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The development of calculus in the
seventeenth and eighteenth
centuries was motivated by the need
to understand physical phenomena
such as the tides, the phases of the
moon, the nature of light, and

gravity.

m FUNCTIONS

.. BEFORE CALCULUS

One of the important themes in calculus is the analysis of relationships between physical or
mathematical quantities. Such relationships can be described in terms of graphs, formulas,
numerical data, or words. In this chapter we will develop the concept of a “function,” which is
the basic idea that underlies almost all mathematical and physical relationships, regardless of
the form in which they are expressed. We will study properties of some of the most basic
functions that occur in calculus, including polynomials, trigonometric functions, inverse
trigonometric functions, exponential functions, and logarithmic functions.

In this section we will define and develop the concept of a “function,” which is the basic
mathematical object that scientists and mathematicians use to describe relationships
between variable quantities. Functions play a central role in calculus and its applications.

DEFINITION OF A FUNCTION

Many scientific laws and engineering principles describe how one quantity depends on
another. This idea was formalized in 1673 by Gottfried Wilhelm Leibniz (see p. xx) who
coined the term function to indicate the dependence of one quantity on another, as described
in the following definition.

0.1.1 perFINITION If a variable y depends on a variable x in such a way that each
value of x determines exactly one value of y, then we say that y is a function of x.

Four common methods for representing functions are:

e Numerically by tables e Geometrically by graphs
e Algebraically by formulas e Verbally
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Table 0.1.1

0 / Before Calculus

INDIANAPOLIS 500
QUALIFYING SPEEDS

YEAR t SPEED S
(mi/h)
1989 223.885
1990 225.301
1991 224.113
1992 232.482
1993 223.967
1994 228.011
1995 231.604
1996 233.100
1997 218.263
1998 223.503
1999 225.179
2000 223471
2001 226.037
2002 231.342
2003 231.725
2004 222.024
2005 227.598
2006 228.985
D
Time of Arrival of Arrival of
earthquake P-waves S-waves
shock

11.8

minutes

Time in minutes
0 10

9.4
minutes i

The method of representation often depends on how the function arises. For example:

Table 0.1.1 shows the top qualifying speed S for the Indianapolis 500 auto race as a
function of the year ¢. There is exactly one value of S for each value of 7.

Figure 0.1.1 is a graphical record of an earthquake recorded on a seismograph. The
graph describes the deflection D of the seismograph needle as a function of the time
T elapsed since the wave left the earthquake’s epicenter. There is exactly one value
of D for each value of T'.

Some of the most familiar functions arise from formulas; for example, the formula
C = 2nr expresses the circumference C of a circle as a function of its radius 7. There
is exactly one value of C for each value of r.

Sometimes functions are described in words. For example, Isaac Newton’s Law of
Universal Gravitation is often stated as follows: The gravitational force of attraction
between two bodies in the Universe is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. This
is the verbal description of the formula

nimy

F=G6—73

r

in which F is the force of attraction, m; and m, are the masses, r is the distance be-
tween them, and G is a constant. If the masses are constant, then the verbal description
defines F as a function of r. There is exactly one value of F for each value of r.

Surface waves

‘ ‘ 20 0 0 i 0 0 0 7
A Figure 0.1.1
In the mid-eighteenth century the Swiss mathematician Leonhard Euler (pronounced
¥ “oiler”) conceived the idea of denoting functions by letters of the alphabet, thereby making
it possible to refer to functions without stating specific formulas, graphs, or tables. To
C;rrg;:trﬁr understand Euler’s idea, think of a function as a computer program that takes an input x,
Input x || Output y operates on it in some way, and produces exactly one output y. The computer program is an
object in its own right, so we can give it a name, say f. Thus, the function f (the computer
program) associates a unique output y with each input x (Figure 0.1.2). This suggests the
A Figure 0.1.2 following definition.
225
g %(7)2 . :. .. . 0.1.2 DEFINITION A function f is arule that associates a unique output with each
g 150 A i, input. If the input is denoted by x, then the output is denoted by f(x) (read “f of x”).
= 125 LY
= 100 RN I
® 75 5
£ S0p Hm UL In this definition the term unigue means “exactly one.” Thus, a function cannot assign
10 15 20 25 30 two different outputs to the same input. For example, Figure 0.1.3 shows a plot of weight
Age A (years) versus age for a random sample of 100 college students. This plot does not describe W

A Figure 0.1.3

as a function of A because there are some values of A with more than one corresponding
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value of W. This is to be expected, since two people with the same age can have different
weights.

I INDEPENDENT AND DEPENDENT VARIABLES
For a given input x, the output of a function f is called the value of f at x or the image of
x under f. Sometimes we will want to denote the output by a single letter, say y, and write

y = f(x)

This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f, and the variable y is called the dependent variable of f. This
terminology is intended to suggest that x is free to vary, but that once x has a specific value a
corresponding value of y is determined. For now we will only consider functions in which
the independent and dependent variables are real numbers, in which case we say that f is
areal-valued function of a real variable. Later, we will consider other kinds of functions.

» Example 1

Table 0.1.2 Table 0.1.2 describes a functional relationship y = f(x) for which
x| 0| 1] 2|3 f(0)=3 f associates y = 3 with x = 0.
y|3|4]|-1|6 f(l)y=4 f associates y = 4 with x = 1.
f2)=-1 f associates y = —1 with x = 2.
f(3) =6 f associates y = 6 with x = 3. | <«

» Example 2 The equation

y=3x"—4x +2

has the form y = f(x) in which the function f is given by the formula

Leonhard Euler (1707-1783) Euler was probably the
most prolific mathematician who ever lived. It has been
said that “Euler wrote mathematics as effortlessly as most
men breathe.” He was born in Basel, Switzerland, and
was the son of a Protestant minister who had himself
studied mathematics. Euler’s genius developed early. He
attended the University of Basel, where by age 16 he obtained both a
Bachelor of Arts degree and a Master’s degree in philosophy. While
at Basel, Euler had the good fortune to be tutored one day a week in
mathematics by a distinguished mathematician, Johann Bernoulli.
At the urging of his father, Euler then began to study theology. The
lure of mathematics was too great, however, and by age 18 Euler
had begun to do mathematical research. Nevertheless, the influence
of his father and his theological studies remained, and throughout
his life Euler was a deeply religious, unaffected person. At various
times Euler taught at St. Petersburg Academy of Sciences (in Rus-
sia), the University of Basel, and the Berlin Academy of Sciences.
Euler’s energy and capacity for work were virtually boundless. His
collected works form more than 100 quarto-sized volumes and it is

f(x) =3x>—4x +2

believed that much of his work has been lost. What is particularly
astonishing is that Euler was blind for the last 17 years of his life,
and this was one of his most productive periods! Euler’s flawless
memory was phenomenal. Early in his life he memorized the entire
Aeneid by Virgil, and at age 70 he could not only recite the entire
work but could also state the first and last sentence on each page
of the book from which he memorized the work. His ability to
solve problems in his head was beyond belief. He worked out in his
head major problems of lunar motion that baffled Isaac Newton and
once did a complicated calculation in his head to settle an argument
between two students whose computations differed in the fiftieth
decimal place.

Following the development of calculus by Leibniz and Newton,
results in mathematics developed rapidly in a disorganized way. Eu-
ler’s genius gave coherence to the mathematical landscape. He was
the first mathematician to bring the full power of calculus to bear
on problems from physics. He made major contributions to virtu-
ally every branch of mathematics as well as to the theory of optics,
planetary motion, electricity, magnetism, and general mechanics.
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Figure 0.1.4 shows only portions of the
graphs. Where appropriate, and unless
indicated otherwise, it is understood
that graphs shown in this text extend
indefinitely beyond the boundaries of
the displayed figure.

Since +/x is imaginary for negative val-
ues of x, there are no points on the
graph of y = ./x in the region where
x < 0.

(x, f(x))
y =/

ST

A Figure 0.1.5 The y-coordinate of a

point on the graph of y = f(x) is the n

value of f at the corresponding
x-coordinate.

For each input x, the corresponding output y is obtained by substituting x in this formula.
For example,

£(0) = 3(0)2 —4(0) +2 =2
F(=1.7) =3(=1.7)2 —4(=1.7) +2 = 17.47

f(N2)=3(2) —4/2+2=8-42

f associates y = 2 with x = 0.

f associates y = 17.47 with x = —1.7.

f associates y = 8 — 4/2 withx = /2. <«

GRAPHS OF FUNCTIONS

If f is a real-valued function of a real variable, then the graph of f in the xy-plane is
defined to be the graph of the equation y = f(x). For example, the graph of the function
f(x) = x is the graph of the equation y = x, shown in Figure 0.1.4. That figure also shows
the graphs of some other basic functions that may already be familiar to you. In Appendix
A we discuss techniques for graphing functions using graphing technology.

