ســــلسلة الــــبكلوريا ((التحليل الرياضي))

شاملة لمنهاج التحليل الرياضي الثالث الثانوي العلمي إعداد : أيهم الشاعر

Facebook: Aiyham Alshaer aiyham1989@Gmail.com

المسألة الأولى

ليكن $f(x) = \frac{x^2 - 3x + 6}{x - 1}$ وفق العلاقة: $f(x) = \frac{x^2 - 3x + 6}{x - 1}$ والمطلوب:

- x=2 ادرس قابلية الدالة f للإشتقاق عندما (1
- 2) اوجد النهايات على أطراف المجالات المفتوحة لمجموعة التعريف ثم دل على المقاربات التي توازي المحور xx' و توازي المحور yy' و ادرس الوضع النسبى x بالنسبة للمقاربات.
 - 3) ادرس تغیرات f ونظم جدولاً بها ثم دل علی القیم الکبری أو الصغری محلیاً إن وجدت.
- .(2,1) أثبت أن f يكتب بالشكل: $f(x) = ax + b + \frac{g(x)}{x-1}$ المار بالنقطة (2,1).
- . Δ الذي معادلته: y=x-2 بالنسبة للمقارب مائل للخط وادرس الوضع النسبى لـ λ بالنسبة للمقارب (5
 - y=-3x المماسين للخط c الموازيين للمستقيم الذي معادلته:
 - ليكن C , C' الخط البياني للدالة: $h(x)=x^2-7x+14$ ، برهن أن C , متماسان في النقطة (2.4) واكتب معادلة المماس المشترك لهما في نقطة تماسهما.
 - 8) احسب قيمة تقريبية لميل المماس للخط ع في نقطة منه فاصلتها 2.0.
 - C ارسم كل مقارب للخط C ثم ارسم (9
 - $x^2-(\lambda+3)x+6+\lambda=0$ ناقش بيانياً وبحسب قيم الوسيط λ عدد حلول المعادلة: (10
 - $\frac{dx}{dt} = 0.1 \ cm \ s^{-1}$ نقطة من المنحني C احسب معدّل تغيّر C احسب معدّل تغيّر و في النقطة التي فاصلتها C نقطة من المنحني احسب معدّل تغيّر و في النقطة التي فاصلتها و المنحني C احسب معدّل تغيّر و في النقطة التي فاصلتها و المنحني المنحني عبد المنحني و المنحني المنحني و ا
 - استنتج رسم الخط c_1 للدالة $f_1(x) = \frac{x^2 3x + 6}{1 x}$: f_1 للدالة $f_1(x) = \frac{x^2 3x + 6}{1 x}$
 - وارسمها على شبكة إحداثيات جديدة. f_2 استنتج رسم الخط C_2 للدالة C_2 الدالة يات جديدة. f_2
 - استنتج رسم الخط C_3 للدالة C_3 للدالة C_3 الدالة وارسمها على شبكة إحداثيات جديدة.
 - y=5 احسب مساحة السطح المحصور بين C والمستقيم (15
 - x=-4 , x=-2 احسب مساحة السطح المحصور بين c والمحور xx' والمستقيمين:

المسألة الثانية

اليكن $f(x) = \frac{1}{e^x - e^{-x}} - 3x$ وفق العلاقة: $f(x) = \frac{1}{e^x - e^{-x}}$ والمطلوب:

- ادرس تغيرات f ونظم جدولاً بها واستنتج ما للدالة f من مقاربات توازي المحاور الإحداثية.
- الذي معادلته C بالنسبة للمقارب. Δ : y=-3x وادرس الوضع النسبي لـ Δ بالنسبة للمقارب. Δ
 - C ارسم ماوجدته من مقاربات للخط C ثم ارسم (3
 - $f_1(x) = 3x + \frac{e^x}{1 e^{2x}}$:استنتج رسم الخط C_1 للدالة (4

