

Saudi Electronic University

Final Examination (Alternative)

Date: 25.05.2014

Fundamentals of Mathematics MATH 001

Student Name (ARABIC): Student ID: Instructor Name: CRN :

Instructions:

This exam duration is **2 hours.**

This is NOT an open book exam.

The use of calculators is permitted.

The use of mobile phones is NOT permitted.

Please answer all the **5** questions.

The number of pages is **8 pages** including this page.

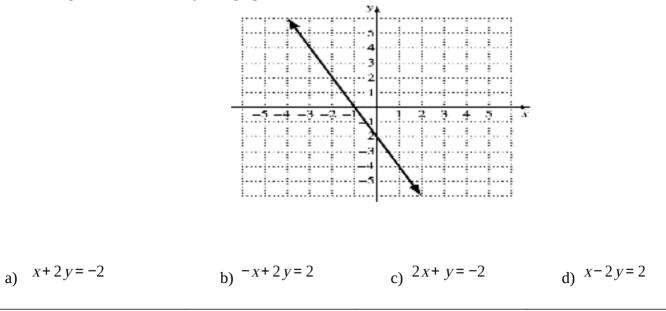
Marking Scheme:

	Question	Score
1	(30 Marks)	
2	(4 Marks)	
3	(6 Marks)	

4 (6 Marks)	
5 (4 Marks)	Signature
TOTAL	

Question 1: (30 points)

Choose the correct answer, write your answer in the table below:


1.	The degree of the polynom	ial $8x^4 + 3x^3 + 16x^6 - 4$	is:	
	a) 16	b) ⁶	c) ¹³	d) ⁸
2.	" Twice a number increased	l by five " is translated to):	
	a) $2x+5$	b) $2x^5$	c) x+10	d) $2x-5$
3.	The intercept for the line ³	3x + 6y = 12 is:		
	a) $(12,0)$	b) $(4,0)$	c) $(0,2)$	d) $(3, 6)$
4.	The simplification of $(2a^3b)$	$(2^{2})^{3}$ is:		
	a) $8a^6b^5$	b) 6 <i>a</i> ⁹ <i>b</i> ⁶	c) $8a^9b^6$	d) $2a^6b^5$
5.	The equation of the line wh	ose slope is and contair	hing the point $(-2, -3)$ is:	
	a) $y = -4x - 5$	b) $y = -4x + 5$	c) $y = 4x - 5$	d) $y = 4x + 5$
6.	The solution set for the equ	ation $ x = -5$ is :		
		_{b)} {-5}	с) <i>Ф</i>	d) {5, -5}
u)		·)	-)	<i>uj</i>

7. The first coordinate is always negative in quadrants:

a) I and II	b) II and III	c) I and IV	d) III and IV			
8. The simplification of ²⁷	² / ₃ is:					
a) ³	b) 12	c) ⁹	d) 27			
9. The set of numbers for v	which the rational express	$\frac{(x-1)(x-3)}{(x-2)(x-5)}$ is not define	<u>ned</u> is:			
a) ^{2,5}	b) {-2,-5}	c) ^{1,3}	d) $\{-1, -3\}$			
10. The result of $\sqrt{-200}$ is	:					
a) $10\sqrt{2}$	b) $-10\sqrt{2}$	c) $-10\sqrt{2}i$	d) $10\sqrt{2}i$			
11. The factorization of a^2	-81 is:					
a) $(a-9)(a+9)$	b) <i>a</i> (<i>a</i> – 81)	c) $(a+81)(a-81)$	d) $(a-9)(a-9)$			
12. The Greatest Common I	Factor (<i>GCF</i>) of $12x^6$ and	$20x^2$ is:				
a) $240x^8$	b) ² <i>x</i>	c) $4x^2$	d) $60x^6$			
13. The domain of the funct	$f(x) = \frac{ x-2 }{\sqrt{x+5}}$ is:					
a) $\begin{cases} x \mid x \text{ is a real number} \\ x \mid x$		b) $\begin{cases} x \mid x \text{ is a real number} \\ x \mid x$	er and $x \neq 2$			
c) $\begin{cases} x \mid x \text{ is a real number} \end{cases}$	er and $x \ge -5$	d) $\begin{cases} x \mid x \text{ is a real number} \\ x \mid x$	d) $\left\{ x \mid x \text{ is a real number and } x \neq -5 \right\}$			
14. The interval notation fo	or the set $\left\{ X \mid -3 < X \le 6 \right\}$	s:				
a) (-3,6)	b) [-3,6)	c) [-3,6]	d) (-3,6]			

15. The result of the di	avision $\frac{8x^6 - 2x^3}{2x^2}$ is:							
a) $4x^3 - x^2$	b) $4x^4 - 2x$	c) $4x^4 - x$	d) $8x^4 - 2x$					
16. The result of the multiplication $(2x+1)(3x+2)$ is:								
a) $6x^2 + 5x + 2$	b) $6x^2 + 7x + 2$	c) $6x^2 + 5x + 3$	d) $5x^2 + 5x + 3$					
17. If $f(x) = \sqrt{5-2x}$,	then $f(x) = \sqrt{-2}$ is equal t	:0:						
a) 1	b) -1	c) ⁻³	d) ³					
18. The set $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$ is called the set of : a) Integers b) Whole numbers c) Natural numbers d) Rational numbers								
19. The simplification a) $\frac{2}{3}$	of $\begin{vmatrix} -\frac{2}{3} \end{vmatrix}$ is: b) $-\frac{2}{3}$	c) $\frac{3}{2}$	d) $-\frac{3}{2}$					

20. The equation illustrated by this graph is:

Question	1	2	3	4	5	6	7	8	9	10
Answer										
Question	11	12	10	14	15	16	17	10	10	20
Question	11	12	13	14	12	16	17	18	19	20

Question 2: (4 points)

Perform and simplify the following:

1.
$$\frac{1}{2x-1} + \frac{3}{(2x-1)(x+1)} + \frac{1}{x+1}$$

2.
$$\frac{2x-6}{(x+1)^2} \times \frac{x^2-1}{3-x}$$

Question 3: (6 points) Solve the following equations:

1.
$$|2x-3| = |3x+1|$$

2. $x^2 - 2x + 3 = 0$

Question 4: (6 points) Solve the following inequalities:

$$\frac{3}{2}x - 1 \le x + \frac{1}{3}$$

2.
$$5|3x-1|-7 \ge 8$$

Question 5: (4 points)

Solve the system $\begin{cases} x - y - 2z = 1\\ x - 5y + 2z = 5\\ 2x - 3y - 4z = 2 \end{cases}$