

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 7)

Ques.				Qu	estic	on				
1	Wi	nich is not an ex	amp	le of a solution?						
	٨	A dental filling	В	Chicken soup	C	Gasoline	D	Sea water		
2	An	example of collo		Cincken soup	C		D			
		- 1		l	ہ ا	V:	l -	Casalina		
	A	Milk	В	Hot coffee	C	Vinegar	D	Gasoline		
3	A solution with water, H ₂ O as the solvent is called									
	A	Organic solution	В	Aqueous solution	C	Non aqueous solution	D	All of these		
4	Milk is an example of									
						Hatara gamaa	ъ	All of those		
	A	Solution	B	Colloid	C	Heterogeneo us mixture	D	All of these		
5	Which one of the following compounds is water, H ₂ O soluble?									
	A	Steric acid, C ₁₈ H ₃₆ O ₁₁	В	CCl ₄	C	Glucose, C ₆ H ₁₂ O ₆	D	Octane, C ₈ H ₁₈		
6	Wh	ich of the follow	ing pa	irs of compounds	s will 1	form a solution?				
	A	C_6H_6 and	В	$\begin{array}{ll} \text{NaCl} & \text{and} \\ \text{C}_6\text{H}_{14} & \end{array}$	C	H ₂ O and CCl ₄	D	H ₂ O and C ₆ H ₆		
7				$\sim_6 \Pi_{14}$ compounds is solub						
/			8	F						
	A	CCl ₄	В	C_6H_6	C	NaCl	D	CH ₄		
8	The	e solution, in whi	ch ma	aximum number (of gra	ms of solute diss	olves,	is called		
	A	Saturated solution	В	Unsaturated solution	C	Supersaturated solution	D	All of these		
9	Wi	nich substance i	s a n	on-electrolyte?						
		1		ı	ı			N. G. 1. 17. 6		
	A	KCl in H ₂ O	B	KOH in H ₂ O	\mathbf{C}	H_2O_2 in H_2O	D	NaCl in H ₂ O		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

10	Nonpolar compounds are soluble in									
	A	Ionic compounds	В	Electrolytes	C	Polar solvents	D	Nonpolar solvents		
11	Hei	nry's law states t	hat	the solubility of	a gas	s in a liquid is p	ropor	tional to the		
	A	Partial pressure of the gas above the liquid	В	Temperature of the liquid	\mathbf{C}	Temperature of th gas above th liquid	e D	Molecular weight of the gas above the liquid		
12	The solubility of gases with increasing temperature?									
	A	Increases	В	Decreases	\mathbf{C}	Remain the same	D	All of these		
13	Which of the following is an electrolytes solution?									
	A	H ₂ O ₂ in H ₂ O	В	CCl ₄ in H ₂ O	\mathbf{C}	$C_{12}H_{22}O_{11} \text{ in } H_2O$	D	NaCl in H ₂ O		
14	A solution is made by dissolving 3.88 g of NaCl in enough water to make 67.8 mL of solution. What is the concentration of (w/v)% NaCl?									
	A							0.0572%(w/v) NaCl		
15		750 ml bottle of wethanol?	ine	contains 105 ml	etha	nol. What is the	e (v/v)	% concentration		
			ı	I	11	250/ (/) Ed. 1	ı	100// / > 7/4 1		
1.5	A			20%(v/v) Ethanol						
16		anne solution us vater. How many			_	-		.92% (w/v) NaCl is solution?		
		1	1_	1	ll	5.2 N. Cl	1_	0.016 N.61		
4 =	A			529 g NaCl						
17	_	particular wine combine mL bottle of thi			etnai		me of	etnanoi is in a		
	A	84.0 mL ethanol	B	0.840 mL ethanol	\mathbf{C}	6.70 mL ethanol	D	14.9 mL ethanol		
18	8 What is the concentration in parts per million (ppm) of DDT in 5.0 mg in 1 Kg, needlefish tissue?									
		1	ĺ	I	1 1		ı	l =00		
	A	0.5 ppm	B	50 ppm	\mathbf{C}	5.0 ppm	D	500 ppm		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