المسألة اإثالثة

ليكن $f(x) = \ln(1-x) + \frac{1}{1-x}$ وفق العلاقة: $f(x) = \ln(1-x) + \frac{1}{1-x}$ والمطلوب:

- 1) أوجد النهايات عند أطراف المجالات المفتوحة لمجموعة التعريف واستنتج ما للدالة f من مقاربات توازي المحاور الإحداثية.
 - 2) ادرس تغيرات f ونظّم جدولاً بها ، ثم استنتج ان للدالة قيمة صغرى شاملة.
 - C ارسم ماوجدته من مقاربات للخط C ثم ارسم (3
- ليكن C' الخط البياني للدالة: $\mathbf{g}(x) = e^x x$ ، أثبت أن $\mathbf{g}(x) = e^x x$ واكتب معادلة المماس المشترك.
 - $f_1(x) = \ln(1-x) \frac{x}{x-1}$ استنتج رسم الخط C_1 للدالة: (5
 - $f_2(x) = \ln(x+1) + \frac{1}{1+x}$:استنتج رسم الخط رسم الخط (6
 - x=-2 احسب مساحة السطح المحصور بين c والمحاور الإحداثية والمستقيم)

المسألة الرابعة

 $\mathbf{g}(x)=ae^{-x}+b$ المعرّفة على \mathbb{R} وفق: \mathbf{g} وفق: $f(x)=x+rac{x}{\sqrt{x^2+1}}$ خطه البياني ولتكن الدّالة $f(x)=x+rac{x}{\sqrt{x^2+1}}$

خطها البياني c_2 ،حيث a,b أعداد حقيقية ، والمطلوب:

- (0) برهن أن الدّالة f اشتقاقية عند (1).
- عيّن a,b ليكون الخطين البيانيين C_1 , C_2 متماسين في النقطة (0,0) ،ثم اكتب معادلة المماس المشترك لهما في نقطة التماس.
 - درس تغيرات الدّالتين f,g ونظّم جدولاً بهما.
 - ارسم C_1 , C_2 على نفس الجملة.
 - . $x=\mathbf{0}$, $x=\mathbf{1}$ احسب مساحة السطح المحصور بين C_1 والمحور x
 - x=0 , x=2 : احسب مساحة السطح المحصور بين المنحنيين C_1 , C_2 والمستقيمين السطح المحصور المنحنيين
 - 0.2 احسب القيمة التقريبية لميل المماس للخط c_2 في نقطة منه فاصلتها (7
- $\frac{dx}{dt} = 0.5 \, cm \, .s^{-1}$ يكون فيها: $\mathbf{0}$ نقطة تتحرك على طول الخط $\mathbf{0}$ ،احسب معدّل تغيّر \mathbf{y} في اللحظة التي يكون فيها: $\mathbf{0}$ في الخط $\mathbf{0}$ الحسب معدّل تغيّر \mathbf{y} في اللحظة التي يكون فيها: $\mathbf{0}$
 - $.\mathbf{g}^{(n)}(x)=2.\,(-1)^{n+1}.\,e^{-x}$ فإن $n\in\mathbb{N}^*$ كان أنبت أنه أياً كان أ $n\in\mathbb{N}^*$

المسألة الخامسة

لتكن الدّالة $f(x) = \frac{-2x-4}{x+1}$ وفق: $\mathbb{R} \setminus \{-1\}$ خطها البياني $f(x) = \frac{-2x-4}{x+1}$ والمطلوب:

- . c أوجد النهايات عند أطراف المجالات المفتوحة لمجموعة تعريف الدالة f واستنتج المستقيمات المقاربة للخط
 - C درس تغیرات الدالة f ونظم جدولاً بها ثم ارسم ماوجدته من مقاربات للخط وارسم).
- يكن C_1 الخط البياني للدالة $g(x)=2e^x-6$ ، واكتب معادلة المماس، و $g(x)=3e^x-6$ المشترك لهما في نقطة تماسهما.
 - $x=-rac{1}{2}$, $x=rac{1}{2}$: والمحور xx' والمحور (4

