1.6 Continuity of Functions

- شروط اتصـال الدالة عند قيمة معينة :

1. $f(c)$ exists
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $f(c)=\lim _{x \rightarrow c} f(x)$

Problem Set 1.6

State whether the indicated function is continuous at 3:
(3) $h(x)=\frac{3}{x-3}$

> 1. $h(3)=\frac{3}{3-3}=\frac{3}{0}=\infty$ $\therefore h(x)$ not continous at $x=3$
(9) $h(x)=\frac{x^{2}-9}{x-3}$

Solution

1. $h(3)=\frac{9-9}{3-3}=\frac{0}{0}$
$\therefore \boldsymbol{h}(\boldsymbol{x})$ not continous at $\boldsymbol{x}=3$
(13) $f(t)=\left\{\begin{array}{l}t-3, \text { if } t \leq 3 \\ 3-t, \text { if } t>3\end{array}\right.$

Solution

$$
\begin{aligned}
& \text { 1. } f(3)=t-3=3-3=0 \\
& \text { 2. } \lim _{x \rightarrow 3^{+}} 3-t=3-3=0 \\
& \text { 3. } \lim _{x \rightarrow 3^{-}} 3-t=3-3=0 \\
& f(3)=\lim _{x \rightarrow 3^{+}}=\lim _{x \rightarrow 3^{-}}=0 \\
& \therefore f(t) \text { is continous at } t=3
\end{aligned}
$$

Example 1: $f(x)=\frac{x^{2}-4}{x-2}$, How should f be defined at $x=2$ in order to make it continuous there?

Solution

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=2+2=4
$$

\therefore now we define $f(2)=4$

Example 3: Determine all points of discontinuity of $f(x)=\frac{\sin x}{x(1-x)}$, $x \neq 0,1$. Classify each point of discontinuity as removable or nonremovable.

Solution

$\boldsymbol{x}=\mathbf{0}:$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x(1-x)}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{(1-x)}=1 \cdot 1=1
$$

\therefore we define $f(0)=1$, Thus $\boldsymbol{x}=0$ is a removeable discontiuty
$x=1:$

$$
\lim _{x \rightarrow 1^{+}} \frac{\sin x}{x(1-x)}=-\infty \quad \text { and } \quad \lim _{x \rightarrow 1^{-}} \frac{\sin x}{x(1-x)}=\infty
$$

$\therefore x=1$ is a nonremoveable discontiuty

Example 4: Show that $h(x)=\left|x^{2}-3 x+6\right|$ is continuous at each real number.

Solution
Domain of $h(x)=\boldsymbol{R}$
$\therefore \boldsymbol{h}(\boldsymbol{x})$ is continuous at each real number

Example 5: Show that $h(x)=\sin \frac{x^{4}-3 x+1}{x^{2}-x-6}$ is continuous except at 3 and -2 .

Solution

$x=3:$

$$
h(3)=\sin \frac{81-9+1}{9-3-6}=\sin \frac{73}{0}=\sin \infty=\infty
$$

$\therefore \boldsymbol{h}(\boldsymbol{x})$ is not continuous at $\mathrm{x}=\mathbf{3}$
$\underline{x=-2}:$

$$
h(3)=\sin \frac{16-6+1}{4+2-6}=\sin \frac{11}{0}=\sin \infty=\infty
$$

$\therefore \boldsymbol{h}(\boldsymbol{x})$ is not continuous at $\mathrm{x}=-2$

Example 7: What is the largest interval over which the function defined by $g(x)=\sqrt{4-x^{2}}$ is continuous?

Solution

$$
\text { Domain of } g(x)=[-2,2]
$$

\therefore The largest interval is $[-2,2]$

