Let $a \in \mathbb{R}$ and $f(x)=\log _{a-2}(x+1)-a$. Give the condition on a such that $f(x)$ is increasing.$a \in[3, \infty)$ $\qquad$$a \in(3, \infty)$$a \in(-\infty, 3)$$a \in(1,3)$

Total questions in exam: 40 | Answered: 25

Question No. 7

If $f(x)$ is a polynomial such that the remainder of the division $f(x) \div(x+4)$
equals 10 then
$f(-4)=10$
$f(4)=10$

- $f(10)=4$
- $f(10)=-4$

A

mKCL OES

Tctal questions in exam: 40 | Answered: 36

Question No. 16

Which of the following is not a function?
$y^{2}=x$
0. $y=x+4$
(9) $y=4 x-6$
(1) $3 y=5 x$

Total questions in exam: $\mathbf{4 0}$ | Answered: 40

Question No. 4
Let $U=\{0,1,2,3,4,5,6,7,9\}$, and $A=\{1,3,5,7\}$ the complement of A is$\{1,3,5,7\}$$\{1,2,3,4,5,6,7\}$$\emptyset$$\{0,2,4,6,9\}$

Question No. 2
The range of the function $f(x)=1+2^{5 x}$ is$(1, \infty)$$(0, \infty)$$(-\infty, \infty)$$(2, \infty)$

Question No. 3

Find the axis of symmetry of $y=2(x-5)^{2}+3$
$y=3$
$y=-3$$x=5$$x=3$

If $f(x)=-\sqrt{2}$ then $f(x)$ isnot defined
decreasingincreasingconstant

${ }^{4} \mathrm{OS}_{58}$
0

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 3

Question No. 24

Write the expression in lowest term $\frac{a-b}{a^{2}-b^{2}}$, where $\mathrm{a} \neq \mathrm{b}$
$a-b$
$a+b$

- $\frac{1}{a+b}$
$\frac{a+b}{a-b}$

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 8

Question No. 33
The equation $x=2-\log _{3} y$ is equivalent to the equation
$y=3^{x-2}$
$x=3^{y-2}$
$y=3^{2-x}$
($x=3^{2-y}$

What questhas in cxailt 40 | Answered 0

Question No. 2

Simplify $\left(\frac{-4 n^{6} m^{4}}{m^{2}}\right)^{1 / 2}$ where $m \neq 0$

- $-8 n^{9} m^{3}$

O Is not areal number
$0 \frac{1}{8 n^{9} m^{3}}$
$0-\frac{1}{8 n^{9} m^{3}}$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 18

Question No. 27

Solve the inequality $\frac{x^{2}+10 x+25}{x+1} \geq 0$

- $(-1,+\infty)$
$\{-5\} \cup(-1,+\infty)$
- $[-5,+\infty)$
- $(-5,-1)$

MKCL OES

Totai questions in exam: 40 | Answered: 0

Question No. 21

Solve: $a x^{2}+b x+c=0$
$S=\left\{\frac{-b-\sqrt{b^{2}+4 a c}}{2 a}, \frac{-b+\sqrt{b^{2}+4 a c}}{2 a}\right\}$
$S=\left\{\frac{-b-\sqrt{b^{2}-4 a}}{2 a}, \frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right\}$
$S=\left\{\frac{-b-\sqrt{b^{2}-4 a c}}{a}, \frac{-b+\sqrt{b^{2}-4 a c}}{a}\right\}$
$S=\left\{\frac{b-\sqrt{b^{2}-4 a c}}{2 a}, \frac{b+\sqrt{b^{2}-4 a c}}{2 a}\right\}$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 1

The degree of the polynomial $5 x^{2}+3 x-52$ is
.5

- 2

3

- 52

Save \& Next

MKCL OES
 $+5$

Tolal questions in exam 40 | Answered 23

Question No. 27

The equation $x=2^{y}+1$ is equivalent to the equation
$x=\log _{2}(y+1)$
$y=\log _{2}(x-1)$
$x=\log _{2}(y-1)$
(4) $y=\log _{2}(x+1)$

Question No. 32

The domain of the function $f(x)=3-2 \log _{\frac{1}{3}}(x-5)$ is

- $(5, \infty)$
- $(0, \infty)$
- $(-\infty, \infty)$
- $(-\infty, 5)$

MKCL OES

Total questions in exam 40 | Answered 30

Question No. 33

Let $a \in R$. The solution set of the equation $\frac{1}{2^{a-x}}=32$ is
(a+5)
0 (1)
(a-5)
(0)

If $x-4$ is a factor of the polynomial $f(x)$ then

$$
\begin{aligned}
& f(-4)=0 \\
& f(0)=4 \\
& f(4)=0 \\
& f(0)=-4
\end{aligned}
$$

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{2 7}$

Question No. 24
Factoring $x^{3}+y^{3}$ gives$(x-y)\left(x^{2}+x y+y^{2}\right)$$x^{3}-y^{3}$$(x-y)\left(x^{2}-2 x y+y^{2}\right)$$(x+y)\left(x^{2}-x y+y^{2}\right)$

Total questions in exam: 40 | Answered: 3

Question No. 25
Which of these quadratic functions has the narrowest graph?$y=-4 x^{2}$$y=\frac{1}{7} x^{2}$$y=\frac{1}{3} x^{2}$$y=-3 x^{2}$

MKCL OES
Total questions in exam: 40 | Answered: 27

Question No. 33
The solution set of the equation $-1+\log _{8}(3 x+2)=-\frac{1}{3}$ is$\left\{\frac{3}{2}\right\}$$\left\{\frac{2}{3}\right\}$$\left\{-\frac{2}{3}\right\}$$\left\{-\frac{1}{3}\right\}$

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 3

Question No. 23

Simplify the expression. $\sqrt{-16}$4is not a real number-4-8

Question No. 9
If $a<b<c$, solve the inequality $\frac{(x-a)(x-b)}{(x-c)} \leq 0$, for x.

- ($-\infty, a$]
$-[a, b \mid \cup(c, \infty)$
- $[a, \infty)$
- $(-\infty, a] \cup[b, c)$

Math_FT_Sem1_2019

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 1
If $f(x)=\sqrt{x+2}$ and $g(x)=3 x-5$. The domain of $(f \circ g)(x)$ is

- $(-2, \infty)$
- $[-2, \infty)$
- $[1, \infty)$
- $(1, \infty)$

Question No. 18

Which of the following inequalities is false?$\frac{1}{1+x^{2}}>1$.$x \leq x$.$\frac{1}{1+x^{2}} \leq 1$.$x^{2} \leq x^{2}+1$.

$$
\%
$$

Total questions in exam: $\mathbf{4 0}$ | Answered: 25

Question No, 4

The expression $\left(1+\tan ^{2} \theta\right)$ equals$\csc ^{2} \theta$
$\sec ^{2} \theta$
$\cos ^{2} \theta$
$\sin ^{2} \theta$

Let $b \in \mathbb{R} \backslash\left\{\frac{1}{4}\right\}$. Give the value of b such that the line $y=(4 b-5) x+2$ is perpendicular to the line $b x-y=3$.
$D=2$
$0=3$
$\mathrm{b}=1$
() $b=-3$

Math_FT_Sem1_2019

Total questions in exam: 40 / Answered: 31

Question No. 36

Let a be an integer. Give all values of a such that the function F is a oncto-ane function.

$$
F=\{(7,-1),(5,1-a),(0,5),(-2, a),(1,3)\}
$$

Q $a \in E(-1,5,3,2\}$
$a \in\{1,5,-2\}$
$a \in \mathbb{R} \backslash\{5,3,2\}$
($a \in \mathbb{Z} \backslash\{-1,5,3,2,-4,-2\}$

MKCL OES

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{4 0}$

Question No. 6

If $\theta=180^{\circ}$ then θ is called

- a right angle
- an acute angle
- an obtuse angle
- a straight angle

Total questions in exami: 40 | Answered: 38

Question No. 25
The equation $y=2 \log _{4} x$ is equivalent to the equation

- $y=x^{4}$
$x=y^{4}$
$y=2^{x}$
$x=2^{y}$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 26

Question No. 20

If $f(x)$ is a polynomial such that $f(1)=6$ then the remainder of the division $f(x) \div(x-1)$ equals:

- -6
0.6
Q. -1

Question No. 7

The solution of the equation $3^{x}=5$ is
$\frac{\ln 3}{\ln 5}$
$\frac{\ln 5}{\ln 3}$

- $\ln \left(\frac{3}{5}\right)$
$\ln \left(\frac{5}{3}\right)$

MKCL OBS

Total questions in exam: $\mathbf{4 0} \mid$ Answered: $\mathbf{3}$

Question No. 25
The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous$\mathrm{k}=2$$k=-1$$\mathrm{k}=0$$\mathrm{k}=1$

Question No. 39

Let $a \in \mathbb{R}$. Find the equation of the line passes through the points $(2,2 a)$ and $(1, a)$.
ox -cay $x=1$
$a x+y=0$

- $a x-y=1$
- $a x-y=0$

If $a<b<c$, solve the inequality $\frac{(x-a)(x-b)}{(x-c)} \leq 0$, for x.$(-\infty, a]$$[a, b] \cup(c, \infty)$$[a, \infty)$$(-\infty, a] \cup[b, c)$

0

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 1
Let $a \in(-\infty, 0]$. Solve the inequality $|2 x-2| \leq|-2 a|$.$[-a, a]$$[1+a, 1-a]$$[1-a, 1+a]$$(-\infty, 1+a] \cup[1-a,+\infty)$

$$
\begin{aligned}
& f(x)=x^{2}-10, g(x)=x^{2}+3 \\
& f(g(x))=f\left(x^{2}+3\right) \\
& =(x+3)^{2}-1 \\
& =x^{4}+6 x^{2}+8
\end{aligned}
$$

Question No. 2
The solution of the equation $2^{x}=3^{2 x-1}$ is$\frac{\ln 2}{2 \ln 3-\ln 2}$$\frac{\ln 2}{\ln 2-2 \ln 3}$$\frac{\ln 3}{\ln 2-2 \ln 3}$$\frac{\ln 3}{2 \ln 3-\ln 2}$

:
(1) $\ln 2^{x}=\frac{2 x-1}{\ln 3}$
(2) $x \ln 2=2 x(\ln 3)-\ln 3$
(3) $x \ln 2-2 \times(\ln 3)=-\ln 3$
(4) $x(\ln 2-2 \ln 3)=-\ln 3$
(5) $x=\frac{-\ln 3}{\ln 2-2 \ln 3}$
(6) 0 gno dor x

$$
\begin{aligned}
& \frac{-(\ln 3)}{-(2 \ln 3-\ln 2)}=\frac{\ln 3}{2 \ln 3-\ln 2} \\
& \text { C } \\
& \text { - 1, }
\end{aligned}
$$

