Kingdom of Saudi Arabia Ministry of Education Taibah University Unified Scientific Track

Studetn Name: Student ID: Section No.:

INTRODUCTION TO CHEMISTRY (CHEM 101)

Assessment on Chapter 04 - Topic 13

$1. C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4H_2O$			
The molar masses: $C_3H_8 = 44.0$, $O_2 = 32.0$, $CO_2 = 44.0$, $H_2O = 18.0$.			
10 mol of O ₂ with an e	excess of C ₃ H ₈ should pro	duce mol of CO	2.
a . 3	□ b. 4	□ c. 5	🗖 d. 6
2. $C_3H_8 + 5O_2 \rightarrow$	$3 \text{ CO}_2 + 4 \text{H}_2 \text{O}$		
The molar masses: C ₃	$H_8 = 44.0, O_2 = 32.0, CO_2$	$_{2} = 44.0, H_{2}O = 18.0.$	
44.0 g of C_3H_8 with an	n excess of O ₂ yields	g of CO ₂ .	
a . 44.0	□ b. 88.0	c . 132	🗖 d. 176
3. $C_3H_8 + 5O_2 \rightarrow$	$3 \operatorname{CO}_2 + 4\operatorname{H}_2\operatorname{O}$		
The molar masses: C ₃	$H_8 = 44.0, O_2 = 32.0, CO_2$	$h_2 = 44.0, H_2O = 18.0.$	
A yield of 66 g of CO ₂	should also yield	g of H ₂ O.	
□ a. 18	□ b. 36	□ c. 54	🗖 d. 72
$4. 4 \text{ Al} + 3 \text{ O}_2 \rightarrow 1$	2Al ₂ O ₃		
108 g of Al needs	g of O ₂ without eithe	er one being a limiting rea	ctant.
□ a. 96.0	□ b. 102.0	c . 108.0	🗖 d. 114.0
5. 4 Al + 3 $O_2 \rightarrow 2 Al_2O_3$			
54.0 g of Al with an ex	ccess of O ₂ yields	. g of Al ₂ O ₃ .	
□ a. 102.0	b . 204.0	C c. 76.5	🗖 d. 51.0
$6. 4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{ O}_3$			
To make 51.0 g of Al ₂ O ₃ , we need g of Al.			
a . 108.0	b . 51.0	c . 27.0	🗖 d. 20.0
7. Stoichiometry is a comparison of quantities in reactions.			

□ a. True □ b. False

8. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ If we started with 2 mol of C_3H_8 and 8 mol of O_2 , C_3H_8 is the limiting reactant. \Box a. True \Box b. False

9. Percent yield = $\frac{Theoretical yield}{Actual yield} x 100$

🗖 a. True

b. False

10. The mass of a reactant cannot be compared to the mass of a product without changing the masses to moles.

□ a. True

D b. False

Kingdom of Saudi Arabia Ministry of Education Taibah University Unified Scientific Track

Studetn Name: Student ID: Section No.:

INTRODUCTION TO CHEMISTRY (CHEM 101)

Assessment on Chapter 04 - Topic 14

1. What is the unit for "molarity"?					
□ a. g/L	□ b. mol/L		C. g/mo	ol	□ d. L/mol
2. The molarity of a solution is defined as the number of					
□ a. moles of solute	\Box a. moles of solute per liter of solution. \Box b. moles of solute per kg of solution.				kg of solution.
\Box c. grams of solute per liter of solution.		\Box d. moles of solute per kg of solvent.			
3. What is the molarity of a KNO ₃ solution containing 2.45 mol KNO ₃ in 500 mL of solution?					
a . 0.049 M	b . 204 M	c . 2.45	М	d . 0.500 M	u e. 4.90 M
4. What is the mola □ a. 0.25 M	arity of 2.0 moles of D b. 0.50 M	glucose in	a 4.0 L of g □ c. 0.75	lucose solutio M	n? □ d. 1.00 M
5. In aqueous solut	tions, water is the so	olute.			
□ a. True			D b. False	2	
6. If 29.25 g NaCl are dissolved in 1 L of solution, then the solution has a molarity of 0.5 M.					
□ a. True			D b. False	2	
7. 1 L of a 12 M solution is diluted to 2 L. So, its molarity becomes 6 M.					
□ a. True			🗆 b. False	e	
8. Which of the following aqueous solutions will be a strong electrolyte?					
□ a. strong base (K	OH) in water		🛛 b. amm	nonia (NH ₃) in v	water
\Box c. ethanol (C ₂ H ₅ OH) in water		\Box d. sugar (C ₁₂ H ₂₂ O ₁₁) in water			

9. Which of the following aqueous solutions will be a strong electrolyte?

\Box a. strong base (KOH) in water	□ b. ammonia (NH ₃) in water
\Box c. ethanol (C ₂ H ₅ OH) in water	\Box d. sugar (C ₁₂ H ₂₂ O ₁₁) in water

10. Which of the following solutions can be classified as non-electrolyte?

\Box a. table salt (NaCl) in water	□ b. ammonia (NH ₃) in water
\Box c. acetic acid (CH ₃ COOH) in water	\Box d. sugar (C ₁₂ H ₂₂ O ₁₁) in water

11. Which of the following aqueous solutions would conduct electricity?

□ a. AgNO ₃	$\Box b. C_{12}H_{22}O_{11} \text{ (sucrose)}$	\Box c. CH ₃ CH ₂ OH (ethanol)
□ d. all of them	\Box e. none of them	

Kingdom of Saudi Arabia Ministry of Education Taibah University Unified Scientific Track

Studetn Name: Student ID: Section No.:

INTRODUCTION TO CHEMISTRY (CHEM 101)

Assessment on Chapter 04 - Topic 15

1. Neutralizat	tion reactions alwa	ys produce	•••••	
□ a. Acids	D b. Water	C. Bases	🗖 d. Salt	\Box e. Both water and salt
2. The oxidati	ion number of an o	element in the fr	ee or uncombi	ned state is always
□ a. 0	□ b. +1	□ c. −1	\Box d. the same as its ionic charge	
3. A substanc	e is reduced if it	•••••		
□ a. lose electrons.		□ b. gains hydrogen atoms.		
□ c. gains electrons.		□ d. None of these		
4. All of the fo	ollowing can have	an oxidation nu	mber of +4 exc	ept
□ a. carbon		□ b. calcium		
□ c. silicon		□ d. Lead		
5. Oxidation is shown by which of these changes in oxidation states?				
a a. 0 to 2+	□ b. 5-	+ to 3+	\Box c. 3+ to 0	□ d. 0 to 2-
6. Which of the following shows an oxidation?				
\Box a. O ₂ to O ²⁻	□ b. C	l_2 to Cl^{1-}	\Box c. N ³⁺ to N	² \Box d. H ₂ to H ¹⁺
7. If one element is oxidized, another one is reduced.				
□ a. True			□ b. False	
8. In the react	tion $N_2 + O_2 \rightarrow N_2$	O4, nitrogen is r	educed.	
🗖 a. True			D b. False	