2 3
=X y =X =X
4 \ Y y 7 b y P A Y y
3 = 6 B 6 L
2 - 4 -
I - 5 I 2 -
0 | Il Il Il Il Il Il Ix 4 — 0 | Il Il Il Il Il Il Ix
—1 L 3 B ) L
-2 L 5 _4 L
-3 L -6 L
_ - 1 E _ -
-4-3-2-1 0 1 2 3 4 o1 | R E 8-6-4-2 0 2 4 6 8
1 L
-3 -2 -1 0 1 2 3
3
y )= 1/x ) =+x =x
4 Y y 4 h Y y 4 Ay Y
3 301 3 L
2 2 1
i - . 1t . 2 i
0 | I N I | | 0 | | S Y I A N I | 1 L
-1 - -1 = oL—1 1 | Ly
2 - =2 1 |
-3 L =3 r
—4 L -4 -2 B
5-4-3-2-1 0123435 -10123456789 -3 L

-8 -6-4-2 07 2 4 6 8
A Figure 0.1.4

Graphs can provide valuable visual information about a function. For example, since
the graph of a function f in the xy-plane is the graph of the equation y = f(x), the points
on the graph of f are of the form (x, f(x)); thatis, the y-coordinate of a point on the graph
of f is the value of f at the corresponding x-coordinate (Figure 0.1.5). The values of x
for which f(x) = 0 are the x-coordinates of the points where the graph of f intersects the
x-axis (Figure 0.1.6). These values are called the zeros of f, the roots of f(x) = 0, or the
x-intercepts of the graph of y = f(x).

THE VERTICAL LINE TEST

Not every curve in the xy-plane is the graph of a function. For example, consider the curve
in Figure 0.1.7, which is cut at two distinct points, (a, b) and (a, c¢), by a vertical line. This
curve cannot be the graph of y = f(x) for any function f; otherwise, we would have

fl@)=>b and f(a)=c
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which is impossible, since f cannot assign two different values to a. Thus, there is no
function f whose graph is the given curve. This illustrates the following general result,
which we will call the vertical line test.

0.1.3 THE VERTICAL LINE TEST A curve in the xy-plane is the graph of some function
f if and only if no vertical line intersects the curve more than once.

A Figure 0.1.6 f has zeros at x1, 0, xp,

and x3.

(a, )

—— |@n

» Example 3 The graph of the equation
x?+y? =25

isacircle of radius 5 centered at the origin and hence there are vertical lines that cut the graph
more than once (Figure 0.1.8). Thus this equation does not define y as a function of x. <«

xl THE ABSOLUTE VALUE FUNCTION

a

A Figure 0.1.7 This curve cannot be
the graph of a function.

Recall that the absolute value or magnitude of a real number x is defined by

x| x, x>0
X| =
—x, x<0

The effect of taking the absolute value of a number is to strip away the minus sign if the

Symbols such as +x and —x are de-
ceptive, since it is tempting to conclude
that +-x is positive and —x is negative.
However, this need not be so, since x
itself can be positive or negative. For
example, if x is negative, say x = —3,
then —x = 3 is positive and +x = —3
is negative.

X2 +y*=25

A Figure 0.1.8

WARNING

number is negative and to leave the number unchanged if it is nonnegative. Thus,

51=5. |=3|=3 101=0

A more detailed discussion of the properties of absolute value is given in Web Appendix
F. However, for convenience we provide the following summary of its algebraic properties.

0.1.4 PROPERTIES OF ABSOLUTE VALUE If a and b are real numbers, then

(a) |— a| = |a | A number and its negative have the same absolute value.

(b) lab| = |a]|b] The absolute value of a product is the product of the absolute values.
(¢) la/bl =la|/|b],b #0  The absolute value of a ratio is the ratio of the absolute values.

d) la+b| <lal+ |b]| The friangle inequality

The graph of the function f(x) = |x| can be obtained by graphing the two parts of the
equation c x>0
y — { b p—
—x, x<0

separately. Combining the two parts produces the V-shaped graph in Figure 0.1.9.
Absolute values have important relationships to square roots. To see why this is so, recall

To denote the negative square root you
must write —,/x. For example, the
positive square root of 9 is /9 =3,
whereas the negative square root of 9
is —+v/9 = —3. (Do not make the mis-
take of writing \/§ =+3)

from algebra that every positive real number x has two square roots, one positive and one
negative. By definition, the symbol ,/x denotes the positive square root of x.

Care must be exercised in simplifying expressions of the form Vx2, since it is not always
true that +/x2 = x. This equation is correct if x is nonnegative, but it is false if x is negative.
For example, if x = —4, then

Vil=J(—42 =16 =4 #x
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TECHNOLOGY MASTERY

Verify (1) by using a graphing utility to
show that the equations y = +/x2 and
y = |x| have the same graph.

|
Y y=I

S5-4-3-2-1 0 1
A Figure 0.1.9

2 3 45

Ay

N

=2 -1 1 2
A Figure 0.1.10

REMARK |

© Brian Horisk/Alamy

The wind chill index measures the
sensation of coldness that we feel from
the combined effect of temperature and
wind speed.

A statement that is correct for all real values of x is

Vx2 = x| (1)

PIECEWISE-DEFINED FUNCTIONS
The absolute value function f(x) = |x|is an example of a function that is defined piecewise
in the sense that the formula for f changes, depending on the value of x.

» Example 4 Sketch the graph of the function defined piecewise by the formula

0, x < -1
f)={v1—-x2%2, —-l1l<x<l
X, x>1

Solution. The formula for f changes at the points x = —1 and x = 1. (We call these the
breakpoints for the formula.) A good procedure for graphing functions defined piecewise
is to graph the function separately over the open intervals determined by the breakpoints,
and then graph f at the breakpoints themselves. For the function f in this example the
graph is the horizontal ray y = 0 on the interval (—oo, —1], it is the semicircle y = +/1 — x2
on the interval (—1, 1), and it is the ray y = x on the interval [1, +o). The formula for f
specifies that the equation y = 0 applies at the breakpoint —1 [so y = f(—1) = 0], and it
specifies that the equation y = x applies at the breakpoint 1 [so y = f(1) = 1]. The graph
of f is shown in Figure 0.1.10. «

In Figure 0.1.10 the solid dot and open circle at the breakpoint x = 1 serve to emphasize that the point
on the graph lies on the ray and not the semicircle. There is no ambiguity at the breakpoint x = —1
because the two parts of the graph join together continuously there.

» Example 5 Increasing the speed at which air moves over a person’s skin increases
the rate of moisture evaporation and makes the person feel cooler. (This is why we fan
ourselves in hot weather.) The wind chill index is the temperature at a wind speed of 4
mi/h that would produce the same sensation on exposed skin as the current temperature
and wind speed combination. An empirical formula (i.e., a formula based on experimental
data) for the wind chill index W at 32°F for a wind speed of v mi/h is

32, 0<v<3

= 155.628 — 22.070016, 3 <

A computer-generated graph of W(v) is shown in Figure 0.1.11.

35
30
25
20 |-
15

Wind chill W (°F)

I N N T N N NN N N S S |
5 10 1520 25 30 35 40 45 50 55 60 65 70 75

Wind speed v (mi/h)

» Figure 0.1.11 Wind chill versus 0
wind speed at 32°F



One might argue that a physical square
cannot have a side of length zero.
However, it is often convenient mathe-
matically to allow zero lengths, and we
will do so throughout this text where
appropriate.

Range

Domain

A Figure 0.1.12 The projection of
y = f(x) on the x-axis is the set of
allowable x-values for f, and the
projection on the y-axis is the set of
corresponding y-values.

For a review of trigonometry see Ap-
pendix B.
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Il DOMAIN AND RANGE

If x and y are related by the equation y = f(x), then the set of all allowable inputs (x-values)
is called the domain of f, and the set of outputs (y-values) that result when x varies over
the domain is called the range of f. For example, if f is the function defined by the table
in Example 1, then the domain is the set {0, 1, 2, 3} and the range is the set {—1, 3, 4, 6}.

Sometimes physical or geometric considerations impose restrictions on the allowable
inputs of a function. For example, if y denotes the area of a square of side x, then these
variables are related by the equation y = x2. Although this equation produces a unique
value of y for every real number x, the fact that lengths must be nonnegative imposes the
requirement that x > 0.

