsYear(z) AND 

IsLaterThan(z,y) AND DefeatsIn(BasketballTeamOf(Duke), x, z))



Is this a tautology?

 “Property P implies property Q, or propery Q implies 

property P ”

 for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

 (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) => 

P(x)))



Relationship between universal and 

existential

 for all x: a

 is equivalent to

 NOT(there exists x: NOT(a))



Something we cannot do in first-

order logic

 We are not allowed to reason in general about relations and functions

 The following would correspond to higher-order logic (which is more powerful):

 “If John is Jack’s roommate, then any property of John is also a property of Jack’s 

roommate”

 (John=Roommate(Jack)) => for all p: (p(John) => p(Roommate(Jack)))

 “If a property is inherited by children, then for any thing, if that property is true of it, 

it must also be true for any child of it”

 for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) AND p(y)) => 

p(x))))



Axioms and theorems

 Axioms: basic facts about the domain, our “initial” 

knowledge base

 Theorems: statements that are logically derived from 

axioms



SUBST
 SUBST replaces one or more variables with something else

 For example: 

 SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) gives us

 IsHealthy(John) => NOT(HasACold(John))



Instantiating quantifiers
 From

for all x: a

we can obtain

SUBST({x/g}, a)

 From

there exists x: a

we can obtain

SUBST({x/k}, a)

where k is a constant that does not appear elsewhere in the knowledge 

base (Skolem constant)

 Don’t need original sentence anymore



Instantiating existentials after 

universals

 for all x: there exists y: IsParentOf(y,x)

 WRONG: for all x: IsParentOf(k, x)

 RIGHT: for all x: IsParentOf(k(x), x)

 Introduces a new function (Skolem function)

 … again, assuming k has not been used previously



Generalized modus ponens

 for all x: Loves(John, x)

 John loves every thing

 for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))

 Jane feels appreciated by every thing that loves her

 Can infer from this:

 FeelsAppreciatedBy(Jane, John)

 Here, we used the substitution {x/Jane, y/John}

 Note we used different variables for the different sentences

 General UNIFY algorithms for finding a good substitution



Keeping things as general as possible in 

unification

 Consider EdibleByWith 

 e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon

 for all x: for all y: EdibleByWith(Bread, x, y)

 Anything can eat bread with anything

 for all u: for all v: (EdibleByWith(u, v, Spoon) => 

CanBeServedInBowlTo(u,v))

 Anything that is edible with a spoon by something can be served in a bowl to that something

 Substitution: {x/z, y/Spoon, u/Bread, v/z}

 Gives: for all z: CanBeServedInBowlTo(Bread, z)

 Alternative substitution {x/John, y/Spoon, u/Bread, v/John} would only 

have given CanBeServedInBowlTo(Bread, John), which is not as general



Resolution for first-order logic

 for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))

 John loves everything he knows, with the possible exception of mean things

 for all y: (Loves(Jane, y) OR Knows(y, Jane))

 Jane loves everything that does not know her

 What can we unify?  What can we conclude?

 Use the substitution: {x/Jane, y/John}

 Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)

 Complete (i.e., if not satisfiable, will find a proof of this), if we can 

remove literals that are duplicates after unification

 Also need to put everything in canonical form first



Notes on inference in first-order logic

 Deciding whether a sentence is entailed is semidecidable: 

there are algorithms that will eventually produce a proof of 

any entailed sentence

 It is not decidable: we cannot always conclude that a sentence 

is not entailed



(Extremely informal statement of) Gödel’s 

Incompleteness Theorem

 First-order logic is not rich enough to model basic arithmetic

 For any consistent system of axioms that is rich enough to 

capture basic arithmetic (in particular, mathematical 

induction), there exist true sentences that cannot be proved 

from those axioms



A more challenging exercise

 Suppose:
 There are exactly 3 objects in the world,

 If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e., 

everything has a spouse)

 Prove:
 Something is its own spouse



More challenging exercise
 there exist x, y, z: (NOT(x=y) AND NOT(x=z) AND NOT 

(y=z))

 for all w, x, y, z: (w=x OR w=y OR w=z OR x=y OR x=z 

OR y=z)

 for all x, y: ((Spouse(x)=y) => (Spouse(y)=x))

 for all x, y: ((Spouse(x)=y) => NOT(x=y)) (for the sake of 

contradiction)



Umbrellas in first-order logic

 You know the following things:
 You have exactly one other person living in your house, who is wet

 If a person is wet, it is because of the rain, the sprinklers, or both

 If a person is wet because of the sprinklers, the sprinklers must be on

 If a person is wet because of rain, that person must not be carrying any umbrella

 There is an umbrella that “lives in” your house, which is not in its house

 An umbrella that is not in its house must be carried by some person who lives in 

that house

 You are not carrying any umbrella

 Can you conclude that the sprinklers are on?



Theorem prover on the web
 http://www.spass-prover.org/webspass/index.html (use -DocProof option)

 begin_problem(TinyProblem).

 list_of_descriptions.

 name({*TinyProblem*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Just a test*}).

 end_of_list.

 list_of_symbols.

 predicates[(F,1),(G,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([U],F(U))).

 formula(forall([V],implies(F(V),G(V)))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([W],G(W))).

 end_of_list.

 end_problem.

http://www.spass-prover.org/webspass/index.html


Theorem prover on the web…
 begin_problem(ThreeSpouses).

 list_of_descriptions.

 name({*ThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*Three Spouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.



Theorem prover on the web…

 begin_problem(TwoOrThreeSpouses).

 list_of_descriptions.

 name({*TwoOrThreeSpouses*}).

 author({*Vincent Conitzer*}).

 status(unknown).

 description({*TwoOrThreeSpouses*}).

 end_of_list.

 list_of_symbols.

 functions[spouse].

 end_of_list.

 list_of_formulae(axioms).

 formula(exists([X],exists([Y],not(equal(X,Y))))).

 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),

or(equal(X,Z),equal(Y,Z))))))))))).

 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(exists([X],equal(spouse(X),X))).

 end_of_list.

 end_problem.



Theorem prover on the web…
 begin_problem(Umbrellas).

 list_of_descriptions.

 name({*Umbrellas*}).

 author({*CPS270*}).

 status(unknown).

 description({*Umbrellas*}).

 end_of_list.

 list_of_symbols.

 functions[(House,1),(You,0)].

 predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].

 end_of_list.

 list_of_formulae(axioms).

 formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(

You))))))),equal(X,Y))))).

 formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))).

 formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).

 formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).

 formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).

 formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X))))).

 formula(forall([X],implies(and(Umbrella(X),NotAtHome(X)),exists([Y],and(Person(Y),and(equal(House(X),House(Y)),Carrying(Y,X))))))).

 formula(forall([X],implies(Umbrella(X),not(Carrying(You,X))))).

 end_of_list.

 list_of_formulae(conjectures).

 formula(SprinklersOn).

 end_of_list.

 end_problem.



Applications

 Some serious novel mathematical results proved

 Verification of hardware and software

 Prove outputs satisfy required properties for all inputs

 Synthesis of hardware and software

 Try to prove that there exists a program satisfying such and such 

properties, in a constructive way

 Also: contributions to planning (up next)
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