المسألة السادسة

نتكن الدّالة f المعرّفة على $f(x) = \sqrt{x} - \frac{1}{3}\sqrt{x^3}$ وفق: $f(x) = \sqrt{x} - \frac{1}{3}\sqrt{x^3}$ والمطلوب:

- 1) ادرس تغيرات الدالة f ونظم جدولاً بها ، ودل على القيمة الصغرى محلياً والقيمة الكبرى الشاملة.
 - 2) ارسم الخط C
 - $x^{\frac{3}{2}}+3\alpha-3x^{\frac{1}{2}}=0$ خلول المعادلة: α حلول الوسيط (3
 - . $\sqrt{x^3} \ge 3\sqrt{x} 2$ فإن: $x \in [0, +\infty]$ نكن أنه ومهما تكن (4
 - xx' احسب مساحة السطح المحصور بين C والمحور (5
 - x=16 , x=1 احسب طول قوس المنحني C والمحصور بين المستقيمين (6
 - $f_1(x) = \frac{3\sqrt{x} 6 \sqrt{x^3}}{3}$ استنتج رسم الخط C_1 للدالة: (7

المسألة السابعة

لتكن الذَّالة f المعرّفة على $\mathbb{R} \setminus \{0, 3\}$ وفق: $\mathbb{R} \setminus \{0, 3\}$ خطها البياني f والمطلوب:

- yy' أوجد النهايات عند أطراف المجالات المفتوحة لمجموعة التعريف واستنتج ما للدالة f من مقاربات توازي $\chi x'$ أو توازي $\chi y'$
 - ادرس تغيرات f ونظم جدولاً بها ودل على القيم الصغرى محلياً.
 - . C ارسم ماوجدته من مقاربات للخط C ثم ارسم (3
 - .]0,3[المجال على المجال $\int f(x) dx$ على المجال إلى مجموع دوال كسرية ثم أوجد الدالة $\int f(x) dx$
 - (دون رسم) $f_1(x) = -\frac{9}{x^3 + 6x^2 + 9}$ استنتج رسم الخط C_1 للدالة:

المسألة الثامنة

لتكن الدّالة $f(x) = \frac{xe^x}{1-e^x}$ وفق: \mathbb{R}^* وفق: $f(x) = \frac{xe^x}{1-e^x}$ والمطلوب:

- برهن أن للدالة f نهاية عندما x تسعى إلى الصفر ثم اوجد نهاية الدالة عند $-\infty$ واستنتج المقاربات.
 - 2) ادرس تغیرات f ونظم جدولاً بها.
 - $-+\infty$ برهن أن المستقيم Δ الذي معادلته: y=-x مقارب للخط Δ في جوار (3
 - C ارسم ماوجدته من مقاربات للخط C ثم ارسم (4
 - $f_1(x) = \frac{xe^x}{e^x 1}$ استنتج رسم الخط C_1 للدالة: (5
 - $f_2(x) = \frac{x}{e^x 1}$: للدالة: C_2 استنتج رسم الخط
 - $f_3(x) = \frac{x}{1 e^x}$: استنتج رسم الخط 3 للدالة: (7
 - $e^x(x+1) < 1$ فإن: $x \in \mathbb{R}^*$ في برهن أنه ومهما تكن (8
 - . $\int x\,(1-e^x)f(x)\,dx$ بإستخدام التكامل بالتجزئة أوجد ناتج التكامل (9

المسألة التاسعة

لتكن الدّالة f المعرّفة وفق العلاقة: $\frac{\sqrt{1-x}}{x^2-1}$ خطها البياني f والمطلوب:

- f أوجد مجموعة تعريف الدالة
- yy' والمحور xx' والمحور والمحور النهايات عند أطراف المجالات المفتوحة لمجموعة التعريف واستنتج المقاربات الموازي للمحور
 - 3) ادرس تغيرات الدالة f ونظم جدولاً بها ثم دل على القيم الكبرى والصغرى محلياً.
 - -1,1[على المجال $\int \frac{x f(x)}{\sqrt{1-x}} dx$, $\int 2\sqrt{1-x} f'(x) dx$ على المجال (4
 - $f_1(x) = \frac{\sqrt{1+x}}{1-x^2}$ استنتج رسم الخط C_1 للدالة: (5

المسألة العاشرة

لتكن الدّالة $f(x) = x \ln(x)$ وفق العلاقة: $f(x) = x \ln(x)$ خطها البياني $f(x) = x \ln(x)$ والمطلوب:

- .C درس تغيرات الدالة f ودل على القيمة الصغرى الشاملة ثم ارسم C
 - اكتب معادلة المماس للمنحنى الموازى للمستقيم y=x.
- . لتكن الدالة: $\mathbf{g}(x)=ae^x+b$ خطها البياني ، a عين a ليكون المماس السابق مماس مشترك للمنحنيين.
 - 4) احسب قيمة تقريبية لميل مماس الخط ع في نقطة منه فاصلتها 1.2.
 - $\ln x + \frac{1}{x_0} \ge 0$: فإن $x \in]0, +\infty[$ برهن أنه مهما تكن
 - $e^{rac{\lambda}{x}}=x$:استنتج بيانياً وتبعاً لقيم الوسيط χ حلول المعادلة (6
 - $f_1(x) = x \ln(-x)$ للدالة: (7 مستنتج رسم الخط 10 للدالة)
 - $f_2(x) = \frac{x^2 \ln x x}{1 + x^2 \ln x}$: استنتج رسم الخط رسم الخط (8
- والمطلوب: M(x,y) نقطة تتحرك على طول الخط C و N نقطة تقاطع المنحني M(x,y) مع المحور M(x,y) $\frac{dx}{dt} = \frac{1}{2} cm.s^{-1}$ المثلث x في اللحظة التي تكون فيها y = e ومعدّل تغيّر مساحة المثلث y = e المحظة التي تكون فيها
 - عيّن موضع النقطة M لتكون مساحة المثلث OMN حيث: [0,1] أكبر مايمكن ، ثم احسب تلك المساحة.
 - $f^{(n)}(x) = (-1)^n \frac{(n-2)!}{x^{n-1}}$ برهن بإستخدام الإستقراء الرياضي أنه ومهما تكن $n \geq 2$ فإن:

المسألة الجادية عشر

لتكن الدالة f المعرّفة وفق العلاقة: $f(x) = \ln\left(\frac{x+1}{x-1}\right)$ والمطلوب:

- المفتوحة لمجموعة التعريف D_f ثم أوجد النهايات عند أطراف المجالات المفتوحة لمجموعة التعريف واستنتج المقاربات.
 - 2) ادرس تغیرات f ونظم جدولاً بها.
 - C ارسم ماوجدته من مقاربات للخط C ثم ارسم (3
 - $x(1-e^{\lambda})+1+e^{\lambda}=0$ ناقش بيانياً وبحسب قيم الوسيط λ حلول المعادلة التالية: (4
 - f^{-1} واستنتج رسم الخط البياني للدالة f تقابل ثم عين f^{-1} واستنتج رسم الخط البياني للدالة
 - $f_1(x) = \ln\left(\frac{x-1}{x+1}\right)$ استنتج رسم الخط C_1 للدالة: (6
 - ،]1, + ∞ [على المجال f على المجال $F(x) = \ln(x^2 1) + x \ln\left(\frac{x + 1}{x 1}\right)$ برهن أن:

x=2 , x=4 والمحور xx' والمحور بين الخط والمحور بين الخط والمحور x

ليكون A' ، $x \in \left[\frac{7}{5}, 4\right]$ حيث A حيث A' ، $x \in \left[\frac{7}{5}, 4\right]$ خين موضع النقطة A ليكون (8

