

Taibah University Deanery of Academic Services Unified Scientific Track CHEM 101 - Quiz No. 1 - Exam Info (2nd Sem, 1441)

- Exam date: Tuesday 18th of February, 2020
- Exam time: as announced in each campus
- Campuses: all (M & F)
- Chapters included: 1 and 2 (Topics 01 06 only)
- Allowed Time: 75 min
- Number of questions: 25 MCQ's (Electronic)
- Marks: 25 (of a total of 100)
- Scientific calculator: allowed
- Translation aid: not allowed
- Periodic table & suppl. data: provided

Mock Test For

Quiz No. 1

Introduction To Chemistry (CHEM 101)

(Chapters 1 & 2)

(Topics 01 – 06, Topic 07 is excluded)

For

Unified Scientific Track Students

(All Campuses)

2nd Semester

1441 | 2019 – 2020

Mock Test for Quiz No.1 – CHEM 101 – 2nd Sem (1441 H)

Page **1** of **6**

Main group A Periodic Table of the Elements										Main group									
Perio numb		Group number	I						21011				I					8A	
$\begin{array}{c} I \\ I \\ H \\ Hydrogen \\ 1.008 \end{array} \begin{array}{c} 2A \\ 2 \end{array}$								3A 13	4A 14	5A 15	6A 16	7A 17	18 Pe Helium 4.003	1					
2	2 Lithium Beryllium									5 B Boron	Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon	2			
	6.941 11 Na	9.012 12 Mg					Transitio	on metals					10.81 13 Al	12.01 14 Si	14.01 15 P	16.00 16 S	19.00 17 Cl	$\frac{20.18}{\text{Ar}}$	2
3	Sodium 22.99	Magnesium 24.31	3B 3	4B 4	5B 5	6B 6	7B 7	8	— 8B — 9	10	1B 11	2B 12	Aluminum 26.98	Silicon 28.09	Phosphorus 30.97	Sulfur 32.07	Chlorine 35.45	Argon 39.95	2
4	¹⁹ K	Ca	Sc ²¹	Ti ²²	23 V	Cr ²⁴	Mn ²⁵	Fe ²⁶	²⁷ Co	Ni	Cu ²⁹	Zn	Ga	Ge	As	Se ³⁴	Br ³⁵ Br	Kr ³⁶	4
	Potassium 39.10	Calcium 40.08	Scandium 44.96	Titanium 47.87	Vanadium 50.94	Chromium 52.00	Manganese 54.94	Iron 55.85	Cobalt 58.93	Nickel 58.69	Copper 63.55	Zinc 65.41	Gallium 69.72	Germanium 72.64	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.80	
5	Rb	Sr ³⁸	39 Y	Zr^{40}	Nb	Mo	Tc	Ru	Rh	Pd	A7 Ag	Cd	In In	Sn 50	Sb	Te	53 I	Xe	5
	Rubidium 85.47	Strontium 87.62	Yttrium 88.91	Zirconium 91.22	Niobium 92.91	Molybdenum 95.94	Technetium (98)	Ruthenium 101.1	Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	Iodine 126.9	Xenon 131.3	
6	Čs	Ba	La	H ⁷² Hf	T_{a}^{73}	\mathbf{W}^{74}	Re ⁷⁵	Os^{76}	Ir ⁷⁷	Pt	Au	Hg	\mathbf{T}^{81}	$\mathbf{P}^{82}_{\mathbf{D}}$	Bi	Po Po	At		6
	Cesium 132.9	Barium 137.3	Lanthanum 138.9	Hafnium 178.5	Tantalum 180.9	Tungsten 183.8	Rhenium 186.2	Osmium 190.2	Iridium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.6	Thallium 204.4	Lead 207.2	Bismuth 209.0	Polonium (209)	Astatine (210)	Radon (222)	
7	\mathbf{Fr}^{87}	Ra	Ac	$\overset{104}{\mathrm{Rf}}$	\mathbf{D}^{105}	$\overset{106}{\mathrm{Sg}}$	\mathbf{Bh}^{107}	\mathbf{Hs}^{108}	\mathbf{M}^{109}	\mathbf{D}^{110}	Rg	Cn^{112}	Nh	Fl	Mc	¹¹⁶ Lv	Ts^{117}	\mathbf{Og}^{118}	7
	Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (267)	Dubnium (268)	Seaborgium (271)	Bohrium (272)	Hassium (270)	Meitnerium (276)	Darmstadtium (281)	Roentgenium (280)	Copernicium (285)	Nihonium (284)	Flerovium (289)	Moscovium (288)	Livermorium (293)	Tennessine (293)	Oganesson (294)	
			Lant	hanides 6	Cerium	Pr Pr Presodumium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Tarbium	by	Holmium	Erbium	Tm Thulium	Ytterbium	Lu Intetium	6