Question No. 3
The solution set of $-2 \leq 3-5 x \leq 18$ is$(-\infty, 1)$$(-3, \infty)$$(-3,1)$$[-3,1]$
$-2 \leq 3-5 x \leq 18$

$\frac{-5}{-5} \leq \frac{-5 x}{-5} \leq \frac{1 h}{-5}$

Question No. 4
The solution set of the equation $-1+\log _{8}(3 x+2)=-\frac{1}{3}$ is

- $\left\{\frac{3}{2}\right\}$
- $\left\{-\frac{1}{3}\right\}$
- $\left\{-\frac{2}{3}\right\}$
- $\left\{\frac{2}{3}\right\}$

$$
\begin{aligned}
& -1+\log _{8}\left(3 x+2=-\frac{1}{3}\right. \\
& \log 8(3 x+2)=-\frac{1}{3}+1 \\
& \log 8\left(3 x+2=\frac{2}{3}\right. \\
& 3 x+2=8^{\frac{2}{3}} \\
& 3 x=4-2 \\
& 3 x=2 \\
& x=\frac{2}{3}
\end{aligned}
$$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 5
The horizontal asymptote to the graph of $f(x)=3^{x-1}+2$.$y=2$$x=-2$$y=3$$y=-2$

Question No. 6
Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$$x-9$$x+9$$x-3$$x+3$

$$
\left(x^{\frac{1}{2}}\right)^{2}-3^{2}
$$

Question No. 7

The degree of the polynomial $5 x^{2}+3 x-52$ is
5
3
2

- 52

Olozen \quad logon

Evaluate $\lim _{x \rightarrow-1} \frac{3 x^{4}+x+1}{x+4}=$$-4$310

Cè géll.

Question No. 9
If $f(x)$ is a polynomial such that $f(5)=-7$ then the remainder of the $f(x) \div(x-5)$ equals:

$$
\begin{aligned}
& x^{2}(5-t)-\pi(5-t \\
& \left(y^{2}-2\right)(5-t)
\end{aligned}
$$

```
Total questions in exam: 40 | Answered:0
```

Question No. 12
Let a values of a such that the function F is a one-to-one function Let a be an integer. Give all valus $,(5,1-a),(0,5),(-2, a),(1,3)\}$

$$
F=\{(7,-1),(5,1)
$$

$a \in \mathbb{R} \backslash\{-1,5,3,2\}$
$a \in \mathbb{R} \backslash\{-1,5,3,2,-4,-2\}$

- $a \in \mathbb{R} \backslash\{5,3,2\}$
$a \in\{1,5,-2\}$

Use the square root property to solve this quadratic equation

$$
x^{2}+20=4
$$$\pm 4 i$$\sqrt{16}$$-4$$\pm \sqrt{24}$

$$
x^{2}=4-20
$$

$$
x^{2}=-16
$$

$$
x= \pm 41
$$

Save \& Next ${ }^{1311}$, thin

Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{4}+2 x^{2}-1}{x^{3}-2 x-2}=$$-1$0$-\infty$1

The graph of $f(x)=-3 x^{2}+x+4$ is
Open left
Open right
Open down
Open up

Save \& Next NAN, the

Question No. 17
The domain of the function $f(x)=e^{x^{2}-3 x+1}-2$ is:$\mathbb{R}$$(0, \infty)$$(-1, \infty)$$(-\infty, 0)$

\star

Question No. 18
The function has an inverse ifNone of these answersdoesn't satisfy the horizontal line testit is one-to-oneit is quadratic

Question No. 20
The solution set of the equation $3(x+3)=3 x-9$ isthe set of real numbers$\{2,3\}$1\emptyset

$$
\begin{gathered}
3 x+9=3 x-9 \\
3 x-3 x=-7-7 \\
0=-18
\end{gathered}
$$

Question No. 21
Let $\mathrm{U}=\{0,1,2,3,4,5,6,7,9\}$, and $\mathrm{A}=(1,3,5,7)$ the complement of A is$\{1,3,5,7\}$$\{0,2,4,6,9\}0\{1,2,3,4,5,6,7\}$

$$
=\{0,2,4
$$

Question No. 22

The function $f(x)=\left\{\begin{array}{ll}x^{4} & \text { if } x \leq 1 \\ k-x^{4} & \text { if } x>1\end{array}\right.$ is continuous if$\mathrm{k}=-1$$\mathrm{k}=1$$\mathrm{k}=0$$\mathrm{k}=2$

$$
\begin{aligned}
& \text { let } x b_{e}=(1) \\
& \text { (1) } \lim _{x \rightarrow 1} f(x)=f(1) \\
& \lim _{x \rightarrow} f(x)=(1)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=1 \quad \lim _{x \rightarrow 1^{+}} f(x)=k-1
\end{aligned}
$$

(c) \&ri ki ì sén \$, (3)

$$
\begin{aligned}
& k-1=1 \\
& k=1+1 \\
& k=2
\end{aligned}
$$

Question No. 23
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$
0
2
1
Does not exist

Question No. 24
If $x-2$ is a factor of the polynomial $f(x)$ then$f(-2)=0$$f(2)=0$$f(0)=-2$$f(0)=2$

Question No. 25
Given that $f(x)=\log _{1}(x+2)$, then $f(2)=$$\frac{1}{4}$$\frac{1}{2}2-2$

$$
\log _{\frac{1}{2}}(u)=-2
$$

 (1) $a>0 \quad$ B $=$ b 0 Ger
(2) $a \neq 1$

MKCL OAS
Total questions in exam: $\mathbf{4 0 |} \mid$ Answered: 1

Question No. 2
If $x \in \mathbb{N}$, then the value of $i^{4 x-1}$ is$-1$1$-i$$i$
$4(1)-1$
$4(2)-1$

Question No. 1

Perform the indicated operations $a b\left(a^{-1}-b^{-1}\right)$, where $a \neq 0, b \neq 0$bia$\frac{1}{b}-\frac{1}{a}$0$a-b$

a

If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
($1, \infty$)
$[-2, \infty)$

- $(-\infty, \infty)$
($-\infty, 1$]

Which of the following is a pair of inverse functions?$f(x)=2 x-1$, where $x \in \mathbb{R}$, and $g(x)=x+\frac{1}{2}$, where $x \in \mathbb{R}$.$f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}-3$, where $x \in[0, \infty)$.$f(x)=x$, where $x \in \mathbb{R}$, and $g(x)=-x$, where $x \in \mathbb{R}$.$f(x)=\sqrt{3+x}$, where $x \in[-3, \infty)$, and $g(x)=x^{2}+3$, where $x \in[0, \infty)$.

Save \& Next ${ }^{1311}$, the

MKCL OES

Total queston sin eramm 40 an swivereco 5
$u_{c t} z(1+i)$ is $_{\text {a real }}$ numub $e_{\text {er }}$ if
The product $z(1+i)$ is a
$0^{0} \quad=\in \mathbb{R}$

$$
\begin{aligned}
& \text { zis the complex conjugate of } \\
& \text { iti. } \\
& \text { z is a pure in imaber in } \\
& \text { z= i. } \\
& 2=(1-i) \\
& (1+i)(1-i)=2
\end{aligned}
$$

Let $x \in \mathbb{Z}$. Simplify the following expression $a=3 i^{152 r^{2}+4 x-3}$$a=3 i$$a=-3 i$$a=-3$$a=3$

اكتبوا اس i بالحسابه لحاله و افرضوا قيمه لـ X
3 راح يطلع لكم الناتج 1197 اقسموه على 4 بيطلع العدد كذا 299.25 معناتها i i اضربها ب 3 بيطلع الناتج
0.

$$
\begin{aligned}
& 25 \\
& 75
\end{aligned}
$$

$$
\rightarrow i
$$

0.

Question No. 4

The supplement of the angle 45° is:

- 45°
60°
80°
135°
$45+x=180$
$x=180-45$
$x=135^{\circ} \rightarrow$

$$
\begin{aligned}
& 2 \log _{2} x-\log _{2}(4 x+5)=0 \\
& \log _{2} \frac{x^{2}}{4 x+5}=0 \\
& \frac{x^{2}}{4 x+5}=2
\end{aligned}
$$

$$
x^{2}=4 x+h
$$

$$
x^{2}-4 x-5=0
$$

$$
x=5, x=-1
$$

$(\bar{A}])^{2}$ whs

$$
\begin{aligned}
& \frac{(x-\cdots)(x+1)}{x-r}=(x+1) \\
& =(1+1) \\
& =2
\end{aligned}
$$

MKCL OES

Totquestions in exam: 40 | Answered: 0

Question No. 40
The graph of $f(x)=3^{x}$ is
Increasing
Constant
Decreasing and Increasing
Decreasing

Save \& Next 121, , hen

Question No. 36
The solution set of the equation $(\sqrt{2})^{3-5 x}=4^{a+x}$ is

- $\left\{\frac{1}{2}-\frac{1}{6} a\right\}$
(4) $\left\{\frac{3}{2}-\frac{2}{7} a\right\}$
$\left\{\frac{1}{3}-\frac{1}{9} a\right\}$
- $\left\{3+\frac{4}{9} a\right\}$

$$
\begin{gathered}
(\sqrt{2})^{3-5 x}=\left[(\sqrt{2})^{4}\right]^{a+x} \\
(\sqrt{2})^{3-5 x}=(\sqrt{2})^{4 a+4 x} \\
3-5 x=4 a+4 x \\
-5 x-4 x=4 a-3 \\
-9 x=4 a-3 \\
x=\frac{4 a-3}{-9} \\
x=\frac{-3}{-9}+\frac{4 a}{-9} \\
x=\frac{1}{3}-\frac{4 a}{7}
\end{gathered}
$$

Question No
$1 /$ exam. $40 / 4 n_{\text {swerea. }}$
Suppor
-$(a-b, a) \cup(a, a \times b)$ $(a-b, a) \cup(a$,
b) $a) \cup(a, b)$
a) $(a-b) \cup(a, a+$
$a_{a n d}$ a) $u(a, b)$

Total questions in exam: $\mathbf{4 0}$ | Answered. 10

Question No. 39

The equation $y=\log _{a} x$ is equivalent to the equation

$$
\begin{aligned}
& x=y^{a} \\
& x=a^{y} \\
& y=x^{a} \\
& y=a^{x}
\end{aligned}
$$

$$
\log _{a} x=y
$$

The range of the function $f(x)=1-\frac{3}{2+x}$ is
${ }^{\circ}{ }^{\mathbf{R}} \backslash\{0$