A sample of seawater contains 1.3 g of calcium ions in 3,100 kg of solution. What is the calcium ion concentration of this solution in units of ppm?										olution. What	is
tiic	carcium ion conc	CIILI	ation of	11113 301	uiio	11 111	units	ı ppııı.			
A	4.2×10^{-4} ppm Ca^{2+} ions	В	0.42 ppn	n Ca ²⁺	C	4.0 Ca	0×10^{2} ions	³ ppm	D	420 ppm Ca ²⁺ ion	ns
Wh	at is the molarity	of	a solution	made	by o	liss	olving 3	.09 mo	les of	NaCl in 1.50 L	۲.
of s	solution?										
A	4.64 M NaCl	В	4.85 M N	aCl	C	2.0)6 M Na	C1	D	0.673 M NaCl	
		y of	a solutio	n made	e by	dis	solving	3.09 m	oles o	of NaCl in 1.50	\mathbf{L}
of solution?											
Δ	4 64 M NaCl	R	4 85 M N	JaC1		\boldsymbol{C}	2.06 M	NaCl	Ъ	0.673 M NaCl	
solution?											
	l	_	l		ĺ	ام	1 55×10	-4M V.C	1	0 155 M VCl	
									_		
	• •	ı gıu	cose (C ₆ 1	1 ₁₂ U ₆) 8	are (con	tained i	n 555 n	aL oi	a 1.// NI	
			on of a so	lution 1	forn	ıed	by dilu	ting 25.	.0 mL	of a 3.2 M Na	Cl
501	ution to 133.0 mi										
A	17 M NaCl	B	0.59 M N	NaCl		C	0.50 M	NaCl	D	2.7 M NaCl	
Ca	lculate the molar	ity o	f a soluti	on mad	le fr	om	20.0 g	of NaO	H in 2	250 mL of	
	_	R	4.0 M			\boldsymbol{C}	0.02 M	1	D	0.04 M	
glucose solution to 40.0 mL?											
A	0.04 M	В	0.25 M			\mathbf{C}	0.40 M	ſ	D	2.5 M	
	Hoof solve A Wilsolve	the calcium ion cond A 4.2 × 10 ⁻⁴ ppm Ca ²⁺ ions What is the molarity of solution? A 4.64 M NaCl What is the molarity of solution? A 4.64 M NaCl What is the molarity solution? A 0.0115 M KCl How many grams of glucose solution? A 0.982 g C ₆ H ₁₂ O ₆ What is the concent solution to 135.0 mI A 17 M NaCl Calculate the molar solution A 2.0 M What is the concent glucose solution to 4	the calcium ion concentration A	the calcium ion concentration of the calcium ions. A 4.2 × 10 ⁻⁴ ppm B 0.42 ppm ions. What is the molarity of a solution of solution? A 4.64 M NaCl B 4.85 M N What is the molarity of a solution solution? A 0.0115 M KCl B 11.5 M F How many grams of glucose (C ₆ I glucose solution? A 0.982 g C ₆ H ₁₂ O ₆ B 0.555 g C What is the concentration of a so solution to 135.0 mL? A 17 M NaCl B 0.59 M N Calculate the molarity of a solution A 2.0 M B 4.0 M What is the concentration of a so glucose solution to 40.0 mL?	the calcium ion concentration of this solution A	the calcium ion concentration of this solution A	the calcium ion concentration of this solution in the calcium ions are calcium. A 4.2 × 10 ⁻⁴ ppm B 0.42 ppm Ca ²⁺ C 4.6 Ca What is the molarity of a solution made by dissolution? A 4.64 M NaCl B 4.85 M NaCl C Calculate the molarity of a solution made by dissolution? A 0.0115 M KCl B 11.5 M KCl C Calculate the molarity of a solution formed solution to 135.0 mL? A 17 M NaCl B 0.555 g C ₆ H ₁₂ O ₆ C Calculate the molarity of a solution made from solution A 2.0 M B 4.0 M C C What is the concentration of a solution formed glucose solution to 40.0 mL?	the calcium ion concentration of this solution in units of A 4.2 × 10 ⁻⁴ ppm B 0.42 ppm Ca ²⁺ C 4.0 × 10 ⁻⁶ Ca ²⁺ ions What is the molarity of a solution made by dissolving 3 of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M Nacl C	the calcium ion concentration of this solution in units of ppm? A 4.2 × 10 ⁻⁴ ppm B 0.42 ppm Ca ²⁺ C 4.0 × 10 ³ ppm Ca ²⁺ ions What is the molarity of a solution made by dissolving 3.09 mo of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl What is the molarity of a solution made by dissolving 3.09 mo of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl What is the molarity of a solution made by dissolving 3.09 m of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl What is the molarity of a solution made by dissolving 4.88 g of solution? A 0.0115 M KCl B 11.5 M KCl C 1.55×10 ⁻⁴ M KCl How many grams of glucose (C ₆ H ₁₂ O ₆) are contained in 555 m glucose solution? A 0.982 g C ₆ H ₁₂ O ₆ B 0.555 g C ₆ H ₁₂ O ₆ C 177 g C ₆ H ₁₂ O ₆ What is the concentration of a solution formed by diluting 25 solution to 135.0 mL? A 17 M NaCl B 0.59 M NaCl C 0.50 M NaCl Calculate the molarity of a solution made from 20.0 g of NaO solution	the calcium ion concentration of this solution in units of ppm? A 4.2 × 10 ⁻⁴ ppm B 0.42 ppm Ca ²⁺ C 4.0 × 10 ³ ppm D What is the molarity of a solution made by dissolving 3.09 moles of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl D What is the molarity of a solution made by dissolving 3.09 moles of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl D What is the molarity of a solution made by dissolving 3.09 moles of solution? A 4.64 M NaCl B 4.85 M NaCl C 2.06 M NaCl D What is the molarity of a solution made by dissolving 4.88 g of KCl solution? A 0.0115 M KCl B 11.5 M KCl C 1.55×10 ⁻⁴ M KCl D How many grams of glucose (C ₆ H ₁₂ O ₆) are contained in 555 mL of glucose solution? A 0.982 g C ₆ H ₁₂ O ₆ B 0.555 g C ₆ H ₁₂ O ₆ C 177 g C ₆ H ₁₂ O ₆ D What is the concentration of a solution formed by diluting 25.0 mL solution to 135.0 mL? A 17 M NaCl B 0.59 M NaCl C 0.50 M NaCl D Calculate the molarity of a solution made from 20.0 g of NaOH in a solution A 2.0 M B 4.0 M C 0.02 M D What is the concentration of a solution formed by diluting 5.0 mL of glucose solution to 40.0 mL?	the calcium ion concentration of this solution in units of ppm? A $\begin{vmatrix} 4.2 \times 10^{4} & \text{ppm} \\ \text{Ca}^{2+} & \text{ions} \end{vmatrix}$ B $\begin{vmatrix} 0.42 & \text{ppm} & \text{Ca}^{2+} \\ \text{cons} \end{vmatrix}$ C $\begin{vmatrix} 4.0 \times 10^{3} & \text{ppm} \\ \text{Ca}^{2+} & \text{ions} \end{vmatrix}$ D $\begin{vmatrix} 420 & \text{ppm} & \text{Ca}^{2+} \\ \text{cons} \end{vmatrix}$ ions $\begin{vmatrix} 4.0 \times 10^{3} & \text{ppm} \\ \text{Ca}^{2+} & \text{ions} \end{vmatrix}$ D $\begin{vmatrix} 420 & \text{ppm} & \text{Ca}^{2+} \\ \text{cons} \end{vmatrix}$ ions $\begin{vmatrix} 4.0 \times 10^{3} & \text{ppm} \\ \text{Ca}^{2+} & \text{ions} \end{vmatrix}$ D $\begin{vmatrix} 420 & \text{ppm} & \text{Ca}^{2+} \\ \text{cons} & \text{cons} \end{vmatrix}$ ions $\begin{vmatrix} 4.0 \times 10^{3} & \text{ppm} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 4.0 \times 10^{3} & \text{cons} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 4.0 \times 10^{3} & \text{cons} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 4.0 \times 10^{3} & \text{cons} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 4.0 \times 10^{3} & \text{cons} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} & \text{cons} \end{vmatrix}$ D $\begin{vmatrix} 0.673 & \text{M} & \text{NaCl} \\ \text{cons} & \text{cons} & \text{cons} & \text{cons} \\ \text{cons} & \text{cons} & \text{cons} & \text{cons} \\ \text{cons} & \text{cons} \\ \text{cons} & \text{cons} & \text{cons} \\ \text{cons} & \text{cons} & \text{cons} \\ \text{cons} & c$

