ENG. Mahdi Alsiddig 0563938879

<u>1.6</u> Continuity of Functions

- شروط اتصال الدالة عند قيمة معينة :
- 1. f(c) exists
- 2. $\lim_{x \to c} f(x)$ exists
- 3. $f(c) = \lim_{x \to c} f(x)$

Problem Set 1.6

State whether the indicated function is continuous at 3:

(3) $h(x) = \frac{3}{x-3}$ **Solution 1.** $h(3) = \frac{3}{3-3} = \frac{3}{0} = \infty$

h(x) not continous at x = 3

(9)
$$h(x) = \frac{x^2 - 9}{x - 3}$$

Solution

1.
$$h(3) = \frac{9-9}{3-3} = \frac{0}{0}$$

 \therefore h(x) not continous at x = 3

Mathematics 1

ENG. Mahdi Alsiddig 0563938879

(13)
$$f(t) = \begin{cases} t - 3, & \text{if } t \le 3 \\ 3 - t, & \text{if } t > 3 \end{cases}$$

Solution

1.
$$f(3) = t - 3 = 3 - 3 = 0$$

2. $\lim_{x \to 3^{+}} 3 - t = 3 - 3 = 0$
3. $\lim_{x \to 3^{-}} 3 - t = 3 - 3 = 0$

 $f(3) = \lim_{x \to 3^+} = \lim_{x \to 3^-} = \mathbf{0}$ $\therefore f(t) \text{ is continous at } t = 3$

Example 1: $f(x) = \frac{x^2-4}{x-2}$, How should f be defined at x = 2 in order to make it continuous there?

Solution

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 2 + 2 = 4$$

 \therefore now we define f(2) = 4

ENG. Mahdi Alsiddig 0563938879

Example 3: Determine all points of discontinuity of $f(x) = \frac{\sin x}{x(1-x)}$, $x \neq 0,1$. Classify each point of discontinuity as removable or nonremovable.

Solution

<u>x = 0:</u>

 $\lim_{x \to 0} \frac{\sin x}{x(1-x)} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{(1-x)} = 1 \cdot 1 = 1$

 \therefore we define f(0) = 1, Thus x = 0 is a removeable discontiuty

<u>x = 1:</u>

$$\lim_{x \to 1^{+}} \frac{\sin x}{x(1-x)} = -\infty \quad and \quad \lim_{x \to 1^{-}} \frac{\sin x}{x(1-x)} = \infty$$

\therefore x = 1 is a nonremoveable discontiuty

Example 4 : Show that $h(x) = |x^2 - 3x + 6|$ is continuous at each real number.

Solution

Domain of $h(x) = \mathbf{R}$ $\therefore \mathbf{h}(x)$ is continuous at each real number

Mathematics 1

ENG. Mahdi Alsiddig 0563938879

Example 5: Show that $h(x) = \sin \frac{x^4 - 3x + 1}{x^2 - x - 6}$ is continuous except at 3 and -2.

Solution

$$x = 3$$
:

$$h(3) = \sin\frac{81 - 9 + 1}{9 - 3 - 6} = \sin\frac{73}{0} = \sin\infty = \infty$$

$$h(x)$$
 is not continuous at x=3

$$x = -2$$
:

$$h(3) = \sin\frac{16 - 6 + 1}{4 + 2 - 6} = \sin\frac{11}{0} = \sin\infty = \infty$$

h(x) is not continuous at x=-2

Example 7: What is the largest interval over which the function defined by $g(x) = \sqrt{4 - x^2}$ is continuous ?

Solution

Domain of g(x) = [-2, 2]

 \therefore The largest interval is [-2, 2]