- $R \backslash\{3\}$
${ }^{-} \mathrm{R} \mid\{1\}$
${ }^{\circ} \mathrm{R} \backslash\{-2\}$

$$
\begin{aligned}
& \text { نجيب مجالل معكوس } \\
& f^{-1}=\frac{2 x+1}{-x+1} \left\lvert\, \begin{array}{c}
-x+1=0 \\
-x=-1 \\
x=1
\end{array}\right. \\
& \text { الجواب هو C جميع الاعداد } \\
& \text { الحقيقه ما عدى } 1
\end{aligned}
$$

$$
\begin{gathered}
2 x+3=x+a \\
2 x-x=a-3 \\
x=a-3
\end{gathered}
$$

$$
\left\lvert\, \begin{aligned}
& 2 x+3=-x-a \\
& 2 x+x=-a-3 \\
& 3 x=-a-3 \\
& x=\frac{-\varepsilon-3}{3}
\end{aligned}\right.
$$

$$
\begin{aligned}
a-3 & =\frac{-a-3}{3} \\
3 a-9 & =-a-3 \\
3 a+a & =-3+9 \\
4 a & =6 \\
a & =\frac{6}{a} \\
n & =\frac{3}{2}
\end{aligned}
$$

Question No, 6

Use the quadratic formula to solve this equation:

$$
8 x^{2}=6 x-1
$$

$$
x=\left\{4, \frac{1}{2}\right\}
$$

$$
x=\left(-\frac{1}{2}, \frac{1}{4}\right)
$$

$$
x=\left(\frac{1}{2}, \frac{1}{4}\right)
$$

$$
x=\left\{2, \frac{1}{4}\right\}
$$

$$
-9 x+1
$$

a $a^{7}+2 a^{6}-1$
$a+2 a^{-1}-1$
$a^{12}+2 a^{8}-1$

$$
\begin{aligned}
f\left(a^{4}\right) & =\left(a^{4}\right)^{3}+2\left(a^{4}\right)^{2}-1 \\
& =a^{12}+2 a^{8}-1
\end{aligned}
$$

ملاحظه جدا مهمه في متل هذي المعادلات عوض في البدايه اذا عطاك ناتج 0 وقتها عوض محل الاكس ب 2.000000001

Question No. 1

Evaluate \lim

B

$$
\begin{aligned}
& (2)^{\wedge} 3-1 /(2-1) \\
& 8-1 / 1 \\
& 7 / 1=7
\end{aligned}
$$

supplement=180 $180=20+x$ $180-20=x$ $160=x$

Question No． 14

The equation $y=3^{x-1}$ can be written a

```
x= 年和}
x= 年和(y+1)
x=1+ log}3
y=1+ 矢3}
```

$\log x y=z->x^{\wedge} z=y$
$y=3^{\wedge}(x-1)->\log 3 y=x-1$
$1+\log 3 y=x$

```
\(5^{\wedge} x=a\) in \(5^{\wedge} x=\) in \(a\)
\(x\) in \(5=\) in \(a\) \(x=\) in a / in 5
```

The expression $\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$ equals

B

$\sin ^{\wedge} 2+\cos ^{\wedge} 2=1$

$f(x)=-a^{\wedge} x$
if $0<a<1$
then it's increasing
$f(x)=-a^{\wedge} x$ if $\mathrm{a}>1$ then it's decreasing

Question No. 26
following functions is not one-to-one

- $f(x)=x^{3}$
$f(x)=\sqrt{x}$
$f(x)=-x^{2}$
$f(x)=-x$

Any function with $\wedge 2$ is not one to one

Question No. 11

If $x+a$ is a factor of the polynomial $f(x)$ then
$f(-a)=0$
$f(a)=-a$
$f(-a) \neq 0$
$f(a)=0$

Question No. 16

Find the value of ' c ' that will allow this polynomial to be written as a perfect square.

$$
x^{2}-x+c
$$

$\frac{1}{2}$
$\frac{1}{4}$
1
$-\frac{1}{2}$
D

Question No. 2

Let $a \in \mathbb{R}$. If the solution set of the inequality $|4 x-8|+a>0$ is $(-\infty, 2) \cup(2,+\infty)$ then

[^0]We know that 2 is not in soultion set to find a we should replace x by 2 $4 * 2-8=0$, then $a>0,0$ is a number which doesn't satisfy the equation.

Question No. 29

Let $f(x)=a x^{2}+b x+1$, find the values of a and b such that $f(x)=f(-x)$, for all $x \in \mathbb{R}$.
$a=b=1$
$a=-1$ and $b=1$.
$a \in \mathbb{R}$ and $b=0$
$a \in \mathbb{R}$ and $b=1$.

$$
\begin{gathered}
a x^{2}+b x+1=a x^{2}-b x+1 \\
b x=-b x \\
2 b=0 \\
b=0
\end{gathered}
$$

if there's $x^{\wedge} 2$ then this is not one to one.
we use the number that gives $x^{\wedge} 2=0$
remeber a shoul be POSITIVE $a>0$

If $f(x)=x^{3}+2 x^{2}-1$ then $f\left(a^{4}\right)=$

$$
\begin{aligned}
& a^{7}+2 a^{6}-1 \\
& a+2 a^{-1}-1 \\
& a^{12}+2 a^{8}-1 \\
& a^{9}-1
\end{aligned}
$$

$$
\begin{aligned}
& \left(a^{\wedge} 4\right)^{\wedge} 3+2\left(a^{\wedge} 4\right)^{\wedge} 2-1 \\
& a^{\wedge}\left(4^{\star} 3\right)+2(a)^{\wedge}\left(4^{\star} 2\right)-1 \\
& a^{\wedge} 12+2 a^{\wedge} 8-1
\end{aligned}
$$

Question No. 23

Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$

0
 - 2

- 1

Does not exist
$\lim x->-3+(x+3) /(x+3)$ $\lim x->-3+=1$

Lim+ = lim-

$\lim +=/ \lim -$
SO it doesn't exist

السؤ ال ذا مكرر بس اقروا الكلام اللي فوق وتطمنو - \because

Let $f(x)=x^{3}+c$ and $g(x)=x$, give the value of c such that $f(x+1)=x g(x)+2 x$.

$$
\begin{aligned}
& { }^{2}+C=x \cdot x+2 x(X+1) \\
& x^{2}+2 x+1+c=x^{2}+2 x \\
& \text { نشيل الاجزاء المتثـابها } \\
& =c+1 \\
& C=-1
\end{aligned}
$$

B

$1-\sin ^{\wedge} 2=\cos ^{\wedge} 2$ 1- $(4 / 5)^{\wedge} 2=\cos ^{\wedge} 2$
$9 / 25=\cos ^{\wedge} 2$
$\sqrt{ }(9 / 25)=\cos$
$\cos =3 / 5$

$y=m x+b$ m is slope

$$
\begin{aligned}
& -4 y=-8 x+28 \\
& y=-8 /-4 x+28 /-4 \\
& y=2 x-7
\end{aligned}
$$

Let $a>1$. The solution set of the equation $\log _{r}\left(2 x^{2}-a^{2}\right)=2$ is

B
$\log x y=z->x^{\wedge} z=y$
$x^{\wedge} 2=2 x^{\wedge} 2-a^{\wedge} 2$
$\mathrm{a}^{\wedge} 2=\mathrm{x}^{\wedge} 2$
$x=a$

Question No. 38
The slope of the line $x=-3$ is
Undefined

- 1

\square

Cot $=\cos / \sin$
$1-\sin ^{\wedge} 2=\cos ^{\wedge} 2$
$1-(4 / 5)^{\wedge} 2=9 / 25$
$\sqrt{9 / 25}=3 / 5$
$\cot =(3 / 5) /(4 / 5)=3 / 4$
$f^{-1}(x)=\frac{b x-a}{a x-b}$

- $f^{-1}(x)=\frac{b x+a}{a x+b}$
$f^{-1}(x)=\frac{a x+b}{b x-a}$
$f^{-1}(x)=\frac{b x-a}{a x+b}$

\square

$x=a+b y / b-a y$ (multiply by (b-ax))
$x(b-a y)=a+b y, b x-x a y=a+b y$ (let y togather)
$b x-a=x a y+b y, b x-a=y(x a+b b)($ devide by $x a+b)$
$y=b x-a / a x+b$

Question No. 27
If $f(x)=-\frac{1}{3} x+1$, the domain of $f^{-1}(x)$ is
$[-3,1)$
$\left[-\frac{1}{3}, 1\right]$
$[0, \infty)$
all real numbers

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 22

Question No. 38
If $f(x)=1-\sqrt{x+2}$, then the domain of $f^{-1}(x)$ is
$(-\infty, 1]$
($-\infty, \infty$)

- $[1, \infty)$
- $[-2, \infty)$

Question No. 14

The range of the function $f(x)=-x^{2}+1$ is
(- -1$]$
[1,-)
(-1,-)
$(-\infty-1]$

A

Total questions in exam: $\mathbf{4 0}$ | Answered: 25

Question No. 24
Let $a \in(-\infty, 0]$. Solve the inequality $|2 x-2| \leq|-2 a|$.

- $(-\infty, 1+a] \cup[1-a,+\infty)$
$[1-a, 1+a]$
- $[1+a, 1-a]$
$[-a, a]$

$$
\begin{aligned}
& 2 a \leq 2 x-2 \leq-2 a \\
& 2 a+2 \leq 2 x \leq-2 a+2 \\
& (2 a+2) / 2 \leq x \leq(-2 a+2) / 2 \\
& 2(a+1) / 2 \leq x \leq 2(-a+1) / 2 \\
& a+1 \leq x \leq 1-a
\end{aligned}
$$

By calculator

 zw/z = w $(-14+2 i) /(-3+4 i)$The solution set of the equation $6(2 x-2)=2-2 x$ is

- \emptyset
$\{1\}$
-1
$6(2 x-2)=2-2 x$ $12 \mathrm{x}-12=2-2 \mathrm{x}$ $12 x+2 x=12+2$ $14 \mathrm{x}=14, \mathrm{x}=1$

Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x^{2}+x-6}=$

- Does not exist
- $-\frac{1}{5}$

0
$\frac{1}{5}$
L right $=\backslash L$ left

If a function $f(x)$ has an inverse function and $f(-2)=11$, then

- $f^{-1}(01)=-1$
- $f^{-1}(-2)=-11$
- $f^{-1}(11)=-2$
(e) $f^{-1}(2)=-11$

MKCL OES

Totai questions in exam 40 | Answered: 0

Question No. 38
The solution set of the equation $\log _{2} x+\log _{2}(2 x-1)=2 \log _{2}(2-x)$ is
$\log 2\left(x^{*}(2 x-1)\right)=2 \log 2(2-x)$
$\log 2\left(2 x^{\wedge} 2-x\right)=\log 2(2-x)^{\wedge} 2$
$2 x^{\wedge} 2-x=4-4 x+x^{\wedge} 2,(x-y)^{\wedge} 2$ property $x^{\wedge} 2-4 x+4=2 x^{\wedge} 2-x->2 x^{\wedge} 2-x^{\wedge} 2-x+4 x-4$
$x^{\wedge} 2+3 x-4=(x+4)(x-1), x=-4, x=1$
there's NO MINUS number in log so the solution set is $\{1\}$

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$

4
1
-3
0

Let a be a complex number and $f(x)=x^{4}-x^{2}-12$. If $x-a$ is a factor of $f(x)$ then
$0 x+a$ is a factor of f too.
$0-x+a$ is a factor of f too.
$0-x-a$ is a factor of f too.