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

2	,	7 How many milliliters of a 6.0 M NaOH solution would be needed to prepare 750										
	r	nL	of a 4.0 M solut	ion								
		4	500 mL	В	250 mL		C	400 mL	I) 40 mL		
28	•		-		a 4.0% (w/v) sol	lutio	on n	nust be used to	pre	pare 250 mL of		
		0.	080% (w/v) solu	tion	?							
		. 1	5.0	.	105 1	1	~ I	0.50 mT	-	25 mJ		
			5.0 mL		2.5 mL			0.50 mL				
2					t, the solubility o			in a liquid is p	ropo	ortional to the		
	I	ar	tiai pressure of t	ne g	gas above the liqu	uid?	5					
		. 1		۱ ــ	1	1	ا ہے	Hammy? = 1	1 -	David!'s 1		
					Raoult's law					Boyel's law		
3	~				a 5.25% (w/v) H	ICI	solu	ition must be u	sed	to prepare 250		
	r	nL	of a 0.175% (w/	v) E	ICl solution?							
		•	8.3 mL HCl	R	240 mL Ho solution	C1	\mathbf{C}	8.6 mL HCl	I	230 mL HC1		
	1	1	solution	D	solution		_	solution		solution		
31					nd (Pb ⁺²) allowed			nking water is	15	μg/kg. What is		
	this	s co	oncentration in u	ınıts	of parts per mil	lion	1.					
		ı	1	1	1.5 × 10 ⁻²	~	1 2	× 10 ⁴	_	2 1 nnm Db+2		
					$1.5 \times 10^{-2} \text{ ppm}$				D	3.1 ppiii P0		
32	Wł	icl	n of the following	g is a	an electrolytes so	luti	on?					
			, , , , , , , , , , , , , , , , , , ,	<u>.</u>		~	l c	по :по	.	NaCl in H O		
					CCl ₄ in H ₂ O							
33				olecu	ılar solids, solub	ility	ger	nerally	. as	temperature		
	inc	rea	ises.									
		l _		. I.	. 1	~	l D-		_	All of those		
			1		Increases				D	All of these		
34	••••	•••	is defined as t	he n	umber of moles	of s	olut	e per liter (L) (of so	olution?		
	A	M	Iolality (m)	B	Molarity (M)	C	No	rmality (N)	D	Mole fraction		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