When a function is defined by a mathematical formula, the formula itself may impose
restrictions on the allowable inputs. For example, if y = 1/x, then x = 0is not an allowable
input since division by zero is undefined, and if y = \/x, then negative values of x are not
allowable inputs because they produce imaginary values for y and we have agreed to
consider only real-valued functions of a real variable. In general, we make the following
definition.

0.1.5 peFINITION Ifareal-valued function of a real variable is defined by a formula,
and if no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the natural
domain of the function.

The domain and range of a function f can be pictured by projecting the graphof y = f(x)
onto the coordinate axes as shown in Figure 0.1.12.

» Example 6 Find the natural domain of

(@) f(x)=ux? () f(x) =1/[(x — D(x —3)]
(¢) f(x)=tanx (d) f(x) =+x2—-5x+6

Solution (a). The function f has real values for all real x, so its natural domain is the
interval (—oo, +0).

Solution (b). The function f has real values for all real x, except x = 1 and x = 3,
where divisions by zero occur. Thus, the natural domain is

{x:x # landx # 3} = (—oo, ) U (1, 3) U (3, +)

Solution (¢). Since f(x) = tanx = sinx/ cosx, the function f has real values except
where cos x = 0, and this occurs when x is an odd integer multiple of 7r/2. Thus, the natural

domain consists of all real numbers except
w 3w  Sw
X=*—,£—, +—, ...
2 2 2

Solution (d). The function f has real values, except when the expression inside the
radical is negative. Thus the natural domain consists of all real numbers x such that

X =5x4+6=x—-3)(x—-2)>0
This inequality is satisfied if x < 2 or x > 3 (verify), so the natural domain of f is

(—o0, 2] U [3, +) <«
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y y=x In some cases we will state the domain explicitly when defining a function. For example,
if f(x) = x? is the area of a square of side x, then we can write

fx)y=x% x>0

to indicate that we take the domain of f to be the set of nonnegative real numbers (Fig-
3 ure 0.1.13).

B THE EFFECT OF ALGEBRAIC OPERATIONS ON THE DOMAIN
y y=xLx20 Algebraic expressions are frequently simplified by canceling common factors in the nu-
merator and denominator. However, care must be exercised when simplifying formulas for
functions in this way, since this process can alter the domain.

x » Example 7 The natural domain of the function

x> -4
x =2

fx) =

2
A Figure 0.1.13

consists of all real x except x = 2. However, if we factor the numerator and then cancel
the common factor in the numerator and denominator, we obtain

(x —2)(x +2) _

) = =———

x+2 3

L

6

5

4
3 Since the right side of (3) has a value of f(2) =4 and f(2) was undefined in (2), the
/ T algebraic simplification has changed the function. Geometrically, the graph of (3) is the
7/2_1 [ 12345 line in Figure 0.1.14a, whereas the graph of (2) is the same line but with a hole at x = 2,
since the function is undefined there (Figure 0.1.14b). In short, the geometric effect of the

(a) algebraic cancellation is to eliminate the hole in the original graph. <«

B Sometimes alterations to the domain of a function thatresult from algebraic simplification
L > are irrelevant to the problem at hand and can be ignored. However, if the domain must be
% preserved, then one must impose the restrictions on the simplified function explicitly. For

\ example, if we wanted to preserve the domain of the function in Example 7, then we would

x have to express the simplified form of the function as

\
712—1 ,‘1£3‘z‘1§
fx)=x+2, x#2

A Figure 0.1.14

» Example 8 Find the domain and range of

@ f)=2+vx—1 (b fx)=@&+D/(x—-1)

Solution (a). Since no domain is stated explicitly, the domain of f is its natural domain,

y
=24x—1 [1, +). As x varies over the interval [1, +o0), the value of +/x — 1 varies over the interval

sk y
A [0, +0), so the value of f(x) =2+ +/x — 1 varies over the interval [2, +o), which is
N the range of f. The domain and range are highlighted in green on the x- and y-axes in
oL Figure 0.1.15.
] -

; é :‘ g é 7‘ é é 1‘0 > Solution (b). The given function f is defined for all real x, except x = 1, so the natural

3 ron ).
domain of f is
A Figure 0.1.15 {x :x #1} = (=00, ) U (1, 40)
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To determine the range it will be convenient to introduce a dependent variable

_x+1
Tx—1

“

Although the set of possible y-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure 0.1.16, suggests that the range of f consists of all
v, except y = 1. To see that this is so, we solve (4) for x in terms of y:

x—-—1Dy=x+1

xy—y=x+1

A Figure 0.1.16 xy—x=y+1
Ky—D=y+1

y+1

X="—

y—1

It is now evident from the right side of this equation that y = 1 is not in the range; otherwise
we would have a division by zero. No other values of y are excluded by this equation, so the
range of the function f is {y : y # 1} = (—o0, 1) U (1, +o0), which agrees with the result
obtained graphically. <

I DOMAIN AND RANGE IN APPLIED PROBLEMS
In applications, physical considerations often impose restrictions on the domain and range
of a function.

» Example 9 An open box is to be made from a 16-inch by 30-inch piece of card-

board by cutting out squares of equal size from the four corners and bending up the sides
(Figure 0.1.17a).

(a) Let V be the volume of the box that results when the squares have sides of length x.
Find a formula for V as a function of x.

(b) Find the domain of V.
(c) Use the graph of V given in Figure 0.1.17c¢ to estimate the range of V.

(d) Describe in words what the graph tells you about the volume.

Solution (a). As shown in Figure 0.1.17b, the resulting box has dimensions 16 — 2x by
30 — 2x by x, so the volume V (x) is given by

V(x) = (16 — 2x)(30 — 2x)x = 480x — 92x% + 4x3

800 -
700 [
600 [~
500 [~
400 [~
300 [~
200 [
100

Volume V of box (in®)

T ; | |
‘ 30in I 30 -2x | L J

01 2 3 4 5 6 7 8 9
Side x of square cut (in)

(a) ) (0)
A Figure 0.1.17
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Radar Tracking
6000
5000
4000
3000
2000
1000

Distance D (ft)

I S I N B
0 10 20 30 40 50 60

8:05AM. Timet(s) 8:06a.m.
A Figure 0.1.18

N

The circle is squashed because 1
unit on the y-axis has a smaller
length than 1 unit on the x-axis.

A Figure 0.1.19

In applications where the variables on
the two axes have unrelated units (say,
centimeters on the y-axis and seconds
on the x-axis), then nothing is gained
by requiring the units to have equal
lengths; choose the lengths to make
the graph as clear as possible.

Solution (b). The domain is the set of x-values and the range is the set of V-values.
Because x is a length, it must be nonnegative, and because we cannot cut out squares whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

0<x<8

Solution (c). From the graph of V versus x in Figure 0.1.17¢ we estimate that the V-
values in the range satisfy 0<V <725

Note that this is an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells us that the box of maximum volume occurs for a value of
x that is between 3 and 4 and that the maximum volume is approximately 725 in®. The
graph also shows that the volume decreases toward zero as x gets closer to O or 8, which
should make sense to you intuitively. <

In applications involving time, formulas for functions are often expressed in terms of a
variable r whose starting value is taken to be t = 0.

» Example 10 At 8:05 A.M. a car is clocked at 100 ft/s by a radar detector that is
positioned at the edge of a straight highway. Assuming that the car maintains a constant
speed between 8:05 AM. and 8:06 A.M., find a function D(¢) that expresses the distance
traveled by the car during that time interval as a function of the time 7.

Solution. Tt would be clumsy to use the actual clock time for the variable 7, so let us
agree to use the elapsed time in seconds, starting with # = 0 at 8:05 A.M. and ending with
t = 60 at 8:06 A.M. At each instant, the distance traveled (in ft) is equal to the speed of the
car (in ft/s) multiplied by the elapsed time (in s). Thus,

D(t) =100z, 0<t <60

The graph of D versus ¢ is shown in Figure 0.1.18. «

ISSUES OF SCALE AND UNITS
In geometric problems where you want to preserve the “true” shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which 1 unit in the y-direction is smaller than I unit in the x-direction, then the
circle will be squashed vertically into an elliptical shape (Figure 0.1.19).

