

Dr. George Karraz, Ph. D.

Artificial Intelligence Lecture III

First-Order Logic

Dr. George Karraz, Ph. D.

Limitations of propositional logic

- So far we studied propositional logic
- Some English statements are hard to model in propositional logic:
- "If your roommate is wet because of rain, your roommate must not be carrying any umbrella"
- Pathetic attempt at modeling this:
- RoommateWetBecauseOfRain $=>$ (NOT(RoommateCarryingUmbrella0) AND NOT(RoommateCarryingUmbrella1) AND NOT(RoommateCarryingUmbrella2) AND ...)

Problems with propositional logic

- No notion of objects
- No notion of relations among objects
- RoommateCarryingUmbrella0 is instructive to us, suggesting
- there is an object we call Roommate,
- there is an object we call Umbrella0,
- there is a relationship Carrying between these two objects
- Formally, none of this meaning is there
- Might as well have replaced RoommateCarryingUmbrella0 by P

Elements of first-order logic

- Objects: can give these names such as Umbrella0, Person0, John, Earth, ...
- Relations: Carrying(., .), IsAnUmbrella(.)
- Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)
- Relations with one object $=$ unary relations $=$ properties
- Functions: Roommate(.)
- Roommate(Person0)
- Equality: Roommate(Person0) $=$ Person1

Things to note about functions

- It could be that we have a separate name for Roommate(Person0)
- E.g., Roommate(Person0) $=$ Person1
- ... but we do not need to have such a name
- A function can be applied to any object
- E.g., Roommate(Umbrella0)

Reasoning about many objects at once

- Variables: x, y, z, ... can refer to multiple objects
- New operators "for all" and "there exists"
- Universal quantifier and existential quantifier
- for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))
- Completely white objects are never partially black
- there exists x: PartiallyWhite(x) AND PartiallyBlack(x)
- There exists some object in the world that is partially white and partially black

Practice converting English to firstorder logic

- "John has Jane's umbrella"
- Has(John, Umbrella(Jane))
- "John has an umbrella"
- there exists y: (Has(John, y) AND IsUmbrella(y))
- "Anything that has an umbrella is not wet"
- for all $\mathrm{x}:(($ there exists $\mathrm{y}:(\operatorname{Has}(\mathrm{x}, \mathrm{y})$ AND IsUmbrella(y) $))=>$ NOT(IsWet(x)))
- "Any person who has an umbrella is not wet"
- for all x : (IsPerson(x) $=>$ ((there exists $\mathrm{y}:(\operatorname{Has}(\mathrm{x}, \mathrm{y})$ AND IsUmbrella(y))) $=>\operatorname{NOT}(\operatorname{IsWet}(\mathrm{x}))))$

More practice converting English to

 first-order logic- "John has at least two umbrellas"
- there exists x : (there exists y: (Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND NOT($\mathrm{x}=\mathrm{y}$))
- "John has at most two umbrellas"
- for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$: ((Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND IsUmbrella $(\mathrm{z}))=>(\mathrm{x}=\mathrm{y}$ OR $\mathrm{x}=\mathrm{z}$ OR $\mathrm{y}=\mathrm{z}))$

Even more practice converting English to first-order logic...

- "Duke's basketball team defeats any other basketball team"
- for all x: ((IsBasketballTeam(x) AND $\operatorname{NOT}(x=$ BasketballTeamOf(Duke))) $=>$
Defeats(BasketballTeamOf(Duke), x))
- "Every team defeats some other team"
- for all $\mathrm{x}:(\operatorname{IsTeam}(\mathrm{x})=>$ (there exists $\mathrm{y}:(\operatorname{IsTeam}(\mathrm{y}) \operatorname{AND} \operatorname{NOT}(\mathrm{x}=\mathrm{y})$ AND Defeats(x,y))))

More realistically...

- "Any basketball team that defeats Duke's basketball team in one year will be defeated by Duke's basketball team in a future year"
- for all x, y : (IsBasketballTeam(x) AND IsYear(y) AND DefeatsIn(x, BasketballTeamOf(Duke), y)) => there exists z: (IsYear(z) AND IsLaterThan(z,y) AND DefeatsIn(BasketballTeamOf(Duke), x, z))

Is this a tautology?