محيط المستطيل الذي قطره AA' أصغر مايمكن ، ثم احسب محيطه ومساحته.

$$\ln\left(\frac{27}{7}\right) = \frac{13}{10}$$
 , $\ln(6) = \frac{9}{5}$, $\ln\left(\frac{5}{3}\right) = \frac{1}{2}$, $\sqrt{3} = \frac{17}{10}$ باعتبار:

المسألة الثانية عشر

لتكن الدالة المعرفة بالشكل $2\sqrt{1-x^2}$ والمطلوب:

- f أوجد مجموعة تعريف الدالة
- ادرس تغيرات f ونظم جدولاً بها ودل على القيم الكبرى الشاملة والقيم الصغرى محلياً.
 - . $f_1(x) = -2\sqrt{1-x^2}$ استنتج رسم الخط البياني للدالة
- استنتج أن الدالة $g(x) = \begin{cases} f(x) \\ f_1(x) \end{cases}$ تمثل معادلة قطع ناقص ، عين مركزه وذراه ومحرقيه ومحوره المحرقي.
 - . $\int_{-1}^{1} (f(x) f_1(x)) dx = 2\pi$:نيدهن أن (5

المسألة الثالثة عشر

ليكن $f(x)=e^x-2x$ والمطلوب:

- A(0,1) في النقطة d الكماس النقطة (1).
- B(0,-1) في النقطة C_1 في النقطة البياني C_1 للدالمة: C_1 واستنتج رسم الخط البياني وما للدالمة: C_1 في النقطة واستنتج رسم الخط البياني وما للدالمة وما النقطة وما الن
 - ارسم C ثم ارسم C على نفس الجملة.
 - برهن أن المثلث ABD متساوي السابقين d_1,d ، برهن أن المثلث d متساوي الساقين وقائم.
 - 5) اكتب معادلة القطع المكافئ الذي ذروته D و A, B نقطتين منه.
 - 6) اكتب معادلة القطع الزائد الذي يمثل المماسين d_1,d مقاربين له وإحدى ذراه مبدأ الإحداثيات.
 - 7) اكتب معادلة القطع الناقص الذي قطره الصغير AB ومحرقه D.
 - 8) إذا كانت M(x,y) نقطة تتحرك على الخط البياني للقطع الناقص السابق و M(x,y) محرقه الآخر: عين موضع النقطة M لتكون مساحة المثلث MDD' أكبر مايمكن ، حيث M

المسألة الرابعة عشر

ليكن $f(x)=(1-x)e^x$ وفق العلاقة: f(x)=f(x)=f(x) والمطلوب:

- 1) ادرس تغيرات f ونظم جدولاً بها وحدد ما للدالة من مقاربات ودل على القيمة الكبرى الشاملة.
 - C ارسم ماوجدته من مقاربات للخط C ثم ارسم (2
 - احسب مساحة السطح المحصور بين c والمحورين الإحداثيين.
 - لمحدد بالخط C والمحورين الإحداثيين. عن دوران السطح المحدد بالخط C
- . C_2 استنتج رسم الخطين البيانيين للدالتين: $f_1(x) = \frac{1+x}{e^x}$ خطها البياني (5) خطها البياني (5)
 - $x = \ln \left| \frac{\lambda}{1-x} \right|$ استنتج بیانیاً وتبعاً لقیم الوسیط $x = \ln \left| \frac{\lambda}{1-x} \right|$ استنتج بیانیاً وتبعاً لقیم الوسیط $x = \ln \left| \frac{\lambda}{1-x} \right|$
 - $e^{-x}+x\geq 1$ برهن أنه ومهما تكن قيمة x فإن المتراجحة التالية صحيحة: 1

انتهت المسائل

بالتوفيق للجميع