However, sometimes it is inconvenient or impossible to display a graph using units of
equal length. For example, consider the equation

y=2x°

If we want to show the portion of the graph over the interval —3 < x < 3, then there is
no problem using units of equal length, since y only varies from O to 9 over that interval.
However, if we want to show the portion of the graph over the interval —10 < x < 10, then
there is a problem keeping the units equal in length, since the value of y varies between 0
and 100. In this case the only reasonable way to show all of the graph that occurs over the
interval —10 < x < 10 is to compress the unit of length along the y-axis, as illustrated in
Figure 0.1.20.
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y y
9,
gl 100 -
T 80
6,
5+ 60 -
4,
s 40
2r 20
1,
X X
| | | | | | | | | |
1 2 3 -10 -5 5 10

P Figure 0.1.20 -3-2-1

VQUlCK CHECK EXERCISES 0.1 (See page 15 for answers.)

1. Let f(x) =/x+144.
(a) The natural domain of f is
® fB=——_
© f*-H=____
@ fx)y=7ifx=___
(e) Therangeof fis_— .

2. Line segments in an xy-plane form “letters” as depicted.

LMD

(a) Ifthe y-axis is parallel to the letter I, which of the letters
represent the graph of y = f(x) for some function f?

(b) If the y-axis is perpendicular to the letter I, which of
the letters represent the graph of y = f(x) for some
function f?

3. The accompanying figure shows the complete graph of
y = fx).
(a) The domain of f is .
(b) Therangeof fis__ .

© f(-3)=—
@ f(3)=—n0
(e) The solutions to f(x) = —% arex =____and
X =
y
2+ p—0
1 -
| | | | | | X
-3 -2 -1 B 1 2 3
_2 [
< Figure Ex-3

4. The accompanying table gives a 5-day forecast of high and
low temperatures in degrees Fahrenheit (°F).

(a) Suppose that x and y denote the respective high and
low temperature predictions for each of the 5 days. Is
y a function of x? If so, give the domain and range of
this function.

(b) Suppose that x and y denote the respective low and high
temperature predictions for each of the 5 days. Is y a
function of x? If so, give the domain and range of this
function.

MON TUE WED | THURS | FRI

HIGH 75 71 65 70 73

LOW 52 56 48 50 52

A Table Ex-3

5. Let I, w, and A denote the length, width, and area of a
rectangle, respectively, and suppose that the width of the
rectangle is half the length.

(a) If I is expressed as a function of w, then/ =
(b) If A is expressed as a function of /, then A =
(c) Ifwisexpressedasafunctionof A, thenw =
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EXERCISE SET 0.1 [ Graphing Utility

1. Use the accompanying graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) For what values of x is y = 1?

(b) For what values of x is y = 3?

(c) For what values of y is x = 3?

(d) For what values of x is y < 0?

(e) What are the maximum and minimum values of y and
for what values of x do they occur?

y
3 -

-3 -2 -1 0 1 2 3 < Figure Ex-1

2. Use the accompanying table to answer the questions posed
in Exercise 1.

x | =2 ] -1 0| 2 31 4 5 6

y| s 1|=2|7|=1]1]0]09

A Table Ex-2

3. Ineach part of the accompanying figure, determine whether
the graph defines y as a function of x.

y y

(@) (b)

. TN
N

(© (d)
A Figure Ex-3

FOCUS ON CONCEPTS

4. In each part, compare the natural domains of f and g.

2
@ f@) = );:f 2() = x
b) f(x) = %; g(x) = Jx

5. The accompanying graph shows the median income in
U.S. households (adjusted for inflation) between 1990
and 2005. Use the graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) When was the median income at its maximum value,

and what was the median income when that occurred?
(b) When was the median income at its minimum value,
and what was the median income when that occurred?
(c) The median income was declining during the 2-year
period between 2000 and 2002. Was it declining
more rapidly during the first year or the second year
of that period? Explain your reasoning.

Median U.S. Household Income in
Thousands of Constant 2005 Dollars

Median U.S. Household Income

1990 1995 2000 2005
Source: U.S. Census Bureau, August 2006.

A Figure Ex-5

6. Use the median income graph in Exercise 5 to answer the
following questions, making reasonable approximations
where needed.

(a) What was the average yearly growth of median in-
come between 1993 and 19997

(b) The median income was increasing during the 6-year
period between 1993 and 1999. Was it increasing
more rapidly during the first 3 years or the last 3
years of that period? Explain your reasoning.

(c) Consider the statement: “After years of decline, me-
dian income this year was finally higher than that of
last year.” In what years would this statement have
been correct?




7. Find £(0), £(2), f(=2), f3), f(~/2), and f(31).
1

b) f(x)=1 x

2x, x<3
8. Find g(3), g(—1), g(m), g(—1.1), and g(+> — 1).

Jx+1, x>1
3, x <1

) , x>3
(@ f(x)=3x"-2

1
@ gy =11
X

— (Mﬂwz{

1 9-10 Find the natural domain and determine the range of each

function. If you have a graphing utility, use it to confirm that
your result is consistent with the graph produced by your graph-
ing utility. [Note: Set your graphing utility in radian mode when
graphing trigonometric functions.]

1 X
9. (@) f(x)=—— (b) F(x) = —
x—3 [x]
(©) gx) =+/x2-3 d) G(x) =+/x2—-2x+5
x2—4
(€) hix)= I (f) H(x) =

x—=2
(b) F(x) =+4—x?
(d G(x) =x3+2

(f) H(x) = (siny/x)*

—sinx

10. (@) f(x) =+3—x
(©) gx) =3+ /x
(e) h(x) =3sinx

FOCUS ON CONCEPTS

11. (a) Ifyouhad adevice that could record the Earth’s pop-
ulation continuously, would you expect the graph of
population versus time to be a continuous (unbro-
ken) curve? Explain what might cause breaks in the
curve.

(b) Suppose that a hospital patient receives an injection
of an antibiotic every 8 hours and that between in-
jections the concentration C of the antibiotic in the
bloodstream decreases as the antibiotic is absorbed
by the tissues. What might the graph of C versus
the elapsed time ¢ look like?

12. (a) If you had a device that could record the tempera-
ture of a room continuously over a 24-hour period,
would you expect the graph of temperature versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

(b) If you had a computer that could track the number
of boxes of cereal on the shelf of a market contin-
uously over a 1-week period, would you expect the
graph of the number of boxes on the shelf versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

13. A boat is bobbing up and down on some gentle waves.
Suddenly it gets hit by a large wave and sinks. Sketch
a rough graph of the height of the boat above the ocean
floor as a function of time.

0.1 Functions 13

14. A cup of hot coffee sits on a table. You pour in some
cool milk and let it sit for an hour. Sketch a rough graph
of the temperature of the coffee as a function of time.

15-18 As seen in Example 3, the equation x> 4 y> = 25 does
not define y as a function of x. Each graph in these exercises
is a portion of the circle x> + y? = 25. In each case, determine
whether the graph defines y as a function of x, and if so, give a
formula for y in terms of x.

15. Y 16. Y

17. Y 18. Y

-
-

—50

19-22 True-False Determine whether the statement is true or
false. Explain your answer.

19. A curve that crosses the x-axis at two different points cannot
be the graph of a function.

20. The natural domain of a real-valued function defined by a
formula consists of all those real numbers for which the
formula yields a real value.

21. The range of the absolute value function is all positive real
numbers.

22. If g(x) = 1/4/f(x), then the domain of g consists of all
those real numbers x for which f(x) # 0.

23. Use the equation y = x> — 6x + 8 to answer the following
questions.
(a) For what values of x is y = 0?
(b) For what values of x is y = —10?
(c) For what values of x is y > 0?
(d) Does y have a minimum value? A maximum value? If
so, find them.

24. Usethe equation y = 1 + /x to answer the following ques-
tions.
(a) For what values of x is y = 4?
(b) For what values of x is y = 0?
(c) For what values of x is y > 6? (cont.)



14

25.

26.
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(d) Does y have a minimum value? A maximum value? If
so, find them.

As shown in the accompanying figure, a pendulum of con-
stant length L makes an angle 6 with its vertical position.
Express the height £ as a function of the angle 6.

Express the length L of a chord of a circle with radius 10 cm
as a function of the central angle 6 (see the accompanying
figure).

LN
K &%
It

]
—=- v

A Figure Ex-25 A Figure Ex-26

M 27-28 Express the function in piecewise form without using
absolute values. [Suggestion: It may help to generate the graph
of the function.]

27.
28.

[~ 29.

~ 30.
~ 31.

@ f)=lxl+3x+1 (b) glx)=|x|+|x—1]

(@ f&x)=3+12x—=5 (b) g&x)=3|x =2| — |x + 1]

As shown in the accompanying figure, an open box is to

be constructed from a rectangular sheet of metal, 8 in by 15

in, by cutting out squares with sides of length x from each

corner and bending up the sides.