- "Property P implies property Q , or propery Q implies property P"
- for all $\mathrm{x}:((\mathrm{P}(\mathrm{x})=>\mathrm{Q}(\mathrm{x}))$ OR $(\mathrm{Q}(\mathrm{x})=>\mathrm{P}(\mathrm{x})))$ (for all $\mathrm{x}:(\mathrm{P}(\mathrm{x})=>\mathrm{Q}(\mathrm{x}))$ OR (for all $\mathrm{x}:(\mathrm{Q}(\mathrm{x})=>$ P(x)))

Relationship between universal and existential

- for all x: a
- is equivalent to
- NOT(there exists x: NOT(a))

Something we cannot do in firstorder logic

- We are not allowed to reason in general about relations and functions
- The following would correspond to higher-order logic (which is more powerful):
- "If John is Jack's roommate, then any property of John is also a property of Jack's roommate"
- $($ John $=$ Roommate $($ Jack $))=>$ for all $\mathrm{p}:(\mathrm{p}($ John $)=>\mathrm{p}($ Roommate $($ Jack $)))$
- "If a property is inherited by children, then for any thing, if that property is true of it, it must also be true for any child of it"
- for all p: (IsInheritedByChildren $(\mathrm{p})=>$ (for all $\mathrm{x}, \mathrm{y}:((\operatorname{IsChildOf}(\mathrm{x}, \mathrm{y})$ AND $\mathrm{p}(\mathrm{y}))=>$ $\mathrm{p}(\mathrm{x}))$)

Axioms and theorems

- Axioms: basic facts about the domain, our "initial" knowledge base
- Theorems: statements that are logically derived from axioms

SUBST

- SUBST replaces one or more variables with something else
- For example:
- $\operatorname{SUBST}(\{\mathrm{x} / \mathrm{John}\}, \operatorname{IsHealthy}(\mathrm{x})=>\operatorname{NOT}(\operatorname{HasACold}(\mathrm{x})))$ gives us
- IsHealthy(John) => NOT(HasACold(John))

Instantiating quantifiers

- From
for all x : a
we can obtain
SUBST($\{x / g\}, a)$
- From
there exists x : a
we can obtain
$\operatorname{SUBST}(\{x / k\}, a)$
where k is a constant that does not appear elsewhere in the knowledge base (Skolem constant)
- Don't need original sentence anymore

Instantiating existentials after universals

- for all x : there exists y : $\operatorname{IsParentOf}(\mathrm{y}, \mathrm{x})$
- WRONG: for all x: IsParentOf(k, x)
- RIGHT: for all x : $\operatorname{IsParentOf(k(x),~x)~}$
- Introduces a new function (Skolem function)
- ... again, assuming k has not been used previously

Generalized modus ponens

- for all x: Loves(John, x)
- John loves every thing
- for all y: (Loves(y, Jane) $=>$ FeelsAppreciatedBy(Jane, y))
- Jane feels appreciated by every thing that loves her
- Can infer from this:
- FeelsAppreciatedBy(Jane, John)
- Here, we used the substitution $\{\mathrm{x} / \mathrm{Jane}, \mathrm{y} / \mathrm{John}\}$
- Note we used different variables for the different sentences
- General UNIFY algorithms for finding a good substitution

Keeping things as general as possible in unification

- Consider EdibleByWith
- e.g., EdibleByWith(Soup, John, Spoon) - John can eat soup with a spoon
- for all x : for all y : EdibleByWith(Bread, x, y)
- Anything can eat bread with anything
- for all u: for all v: (EdibleByWith(u, v, Spoon) =>

CanBeServedInBowlTo(u,v))

- Anything that is edible with a spoon by something can be served in a bowl to that something
- Substitution: $\{\mathrm{x} / \mathrm{z}, \mathrm{y} /$ Spoon, $\mathrm{u} /$ Bread, $\mathrm{v} / \mathrm{z}\}$
- Gives: for all z: CanBeServedInBowlTo(Bread, z)
- Alternative substitution $\{\mathrm{x} / \mathrm{John}, \mathrm{y} /$ Spoon, $\mathrm{u} /$ Bread, $\mathrm{v} / \mathrm{John}\}$ would only have given CanBeServedInBowlTo(Bread, John), which is not as general

Resolution for first-order logic

- for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))
- John loves everything he knows, with the possible exception of mean things
- for all y: (Loves(Jane, y) OR Knows(y, Jane))
- Jane loves everything that does not know her
- What can we unify? What can we conclude?
- Use the substitution: $\{x /$ Jane, $y / J o h n\}$
- Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)
- Complete (i.e., if not satisfiable, will find a proof of this), if we can remove literals that are duplicates after unification
- Also need to put everything in canonical form first

Notes on inference in first-order logic

- Deciding whether a sentence is entailed is semidecidable: there are algorithms that will eventually produce a proof of any entailed sentence
- It is not decidable: we cannot always conclude that a sentence is not entailed

(Extremely informal statement of) Gödel's Incompleteness Theorem

- First-order logic is not rich enough to model basic arithmetic
- For any consistent system of axioms that is rich enough to capture basic arithmetic (in particular, mathematical induction), there exist true sentences that cannot be proved from those axioms

A more challenging exercise

- Suppose:
- There are exactly 3 objects in the world,
- If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e., everything has a spouse)
- Prove:
- Something is its own spouse