35	Wh	ich compound wil	l be	the most soluble	in w	ater?				
		_								
	A	н н н н н—с—с—с—с—н н н н н	В	H H H H H-C-C-C-C-C-O-H	C	H—O—C—C—C—O—H H H H H H H	D	H H H H H C C C C C C C H J J J J H H H H		
36		ich compound wil								
	A	H H H H H—C—C—C—C—H H H H H	В	Н Н Н Н H—С—С—СС—О—Н H Н Н Н	C	Н Н Н H—O—С—С—С—О—Н H Н Н	D	H H H H H—C—C—C—O—C—H 		
37	The attraction of an ion with a dipole in a molecule is called									
	ı	Δ dinole-dinole	l I	London		An ion_dinole	l 5	Van der Waals		
	A	interaction	B	dispersion forces	C	interaction	D	Van der Waals forces		
38		o solutions with th								
	ı	**	ı ı		1	**	ı	la e e e		
	A	Hypotonic solutions	B	Isotonic solutions	C	Hypertonic solutions	D	Isomeric solution		
39	Swelling and rupture of red blood cells is called									
	A	Hemolysis	В	Crenation	\mathbf{C}	Osmosis	D	Reverse Osmosis		
40		ypotonic solution								
	Δ	Lower osmotic pressure	R	Higher osmotic	\mathbf{C}	negligible	D	All of these		
41	Wha	at happens if a red	l blo	ood cell is placed	in a	hypertonic soluti	on,	resulted in		
	ı	TTI 11 4	ı	At.	ا۔ ا	The call bears its.		A 11 - C41		
	A	The cell rupture (Homolysis)	B	(Crenation)	C	normal volume	D	All of these		
42		at happens if a rec								
	^	The cell rupture (Homolysis)	В	the cell shrivels (Crenation)	C	The cell keeps its normal volume	D	All of these		
43	A hy	pertonic solution	has	athan	bod	ly fluids				
	A	Lower osmotic	В	Higher osmotic	\mathbf{C}	negligible osmotic	D	All of these		
		pressure		pressure		pressure				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

44		.1 M glucose solutio		-		0		•			
	sen	nipermeable membr	ane	e. Which solution	exe	rts the greater of	smo	tic pressure?			
	A	0.1 M glucose solution	В	0.2 M glucose solution	C	0.3 M glucose solution	D	0.4 M glucose solution			
45	A f	lask contains two co	mp	artments (A and	B) '	with equal volum	ies (of solution			
	sep	arated by a semi pe	rme	eable membrane.	Wł	nich diagram rep	rese	ents the final level			
	of the liquids if A is initially a 10% (w/v) glucose solution and B is initially a 20%										
	(w/v) glucose solution?										
	A	A B	В	АВ	C	A B	D	All of these			
46	Osmosis is the passage of water and small molecules across a semipermeable										
	membrane from										
		a solution of low		a solution of high							
	A	solute Conc. to a solution of higher	B	solute Conc. to a solution of lower	\boldsymbol{C}	Both (A) and (B)	D	All of these			
		solute Conc.		solute Conc.							
47	Air	is aof gase	es, p	rimarily N ₂ and	O_2 ?						
		lae.	ъ			Colloid		All of these			
				Solution							
48		olution that has less	tha	an the maximum	nur	nber of grams of	sol	ute is said to			
	be.		Ъ			Uncaturated	ъ	All of these			
				Saturated							
49	Uci	tane (C ₈ H ₁₈) dissolv	es ii	n CCl ₄ because be	oth	are nonpolar liq	uids	that exhibit			
		l	I	l .		T 111.		A 11 - C 41			
	A	London dispersion	D	Hydrogen	C	interactions	D	All of these			
	A	London dispersion forces	D	bonding							
50	What volume of a 5.0% (w/v) solution of ketamine contains 75 mg?										
		I	İ		i	5 A Y		0.0			
	A	1.5 mL	B	3.5 mL	C	5.4 mL	D	2.2 mL			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 8)

