معهد ابن خلدون التعليمي نموذج رياضيات شامل مع الحل

أولاً: في كل حالة آتية اجابة صحيحة واحدة من بين ثلاث اجابات مقترحة اكتبها:

	7	<u> </u>		<u>ئ ت ت ت بني پير</u> ت	•
التابع f معطى بالصيغة $f(x)=x^2+6x$ أسلاف العدد $f(x)=x^2+6$					
0, 6	(C	0, -6	(B	6, -6	(A
: هو $P(\overline{A})$ فإن احتمال الحدث المعاكس $P(A)=1$ هو عبد المعاكس (2- إذا كان احتمال حدث $P(A)=1$					
1	(C	1	(B	0	(A
$\overline{2}$					
: AB مسدس منتظم مرسوم في دائرة مركزها (0) ونصف قطرها AB فيكون AB					
2	(C	$2\sqrt{2}$	(B	$\sqrt{2}$	(A
4- في الفراغ مجموعة النقاط التي تكون متساوية البعد عن نقطة o هي:					
مجسم كروي	(C	دائرة	(B	<u>کرة</u>	(A

ثانياً: $\frac{1}{10}$ بصح أو خطأ : 1
1. ناتج العدد $\frac{5^2 \times 2^2}{10^2 \times 0.1}$ هو 10 () . 2
2. كل عدد سالب حل للمتراجحة $\frac{3}{4\pi}$ هو عدد عادي () . 3
3. العدد الدال على حجم كرة نصف قطر ها $\frac{3}{4\pi}$ هو عدد عادي () .

) 80 منتظم مركزه $\stackrel{""}{(O)}$ فإن قياس الزاوية $\stackrel{?"}{ABCDEFGH}$ منتظم مركزه ثالثاً: حل التمارين الخمسة الأتية: . (

المطلوب: ABCD متوازي أضلاع $ABCD + \sqrt{50}$ ، $AC = \sqrt{8} + \sqrt{50}$. المطلوب

1. أثبت أن ABCD معين .

2. بفرض طول قطره BC=14 أثبت أن الشكل مربع

التمرين الثاني: صندوق يحوي على 8 كرات متماثلة (أربع كرات حمراء ثلاث كرات زرقاء, كرة واحدة صفراء) نسحب عشوائياً من الصندوق كرة واحدة . المطلوب:

ب حسوات س استرى سرد ر. _____ 1 ارسم شجرة الإمكانات لهذه التجربة وزود فروعها باحتمالات النتائج الممكنة .

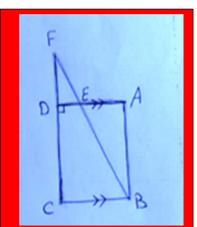
والنقطة F تحقق F المطلوب: $FN \perp BC$, FC = 8

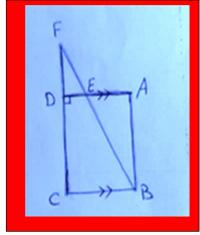
1. ما نوع المثلثين ABC و BFC بالنسبة لزواياهما ؟

 $A\widehat{B}C$. احسب قياس الزاوية

3. احسب طول BF

 $sin\widehat{c}$ عبر عن $sin\widehat{c}$ في المثلثين $Sin\widehat{c}$, ثم استنتج طول $sin\widehat{c}$


 $x^2 - rac{4\sqrt{3}}{3} \; x + 1 \; \; , \; \; A = \left(x - rac{2}{\sqrt{3}}
ight)^2 - rac{1}{3}$ التمرين الرابع: لتكن لدينا العبارتان


A = B أثبت أن A = B.

 $B = -\frac{1}{2}$ على المعادلة 2.