(a) Express the volume V as a function of x.

(b) Find the domain of V.

(c) Plot the graph of the function V obtained in part (a) and
estimate the range of this function.

(d) Inwords, describe how the volume V varies with x, and
discuss how one might construct boxes of maximum
volume.

\ 15 in |
A Figure Ex-29

Repeat Exercise 29 assuming the box is constructed in the
same fashion from a 6-inch-square sheet of metal.

A construction company has adjoined a 1000 ft> rectan-
gular enclosure to its office building. Three sides of the
enclosure are fenced in. The side of the building adjacent
to the enclosure is 100 ft long and a portion of this side is
used as the fourth side of the enclosure. Let x and y be the
dimensions of the enclosure, where x is measured parallel
to the building, and let L be the length of fencing required
for those dimensions.

(a) Find a formula for L in terms of x and y.

(b) Find a formula that expresses L as a function of x alone.
(c) What is the domain of the function in part (b)?

M 32.

M 33.

N 34.

(d) Plot the function in part (b) and estimate the dimensions
of the enclosure that minimize the amount of fencing
required.

As shown in the accompanying figure, a camera is mounted
at a point 3000 ft from the base of a rocket launching pad.
The rocket rises vertically when launched, and the camera’s
elevation angle is continually adjusted to follow the bottom
of the rocket.

(a) Express the height x as a function of the elevation an-
gle 6.

(b) Find the domain of the function in part (a).

(c) Plot the graph of the function in part (a) and use it to
estimate the height of the rocket when the elevation an-
gle is /4 ~ 0.7854 radian. Compare this estimate to
the exact height.

Rocket

A |
1 3000 ft ‘

Camera < Figure Ex-32

A soup company wants to manufacture a can in the shape
of a right circular cylinder that will hold 500 cm? of liquid.
The material for the top and bottom costs 0.02 cent/ cm?,
and the material for the sides costs 0.01 cent/cm?.

(a) Estimate the radius r and the height % of the can that
costs the least to manufacture. [Suggestion: Express
the cost C in terms of r.]

(b) Suppose that the tops and bottoms of radius r are
punched out from square sheets with sides of length
2r and the scraps are waste. If you allow for the cost of
the waste, would you expect the can of least cost to be
taller or shorter than the one in part (a)? Explain.

(c) Estimate the radius, height, and cost of the can in part
(b), and determine whether your conjecture was correct.

The designer of a sports facility wants to put a quarter-mile
(1320 ft) running track around a football field, oriented as
in the accompanying figure on the next page. The football
field is 360 ft long (including the end zones) and 160 ft wide.

The track consists of two straightaways and two semicircles,

with the straightaways extending at least the length of the

football field.

(a) Show that it is possible to construct a quarter-mile track
around the football field. [Suggestion: Find the shortest
track that can be constructed around the field.]

(b) Let L be the length of a straightaway (in feet), and let x
be the distance (in feet) between a sideline of the foot-
ball field and a straightaway. Make a graph of L ver-

sus x. (cont.)



(c) Use the graph to estimate the value of x that produces
the shortest straightaways, and then find this value of x
exactly.

(d) Use the graph to estimate the length of the longest pos-
sible straightaways, and then find that length exactly.

— e —

} 360" |
A Figure Ex-34

35-36 (i) Explain why the function f has one or more holes
in its graph, and state the x-values at which those holes occur.
(i1) Find a function g whose graph is identical to that of f, but
without the holes.

2 2
x+2)(x 1) 36. f(x) = x4+ |x|
x+2)(x—1 | x|

37. In2001 the National Weather Service introduced a new wind
chill temperature (WCT) index. For a given outside temper-

35. f(x) =

I/ QUICK CHECK ANSWERS 0.1
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ature 7' and wind speed v, the wind chill temperature index
is the equivalent temperature that exposed skin would feel
with a wind speed of v mi/h. Based on a more accurate
model of cooling due to wind, the new formula is

T, 0<v<3

WCT =
35.74 + 0.6215T — 35.750916 4 0.4275Tv%1%, 3 <o

where T is the temperature in °F, v is the wind speed in
mi/h, and WCT is the equivalent temperature in °F. Find
the WCT to the nearest degree if 7 = 25°F and

(a) v=3mi/h (b) v=15mi/h (c) v =46 mi/h.
Source: Adapted from UMAP Module 658, Windchill, W. Bosch and
L. Cobb, COMAP, Arlington, MA.

38-40 Use the formula for the wind chill temperature index
described in Exercise 37.

38. Find the air temperature to the nearest degree if the WCT is
reported as —60°F with a wind speed of 48 mi/h.

39. Find the air temperature to the nearest degree if the WCT is
reported as —10°F with a wind speed of 48 mi/h.

40. Find the wind speed to the nearest mile per hour if the WCT
is reported as 5°F with an air temperature of 20°F.

1. (@) [=1,+w) (b) 6 (c) [t[+4 (d) 8 (e) [4, +)

@ —3 —3

() w=+A/2

2. (@ M (b) I
4. (a) yes; domain: {65, 70, 71, 73, 75}; range: {48, 50, 52, 56} (b) no

3. (@) [=3,3) (b) [-2,2] (©) =1 (d) 1
5.@l=2w (b) A=1*/2

m NEW FUNCTIONS FROM OLD

Just as numbers can be added, subtracted, multiplied, and divided to produce other
numbers, so functions can be added, subtracted, multiplied, and divided to produce other
functions. In this section we will discuss these operations and some others that have no
analogs in ordinary arithmetic.

H ARITHMETIC OPERATIONS ON FUNCTIONS
Two functions, f and g, can be added, subtracted, multiplied, and divided in a natural way
to form new functions f + g, f — g, fg, and f/g. For example, f + g is defined by the

formula

(f +8)) = f(x) +g(x) ey

which states that for each input the value of f + g is obtained by adding the values of
f and g. Equation (1) provides a formula for f + g but does not say anything about the
domain of f + g. However, for the right side of this equation to be defined, x must lie in
the domains of both f and g, so we define the domain of f + g to be the intersection of
these two domains. More generally, we make the following definition.
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If f is a constant function, that is,
f(x) = c for all x, then the product of
f and g is cg, so multiplying a func-
tion by a constant is a special case of
multiplying two functions.

0.2.1 peFINITION Given functions f and g, we define
(f +8)x) = fx)+gx)
(f —89)x) = f(x) —g(x)
(f&)(x) = f(x)g(x)
(f/e)x) = f(x)/g(x)

For the functions f + g, f — g, and fg we define the domain to be the intersection
of the domains of f and g, and for the function f/g we define the domain to be the
intersection of the domains of f and g but with the points where g(x) = 0 excluded (to
avoid division by zero).

» Example 1 Let
f)=14++vx—2 and gx)=x-3
Find the domains and formulas for the functions f + g, f — g, fg., f/g, and 7f.

Solution. First, we will find the formulas and then the domains. The formulas are
F+@=fO)+eg0)=0+v/x—-2)+x-3)=x-2+/x-2 ()
(f=9®) =f)—g)=+vVx=-2)—x—3)=4-x+vx-2 (3

(fe)(x) = fx)g(x) = (1 +vx —2)(x = 3) )

1+/x—=2
(fl9)(0) = f0)/g(x) = % 5)

THx)=Tf(x) =T+TvVx =2 (6)

The domains of f and g are [2, 4+0) and (—o, 4o0), respectively (their natural domains).
Thus, it follows from Definition 0.2.1 that the domains of f 4 g, f — g, and fg are the
intersection of these two domains, namely,

[2, +00) N (=00, +00) = [2, +o0) @)
Moreover, since g(x) = 0if x = 3, the domain of f/g is (7) with x = 3 removed, namely,
[2,3) U3, +x)

Finally, the domain of 7f is the same as the domain of f. <«

We saw in the last example that the domains of the functions f + g, f — g, fg,and f/g
were the natural domains resulting from the formulas obtained for these functions. The
following example shows that this will not always be the case.

» Example 2 Show that if f(x) = /x, g(x) = /%, and h(x) = x, then the domain of
fg is not the same as the natural domain of A.
Solution. The natural domain of 4 (x) = x is (—oo, +). Note that
(f&)(x) = Vx/x = x = h(x)
on the domain of fg. The domains of both f and g are [0, +oc), so the domain of fg is
[0, +o0) N [0, +20) = [0, +o0)



Although the domain of fog may
seem complicated at first glance, it
makes sense intuitively: To compute
f(g(x)) one needs x in the domain
of g to compute g(x), and one needs
g(x) in the domain of f to compute

f(g(x)).