- $f(x+a)=0$.

Question No

Factoring $x^{3}-8 y^{3}$ gives
$(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)$
$(x+2 y)\left(x^{2}-2 x y+4 y^{2}\right)$
$(x-2 y)\left(x^{2}-2 x y+y^{2}\right)$
$x^{3}-8 y^{3}$
$x^{\wedge} 3-y^{\wedge} 3=(x-y)\left(x^{\wedge} 2+x y+y^{\wedge} 2\right)$ $8 y^{\wedge} 3=(2 y)^{\wedge} 3$

Is

Question No. 4

Factor: $9-6 c d+c^{2} d^{2}$
$(3+c d)(3-c d)$
$(3+c d)(c d-3)$
$(3-c d)^{2}$

- $(3+c d)^{2}$

> C
> $(x-y)^{\wedge} 2=x^{\wedge} 2-2 x y-y^{\wedge} 2$

Total questions in exam: 40 | Answered: 4

Question No. 5

Let f be the one-to-one function defined by this set of ordered pairs $\{(-3,2),(4,5),(7,4),(10,19)\}$.
Then $f^{-1}(5)=$

4
5
$\frac{1}{5}$
$\frac{1}{4}$

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0} \mid$ Answered 7

Question No. 8

Let $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5,7\}$, and $B=\{3,4,6\}$. Find $A \cup B^{\prime}$

- $\{2,4,3\}$
- $\{1,2,3,5,7\}$
- $\{4,6\}$
- $1,2,3,4\}$

Sterenexthris

Question No. 3

Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{3}+x^{2}-1}{x^{2}-x-1}=$

- -1

0

- $-\infty$

1

Question No. 18
The function $f(x)=-2 x^{2}+4 x+1$ is equivalent to
$f(x)=-2(x-1)^{2}-3$
$f(x)=-2(x-1)^{2}+3$
$f(x)=2(x-1)^{2}+3$
$f(x)=-2(x+1)^{2}+3$

B

Question No. 33

$$
\text { if } f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x=1 \\
1 & \text { if } & x=1
\end{array} \text { then } \lim _{x \rightarrow 1} f(x)\right. \text { is }
$$

Scanned with CamScanner

```
135 of 202
```

Question mu. as
The inverse of $f(x)=\frac{\sqrt[3]{x}-5}{2}$ is

- $f^{-1}(x)=(2 \mathrm{r}+5)$
$f^{-1}(x)=\frac{1}{3}(2 x+5)$
- $f^{-1}(x)=3(2 x+5)$
$f^{-1}(x)=(2 x+5)^{3}$

$$
\begin{aligned}
& D \\
& x=(3 \sqrt{ } y-5) / 2 \\
& 2 x=3 \sqrt{y}-5 \\
& 2 x+5=3 \sqrt{y} \\
& (2 x+5) \wedge 3=y
\end{aligned}
$$

If $p(x)=\sqrt{x+3}$ and $q(x)=\sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$.

- $x \in(-\infty,-3) \cup(4, \infty)$
- $x \in[-3,4]$
- $x \in[4, \infty)$
- $x \in(-3,4)$

Question No. 2
Evaluate $\lim _{x \rightarrow 1}\left(x^{3}+x-6\right)=$

0	-4
0	4
0	0
0	-6

A
 If x-> 1

Save a Next 46, s. 4

Ques'
If $f(x)$ is a polynomial such that $f(5)=-7$ then the remainder of the
$f(x) \div(x-5)$ equals:

D: -7

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$


```
Let f(x)= -\frac{3}{2}x+4, find the value of a such that f(2a)=7.
O a = 0.
O a=1.
O a=-1
O}=2\mathrm{ .
```


$-3 / 2 x+4=7$
$-3 / 2(2 a)+4=7$
$-3 / 2(2 a)=3$
$2 \mathrm{a}=-6 / 3,2 \mathrm{a}=-2$
$a=-1$

Question No. 1

Perform the indicated operations $a b\left(a^{-1}-b^{-1}\right)$, where $a \neq 0, b \neq 0$
b-a
$\frac{1}{b}-\frac{1}{a}$
0
$a-b$

$a x^{\wedge} 2$, if $a>0$ then open up if a < 0 then open down

Question No. 8
Evaluate $\lim _{x \rightarrow-1} \frac{3 x^{4}+x+1}{x+4}=$
$\begin{array}{ll}\bigcirc & -4 \\ \bigcirc & 3 \\ \bigcirc & 1 \\ \bigcirc & 0\end{array}$

P

$$
\begin{aligned}
& 3(-1)^{\wedge} 4+(-1)+1 /(-1+4) \\
& 3 / 3=1
\end{aligned}
$$

Question No. 34
Evaluate $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{|x-1|}$
2
6
. 2
1

$=>+1$

Total questions in exam $\mathbf{4 0}$ | Answered: 0

Question No. 38

The solution set of the equation $\log _{2} x+\log _{2}(2 x-1)=2 \log _{2}(2-x)$ is$\{1,-4\}$\{1)$\{4,-1\}$
عند التعو يض بعدد سـالب
φ can't solve بيعطبك
$\log _{2} x \cdot(2 x-1)=\log _{2}(2-x)^{2}$
$2 x^{2}-x=4-4 x+x^{2}$
$-x^{2}$

$$
\begin{aligned}
& x^{2}=4-4 x+x \\
& x^{2}=4-3 x \\
& x^{2}+3 x-4=0
\end{aligned}
$$

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 31
Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$
al- N1- air+i-

Sineanerachem

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 30

Solve $1<7-x<10$(-6.-3)$(-3,6)$(-6,3)(3,6)

$$
-6<-x<3
$$

$$
(-3,6),
$$

Question No. 40
The graph of $f(x)=3^{x}$ is
Increasing

- Constant

Decreasing and Increasing
Decreasing

Total questions in exam: $\mathbf{4 0}$ | Answered: 0

Question No. 23
Evaluate: $|-12+(5-2)|$
09
06
-3
4

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 25
Find the quotient $\frac{6 x^{2}}{2 x^{5}} \div \frac{3 x}{x^{4}}$, where $\mathrm{x} \neq 0$$\frac{1}{3}1\frac{1}{2}$$-1$

Total questions in exam: 40 | Answered: 0

Question No. 24
The equation $y=\log _{2}(3 x)$ can be written as

$$
x=\frac{2^{y}}{3}
$$$y=\frac{2^{x}}{3}$

$y=3^{x}$$x=2^{y}$
$\log _{2} 3 x=y$

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 8

$$
\csc \theta=
$$

- $\frac{1}{\cos \theta}$$\frac{\cos \theta}{\sin \theta}$$\frac{1}{\sin \theta}$

$$
\frac{\sin \theta}{\cos \theta}
$$

Question No. 5

The solution set of the equation $7(2 x-1)=9+14 x$ is
1
\emptyset
$\{1,2\}$
(5)

Scanned with CamScanner

Question No. 9

If θ is an acute angle in a right triangle, then $\tan \theta=$
0 opposite
hypotenuse
(U) opposite
adjacent
adjacent
opposite
adjacent
hypotenuse

MKCL OES

Total questions in exam $40 \mid$ Answered: 0

Question No. 29
$f(x)$ is a polynomial such that the remainder of the division $f(x) \div(x+4)$ equals 10 then
$f(10)=-4$
$f(-4)=10$
$f(4)=10$
$f(10)=4$

Total questions in exam: 40 | Answered. 0

Question No. 3

Evaluate $\lim _{x \rightarrow \infty}\left(x^{4}-x^{2}+x-4\right)=$$-4$40
∞
D

Question No, 4

Find $2 f(x)-3 g(x)$, where $f(x)=x^{2}+2 x-1$ and $g(x)=2 x-4$.$2 x^{2}-2 x-14$$-3 x^{2}-2 x-1$$-3 x^{2}-2 x-7$$2 x^{2}-2 x+10$
$\left(2 x^{2}+4 x-2\right)-(6 x-12)$
$2 x^{2}$
$-2 x+10$

Total questions in exam: 40 I Answered: 0

Question No. 16
Compute the product $(x-2)(x-3)$$x^{2}+5 x+6$$x^{2}-5 x-6$$x^{2}-6 x+5$$x^{2}-5 x+6$

$$
\frac{x^{2}-3 x-2 x+6}{x^{2}-5 x+6}
$$

Question No. 7

The complement of the angle 65° is:
25°
115°
125°
35°

Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}+7 x+12}{x+3}=$
O_{4}
○ 1
○-3
$\bigcirc 0$

Scanned with CamScanner

Iotal questions in exam: $\mathbf{4 0}$ | Answered: 12

Question No. 30

The supplement of the angle 20° is:
70°
80°
180°
160°

Scanned with CamScanner

Total questions in exam: $\mathbf{4 0}$ | Answered: 10

Question No. 36

The function $f(x)$ is constant on an interval I if for $x_{1}, x_{2} \in I$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$,
if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$,
if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,
if $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$,

Tolat questions in exam: $\mathbf{4 0}$ | Answered: 13

Question No. 18
Which of the following points are on the graph of $f(x)=4+2 \log _{3}(1-2 x)$?
$(0,4),(-1,6)$ and $\left(\frac{1}{3},-2\right)$
$(3,1),(1,0)$ and $\left(\frac{1}{3},-1\right)$
$4+2 \log _{3}(1-2 x)$

عوض محل الاكس ب 0 بيعطبك 4 وعوض محل الاكس ب سالب 1 بيعطيك 6 وعوض مـول الاك بثلث بيعطيك 2 فالجو اب هو C

Question No. 5

The solution set of the equation $7(2 x-1)=9+14 x$ is1$\emptyset$$\{1,2\}$
\{5\}

Gustion No. 10

$f(x)=\sqrt{16-x^{2}}$
$f(x)=-2 x+5$
$0 f(x)=5 x^{2}-1$
(0) $f(x)=-2 x^{2}-5$

$0 \wedge 7 / O \Sigma$.