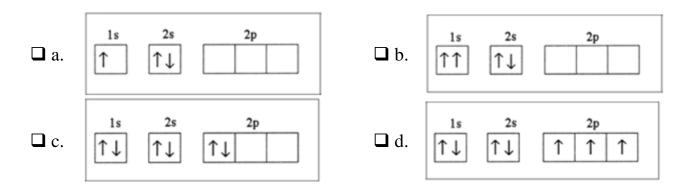
Lanthanides 6	Cerium 140.1	Pr Praseodymium 140.9	Nd Neodymium 144.2	Pm Promethium (145)	Sm Samarium 150.4	Europium 152.0	Gadolinium 157.3	Tb Terbium 158.9	Dy Dysprosium 162.5	Ho Holmium 164.9	Erbium 167.3	Tm Thulium 168.9	Yb Ytterbium 173.0	Lu Lutetium 175.0	6
Actinides 7	90 Th Thorium 232.0	91 Pa Protactinium 231.0	92 U Uranium 238.0	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)		97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (262)	7

▲ CHEM 101 Supplemental Information

$d = \frac{\mathrm{m}}{\mathrm{V}}$	$^{\circ}\mathrm{C}=\frac{(^{\circ}\mathrm{F}-32)}{1.8}$	°F = 1.	8 (°C) + 32	$^{\circ}\mathrm{C}=K-273$	$K = (^{\circ}\mathrm{C}) + 273$		
$M = \frac{n}{V}$	$\mathbf{M}_1 \mathbf{V}_1 = \mathbf{M}_2 \mathbf{V}_2$		Kw = [H ₃ O ⁺]	$\times \left[\text{OH}^{-} \right] = 1 \times 10^{-14}$	$\mathbf{pH} = -\log \left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$		
	= empirical formula $\times n$ of molecular formula of empirical formula	% mass of e	lement $X = \frac{\text{mass of}}{\text{mag}}$	element X in 1 mol of compound ss of 1 mol of the compound $\times 100\%$	$\%$ yield = $\frac{\text{actual yield}}{\text{theoretical yield}} X 100$		
$\mathbf{q} = \mathbf{C} \times \Delta \mathbf{T}$ $\mathbf{w} = -\mathbf{P} \Delta \mathbf{V}$ $\mathbf{q} = \mathbf{m}$			$\times C_s \times \Delta T$	1 L.atm = 101.3 J	Avogadro's No. = 6.022×10^{23}		
= (fract	action of isotope n) × (mass ion of isotope 1 × mass of is ion of isotope 2 × mass of is	otope 1)	Mole Conversion	is: Grams of Substance Substance × Molar Mass Mole: Subst			

Choose The Most Correct Answer:

1. From the following items, only is NOT matter.										
□ a. heat	🖵 b. dust		□ c. air	□ d. sun						
2. Which of the following is a pure substance?										
□ a. wood	□ b. beef ste	W	□ c. dry ice	□ d. apple juice						
3. Which of the following which is NOT a pure substance?										
□ a. sugar	□ b. water		□ c. ethanol	□ d. air						
4. In the stat	e, matter has	s no speci	fic shape but does hav	ve a specific volume?						
□ a. gaseous	□ b. solid		C. liquid	d. salts						
5. Deposition is proce	5. Deposition is process in which a changes into a									
□ a. solid, gas	□ b. gas, sol	id	□ c. gas, liquid	☐ d. liquid, solid						
6. Among the followi	ng substance	s, the one	that is not a compou	nd is						
\Box a. H ₂ O	b . CO ₂		\Box c. MnO ₂	\Box d. Cl ₂						
7. A combination of s	sand, salt, and	d water is	s an example for a	•••••						
a. homogeneous mi	xture		□ b. heterogeneous m	ixture						
□ c. compound			□ d. pure substance							
8. Which of the following does NOT have a uniform composition throughout?										
□ a. pure substance		D b. hete	heterogeneous mixture							
\Box c. homogeneous mixture \Box d. both homogeneous and heterogeneous mixture										
9. Which of the following is a physical observation (property)?										
□ a. burns in oxygen			□ b. forms a precipitate							
□ c. melts at 76 °C			□ d. decomposes by h	neat						