Note that the functions fog and go f
in Example 3 are not the same. Thus,
the order in which functions are com-
posed can (and usually will) make a dif-
ference in the end result.

0.2 New Functions from Old 17

by Definition 0.2.1. Since the domains of fg and & are different, it would be misleading to
write (fg)(x) = x without including the restriction that this formula holds only for x > 0.
<

COMPOSITION OF FUNCTIONS
We now consider an operation on functions, called composition, which has no direct analog
in ordinary arithmetic. Informally stated, the operation of composition is performed by
substituting some function for the independent variable of another function. For example,

that
suppose ta f(x)=x* and gx)=x+1
If we substitute g(x) for x in the formula for f, we obtain a new function

f(g) = (g(x)* = (x +1)?
which we denote by fog. Thus,
(fo)(x) = f(g(x) = (g(x)* = (x +1)*

In general, we make the following definition.

0.2.2 DpEFINITION Given functions f and g, the composition of f with g, denoted
by fog, is the function defined by

(fog)(x) = f(g(x))

The domain of f og is defined to consist of all x in the domain of g for which g(x) is
in the domain of f.

» Example 3 Let f(x) = x>+ 3 and g(x) = 4/x. Find
(@ (fog)x)  (b) (gof)(x)

Solution (a). The formula for f(g(x)) is

flg) =[g)P+3=(Wx)+3=x+3

Since the domain of g is [0, 4+oc) and the domain of f is (—o0o, 4+o0), the domain of fog
consists of all x in [0, +) such that g(x) = /x lies in (—o, +); thus, the domain of
fogis [0, 4). Therefore,

(fog)x)=x+3, x=0

Solution (b). The formula for g( f(x)) is

() = VF() = Va? +3

Since the domain of f is (—oc, 4-c0) and the domain of g is [0, +), the domain of go f
consists of all x in (—oo, +00) such that f(x) = x> + 3 lies in [0, +-). Thus, the domain
of go f is (—o, o). Therefore,

(8o f)x) =vx*+3

There is no need to indicate that the domain is (—oe, +o0), since this is the natural domain
of v/x2+3. «
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Compositions can also be defined for three or more functions; for example, (fogoh)(x)
is computed as
P (fogoh)(x) = f(g(h(x)))
In other words, first find A (x), then find g(h(x)), and then find f(g(h(x))).

> Example 4 Find (fogoh)(x) if
f)=+x, gx)=1/x, hx) =x>

Solution.

(fogoh)(x) = f(g(h(x) = fg(x*) = f(1/x*) = V1/x3 = 1/x*? «

EXPRESSING A FUNCTION AS A COMPOSITION
Many problems in mathematics are solved by “decomposing” functions into compositions
of simpler functions. For example, consider the function / given by

h(x) = (x + 1)

To evaluate h(x) for a given value of x, we would first compute x + 1 and then square the
result. These two operations are performed by the functions

gx)=x+1 and f(x)=x>
We can express £ in terms of f and g by writing
h(x) = (x + 1> =[g®)]* = f(g(x))
so we have succeeded in expressing & as the composition 7 = fog.

The thought process in this example suggests a general procedure for decomposing a
function % into a composition 1 = fog:

e Think about how you would evaluate 4 (x) for a specific value of x, trying to break
the evaluation into two steps performed in succession.

e The first operation in the evaluation will determine a function g and the second a
function f.

e The formula for 4 can then be written as 2(x) = f(g(x)).
For descriptive purposes, we will refer to g as the “inside function” and f as the “outside

function” in the expression f(g(x)). The inside function performs the first operation and
the outside function performs the second.

» Example 5 Express sin(x?) as a composition of two functions.

Solution. To evaluate sin(x3), we would first compute x3 and then take the sine, so
g(x) = x? is the inside function and f(x) = sin x the outside function. Therefore,

sin(x?) = f(g(x)) g(x) = x? and f(x) =sinx | 4

Table 0.2.1 gives some more examples of decomposing functions into compositions.
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A Figure 0.2.1

Use the technique in Example 6 to
sketch the graph of the function

-

> Figure 0.2.2
Add the y-coordinates of 4/x and 1/x to
obtain the y-coordinate of \/x + 1/x.
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Table 0.2.1
COMPOSING FUNCTIONS
g) fx)
FUNCTION INSIDE OUTSIDE COMPOSITION
x>+ DO x2+1 x10 @2+ D9 = f(gx)
sin® x sin x x3 sin® x = f(g(x))
tan (x°) x° tan x tan (x°) = f(g(x))
N4 =3x 4-3x \x V4 - 3x = f(g(x))
8 ++x \x 8 +x 8 ++x = f(g(x))
1 1 1
7x+1 x+1 ; x+1—f(g(x))

There is always more than one way to express a function as a composition. For example, here are two
ways to express (x* + 1)!° as a composition that differ from that in Table 0.2.1:

2+ D =[x+ D = f(gx) g() = (@2 + D2 and f(x) = x°

7+ D = [+ D17 = f(g(x) g(x) = (& + 1) and f(x) = x°3

NEW FUNCTIONS FROM OLD

The remainder of this section will be devoted to considering the geometric effect of perform-
ing basic operations on functions. This will enable us to use known graphs of functions to
visualize or sketch graphs of related functions. For example, Figure 0.2.1 shows the graphs
of yearly new car sales N (f) and used car sales U (¢) over a certain time period. Those
graphs can be used to construct the graph of the total car sales

T()=N@) +U®)

by adding the values of N(¢) and U(¢) for each value of 7. In general, the graph of
y = f(x) 4+ g(x) can be constructed from the graphs of y = f(x) and y = g(x) by adding
corresponding y-values for each x.

» Example 6 Referring to Figure 0.1.4 for the graphs of y = 4/x and y = 1/x, make a
sketch that shows the general shape of the graph of y = /x + 1/x for x > 0.

Solution. To add the corresponding y-values of y = \/x and y = 1/x graphically, just
imagine them to be “stacked” on top of one another. This yields the sketch in Figure 0.2.2.
<
y y y
\x o+ 1/x
x x x| x x
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Il TRANSLATIONS
Table 0.2.2 illustrates the geometric effect on the graph of y = f(x) of adding or subtracting
a positive constant ¢ to f or to its independent variable x. For example, the first result in the
table illustrates that adding a positive constant ¢ to a function f adds c to each y-coordinate
of its graph, thereby shifting the graph of f up by c units. Similarly, subtracting ¢ from f
shifts the graph down by ¢ units. On the other hand, if a positive constant ¢ is added to x,
then the value of y = f(x 4 ¢) at x — c is f(x); and since the point x — ¢ is ¢ units to the
left of x on the x-axis, the graph of y = f(x + ¢) must be the graph of y = f(x) shifted
left by c units. Similarly, subtracting ¢ from x shifts the graph of y = f(x) right by ¢ units.

Table 0.2.2

TRANSLATION PRINCIPLES

OPERATION ON

y=f(x)

Add a positive
constant ¢ to f(x)

Subtract a positive
constant ¢ from f(x)

Add a positive
constant ¢ to x

Subtract a positive
constant ¢ from x

NEW EQUATION

y=fx)+c

y=fx)—c

y=f(x+c)

y=f(x-o¢)

GEOMETRIC Translates the graph of Translates the graph of Translates the graph of Translates the graph of

EFFECT y = f(x) up c units y = f(x) down c units y = f(x) left ¢ units y = f(x) right c units

AY e y y y
T\\// . >}=x2 y=@+27? y=x* , . y7x2y=(x—2)2
\\2 //y:x2 \\ / y=x"=2 \\ // \\ /
EXAMPLE \\ / x . \ e x | AN / x
\/ o o
-2

3 Y Before proceeding to the next examples, it will be helpful to review the graphs in Fig-

2 ures 0.1.4 and 0.1.9.

% I S I T | X

L 9 -

» Example 7 Sketch the graph of
y=+x

e

3

y

-

e

X
12
X

3
CoT
y=\x+3

A Figure 0.2.3

6

Solution.

Solution.

(@ y=+x-3

» Example 8 Sketch the graph of y = x> — 4x + 5.