Ques. no.				Que	stio	1				
1	An	Arrhenius acid is								
	A	A compound that contains hydroxide and dissolves in $\mathrm{H}_2\mathrm{O}$ to form OH^-	В	A compound that is a proton donor	C	A compound that is a proton acceptor	D	A compound that contains hydrogen and dissolves in H_2O to form H^+		
2	A E	Brønsted-Lowry ac	id is	3						
	A	A compound that contains hydroxide and dissolves in H_2O to form OH^-	В	A compound that is a proton donor	C	A compound that is a proton acceptor	D	A compound that contains hydrogen and dissolves in H_2O to form H^+		
3	Wh	ich species can act	as	a Brønsted–Lowr	y acio	d?				
	A	CO ₃ ²⁻	В	HBr	C	Br_2	D	LiOH		
4	Which species can act as a Brønsted-Lowry base?									
	A	CO ₃ ²⁻	В	HBr	\mathbf{C}	H ₂ CO ₃	D	NH ₄ ⁺		
5	Wh	ich of the followin	g sp	ecies cannot be a	Brøn	isted - Lowry a	cid?			
	A	HF	В	HSO ₃	C	NH ₃	D	НІ		
6	Wh	ich of the followin	g sp	ecies cannot be a	Brøn	sted - Lowry b	ase?			
	A	Al(OH) ₃	В	Br ⁻	C	NH ₄ ⁺	D	CN ⁻		
7	Wh	ich of the followin	g is	conjugate acid of	f the I	NH ₃ ?				
	A	$\mathrm{NH_2}^-$	В	H_3O^+	C	NH ₄ ⁺	D	HC1		
8	Dra	w the conjugate b	ase	of the acid HCO ₃	-?					
	A	$\mathrm{CO_3}^{-2}$	В	H ₂ CO ₃	C	H ₃ CO ₃	D	H ₂ O		
9	Dra	nw the conjugate ac	cid (of the base NO ₃ ⁻ ?						
	A	H ₂ NO ₃	В	HNO ₃	C	H ₃ NO ₃	D	HNO ₂		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

10	Which	of the following a	ıcid	is secreted by stor	nach	to digest food?					
	A	H ₂ SO ₄	В	H ₃ PO ₄	C	HNO ₃	D	HCl			
11	Which	species is the con	jug	ate base of NH ₃ ?							
	A	NH ₄ ⁺	В	H ₂ O	$ \mathbf{C} $	$\mathrm{NH_2}^-$	D	NH ₃			
12	Which species is the conjugate acid of NH ₃ ?										
	A	NH ₂	В	H_3O^+	\mathbf{C}	NH ₄ ⁺	D	NH ₃			
13	Which	species is a dipro	tic a	acid?							
	A	Mg(OH) ₂	В	CH₃COOH	$ \mathbf{C} $	H_2	D	H ₂ CO ₃			
14	Which	compound is an	exar	mple of weak acid?	?		<u> </u>				
	A	HNO ₃	В	HBr	$ \mathbf{C} $	CH ₃ COOH	D	H ₂ SO ₄			
15	Ammo	onia, NH3 is an exa	ımp	le of a?			<u>.l</u>				
	A	Strong acid	В	Strong base	$ \mathbf{C} $	Weak acid	D	Weak base			
16	Which	ion is the stronge	st b	ase?			<u> </u>				
	A	Br^-	В	\mathbf{F}^{-}	\mathbf{C}	I ⁻	D	NO_3^-			
17	Rank	the increasing stre	engt	th of the acids HI,	HBr	and HCl?					
	A	HI< HBr < HCl	В	HCl < HBr <hi< th=""><th>\mathbf{C}</th><th>HI< HCl < HBr</th><th>D</th><th>HBr < HCl < HI</th></hi<>	$ \mathbf{C} $	HI< HCl < HBr	D	HBr < HCl < HI			
18			acid	s is CH ₃ COOH <	HF <	H ₃ PO ₄ . Rank t	hecor	njugate bases in inc			
	order?			l	1 1		1 1				
					C	H ₂ PO ₄ < F < CH ₃ COO	D	H ₂ PO ₄ - < CH ₃ COO - < F -			
19	Which	acid is the strong	est?	,							
	A	$HSO_4^-(K_a=1.2\times10^{-2})$		HCN $(K_a=4.9 \times 10^{-10})$	\mathbf{C}	HF $(K_a = 7.2 \times 10^{-4})$	D	$NH_4^+ (K_a = 5.6 \times 10^{-10})$			
20	Which	acid is the weake	st?								
	A	$HSO_4^-(K_a=1.2\times10^{-2})$	В	HCN $(K_a=4.9\times10^{-10})$	\mathbf{C}	HF ($K_a = 7.2 \times 10^{-4}$)	D	$NH_4^+ (K_a = 5.6 \times 10^{-10})$			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