10. Which of the following is a chemical process (chemical change)?									
□ a. filtering sand fro	m water	□ b. removing salt from sea water							
□ c. dissolving coffee	e in water	\Box d. decomposing water into H ₂ and O ₂							
11. Which of the following is NOT a unit in the SI system of units?									
🗖 a. Kilogram	□ b. Second	□ c. Inch	□ d. Meter						
12. The standard SI	unit for temperature r	neasurements is	•••••						
🗖 a. Fahrenheit	□ b. Celsius	□ c. Quart	🗖 d. Kelvin						
13. Many home freezers maintain a temperature of 0 °F. Express this temperature									
in Celsius degrees.									
□ a. –32.5 °C	□ b. –17.8 °C	□ c. –10.4 °C	□ d. 0 °C						
14. Ethanol boils at 1	173.1 °F. This tempera	ture equals	K.						
□ a. 337.4	□ b. 351.5	c . 387.1	d . 401.4						
15. The SI prefixes <i>n</i>	nega and micro repres	ent, ro	espectively.						
\Box a. 10 ⁶ and 10 ⁻⁶	\Box b. 10 ⁻⁶ and 10 ⁶	\Box c. 10 ³ and 10 ⁻⁶	\Box d. 10 ⁶ and 10 ⁻³						
16. A volume of 10 m	nL is equal to								
□ a. 10 ⁻³ L	\Box b. 10 cm ³	□ c. 10 ⁻¹ L	\Box d. 0.01 m ³						
17. How many micrometers are there in 0.35 km?									
□ a. 3.5 x 10 ⁻⁸	□ b. 3.5 x 10 ⁶	\Box c. 3.5 x 10 ⁸	□ d. 3.5 x 10 ⁹						
18 is the prefix multiplier used to represent the factor 10 ⁻⁹ .									
🗖 a. pico	□ b. nano	C. micro	🗖 a. Giga						

Mock Test for Quiz No.1 – CHEM 101 – 2nd Sem (1441 H)

19. The density of gold is 19.31 g.cm ⁻³ . What is the volume (in cm ³) of a piece of gold weighing 294 g?										
\Box a. 5.67 x 10 ³	□ b. 15.2	C c. 0.0657	🖵 d. 5677							
20. Who in 1909 measured the charge on the electron?										
□ a. E. Rutherford	🗖 b. R. Millikan	C. J. Dalton	d. J.J. Thomson							
21. Which of the follo	owing has the eleme	nt name and symbol co	rrectly matching?							
□ a. Potassium, P	□ b. Copper, Cr	C. Magnesium, Mn	□ d. Silver, Ag							
22. Which of the follo	owing determines th	e identity of an element	's atom?							
□ a. number of protor	18	□ b. number of electr	ons							
□ c. number of neutro	ons	□ d. total number of protons and neutrons								
23. The most abunda	ant isotope of cupper	r is ⁶³ ₂₉ Cu. How many pr	otons, neutrons, and							
electrons does this at	om have, respective	ly?								
□ a. 63, 29, 29	□ b, 34, 29, 36	□ c. 29, 29, 34	□ d. 29, 34, 29							
24. Which of the follo	owing elements is an	alkaline earth metal?								
🗖 a. Li	🗖 b. Ca	🗖 c. Fe	🗖 d. Ge							
25. Anions are forme	ed when atoms									
□ a. gain electrons	C. lose protons	□ b. gain neutrons	d. lose electrons							
26. Which of the following is FALSE about a neutron?										
\Box a. It has a positive of	charge	\Box b. It is much more masse than an electron								
□ c. It is neutral	\Box c. It is neutral \Box d. It is often associated with protons									
27. The charge of the	e ion formed by calc	ium is								
□ a2	□ b. +1	□ c. +2	□ d. +3							

	e following elements is D b. Silicon	most likely to form a C. Selenium						
29. The sublevel never exists in any atom.								
□ a. 2s	🖵 b. 1p	□ c. 3p	🖵 d. 5d					
30. How many valence electrons are there in an atom with an atomic number of 17?								
□ a. 1	□ b. 5	🗖 c. 7	🗖 d. 17					
31. Which of the following the following the second s	lowing is the correct e	lectron configuration	for bromine, Br?					
$\Box a. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^5 \qquad \Box b. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$								
\Box c. $1s^2 2s^2 2p^6 3s^2 3$	$p^{6} 4s^{2} 4p^{6}$							
32. The electron configuration of "Ne" is								
\Box a. $1s^2 2s^2 2p^5$		b . $1s^2 2s^2 2p^3$						
\Box c. $1s^2 2s^2 2p^6$		$\Box d. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$						

33. Which of the following electron configurations is representing a <u>violation</u> for Hund's rule for an atom in its ground state?

Best Wishes

Al-Madinah, 10th of February, 2020