Completing the square on the first two terms yields

(b) y=+/x+3

Using the translation principles given in Table 0.2.2, the graph of the equation
y = +/x — 3 can be obtained by translating the graph of y = /x right 3 units. The graph of
y = +/x + 3 can be obtained by translating the graph of y = /x left 3 units (Figure 0.2.3).

|

y=02—4x+4) —44+5=x—-27+1

(see Web Appendix H for a review of this technique). In this form we see that the graph
can be obtained by translating the graph of y = x? right 2 units because of the x — 2, and
up 1 unit because of the +1 (Figure 0.2.4). <«
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>
~

L NLA
-5 5

=(x-2°%+1
> Figure 0.2.4 y=G-2

Bl REFLECTIONS
The graph of y = f(—x) is the reflection of the graph of y = f(x) about the y-axis because
the point (x, y) on the graph of f(x) is replaced by (—x, y). Similarly, the graph of
y = — f(x) is the reflection of the graph of y = f(x) about the x-axis because the point
(x, y) on the graph of f(x) is replaced by (x, —y) [the equation y = — f(x) is equivalent
to —y = f(x)]. This is summarized in Table 0.2.3.

Table 0.2.3

REFLECTION PRINCIPLES

OPERATION ON
y=f(x) Replace x by —x Multiply f(x) by —1
NEW EQUATION | y = f(—x) y=—f(x)
GEOMETRIC Reflects the graph of Reflects the graph of
EFFECT y = f(x) about the y-axis y = f(x) about the x-axis
y y
EXAMPLE L NI i f L ik
-6 6 —6 6
-3 )
y=—x

» Example 9 Sketch the graph of y = /2 — x.

Solution. Using the translation and reflection principles in Tables 0.2.2 and 0.2.3, we
can obtain the graph by a reflection followed by a translation as follows: First reflect the
graph of y = J/x about the y-axis to obtain the graph of y = J/—x, then translate this graph
right 2 units to obtain the graph of the equation y = /—(x — 2) = J2=x (Figure 0.2.5).

<
y y y
6 6 6
X X X
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
-10 10 -10 10 -10 S 10
-6 -6 -6
3 3 3
y=3k y== y=\2-x

» Figure 0.2.5
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» Example 10 Sketch the graph of y = 4 — |x — 2|.

Solution. The graph can be obtained by a reflection and two translations: First translate
the graph of y = |x| right 2 units to obtain the graph of y = |x — 2|; then reflect this graph

about the x-axis to obtain the graph of y = —|x — 2|; and then translate this graph up 4
units to obtain the graph of the equation y = —|x — 2| +4 =4 — |x — 2| (Figure 0.2.6).
<
b} y y y
8 |- \ 8 8 |-
\\\\7\\\\)( 11| \\\\x \\\71\\\\)‘ \\l/\\\\x
-8 L 8 -6 L 10 -6 10 -6 L Y
y =] y=lx-2 y=-|x-2| y=4-|x-2
A Figure 0.2.6

Il STRETCHES AND COMPRESSIONS

Describe the geometric effect of mul-
tiplying a function f by a negative
constant in terms of reflection and
stretching or compressing. What is the
geometric effect of multiplying the in-
dependent variable of a function f by
a negative constant?

Multiplying f(x) by a positive constant ¢ has the geometric effect of stretching the graph
of y = f(x) in the y-direction by a factor of ¢ if ¢ > 1 and compressing it in the y-
direction by a factor of 1/c¢if 0 < ¢ < 1. For example, multiplying f(x) by 2 doubles each
y-coordinate, thereby stretching the graph vertically by a factor of 2, and multiplying by %
cuts each y-coordinate in half, thereby compressing the graph vertically by a factor of 2.
Similarly, multiplying x by a positive constant ¢ has the geometric effect of compressing
the graph of y = f(x) by afactor of ¢ in the x-direction if ¢ > 1 and stretching it by a factor
of 1/cif 0 < ¢ < 1. [If this seems backwards to you, then think of it this way: The value
of 2x changes twice as fast as x, so a point moving along the x-axis from the origin will
only have to move half as far for y = f(2x) to have the same value as y = f(x), thereby
creating a horizontal compression of the graph.] All of this is summarized in Table 0.2.4.

Table 0.2.4
STRETCHING AND COMPRESSING PRINCIPLES
OPERATION ON Multiply f(x) by ¢ Multiply f(x) by ¢ Multiply x by ¢ Multiply x by ¢
y=fx) (c>1) O<c<l) (c>1) 0<c<1)
NEW EQUATION | vy = cf(x) y=cf(x) y = f(cx) vy = f(cx)
GEOMETRIC Stretches the graph of Compresses the graph of ~ Compresses the graph of Stretches the graph of
EFFECT y = f(x) vertically by a y = f(x) vertically by a y = f(x) horizontally by a  y = f(x) horizontally by a
factor of ¢ factor of 1/¢ factor of ¢ factor of 1/¢
Y y y AY
2] y=2cosx | y=cosx n L
= ) = Ccos 2x 1
1 7=cosx%: ! ‘/yzlcosx 1Y o8y v eos 1 Yy =cos3x
2
wns | AN ARG PR RIS
B v B B I y=cosx
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B SYMMETRY

Explain why the graph of a nonzero
function cannot be symmetric about
the x-axis.

> Figure 0.2.7

A Figure 0.2.8

Figure 0.2.7 illustrates three types of symmetries: symmetry about the x-axis, symmetry
about the y-axis, and symmetry about the origin. As illustrated in the figure, a curve is
symmetric about the x-axis if for each point (x, y) on the graph the point (x, —y) is also
on the graph, and it is symmetric about the y-axis if for each point (x, y) on the graph
the point (—x, y) is also on the graph. A curve is symmetric about the origin if for each
point (x, y) on the graph, the point (—x, —y) is also on the graph. (Equivalently, a graph is
symmetric about the origin if rotating the graph 180° about the origin leaves it unchanged.)
This suggests the following symmetry tests.

y y

(x, ) )L O i JC )

1 x X

i >

Ve
e
e
=) (=x,-y)
Symmetric about Symmetric about Symmetric about
the x-axis the y-axis the origin

0.2.3 THEOREM (Symmetry Tests)

(a) A plane curve is symmetric about the y-axis if and only if replacing x by —x in its
equation produces an equivalent equation.

(b) A plane curve is symmetric about the x-axis if and only if replacing y by —y in its
equation produces an equivalent equation.

(¢) A plane curve is symmetric about the origin if and only if replacing both x by —x
and y by —y in its equation produces an equivalent equation.

» Example 11 Use Theorem 0.2.3 to identify symmetries in the graph of x = y.

Solution. Replacing y by —y yields x = (—y)?, which simplifies to the original equation
x = y2. Thus, the graph is symmetric about the x-axis. The graph is not symmetric about
the y-axis because replacing x by —x yields —x = y?, which is not equivalent to the original
equation x = y2. Similarly, the graph is not symmetric about the origin because replacing x
by —x and y by —y yields —x = (—y)?, which simplifies to —x = y?, and this is again not
equivalent to the original equation. These results are consistent with the graph of x = y?
shown in Figure 0.2.8. «

EVEN AND ODD FUNCTIONS
A function f is said to be an even function if
f(=x) = f(x) ®)

and is said to be an odd function if

f(=x) = —f(x) )

Geometrically, the graphs of even functions are symmetric about the y-axis because replac-
ing x by —x in the equation y = f(x) yields y = f(—x), which is equivalent to the original
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equation y = f(x) by (8) (see Figure 0.2.9). Similarly, it follows from (9) that graphs of odd

functions are symmetric about the origin (see Figure 0.2.10). Some examples of even func-

tions are x2, x*, x°, and cos x; and some examples of odd functions are x3, x5, x7, and sin x.

fex) { } |

| |
/=T
A Figure 0.2.9 This is the graph of an A Figure 0.2.10 This is the graph of
even function since f(—x) = f(x). an odd function since f(—x) = — f(x).

VQUICK CHECK EXERCISES 0.2  (See page 27 for answers.)

1. Let f(x) = 3./x — 2 and g(x) = |x|. In each part, give the 3. The graph of y = 1 + (x — 2)? may be obtained by shift-
formula for the function and state the corresponding domain. ing the graph of y = x2 ________ (left/right) by
(@ f+g _— Domain: _ unit(s) and then shifting thisnew graph_____ (up/down)
® f—g:—_ Domain: by unit(s).
@ fgr— Domain: __ 4. Let
d) f/gs——  Domain: x+1, —2<x<0
2. Let f(x) =2 — x? and g(x) = /x. In each part, give the f@) = Ix — 1], 0<x<?2
formula for the composition and state the corresponding
domain. (a) The letter of the alphabet that most resembles the graph
(@) fog:—  Domain: of fis :
(b) go f: Domain: (b) Is f an even function?
EXERCISE SET 0.2 [ Graphing utility
3. The graph of a function f is shown in the accompanying
1. The graph of a function f is shown in the accompanying figure. Sketch the graphs of the following equations.
figure. Sketch the graphs of the following equations. @ y=fx+1D (b) y = f2x)
@ y=fx)—1 (b) y=flx—1) © y=I1f@) @ y=1-|f)|

© y=1f) d y=f(-1ix) y

y 1

2 -1 3
/ . < Figure Ex-3

-1 2 4. Use the graph in Exercise 3 to sketch the graph of the
< Figure Ex-1 equation y = f(|x]).