Ques.				Que	stio	n				
21	Wha	t is the expression	on o	of K _w , the ion–prod	luct	constant for water	·?			
				$K_{\mathrm{w}} = [\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{O}\mathrm{H}]$						
22	The $[H_3O^+]$ in a wine is 5.9×10^{-4} M. What is the $[OH^-]$ in this wine? Given $(K_w = 1.0 \times 10^{-14} \text{ M})$									
	A S	$5.9 \times 10^{-4} \mathrm{M}$	В	$1.0 \times 10^{-14} \mathrm{M}$	C	$1.7 \times 10^{-11} \mathrm{M}$	D	$5.9 \times 10^{-18} \mathrm{M}$		
23	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
	A	6.3×10 ⁻⁷ M	В	1.6×10 ⁻⁸ M	C	.0×10 ⁻⁷ M	D	1.0×10 ⁻¹⁴ M		
24	Whic	ch solution has t	he l	nighest <i>pH</i> ?						
	A	$4.3 \times 10^{-8} \mathrm{M} \;\mathrm{H}_3\mathrm{O}^+$	В	$1.0 \times 10^{-7} \mathrm{M} \;\mathrm{H}_3\mathrm{O}^+$	C	$1.9 \times 10^{-8} M H_3 O^+$	D	$1.0 \times 10^{-2} M H_3 O^+$		
25	Whic	ch solution has t	he l	owest pH?						
	A	$4.3 \times 10^{-8} \mathrm{M} \;\mathrm{H}_3\mathrm{O}^+$	В	$1.9 \times 10^{-6} \text{ M H}_3\text{O}^+$	С	$1.0 \times 10^{-7} \mathrm{M} \;\mathrm{H}_3\mathrm{O}^+$	D	$1.0 \times 10^{-2} \mathrm{M \; H_3O}^+$		
26	If the	e [H ₃ O ⁺] in a cuj	p of	coffee is 1.0 ×10 ⁻⁵	М, (Calculate the [OH]]?			
	A 1	$1.0 \times 10^{-9} \mathrm{M}$	В	$1.0 \times 10^{-6} \mathrm{M}$	C	$1.0 \times 10^{-11} \mathrm{M}$	D	$1.0 \times 10^{-14} \mathrm{M}$		
27	If [H	[3O ⁺] in blood sa	mp	le is 4.0 ×10 ⁻⁸ M, w	hat	is the value of [OF	I [−]]?			
	A	$2.5 \times 10^{-9} \text{ M}$	В	$3.5 \times 10^{-7} \text{ M}$ > [H ₃ O ⁺], it means	C	$2.5 \times 10^{-7} \mathrm{M}$	D	$3.5 \times 10^{-8} M$		
28	In hu	uman blood, [Ol	H ⁻] :	> [H ₃ O ⁺], it means	tha	t blood is?				
	A	Neutral	В	Acidic	C	Basic	D	All of these		
29	Calculate the value of [H ₃ O ⁺] in 0.0001 M HCl solution?									
	A 1	$1.0 \times 10^{-3} \mathrm{M}$	В	$1.0 \times 10^{-8} \mathrm{M}$	C	$1.0 \times 10^{-4} \mathrm{M}$	D	$1.0 \times 10^{-14} \mathrm{M}$		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

30	Calculate the value of [H ₃ O ⁺] in 0.001 M NaOH solution?											
	A 1	$.0 \times 10^{-9} \mathrm{M}$	B 1	$.0 \times 10^{-11} \mathrm{M}$	C	$1.0 \times 10^{-3} \mathrm{M}$	D 1.0	$0 \times 10^{-14} \mathrm{M}$				
31												
	What	t is the formula o	of pH	?								
		l		l		$nH = -\log[H_2O^+]$	D	<i>pH</i> =				
	A	$pH = -\log[H_2O]$	B	$pH = -\log[OH^-]$			ש	$-\log[H_2O_2]$				
32	Which of the following is Not True for a neutral solution?											
	A	pH = 7	B	$[H_3O^+]=10^{-7}$	C	[OH ⁻]=10 ⁻⁷	D	$[H_3O^+]=10^{-14}$				
33	What	What is the pH of a urine sample that has $[H_3O^+] = 1.0 \times 10^{-5} M$?										
	A	pH= 5	В	pH=7	C	pH= 8	D	pH= 9				
34	A pH= 5 B pH=7 C pH= 8 D pH= 9 What is the pH of wine that has an $[H_3O^+] = 3.2 \times 10^{-4} M$?											
	A	3.49	В	4.20	C	3.79	D	2.20				
35	What	is the pH of a cl	leanii	ng solution with a	1 [H ₃	$O^+] = 7.4 \times 10^{-9} \text{ M}$	1?					
	A	5.9	В	7.13	C	8.13	D	5.87				
36	Whic	h one of the follo	owing	solutions has <i>pH</i>	I=3	?						
	A	3.0 M CH₃COOH	B	0.001M NaOH	C	0.001M HCl	D	0.001M NaCl				
37	A 3.0 M CH ₃ COOH B 0.001M NaOH C 0.001M HCl D 0.001M NaCl What is the pH of a urine sample that has $[H_3O^+] = 1.0 \times 10^{-5}$ M, and classify as acid,											
	basic or neutral solution?											
						pH = 5, acid		pH = -5, acid				
38	A sample of blood has a pH = 7.4, which of the following is NOT True for the blood sample?											
	Samp	IC:										
	A	Basic	В	$[\mathrm{OH}^-] > [\mathrm{H}_3\mathrm{O}^+]$	C	$[H_3O^+] > 10^{-7}$	D	$[OH^{-}] > 1.0 \times 10^{-7}$				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