AB=12 , BC=7 , AE=5 مستطيل فيه $ABar{C}D$:التمرين الخامس

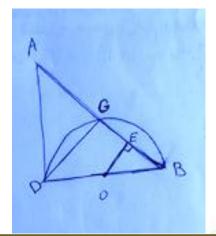
- 1. احسب EF , BE
- 2. بين أن المثلث FCB تكبير للمثلث 2 أوجد معامل التكبير

معهد ابن خلدون التعليمي نموذج رياضيات شامل مع الحل

رابعاً: حل المسألتين الآتيتين:

$$\left\{egin{align*} d_1: x-y=-2 \ d_2: 3x+3y=-6 \end{array}
ight.$$
المسألة الأولى: ليكن الجملة

المطلوب:


- 1. حل الجملة .
- . d_1, d_2 في معلم متجانس ارسم الخطين البيانيين للمستقيمين 2
 - d_1, d_2 أثبت تعامد المستقيمين 3

BD=12 المسألة الثانية: في الشكل المرسوم جانباً نصف دائرة مركزها (O) وقطره

DB مماس للدائرة في D النقطة G منتصف القوس المطلوب:

- 2. احسب طول DG
- $OE \perp BG$ أثبت تشابه المثلثين $OBE \perp BG$, واحسب طول OE .
- 4. أثبت أن الرباعي ÁEOD دائري , وعين مركز الدائرة المارة من رؤوسه , واحسب طول نصف قطرها

حل نموذج رياضيات

- 0, -6 .1
 - 0 .2
 - $\sqrt{2}$.3
 - 4. كرة

السؤال الثاني:

- 1. صح
- 2. خطأ
- 3. خطأ
- 4. خطأ

ثانياً:

التمرين الأول:

$$AB = 10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$$
 .3
$$AC = 2\sqrt{2} + 5\sqrt{2} = 7\sqrt{2}$$

$$\Rightarrow AB = AC$$
إذا الشكل ABCD معين

معهد ابن خلدون التعليمي نموذج رياضيات شامل مع الحل

التمرين الثاني:

$$P(A) = \frac{5}{8} \quad .2$$

$$P(B) = \frac{3}{8} \quad .3$$

$$A \cup B = \Omega$$
 , $A \cap B = \emptyset$ نعم متعاكسان لأن $A \cup B = \Omega$

التمرين الثالث:

- 1. إن كل من المثلثين FBC , ABC قائمان لأن BC قطر في الدائرة المارة برؤوسهما .
- 2. في المثلث BAC لدينا $B\widehat{CA}=30$ لأن الضلع المقابل لها يساوي نصف طول الوتر $A\hat{B}C = 180 - 120 = 60$
 - 3. حسب مبر هنة فيثاغورث في المثلث القائم BCF

$$BF^2 = 100 - 64 = 36 \implies BF = 6$$

$$BFC$$
 في المثلث $sin\hat{C} = \frac{6}{10} = \frac{3}{5}$.4

$$CNF$$
 في المثلث $sin\hat{C} = \frac{NF}{8}$

$$\Rightarrow \frac{3}{5} = \frac{NF}{8} \Rightarrow NF = \frac{24}{5} = 4.8$$

$$A = x^2 - 3 \times \frac{2}{\sqrt{3}} x \times \frac{4}{3} - \frac{1}{3} \quad .1$$

$$= x^2 - \frac{4}{\sqrt{3}}x + \frac{3}{3} = x^2 - \frac{4\sqrt{3}}{3} + 1 = B$$

$$B = -\frac{1}{2} \implies A = -\frac{1}{2}$$

$$\Rightarrow A = B$$

$$B = -\frac{1}{3} \Rightarrow A = -\frac{1}{3}$$

$$\frac{2}{\sqrt{3}} = -\frac{1}{3} \Rightarrow \left(x - \frac{2}{\sqrt{3}}\right)^2 = -\frac{1}{3} + \frac{1}{3}$$

$$\Rightarrow \left(x - \frac{2}{\sqrt{3}}\right)^2 = 0 \stackrel{\text{i.s.}}{\Longrightarrow} x - \frac{2}{\sqrt{3}} = 0$$

$$\implies x = \frac{2}{\sqrt{3}} \implies x = \frac{2\sqrt{3}}{3}$$

1. حسب مبر هنة فيثاغورث في المثلث القائم EBA

$$EB^2 = (12)^2 + (5)^2 = 144 + 25 = 169 \xrightarrow{\text{plane}} EB = 13$$

بما أن الشكل ABCD مستطيل فإن $AB \setminus DF$ إذا حسب مبر هنة النسب الثلاث

$$\frac{EF}{EB} = \frac{DE}{EA} \Longrightarrow \frac{FE}{13} = \frac{2}{5} \Longrightarrow FE = \frac{26}{5} = 5.2$$