Total questions in exam: $\mathbf{4 0}$ | Answered: 19

Question No. 13

Let $a, b \in \mathbb{R}$. Give the values of a and b that make this statement true:

$$
2 b+(3 a-\sqrt{2}) i=b-2+(a+\sqrt{8}) i
$$

$a=\frac{3 \sqrt{2}}{2}$ and $b=-2$
$a=-3 \sqrt{2}$ and $b=-2$
$a=3 \sqrt{2}$ and $b=2$
$a=-\frac{2 \sqrt{2}}{3}$ and $b=-2$

MKCL OES
 artro troteotion Syatim

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 19

Question No. 31
Which of the following functions is one-to-one
$F=\{(-3,-3),(0,0),(4,-2),(1,-5)\}$
$F=\{(3,5),(6,0),(3,-2),(1,-5)\}$
$F=\{(4,-3),(1,0),(5,-2),(1,-3)\}$
$F=\{(-3,-2),(0,4),(3,-2),(1,-5)\}$
انتبهوا في B ما تكررت الواي لاكن تكررت
الاكس واذا تكررت الاكس معناتها انه ذي مو
داله وليست الارت

Question No. 4

The supplement of the angle 45° is:

- 45°
- 60°
- 80°
135°

MKCL OES

Total questions in exam: 40 | Answered: 15

Question No. 7

The expression $\left(1+\cot ^{2} \theta\right)$ equals
$\cos ^{2} \theta$
$\sec ^{2} \theta$
$\sin ^{2} \theta$
$\csc ^{2} \theta$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 14

Question No. 40

The solution set of the equation $\log _{5}(x+2)+\log _{5}(x-2)=1$ is
\varnothing
\{-3\}
\{3\}
$\{-3,3\}$

MXCL OES

Total questions in exam $40 \mid$ Answered 5

Question No. 10

The expression $\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$ equals
$\sec ^{2} \theta$
01
$\csc ^{2} \theta$
-1

Question No. 14

The equation $y=3^{x-1}$ can be written a

$$
\begin{aligned}
& x=\log _{3} y \\
& x=\log _{3}(y+1) \\
& x=1+\log _{3} y \\
& y=1+\log _{3} x
\end{aligned}
$$

MKCL OES

Total questions in exam: $\mathbf{4 0}$ | Answered: 10

Question No. 39

The equation $y=\log _{a} x$ is equivalent to the equation
$x=y^{a}$
$x=a^{y}$
$y=x^{a}$
$y=a^{x}$

Total questions in exam: $\mathbf{4 0}$ | Answered: 12

Question No. 39

Use set notation, and write the elements belonging to the set $\{x \mid x$ is a natural number less than 3 \}
-
© 0$\}$
$\{1,2\}$
. $\{1,2,3\}$

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered. 11

Question No. 9

Evaluate $\lim _{x \rightarrow 2} \frac{x-2}{|x-2|}=$
() -2

00
${ }^{\circ} 2$

- Does not exist

MKCL OES

Total questions in exam: $\mathbf{4 0}$ | Answered: 7

Question No. 27

If $f(x)=-\frac{1}{3} x+1$, the domain of $f^{-1}(x)$ is
$[-3,1)$
$\left[-\frac{1}{3}, 1\right)$
$[0, \infty)$
all real numbers

Question No. 23

The line through the point $(-1,-3)$ with slope equal to zero is
$x=-3$
$x=-1$
$x=-3$
$y=-1$
$y=-1$

Total questions in exam: $\mathbf{4 0} \mid$ Answered 7

Question No. 22

Let $a \in \mathbb{R}$. Give the condition on a that makes the relation $F=\{(-1,1),(2,1),(a, 3),(-2, a)\}$ a functic
$a \in\{-1,-2,1,2,3\}$
$a \in \mathbb{R} \backslash\{1,3\}$
$a \in \boldsymbol{R}$
$a \in \mathbb{R} \backslash\{-1,2,-2\}$

save \& Next 13, ,

Compoq LE77)

Total questions in exam 40 | Answered: 0

Question No. 4

Find $2 f(x)-3 g(x)$, where $f(x)=x^{2}+2 x-1$ and $g(x)=2 x-4$.
$2 x^{2}-2 x-14$
$-3 x^{2}-2 x-1$
$-3 x^{2}-2 x-7$
$2 x^{2}-2 x+10$
ovine fatuons Snter

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 7

The complement of the angle 65° is:
25°
115°
125°
35°

Total questions in exam: $\mathbf{4 0} \mid$ Answered:

Question No. 3

Evaluate $\lim _{x \rightarrow \infty}\left(x^{4}-x^{2}+x-4\right)=$
-4

- 40
∞

Total questions in exam: $40 \mid$ Answered: 0

Question No. 16
Compute the product $(x-2)(x-3)$
$x^{2}+5 x+6$
$x^{2}-5 x-6$
(1) $x^{2}-6 x+5$
$x^{2}-5 x+6$

MKCL OES

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 9

If θ is an acute angle in a right triangle, then $\tan \theta=$ opposite
hypotenuse
opposite
adjacent
adjacent
opposite
$\frac{\text { adjacent }}{\text { hypotenuse }}$

Question No. 8

$\csc \theta=$
$\frac{1}{\cos \theta}$
$\frac{\cos \theta}{\sin \theta}$
$\frac{1}{\sin \theta}$
$\frac{\sin \theta}{\cos \theta}$

MKCL OES

Total questions in exam. $\mathbf{4 0}$ | Answered: 0

Question No, 5

The solution set of the equation $7(2 x-1)=9+14 x$ is
1
\emptyset
$\{1,2\}$
\{5\}

MKCL OES

Total questions in exam: $40 \mid$ Answered: 0

Question No. 24

The equation $y=\log _{2}(3 x)$ can be written as

$$
\begin{aligned}
& x=\frac{2^{y}}{3} \\
& y=\frac{2^{x}}{3} \\
& y=3^{x} \\
& x=2^{y}
\end{aligned}
$$

Total questions in exam: $\mathbf{4 0} \mid$ Answered: 0

Question No. 25
Find the quotient $\frac{6 x^{2}}{2 x^{5}} \div \frac{3 x}{x^{6}}$, where $\mathrm{X} \neq 0$
(0) $\frac{1}{3}$

- 1

O $\frac{1}{2}$
-1

MKCL OES

Total questontin exam 40 / Answered 0

Question No. 28
If $\theta=90^{\circ}$ then θ is called
an obtuse angle
C) a straght angle

- a light angle
-) an acute angle

Question No. 31

Evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$

- $-\frac{1}{4}$
$-\frac{1}{6}$
- $\frac{1}{2}$
$\frac{1}{6}$

MKCL OES

Total questions in exam. $40 \mid$ Answered: 0

Question No. 39

The supplement of the angle 50° is:
50°
(. 150°

- 130°
- 40°

MKCL OES

Total questions in exam. $40 \mid$ Answered: 0

Question No. 40

The graph of $f(x)=3^{x}$ is

Increasing

- Constant
- Decreasing and Increasing

Decreasing

Total questions in exam: $40 \mid$ Answered: 0

Question No. 33
Give the slope of the line $4 y-8 x+28=0$

- -2

O- -7

- 2

07

MKCL OES

Total questions in exam: 40 Answered: 0

Question No. 34
Evaluate $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{|x-1|}$

2
6

- -2
0.1

Question No. 4

What are the factors of this quadratic equation $? 8 x^{2}-6 x-5=0$
$(4 x-5)(2 x+1)$
$(8 x+5)(x-1)$
$(4 x-1)(2 x+5)$

- $(x+1)(8 x-5)$

Question No. 11
If $\sin \theta=\frac{4}{5}$ then $\cot \theta=$, where $0^{\circ}<9<90^{\circ}$
$\frac{4}{3}$
O
ulw
$\frac{5}{3}$

0
+10

Question No. 22

Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-2}{x-1}=$

- -1

0

- 1
- ∞

Question No. 16

Simplify $\left(\frac{-4 n^{6} m^{4}}{m^{2}}\right)^{1 / 2}$ where $m \neq 0$
$\frac{1}{8 n^{9} m^{3}}$
$-8 n^{9} m^{3}$
\bigcirc
$-\frac{1}{8 n^{9} m^{3}}$Is not a real number

Question No. 18

Evaluate the expression $\frac{-(-3)+(-5)^{2}}{2(-8)-3(-3)}$

- 4
$-\frac{28}{25}$
- -4
- $\frac{28}{25}$

Question No. 26

The inverse of $F=\{(-3,3),(0,0),(4,2),(1,5)\}$ is
$G=\{(-3,-3),(0,0),(4,-2),(1,-5)\}$
$\mathrm{G}=\{(3,3),(0,0),(-4,2),(-1,5)\}$
$G=\{(3,3),(0,0),(2,4),(1,5)\}$
$\mathrm{G}=\{(3,-3),(0,0),(2,4),(5,1)\}$

Question No. 34

Find the sum $\frac{3}{2 y}=\frac{5}{2 y}$
$\frac{1}{y}$

- $\frac{1}{4 y}$
- $-\frac{1}{y}$
$\frac{11}{4 y^{2}}$
$\square \%$ ㄴ

$$
\begin{aligned}
& \text { ص } 9:-0 \\
& \text { +966 } 593724422 \\
& \text { ص } 1: 09 \text { ،r. } 1 N / 1 \mathrm{~T} / \mathrm{T} \text {. }
\end{aligned}
$$

MKCL OES

Total questions in exam: $40 \mid$ Answered: $\mathbf{0}$

Question No. 3

The solution set of $-2 \leq 3-5 x \leq 18$ is
$(-\infty, 1)$
($-3, \infty$)
$(-3,1)$
$[-3,1]$

Question No. 7
The horizontal asymptote to the graph of $f(x)=2^{x}-3$.