39	What is the concentration $[H_3O^+]$ in sweat that has a $pH=6$?										
	A	1×10 ⁻⁶ M	B 2×10 ⁻⁶ M	$\mathbf{C} \mid 3 \times 10^{-7} \mathrm{M}$	D $3 \times 10^{-8} \mathrm{M}$						
40	Norn is the	Normal gastric juice has a pH of about 2 and the gastric juice is aqueous HCl. What is the concentration of HCl in the stomach?									
	A	2 M HCl	$ \mathbf{B} 1.0 \times 10^2 \mathrm{M}\mathrm{HC}$	C 0.01 M HCl	D 0.14 M HCl						

Ques.				0	ost	ion					
no.	Question										
41	Wha	at is the [H ₃ O ⁺] o	f a s	weat sample tha	t ha	s a pH = 5.8?					
				ı ı	ı	7	ı	9			
	A	$2\times10^{-6}\mathrm{M}$	B	3×10 ⁻⁶ M	\mathbf{C}	3×10 ⁻⁷ M	D	3×10 ⁻⁸ M			
42	The pH of a lime is 1.90. What is the $[H_3O^+]$?										
	$oxed{A} \ 1.3 \times 10^{-2} \mathrm{M} \qquad \ \mathbf{B} \ 7.9 \times 10^{-13} \mathrm{M} \qquad \ \mathbf{C} \ [\mathrm{H}_3\mathrm{O}^+] = 1.9 \mathrm{M} \qquad \ \mathbf{D} \ 7.9 \times 10^{-13} \mathrm{M}$										
	A	$1.3 \times 10^{-2} \mathrm{M}$	B	$7.9 \times 10^{-13} \mathrm{M}$	\mathbf{C}	$[H_3O^+] = 1.9 M$	D	$7.9 \times 10^{-13} \mathrm{M}$			
43	is a solution whose pH changes very little, when acid or base is added to it?										
	A Hypotonic B Hypertonic C Buffer D Amphoteric										
44	Mos	t buffers are solu	utior	is composed of a	ppr	oximately equal ar	nou	nt of?			
				•	1 1		ı				
		Strong acid and	-	Weak acid and the		Weak acid and	D	all of these			
	A	strong base	B	Weak acid and the salt of its conjugate base		weak base					
45	Whi	ch of the followi	nσsi	ubstances is a bu	ffer	solution					
45	* * 111	on or the ronowr	g 5	anstances is a nu	1101	SUIMIUII					
	A	HRr and NaRr	R	HF and KF		CH ₃ COOH alone	D	HCl and NaCl			
4.5											
46	Which buffer solution has the lowest pH (HF has $Ka = 7.2 \times 10^{-4}$)?										
		0.10 M HF and		0.20 M HF and	ام ا	0.20 M HE and	Ъ	0.10 M HE and 0.20			
	A	0.10 M NaF	B	0.10 M NaF		0.20 M NaF	D	0.10 M HF and 0.20 M NaF			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

47	If two different solutions of HCl_1 and HCl_2 have $pH_1 = 3$ and $pH_2 = 5$, respectively. What is the different in their strength $[H_3O^+]$?										
	A	[HCl ₁]=2×[HCl ₂]	В	$[HCl_2]=2\times[HCl_1]$	C	$[HCl_1]=10^2\times[HCl_2]$	D	$[HCl2]=102 \times [HCl1]$			
48	A hydronium ion has the formula										
	A	$\mathrm{H_2O}^+$	В	ОН	C	H_3O^+	D	H_2^{+}			
49	A strong acid in solution is										
	A	Mostly molecules	В	Mostly ions	C	Both molecules and ions	D	Mostly water			
50	The pH of a carbonated drink is										
	A	Less than 7	В	More than 7	C	Equal to 7	D	Approx.~7.8			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الكيمياء الطبية 1 (108-تحض)

(Chem 108 Chapter 9)