 $: DE \setminus CB$ يما أن $DE \setminus CB$ حسب النسب الثلاث

$$\frac{FD}{FC} = \frac{FE}{FB} = \frac{DE}{CB}$$

 $K = \frac{DE}{CB} = \frac{7}{2}$ و منه FDE تكبير للمثلث FCB المثلث

معهد ابن خلدون التعليمي نموذج رياضيات شامل مع الحل

ثالثان

المسألة الأولى:

1. نضرب المعادلة (1) بالعدد (3) ثم نجمع مع (2)

$$3x - 3y = -6$$

$$3x + 3y = -6$$

$$6x = -12 \Rightarrow x = -\frac{12}{6} = -2$$

$$-2-y=-2 \Longrightarrow -y=-2+2 \Longrightarrow y=0$$
 : (1) نعوض في العرض العشر الحل المشترك (-2,0)

 $x=0 \Longrightarrow 0-y=-2 \Longrightarrow y=2$; A(0,2) : d_1 لرسم .2 $y=0 \Longrightarrow x-0=-2 \Longrightarrow x=-2$; B(-2,0)

$$x=0 \Rightarrow 3 \times 0 + 3y \Rightarrow 3y = -6 \Rightarrow y = -2$$
 ; $C(0,-2)$: d_2 لرسم

$$y = 0 \Rightarrow 3x + 3 \times 0 = -6 \Rightarrow 3x = -6 \Rightarrow x = -2$$
, $B(-2,0)$

في المثلث BAC طول المتوسط EO=2 و لدينا طول الضلع AC=4 و منه طول المتوسط BO يساوي نصف الضلع AC اذا المثلث ABC قائم في B و منه نستنتج أن المستقيمان متعامدان .

المسألة الثانية

 $GBD=rac{1}{2}DG=45$ الكن $DC=GB=180 \Longrightarrow DG=GB=90$ يما أن DC=GB الكن .1

لأن المحيطية تساوي نصف قياس القوس المقابل لها

المثلث ADB قائم في \widehat{D} لأن المماس عمودي على نصف القطر

 $lacksymbol{Q}$ ومنه $\hat{B}=\hat{A}=\hat{A}$ ومنه المثلث $\hat{B}=\hat{A}=45$ متساوي الساقين

. لكن DG ارتفاع فيه لأن المثلث DGB قائم في G لأن DG قطر في الدائرة المارة برؤوسه

ومنه الارتفاع في المثلث متساوي الساقين هو متوسط في G منتصف AB

2. في المثلث القائم DGB لدينا:

$$sin45 = \frac{DG}{12} = \frac{\sqrt{2}}{2} \implies DG = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$$

 $DG \setminus OE$ أن $OE \perp BG$ وأيضاً $DG \perp GB$ العمودان على مستقيم واحد متوازيان إذاً

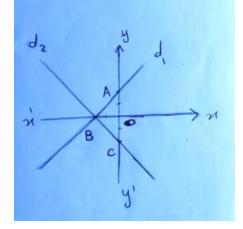
$$\frac{BE}{BG} = \frac{BO}{BD} = \frac{OE}{DG}$$
 حسب النسب الثلاث:

إذا المثلثان DGB , OBE متشابهان

$$\frac{OE}{DG} = \frac{BO}{BD} \Longrightarrow \frac{OE}{6\sqrt{2}} = \frac{R}{2R} \Longrightarrow \frac{OE}{6\sqrt{2}} = \frac{1}{2} \Longrightarrow OE = \frac{6\sqrt{2}}{2} = 3\sqrt{2}$$

 $A\widehat{D}O = A\widehat{E}O = 90$ لينا .4

زاويتان متقابلتان ومتكاملتان فالرباعي دائري


(OA) مركز الدائرة المارة برؤوسه منتصف

حسب مبر هنة فيثاغورث في المثلث القائم ADO

$$A0^2 = (12)^2 + (6)^2 = 144 + 36 = 180$$

$$\Rightarrow AO = \sqrt{180} = 8\sqrt{5}$$

$$\implies R = \frac{6\sqrt{5}}{2} = 3\sqrt{5}$$