- $y=-3$
- $x=-2$
$y=3$
$x=2$

Question No. 2
Evaluate $\lim _{x \rightarrow 1}\left(x^{3}+x-6\right)=$

$$
\begin{array}{ll}
-4 \\
0 & 4 \\
0 \\
-6
\end{array}
$$

MIKCL OES

0ximinety

Total questions in exam: $\mathbf{4 0}$ | Answered: $\mathbf{0}$

Question No. 1

Perform the indicated operations $a b\left(a^{-1}-b^{-1}\right)$, where $a \neq 0, b \neq 0$
$b-a$
$\frac{1}{b}-\frac{1}{a}$
0
$a-b$
.Dr.Shadiㅇㅇ @ Plan (A)
E م قاحث مقدمة في الرياضيات طلاب و طالبات النهائي ورقتان r

MSCL URE

Question No. 33
if $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-1}{x-1} & \text { if } & x=1 \\ 1 & \text { if } & x=1\end{array}\right.$ then $\lim _{x \rightarrow 1} f(x)$ is$-2$213

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \frac{2 x+12(x)-1)}{x-1} \\
1+1=2
\end{gathered}
$$


```
MKCL OES
```

Question No. 1

The solution of the equation $\ln (3 x)=2$ is
$\frac{e^{3}}{2}$
$\frac{e^{2}}{3}$
e^{2}
$3 e^{2}$

Question No. 3

The solution set of the equation $e^{2 x}=1$ is
© \varnothing
(4) $\{1\}$
(0)
(4) $\left\{\frac{1}{2}\right\}$

Question No. 4
Given that $f(x)=3^{2 x+1}-1$. Then $f(-1)=$$-1$$\frac{-2}{3}$$\frac{2}{3}$2

Question No. 6

The solution of the exponential equation $\left(\frac{3}{2}\right)^{2 x+1}=\frac{4}{9}$ is
$x=\frac{1}{2}$
(1) $x=\frac{3}{2}$
$x=\frac{-3}{2}$
$x=\frac{4}{9}$

Question No. 7

Given that $f(x)=\log _{\frac{1}{2}}(x+2)$, then $f(-2)$ is
Undefined
0
-2

- $\frac{1}{2}$


```
MKCL OES
```


Question No. 8

The domain of the function $f(x)=1-\log _{4}(x-2)$ is
($0, \infty$)

- $(-\infty, 2)$
($-\infty, \infty$)
- $(2, \infty)$

Question No. 9

For $x>0, y>0$, and $z>0, \log _{2}\left(\frac{x y^{2}}{2 \sqrt{z}}\right)=$

- $-1+\log _{2} x+2 \log _{2} y-\frac{1}{2} \log _{2} z$
$1+\log _{z} x+2 \log _{z} y-\frac{1}{2} \log _{z} z$
$-1+\log _{2} x+\log _{2} y-\frac{1}{2} \log _{2} z$
$-1+\log _{2} x+2 \log _{2} y+\frac{1}{2} \log _{2} z$

MKCL OES

Question No. 17
The solution set of an identity equation isthe set of natural numbersthe set of real numbersthe empty setthe set of some numbers that satisfy the equation

Question No. 18

The quotient $\frac{2-3 i}{4-3 i}$ can be written as
(i) $-\frac{17}{25}+\frac{6}{25} i$
(4) $\frac{17}{25}+\frac{6}{25} i$
$18 \frac{17}{25}-\frac{6}{25} i$
(9) $-\frac{17}{25}-\frac{6}{25} i$

Question No. 19

Solve: $6 x^{2}+7 x-3=0$

$$
\begin{aligned}
& x=2+i \text { or } x=2-i \\
& x=3 \text { or } x=-1 \\
& x=\frac{1}{3} \text { or } x=\frac{-3}{2} \\
& x=\frac{3}{2} \text { or } x=-\frac{1}{3}
\end{aligned}
$$

Guestion No. 20
Solve $x^{2}+x<6$

- $(-\infty,-2) \cup(3, \infty)$
- $(-2,3)$
© $(-3,2)$
$(-\infty,-3) \cup(2, \infty)$

A

Question No. 22

If $f(x)=\frac{3}{x^{2}+x+1}$ then $f(-2)=$

- 1

0
not defined

- -1

Question No. 23

Give the y-intercept of the line $y=4 x-7$

- -7
0.7
0.4
- -4

A

Question No. 24

Find the equation of the line passes through the twa points $(2,3)$ and $(1,-4)$.
(2) $y=7 x-11$
$y=3 x-12$
. $y=-3 x+12$
(1) $y=7 x+11$

Question No. 25
Let $f(x)-\frac{2}{x+5}$ and $g(x)=x-5$, then $(f \circ g)(x)=$

- $\frac{1}{x}$
- $\frac{2}{x}$
-

$\frac{2}{x-1}$
$\frac{2}{x+1}$

B

Question No. 26

Let $f(x)=x^{2}+x+2$ and $g(x)=x-1$, then the domain of $(f+g)(x)$ is

- $[-\infty, 1]$
- $[-\infty, 0]$
$(0,9)$
- $(-\infty, \infty)$

Question No. 27
The function $f(x)=x^{2}-x+1$ is

- Cubic

Q Linear
0 Quadratic

- Quartic

Question No. 28
If $f(x)=-(x+3)^{2}+5$, then the vertex of the graph of f is
(-3,5)
($(-3,-5)$
(3,5)

- $(-1,-5)$

Question No. 29
The quotient of the division $\left(2 x^{3}+4 x^{2}-5 x+7\right) \div(x-2)$ is:
$3 x^{2}-x+3$

- $2 x^{2}-x-11$
$3 x^{2}+x+3$
$2 x^{2}+8 x+11$

Question No. 30

The degree of the quotient of the division:
$\left(2 x^{7}-6 x^{5}+3 x-5\right) \div(x+8)$ equals:

- 9

8

- 7

6

Question No. 31
If $x-1$ is a factor of the polynomial $f(x)$ then$f(0)=-1$
(c) $f(1)=0$
(0) $f(-1)=0$$\mathrm{f}(\mathrm{O})=1$

Question No. 32

Which of the following functions is one to one
$\sigma=\{(-3,123),(0,10),(4,-12),(1,-15)\}$
(0) $F=\{(-3,-2),(0,4),(3,-2),(1,-5)\}$
$\omega F=\{(3,15),(6,10),(3,-12),(1,15)\}$
$\Leftrightarrow F=\{(4,6),(1,0),(5,-2),(1,6)\}$

Question No. 34
If $f(x)=2 x+4$, then

$$
\begin{aligned}
& f^{-1}(x)=-\frac{1}{2} x+4 \\
& f^{-1}(x)=\frac{1}{2} x+2 \\
& f^{-1}(x)=\frac{1}{2} x-2 \\
& f^{-1}(x)=-\frac{1}{2} x-4
\end{aligned}
$$

Question No. 35
If $0^{\circ}<\theta<90^{\circ}$ then θ is calleda right anglean obtuse anglean acute anglea straignt angle

Question No. 36
The complement of the angle 60° is:$140^{\circ}$$30^{\circ}$$120^{\circ}$$70^{\circ}$

Question No. 37

The supplement of the angle 50° is:
(-130*
(50°
(2) 40°

- 150^{*}

Save of Next yla, Dim

Question No. 38

If θ is an acute angle in a right triangle, then $\tan \theta=$adjacent
oppositeopposite
hypoternume
adjacent
hypotenuse
(1) opposite
adjacent

Saye \& Nextighayth

A
\qquad

Question No. 40

The expression $\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$ equals
$\sec ^{2} \theta$

- -1

1
$\csc ^{2} \theta$

MKCL OBS

Question No. 10

For $r \neq 0$, evaluate $\lim _{x \rightarrow r} \frac{x-4}{x}=$

$$
\begin{aligned}
& \frac{4}{r} \\
& 1-\frac{4}{r} \\
& r-4 \\
& 1-\frac{r}{4}
\end{aligned}
$$

: Ceggér $*$

Question No. 14
Evaluate $\lim _{x \rightarrow \infty} \frac{100}{x^{2}-5}=$$-20$$-5$0$-1$

MKCL OBS

Question No. 15

Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-16}}{8-2 x}=$$\frac{1}{4}$$\frac{-1}{2}5\frac{1}{2}$
me

$$
\sqrt{x^{2}-16}=
$$

$$
\sqrt{(x-4)^{2}}=x-4
$$

Question No. 16
if $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-4}{x-4} & \text { if } & x \neq 2 \\ 5 & \text { if } & x=2\end{array}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is240.-2
$(x-2)(x+2)$

Question No. 13

Evaluate $\lim _{x \rightarrow-\infty} \frac{7 x^{2}+x-100}{2 x^{2}-5 x}=$

- $\frac{2}{5}$
$\frac{7}{2}$
- $\frac{7}{5}$
$\frac{1}{2}$

Question No. 14
Evaluate $\lim _{x \rightarrow-\infty}\left(x^{3}-x^{2}+x-11\right)=$$-\infty011\infty$

$$
\begin{aligned}
& x^{3}=61 \text { si inli* } \\
& (-\infty)^{3}=(-\infty) \rightarrow x+20, * \\
& A-\infty=-\infty \mid *
\end{aligned}
$$

Question No. 12
Evaluate $\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-\sqrt{16}}{h}=$$-\frac{1}{2}$$\frac{1}{8}$$\frac{1}{2}$$\frac{1}{\sqrt{h}}$

$$
\begin{aligned}
& =\frac{(\sqrt{16+h}-\sqrt{16})(\sqrt{16+h}+\sqrt{16})}{h(\sqrt{16+h}+\sqrt{16})} \\
& =\frac{(\sqrt{16+h})^{2}-(\sqrt{(6})^{2}}{h(\sqrt{16+h}+\sqrt{16}} \\
& =\frac{16+h-16}{h(\sqrt{16+h}+\sqrt{16}}=\frac{h(\sqrt{16+h}+\sqrt{10}}{1} \\
& =\frac{1}{\sqrt{16+h}+\sqrt{16}} \\
& =\frac{1}{\sqrt{16+0}+\sqrt{16}}=\frac{1}{8}=\text { jie h cr iejo } *
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{2}+x+1}{x^{3}+3 x^{2}+5 x+2}=$

04
3
1

Question No. 11
Evaluate $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}2-2$61

MKCL OBS

Question No. 12
Evaluate $\lim _{x \rightarrow-2} \frac{2+x}{2 x\left(x^{3}+8\right)}=0-28$$\frac{1}{8}$$\frac{-1}{48}$

$$
\left.(x+1)\left[x^{2}-2 x+4\right)\right]
$$

$$
2 x\left(x^{2}-2 x+4\right)
$$

$\frac{1}{(-2)(-2)^{2}-2(-2}$

$$
2(-2)\left((-2)^{2}-2(-2)+4\right)
$$

MKCL OES
cr-92-

Question No. 11

Evaluate $\lim _{x \rightarrow 5}\left(x^{3}+x-6\right)=$124135130125

MKCL OES
 orniturenhimiken

Question No. 13

Evaluate $\lim _{x \rightarrow-\infty} \frac{x+7}{3 x+5}=$

0

- $\frac{7}{5}$ $\overline{5}$
-

$\frac{1}{3}$
$\frac{5}{7}$


```
    MKSL OES
```

Question No. 13

Evaluate $\lim _{x \rightarrow \infty} \frac{x^{4}+2 x^{2}-1}{x^{3}-2 x-2}=$
$0-\infty$
0∞
(3) 1

0

 Question:

Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x-1}\right)$ Options:

00
01
${ }^{6} 6$

$$
\begin{aligned}
& \frac{\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x-1}\right)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x-1}\right.}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x-1}} \\
& \frac{\left(\sqrt{x^{2}+x+1}\right)^{2}-\left(\sqrt{x^{2}-x-1}\right)^{2}}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x-1}}=\frac{\left(x^{2}+x+1\right)-\left(x^{2}-x-1\right)}{\sqrt{x^{2}+x+1}+\sqrt{y^{2}-x-1}} \\
& =\frac{2 x+2}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x-1}}=\frac{2 x+2}{\sqrt{x^{2}\left(1+\frac{x}{x^{2}}+\frac{1}{x^{2}}\right.}+\sqrt{x^{2}\left(1-\frac{x}{x^{2}-\frac{1}{x^{2}}}\right.}} \\
& =\frac{2 x+2}{\sqrt{x^{2}} \sqrt{1+\frac{x}{x^{2}}+\frac{1}{x^{2}}}}+\sqrt{x^{2}} \sqrt{1-\frac{x}{x^{2}}-\frac{1}{x^{2}}} \\
& =\frac{2 x+2}{x \cdot 1+x \cdot 1}=\frac{2 x+2}{2 x}=\frac{2}{2}=1 \\
& 2(\text { 为 }(\bar{\varphi}) \text {) }
\end{aligned}
$$

What is the value of the limit $\lim _{x \rightarrow 0} \frac{x^{2}-x-2}{x^{2}-2 x}$
A. -2
B. Does not exist
C. 1
A. $-\infty$

$$
\begin{gathered}
\frac{(x-x)(x+1)}{x(x-x)}=\frac{(x+1)}{x} \\
\sqrt{D} \\
\frac{B}{B}
\end{gathered}
$$

INSTRUCTION: Ohw Please choose the BEST answer from the given options for each c Question:

$$
\text { Evaluate } \lim _{x \rightarrow \infty}\left(x^{6}-x^{4}+x-1\right)=
$$

Options:

© ∞
© 1
(c) 0

- $-\infty$

INSTRUCTION: : Plus choose the BEST answer from the given options for e
Question:
Evaluate $\lim _{x \rightarrow-3} \frac{|x+3|}{x^{2}+x-6}=$
Options:$\frac{1}{5}$$-\frac{1}{5}$0Does not exist

=rete.

Submit Answer

Question No. 17

The equation $6(2 x-3)=12 x+3$ is
a contradiction
a conditional equation
a quadratic equation
an identity

Question No. 13

Evaluate $\lim _{\rightarrow-\infty} \frac{x^{4}+2 x^{2}-1}{x^{3}-2 x-2}=$

- $-\infty$
(1) $\quad 0$
(3) 1
$0 \quad 0$

Question Mo. 11

Evaluate $\lim _{x \rightarrow-1} \frac{x^{3}-1}{x-1}=$

4 1
44
135
-2

Question No. 16

If $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-4}{x-4} & \text { fr } & x \neq 2 \\ 5 & f^{\prime} & x=2\end{array}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is$-2$042

Qumation No. 21
The solution set of the following equation: $|x+1|=|2 x-3|$ is
0 $\left\{4, \frac{2}{3}\right\}$
(c) $\left\{-4, \frac{2}{3}\right\}$
O. $\left\{4,-\frac{2}{3}\right\}$
$\circ \phi$

quention Mo. 12

Evaluate $\lim _{4 \rightarrow 0} \frac{\sqrt{16+h}-\sqrt{16}}{h}=$
(5) $\frac{1}{8}$
$0=\frac{1}{2}$
b) $\frac{1}{\sqrt{4}}$
4) $\frac{1}{2}$

Dusetion No. 14

Evaluate $\lim _{x \rightarrow-\infty} \frac{7 x^{3}+x-100}{2 x^{2}-5 x}=$
Q $\frac{7}{2}$
0
$\frac{2}{5}$
40
$\frac{1}{2}$
$\frac{7}{5}$

The degree of the quotient of the division

$$
\left(7 x^{4}-4 x^{3}+6 x-5\right) \div(x+2) \text { equals: }
$$

O 6
05
04
03

Question No. 19

Solve: $x^{2}-6 x+13=0$
$x=3 \pm \sqrt{2}$
$x=3 \pm i \sqrt{2}$
$x=3 \pm 2 i$
$x=\frac{3}{2} \pm \frac{\sqrt{3}}{2}$

Question No. 38
If $\csc \theta=5$ then $\sin \theta=$$\frac{\sqrt{26}}{26}$$\frac{1}{5}$5

$$
\frac{5 \sqrt{26}}{26}
$$

$$
\mathbb{E}
$$

$$
\angle B
$$

Question No. 9

For $x>0, \quad \log _{3} x^{3}-\log _{3} \sqrt{x}+5 \log _{3} x=$$\frac{7}{2} \log _{3} x$$\frac{15}{2} \log _{3} x$$15 \log _{3} x$$\log _{3} x$

For $x>0, y>0$, and $z>0, \log _{5}\left(\frac{x^{2} y^{3}}{125 \sqrt[3]{z}}\right)=$
$2 \log _{5} x+3 \log _{5} y-3-\frac{1}{3} \log _{5} z$
$2 \log _{5} x+3 \log _{5} y-3+\frac{1}{3} \log _{5} z$
$2 \log _{5} x-3 \log _{5} y-3+\frac{1}{3} \log _{5} z$

- $2 \log _{5} x+3 \log _{5} y-\frac{125}{3} \log _{5} z$

Question No. 17

The solution set of a contradiction equation is
the set of some numbers that satisfy the equationthe empty setthe set of real numbersthe set of natural numbers

Quasiten $\mathrm{Na}, 7$
Given that $f(x)-\log _{2}(x+2)$, then $f(-2)$ is
Undefined
0
-2
$\frac{1}{2}$

Qumation Mo. 2

The solution of the equation $2^{x}=3^{2 x-1}$ is
$0 \frac{\ln z}{2 \ln z-\ln z}$
© $\frac{\ln a}{\ln 2-2 \ln 2}$

- $\frac{\ln x}{2 \ln 2-\ln z}$
$0 \frac{\ln 2}{\ln 2-2 \ln 2}$

MKCL OES

Question No. 22

$$
\begin{aligned}
& \text { If } f(x)=x^{2}-3 x-1 \text { then } f(a+2)= \\
& a^{2}+2 a-4 \\
& a^{2}+2 a+3 \\
& a^{2}+a-3 \\
& a^{2}+2 a-7
\end{aligned}
$$

Question No. 11
Evaluate $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}2-2$61

MKCL OES

Question No. 13

Evaluate $\lim _{x \rightarrow-\infty} \frac{x+7}{3 x+5}=$

0

7
$\overline{5}$
$\frac{1}{3}$
110n

Question No. 24

Find the equation of the line with slope -3 and y-intercept -5 .
$-5 x-3 y=0$

- $y=-5 x-3$
) $x-3 y=-5$
$y=-3 x-5$

Question No. 2
Given that $\log _{3}(2 x-4)=1$ then $x=$

- $\frac{3}{7}$
- $\frac{7}{2}$
- $\frac{7}{3}$
- $\frac{2}{7}$

Question No. 26

If $f(x)=3 x+4$ and $g(x)=x-1$, then the domain of $\left(\frac{H}{f}\right)(x)$ is
$(-\infty, 0) \cup(0, \infty)$

- $(-\infty, 1) \cup(1, \infty)$
- ($-\infty, \infty$)
$0\left(-\infty, \frac{-4}{4}\right) \cup\left(\frac{-4}{3}, \infty\right)$

Question No. 23

The slope of the horizontal line is

- 1
- undefined
(1) 0
(-) -1

Question Mo. 34
A function (x) is one to one if
$0 a+b \Rightarrow f(a)+f(b)$
$0 a=b \Rightarrow f(a)+f(b)$
$Q f(a)=f(b) \Rightarrow a-b$
$0 a+b \Rightarrow f(a)=f(b)$

EnHe Nexting in

Guestion No. 1

The molution of the equation $3^{x}-5$ is
($\ln \left(\frac{5}{3}\right)$
0 InI
III 5
$0 \ln \left(\frac{1}{5}\right)$
[10) 115
1113

Elutivan Ha Tin
The interval where the graph of $f(x)=-x^{2}+4 x-8$ decreases is
$0[-6, \infty)$
$\square[2, \infty)$
$0(-\infty, 2]$
$0(-\infty, \infty)$

Question No. 4

The range of the function $f(x)=1+2^{5 x}$ is

- $(1, \infty)$
- $(2, \infty)$
- $(0, \infty)$
- $(-\infty, \infty)$

MKEI PE8

GHeatlon No. H
The мицці of $f^{\prime}(x)=\log _{\frac{1}{4}} x$ in

- Imetsasheg
, Frotsaming and Increasing
(2) C'ชル上tant
C) Wovtenulta

The graph of $f(x)=-\left(\frac{1}{2}\right)^{x}$ is
O Decreasing
O Decreasing and Increasing
\bigcirc Constant
O Increasing

Let $f(x)=x^{2}+x+2$ and $g(x)=x-1$, then the domain of $(f-g)(x)$ is
$(-\infty, \infty)$
$(0,9)$
[$-x ; 0]$
($[-x, 1]$

The equation $x=3^{y}-1$ is equivalent to the equation

- $x=\log _{3}(y-1)$
- $x=\log _{2}(y+1)$
- $y=\log _{2}(x-1)$
- $y=\log _{2}(x+1)$

MKCL OES

Question No. 28
The vertex of the graph of $f(x)=x^{2}-4 x+5$ is$(2,-1)$$(2,1)$$(-1,2)$$(0,4)$

Question No. 9

The solution of the logarithmic equation $\log _{x} \frac{27}{8}=3$ is
${ }^{\circ} x=\frac{2}{3}$

- $x=\frac{-2}{3}$
$x=\frac{-3}{2}$
을

Question No. 23

Given the equation $2 x-5 y=10$. Write the line equation th the slope-Intercept form

- $y=\frac{2}{5} x-20$
- $y=-\frac{2}{5} x+2$
$y=\frac{2}{5} x-2$
$y=-\frac{2}{5} x+20$

Question No. 38

If $\cot \theta=\frac{2}{3}$ then $\tan \theta=$
(0) $\frac{2 \sqrt{13}}{13}$

O $\frac{2}{3}$
O $\frac{3}{2}$
($\frac{3 \sqrt{13}}{13}$

Queation No. 3

The solution set of the equation $a^{2 x}-3 e^{x}-4=0$ is

- $[\ln 2]$
-

$\{\ln 4\}$
O \{1\}
$\bigcirc\{\ln 4,-1\}$

MKCL OES

Question No. 12
Evaluate $\lim _{x \rightarrow-2} \frac{2+x}{2 x\left(x^{3}+8\right)}=0-28$$\frac{1}{8}$$\frac{-1}{48}$

Question No. 2

Given that $3 \ln x=30$ then $x=$$e^{10}$$e^{30}$$e^{15}$$e^{5}$

Quention No. 30

If $\cos \theta=\frac{4}{5}$ then $\sec \theta=$
$0 \frac{7}{4}$
$0 \frac{4}{5}$
$0 \frac{5}{4}$
$4 \frac{4}{7}$