More challenging exercise

- there exist x, y, $\mathrm{z}:(\operatorname{NOT}(\mathrm{x}=\mathrm{y})$ AND $\operatorname{NOT}(\mathrm{x}=\mathrm{z})$ AND NOT $(\mathrm{y}=\mathrm{z})$)
- for all $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}:(\mathrm{w}=\mathrm{x}$ OR $\mathrm{w}=\mathrm{y}$ OR $\mathrm{w}=\mathrm{z}$ OR $\mathrm{x}=\mathrm{y}$ OR $\mathrm{x}=\mathrm{z}$ OR $y=z$)
- for all $\mathrm{x}, \mathrm{y}:((\operatorname{Spouse}(\mathrm{x})=\mathrm{y})=>(\operatorname{Spouse}(\mathrm{y})=\mathrm{x}))$
- for all $\mathrm{x}, \mathrm{y}:((\operatorname{Spouse}(\mathrm{x})=\mathrm{y})=>\operatorname{NOT}(\mathrm{x}=\mathrm{y}))($ for the sake of contradiction)

Umbrellas in first-order logic

- You know the following things:
- You have exactly one other person living in your house, who is wet
- If a person is wet, it is because of the rain, the sprinklers, or both
- If a person is wet because of the sprinklers, the sprinklers must be on
- If a person is wet because of rain, that person must not be carrying any umbrella
- There is an umbrella that "lives in" your house, which is not in its house
- An umbrella that is not in its house must be carried by some person who lives in that house
- You are not carrying any umbrella
- Can you conclude that the sprinklers are on?

Theorem prover on the web

- http://www.spass-prover.org/webspass/index.html (use -DocProof option)
- begin_problem(TinyProblem).
- list_of_descriptions.
- name ($\{*$ TinyProblem $*\}$).
- author $(\{*$ Vincent Conitzer* $\}$).
- status(unknown).
- description ($\{*$ Just a test $*\}$).
- end_of_list.
- list_of_symbols.
- predicates[(F,1),(G,1)].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([U],F(U))).
- formula(forall([V],implies(F(V),G(V)))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([W],G(W))).
- end_of_list.
- end_problem.

Theorem prover on the web...

- begin_problem(ThreeSpouses).
- list_of_descriptions.
- name(\{*ThreeSpouses*\}).
- author $(\{*$ Vincent Conitzer* $\})$.
- status(unknown).
- description(\{*Three Spouses*\}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).
- formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y), or(equal(X,Z),equal(Y,Z)))))))))))).
- formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([X],equal(spouse(X),X))).
- end_of_list.
end_problem.

Theorem prover on the web...

- begin_problem(TwoOrThreeSpouses).
- list_of_descriptions.
- name(\{*TwoOrThreeSpouses*\}).
- author $(\{*$ Vincent Conitzer* $\})$.
- status(unknown).
- description(\{*TwoOrThreeSpouses*\}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([X],exists([Y],not(equal(X,Y))))).
- formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y), or(equal(X,Z),equal(Y,Z)))))))))))).
- formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([X],equal(spouse(X),X))).
end_of_list.
- end_problem.

Theorem prover on the web...

- begin_problem(Umbrellas).
- list_of_descriptions.
- name(\{*Umbrellas*\}).
- author $(\{* \operatorname{CPS} 270 *\})$.
- status(unknown).
- description($\{*$ Umbrellas* $\})$.
- end_of_list.
- list_of_symbols.
- functions[(House, 1), (You, 0$)]$.
- predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella, 1),(Carrying,2),(NotAtHome, 1)].
- end_of_list.
- list_of_formulae(axioms).
 You $)$)))))), equal(X,Y))))).
- formula(exists([X],and(Person(X), and(equal(House(You), House(X)), and(not(equal(X,You)), Wet(X)))))).
- formula(forall([X],implies(and(Person(X), Wet(X)), or(WetDueToR(X), WetDueToS(X))))).
- formula(forall([X],implies(and(Person(X),WetDueToS(X)), SprinklersOn))).
- formula(forall([X],implies(and(Person(X), WetDueToR(X)),forall([Y],implies(Umbrella(Y), not $(\operatorname{Carrying}(\mathrm{X}, \mathrm{Y}))))))$).
- formula(exists([X],and(Umbrella(X), and(equal(House(X),House(You)),NotAtHome(X))))).
- formula(forall([X],implies(and(Umbrella(X),NotAtHome $(X)), \operatorname{exists}([Y], \operatorname{and}(\operatorname{Person}(Y), \operatorname{and}(\operatorname{equal}(\operatorname{House}(X), \operatorname{House}(Y)), \operatorname{Carrying}(Y, X)))))))$.
- formula(forall([X],implies(Umbrella(X), not(Carrying(You,X))))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(SprinklersOn).
end_of_list.

Applications

- Some serious novel mathematical results proved
- Verification of hardware and software
- Prove outputs satisfy required properties for all inputs
- Synthesis of hardware and software
- Try to prove that there exists a program satisfying such and such properties, in a constructive way
- Also: contributions to planning (up next)