Ques.	Question									
1	If the reaction quotient Q>K the reaction will									
	A	be at equilibrium	ibrium B Proceed in reverse direction C Proceed in forward direction D None of							
2		nich of the following O ₂ (Kp = P CO ₂)?	g rea	ctions has the equ	ilibr	ium constant (Kp) eo	qual	to partial pressure of		
	A	$C_{(s)}+O_{2(g)}$ $CO_{2(g)}$	B	$CaCO_{3(s)} - CaO_{(s)} + CO_{2(g)}$	C	$CO_{2(g)}$ $C_{(g)}+O_{2(g)}$	D	2CO _(g) +O _{2(g)} 2CO _{2(g)} uilibrium will shifted		
3	Inc to?		r th	e reaction $N_{2(g)}$	+O ₂₀	$_{(g)} = 2NO_{(g)}$ if	ts eq	uilibrium will shifted		
	A	Forward	B	Reverse	C	no effect	D	None of the above		
4		reasing temperatu uilibrium will shifte			N _{2(§}	$+3H_{2(g)}$ \longrightarrow 2N	H _{3(g)}	(ΔH=-ve) its		
	A	Forward	В	Reverse	C	no effect	D	None of the above		
5										
	A	pure reactant	В	pure product	C	equilibrium	D	None of the above		
6	Consider system at 100 °C $N_2O_{4(g)}$ \longrightarrow 2 $NO_{2(g)}$ at 100 °C $K=11$ What is the value of Q starting with 0.2 mole N_2O_4 , 0.2 mole NO_2 in 4 L container.									
		1.5				0.15	D			
7	If a chemical system at equilibrium is disturbed, the reaction will proceed in such a direction to overcome the effect of the change. This isprinciple									
	A	Boyl's	B	Avogadro's	\mathbf{C}	Le Chatelier's	D	welium's		
8		ite the equilibrium r the reaction: SiH	_				•••••			
	A	$[SiO_{2(g)}][2H_2O]^2$ $[SiH_{4(g)}][2O_2]^2$	В	$\frac{[SiH_{4(g)} O_2]^2}{[SiH_{4(g)} O_2]^2}$	\mathbf{C}	$\frac{[SiH_{4(g)}][O_2]^2}{[SiH_{4(g)}][O_2]^2}$	D	Non of previous		

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University

Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعــة جـازان عمادة السنة التحضيرية

9	If Q) < K	This mear	ns th	at the ro	eaction j	proce	eeds	in the fo	rward	d di	rection	?		
	A	True]	B False	e									
10	If Q) > K	This mea	ns th	nat the r	eaction	proc	eeds	in the re	everse	e di	rection	?_		
	A	True]	B False	e									
11	If Q	$\mathbf{E} = \mathbf{K}'$	This mean	s tha	at the fo	rward d	irect	ion	equal th	he rev	ers	e direct	ion?		
	A	True		B	False										
12	If Q < K This means that the reaction proceeds in the reverse direction?														
			·	ī i	1			ì							
	A	True		B	False										
13	If Q) > K	This mea	ns th	nat the r	eaction	proc	eeds	in the fo	orwar	d d	lirection	1?		
	i		Ī	i i	ſ		i i	Ī		1	i				
	A	True		B	False										
14	If a chemical system at equilibrium is disturbed or changed, the reaction will proceed in the direction to overcome the effect of the change.														
	aire	ection	to overcon	ne tn	e enect	of the cl	nang	e.							
	A	True		В	False						I				
1.7	A		- 4h a mwaaa	_		allavvina		:1:6		ioh vy	277 d	lass tha		wiyan ahift	
15	Increasing the pressure on the following equilibrium, which way does the equilibrium shift. $N_{2(g)} + 3 H_{2(g)}$ 2 $NH_{3(g)}$														
	1 \2(g	3) .	5 112(g)			- 1	113(g)							
	A	right		B	Left		C	no s	shift	I)	None o	f the abo	ove	
16	Inc	reasing	g the press	ure	on the f	ollowing	equ	ilibr	ium, whi	ich wa	ay d	loes the	equilib	rium shift.	
	SO	2(g) +	½ O ₂₍₈	g)			SO_3	8(g)							
	i		i	l i	1		I I	1		1	ı				
		right		_	Left		_	no s					f the abo		
17			-	ure	on the f	_	_			ich wa	ay d	loes the	equilib	rium shift.	
	C (s) + H	₂ O _(g)			$CO_{(g)}$	+]	$H_{2(g)}$							
	, I		İ				~	40.0	.h:A	l -	<u>,</u>	None -	fthaal-	****	
	A	right		B	Left		C	no s	SIIIII	I)	none o	f the abo	ove	

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University

Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

18	Increasing the pressure on the following equilibrium, which way does the equilibrium shift.												
	$N_{2(g)}$ + $O_{2(g)}$							$2NO_{(g)}$					
	A	right		В	Left	C	1	no shift	D	None of the above			
	Increasing the pressure on the following equilibrium, which way does the equilibrium shift.												
	$2\mathrm{CO}_{2(\mathrm{g})} \qquad \qquad 2\mathrm{CO}_{(\mathrm{g})} + \mathrm{O}_{2(\mathrm{g})}$												
19	A	right		В	Left	C	1	no shift	D	None of the above			
	Increasing the pressure on the following equilibrium, which way does the equilibrium shift.												
	$H_{2(g)} + I_{2(s)}$ 2 $HI_{(g)}$												
20	A	right		В	Left	C	1	no shift	D	None of the above			