Question No. 20

Solve $\frac{x}{x+2} \geq \frac{3}{x+2}$
$0(-\infty,-2) \cup[3, \infty)$
$0,(-\infty, 2) \cup[3, \infty)$

- $(-\infty,-2) \cup(3, \infty)$
$-(-\infty, 2) \cup(3, \infty)$

Question No. 32

The inverse of $F=\{(-10,20),(0,0),(4,2),(1,5)\}$ is

O $\{(-10,20),(0,0),(-4,2),(-1,5)\}$
$0\{(-10.20),(0,0),(2,4),(1,5)\}$
O $\{(-10,20),(0,0),(4,-2),(1,-5)\}$

- $\{(20,-10),(0.0),(2,4),(5,1)\}$

Simplifying the power of i^{13} gives

- -1
- -1
$\square 1$
01

Question No. 11
Evaluate $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}2-2$61

Qumstian Mo , 34

The complement of thenngle 60° is:

- 140°
 -30*
 (120"
 -70*

Question No. is

The vertical asymptote o the praphof $f(x)-2-\log _{5}(x-3)$v-1$y=?$$y-3$, - 1

Question No. 6

The solution of the exponential equation $2^{3 x-1}=\left(\frac{1}{4}\right)^{1-x}$ is
() $x=-2$
© $x=\frac{-1}{3}$
() $x=-1$
$x=\frac{-2}{3}$

The supplement of the angle 50° t:

0130°

- 50°
- 40°
150°

MKCL OES

Question No. 36

The complement of theangle 20^{*} is:
70°
160°
80°
180°

Guration 核

Gu\#tur Ha , 3

Simpilly and whitein the sqandardlummol a compler number
$\frac{-5}{1}$

Solve: $2 x^{2}=x-4$
\circ

$$
\begin{aligned}
& \left\{\frac{1}{4}(-1 \pm i \sqrt{31})\right\} \\
& \left\{\frac{1}{3}(-1 \pm \mathrm{i} \sqrt{31})\right\} \\
& \left\{\frac{1}{3}(1 \pm \mathrm{i} \sqrt{31})\right\} \\
& \left\{\frac{1}{4}(1 \pm \mathrm{i} \sqrt{31})\right\}
\end{aligned}
$$

Question No. 25
Theinverse of $f(x)=(5 x-1)^{3}$ is

$$
\begin{aligned}
& f^{-1}(x)=\frac{1}{5}(\sqrt[3]{x}-1) \\
& f^{-1}(x)=\frac{1}{5}(\sqrt[3]{x}+1) \\
& f^{-1}(x)=\frac{1}{5}(\sqrt[3]{2 x}+1) \\
& f^{-1}(x)=5(\sqrt[3]{2 x}-1)
\end{aligned}
$$

The function in the given fipure is

constun on the interval $[0,10\rceil$
increasing on the interval $[0,5]$
increasing on the interval $[-9,16]$

* decreasing on $[-5,15]$

Question No. 11

The domain of $f(x)=x-1$ is
$(-\infty, 0)$
$(-\infty,-1)$
$(1, \infty)$
$(-\infty, \infty)$

Question No. 10

The Solution set of $-2|x-7| \leq-28$ is$-7 \leq x \leq 21$0$(-\infty, \infty)$$(-\infty,-7] \cup[21, \infty)$

Question No. 16

If $f(x)=\sqrt{x+2}$ and $g(x)=3 x-5$. Find $h(x)=(g \circ f)(x)$
$h(x)=3 \sqrt{x}+3$
$h(x)=\sqrt{1 x-3}$
$h(x)=3 \sqrt{x-2}-5$
$h(x)=3 \sqrt{x-1}$

Question No. 7

The solution set of $-27 x=x^{3}-12 x^{2}$ is
(-3.-9)

$$
\begin{aligned}
& (3.9) \\
& (0.3 .9) \\
& (0.3 .9)
\end{aligned}
$$

Question No. 10

The range of $f(x)=-x^{2}$ is

$$
(-\infty,-1]
$$$(0, \infty)$

($-\infty, 0]$

$$
[-1, \infty)
$$

\circ

$$
\begin{aligned}
& P=\frac{2 A-3 P}{r_{7}} \\
& P=\frac{2 A-5 p_{r t}}{3_{r t}} \\
& P=\frac{21}{7}
\end{aligned}
$$

IWSIRUCTION: - Please choose the BEST antwer from the 0

Question:

Solve the inequality $|12+3 x|>-21$

Options:
$0(-\infty,-11) \cup(3, \infty)$
© $(3, \infty)$

0 $(-\infty, \infty)$

$$
8(-11,3)
$$

Multiplying $\frac{2}{3}$ by the number satisfies the equation $\frac{1}{20}(2 x+5)=\frac{x+2}{5} \quad$ gives

4
 0

0
$-\frac{3}{2}$
1
-1

4

Question No. 24

Given that $f(x)=3^{2 x+1}$
2
-1 Then $f(-1)=$

Scanned by CamScanner

Question No. 33

$\cos ^{2}(5 \alpha)+\sin ^{2}(5 \alpha)=$

A

Question No. 14

Evaluate $\lim _{x \rightarrow-\infty}\left(x^{3}-x^{2}+x-11\right)=$

- $-\infty$
$\bigcirc 0$
\bigcirc

11

∞

Question No. 11

Evaluate $\lim _{x \rightarrow 5}\left(x^{3}+x-6\right)=$

124
(-) 135
(6) 130
(c) 125

The solution set of the equation $\log _{5}(x+2)+\log _{s}(x-2)=1$ it
0 (3.3)
06
0 (J)
$0(3)$

Question Mo. 3

The solution set of the equation $e^{2 x}=1$ is

40
© (1)
17 [0]
$4\left[\frac{1}{2}\right]$
|uestion No. 17
Which is the equation for this graph?

$$
\begin{aligned}
& y=x^{2}-2 x-3 \\
& y=-x^{2}+2 x+4 \\
& y=-x^{2}-2 x-4 \\
& y=-x^{2}-4
\end{aligned}
$$

Question No. 19

Solve: $a x^{2}+b x+c=0$

0

$$
s=\left\{\frac{b-\sqrt{b^{2}-4 a c}}{2 a}, \frac{b+\sqrt{b^{2}-4 a c}}{2 a}\right\}
$$

\bigcirc

$$
s=\left\{\frac{-b-\sqrt{b^{2}-4 a c}}{a}, \frac{-b+\sqrt{b^{2}-4 a c}}{a}\right\}
$$

0

$$
S=\left\{\frac{-b-\sqrt{b^{2}+4 a c}}{2 a}, \frac{-b+\sqrt{b^{2}+4 a c}}{2 a}\right\}
$$

0

$$
S=\left\{\frac{-b-\sqrt{b^{2}-4 a x}}{2 a}, \frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right\}
$$

Question No. 23

Evaluate
 $(-i)^{-33}$

$$
0-1
$$

$$
0-i
$$

i

MATH quiz2

Question No. 3

The domain of $f(x)=\frac{1}{\sqrt{x^{2}-1}}$ is$(-\infty,-1) \cup(-1, \infty)$$(-1,1)$

- $(-\infty, 1) \cup(1, \infty)$

$(-\infty,-1) \cup(1, \infty)$

Question No. 12

The range of $f(x)=4-x^{2}$ is

(- - . 4)
(4, ∞)
($-\infty$.4]
($-\infty, \infty$)

Question No. 7

Find $(f \circ g)(x)$, where $f(x)=x^{2}-1, g(x)=x^{2}+3$$x^{4}+4$$x^{4}+6 x^{2}+8$$x^{4}+8$
5

$$
x^{4}+2 x^{2}+4
$$

Question No. 1

The domain of $f(x)=\sqrt[3]{x-7}$ is

\bigcirc
$(-\infty, \infty)$
\odot
$[7, \infty)$

- $(7, \infty)$
\odot
$R \backslash\{7\}$

$Q^{\text {Cusition }} \mathrm{NO}_{0} 2$
$a \div c=b \div c$
$a \div c>b \div c$
$a \div c=-b \div c$

Question No. 13

The range of the inverse of $G=\{(-1,0),(0,9),(8,6),(-9,5)\}$ is
$O\{-1,1,8,-9\}$
$O\{-1,0,5,-9\}$
$O\{-1,0,8,-9\}$
$O[-1,0,8,9)$

Question No. 3

Compute the following sum $\sqrt{2}(\sqrt{2}+i \sqrt{2})+\sqrt{3}(\sqrt{3}-i \sqrt{3})$$5+i$5-i$-5+i$$-5-i$

Question No. 40
$\cot \theta=$$\frac{1}{\cos \theta}$$\cos \theta$
$\sin \theta$$\frac{1}{\sin \theta}$$\frac{\sin \theta}{\cos \theta}$

Question No. 18

If $e^{2 x}=200$ then $x=$

$\ln 200$
$+\ln 200$
$\sqrt{\ln 200}$
$\ln \sqrt{200}$

Question No. 21

The solution of the exponential equation $2^{x+4}=8^{x-6}$ is$1=10$I $=11$$1=7$$1-6$

Determine the solution set of the follow
 $$
4 \leq-4+2 x<10
$$

$s=(4,7)$$0 \mathrm{~s}=\mathrm{a} 47 \mathrm{~T}$$5=147$$4=\mid \$ 1$

The solution set of the equation $x^{2}=12$ is

- $(-2 \pm 3 \sqrt{2})$
- $[2 \pm 2 \sqrt{2}]$
${ }^{\circ}[\pm 2 \sqrt{3}]$
${ }^{0}[\pm 3 \sqrt{2}]$

Ountion Ho. 3

Perform the indicated operation,

$$
(-4+8 i) \div-6 i
$$

- $-\frac{4}{3}-\frac{2}{3} i$
- $\frac{4}{3}+\frac{2}{3} i$
- $\frac{4}{3}-\frac{2}{3} i$
- $-\frac{4}{3}+\frac{2}{3} t$

Quention No. 3

Perform the indicated operation.

$$
(4-2 i)^{2}
$$

16.20

15-12!
(12)-701

2 20-16it

Question No. 5

The graph of $f(x)=2(x+1)^{2}-3$ is

0 Open dow
0 Open let
0 Open up
0 Open nigh

पuestion No

The range of the fimetion $f(x)=-x^{2}+1$ is
$1-11$
$19=1$
1-1-11
$14=1$

en en

Qutstion Mo. 1

Solve $(742) \quad 4=8(2-2)$

(4) $\mathrm{I}=7 \mathrm{~F}$
$14=-70$
$4 \geq 7$

Question No. 27

Solve the inequality: $|x+3|>0$
o

${ }^{0}(-\infty, \infty)$
o $(-\infty,-3) \cup(-3, \infty)$
${ }^{\circ}(-3)$
B

[^0]: $a=1$
 $a=0$
 $a=2$
 $a=-1$