2. Use the graph in Exercise 1 to sketch the graphs of the [~ 5-24 Sketch the graph of the equation by translating, reflect-

followi_ng equations. b) v = £ ing, compressing, and stretching the graph of y = x2, y = /x,
@ y=—f(=x) b) y=f2-x y = 1/x,y = |x|, or y = J/x appropriately. Then use a graph-
©y=1-f2-x) ) y=35f2x) ing utility to confirm that your sketch is correct.




5.y=-2(x+1?%-3 6. y=1(x—-37%+2
7.y =142x —x? 8.y:%(x2—2x+3)
9. y=3-+/x+1 10. y=1++/x—4
I y=31/x+1 12. y = —/3x
1

13.y:x_3 14.y:1_x

1 x—1
15.y:2—x+1 16. y = e
17. y=|x+2| -2 18. y=1—|x — 3|
19. y=12x — 1|+ 1 20, y=+/x2—4x+4
2. y=1-23x 2. y=x—-2—
23 y=2+4+Jx+1 24, y+Jx—2=0

25. (a) Sketch the graph of y = x + |x| by adding the corre-
sponding y-coordinates on the graphs of y = x and
y=lxl.

(b) Express the equation y = x + |x| in piecewise form
with no absolute values, and confirm that the graph you
obtained in part (a) is consistent with this equation.

[ 26. Sketch the graph of y = x 4 (1/x) by adding correspond-

ing y-coordinates on the graphsof y = x and y = 1/x. Use
a graphing utility to confirm that your sketch is correct.

27-28 Find formulas for f + g, f — g, fg,and f/g, and state
the domains of the functions.

27. f(x) = 2«/x -1, glx)y=+/x—-1
1
8. f() = 1. 800 =
29. Let f(x) = ﬁ and g(x) = x> + 1. Find
(@ f(g(2) (b) g(f(4) (©) f(f(16)
(d) g(g(0)) (® f2+h ) gB+h).
30. Let g(x) = +/x. Find
(@) g(158 +2) ) g(Wx+2)  (c)3g(5x)
(d) 200 (e) g(gx)) (f) (g(x))*—g(x?)
(&) g(1/yx) (h) g((x — D) (1) gx+h).

31-34 Find formulas for fog and go f, and state the domains
of the compositions

31. f(x) = x? g(x) V1 —x
32. f(x) = \/x -3, gx) =+/x2+3
B0 = o g =

- l1—x
3. f(x) = T2 glx) =

35-40 Express f as a composition of two functions; that is,
find g and % such that f = goh. [Note: Each exercise has more
than one solution. ]

35. (@) f(x)=+x+2 (b) f(x) = |x? —3x +5]
36. (a) f(x) =x"+1 ® ) =—
37. (a) f(x) =sin’x (b) f(x) =

5+ cosx
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38. (a) f(x) =3sin(x?) (b) f(x) =3sin’x +4sinx

39. @) f(x) = (1+sin@d)’  b) ) =V1-Jx
1
40. @) f) =1 (b) f(x) =15 +2x]

41-44 True-False Determine whether the statement is true or
false. Explain your answer.

41. The domain of f + g is the intersection of the domains of
f and g.

42. The domain of f o g consists of all values of x in the domain
of g for which g(x) # 0.

43. The graph of an even function is symmetric about the y-axis.

44. The graph of y = f(x + 2) + 3 is obtained by translating
the graph of y = f(x) right 2 units and up 3 units.

FOCUS ON CONCEPTS

45. Use the data in the accompanying table to make a plot
of y = f(g(x)).

x |3 ]|-2|-1 0| 1 2 3
fx)| -4 |-3|-2|-1] 0 1 2
gx) | -1 0 1 213 |-21]-3

A Table Ex-45
46. Find the domain of go f for the functions f and g in
Exercise 45.

47. Sketch the graph of y = f(g(x)) for the functions
graphed in the accompanying figure.

< Figure Ex-47

48. Sketch the graph of y = g(f(x)) for the functions
graphed in Exercise 47.

49. Use the graphs of f and g in Exercise 47 to esti-
mate the solutions of the equations f(g(x)) =0 and

g(f(x)) =0.
50. Use the table given in Exercise 45 to solve the equations

J(g(x)) =0and g(f(x)) =0.
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51-54 Find
fx+h)— fx) fw) — f(x)
and

h w—Xx

Simplify as much as possible.
51. f(x) =3x2-5 52. f(x) =x%+6x
53. f(x)=1/x 54, f(x)=1/x?

55. Classify the functions whose values are given in the accom-
panying table as even, odd, or neither.

x |3 |2 |-1lo|1]2]3
f@| 5 323 11]3]5
g 4 |1 |20 2 |-1 -4
h)| 2 |-5 | 8 |2 | 8 |=5 | 2
A Table Ex-55

56. Complete the accompanying table so that the graph of
y = f(x) is symmetric about

(a) the y-axis (b) the origin.

x [-3|-=2|-1|0/] 1| 2|3

fo| 1 -1]0 -5

A Table Ex-56

57. The accompanying figure shows a portion of a graph. Com-
plete the graph so that the entire graph is symmetric about
(a) the x-axis (b) the y-axis (c) the origin.

58. The accompanying figure shows a portion of the graph of a
function f. Complete the graph assuming that
(a) f is an even function (b) f is an odd function.

y

A Figure Ex-57 A Figure Ex-58

59. In each part, classify the function as even, odd, or neither.

@ f(x)=x? (b) f(x) = x>

(© fx) = Ix]| d f)=x+1
XS—X

(e) f(X)=1+x2 ) flx)=2

60. Suppose that the function f has domain all real numbers.
Determine whether each function can be classified as even
or odd. Explain.

J&) + f(=x) (b) h(x) = J) — f(=x)

(a) glx) = > >

61. Suppose that the function f has domain all real numbers.
Show that f can be written as the sum of an even function
and an odd function. [Hint: See Exercise 60.]

62-63 Use Theorem 0.2.3 to determine whether the graph has
symmetries about the x-axis, the y-axis, or the origin.
62. (a) x =5y*+9 (b) x2—=2y*=3
(©) xy=5
63. (a) x* =2y +y
© y*=Ix| -5

X
b =
() y 3122

M 64-65 (i) Use a graphing utility to graph the equation in the first

quadrant. [Note: To do this you will have to solve the equation
for y in terms of x.] (ii) Use symmetry to make a hand-drawn
sketch of the entire graph. (iii) Confirm your work by generating
the graph of the equation in the remaining three quadrants.

64. 9x2 +4y? =36 65. 4x> +16y* =16

[~ 66. The graph of the equation x2/3 + y¥3 = 1, which is shown

in the accompanying figure, is called a four-cusped hypo-

cycloid.

(a) Use Theorem 0.2.3 to confirm that this graph is sym-
metric about the x-axis, the y-axis, and the origin.

(b) Find a function f whose graph in the first quadrant
coincides with the four-cusped hypocycloid, and use a
graphing utility to confirm your work.

(c) Repeat part (b) for the remaining three quadrants.

y

Four-cusped hypocycloid
ped vpocy < Figure Ex-66

67. The equation y = | f(x)| can be written as

_ f), f&x)=0
—fx), flx)<0

which shows that the graph of y = | f(x)| can be obtained
from the graph of y = f(x) by retaining the portion that lies
on or above the x-axis and reflecting about the x-axis the
portion that lies below the x-axis. Use this method to obtain
the graph of y = |2x — 3| from the graph of y = 2x — 3.

68-69 Use the method described in Exercise 67.
68. Sketch the graph of y = |1 — x?|.
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69. Sketch the graph of (@) f(x)=|x] (b) f(x) = |x?%]
(@) f(x)=cosx] (b) f(x) =cosx +|cosx|. © fx)=1x]? (d) f(x) = [sinx]

70. The greatest integer function, |x]|, is defined to be the 71. Isitever true that fog = go f if f and g are nonconstant
greatest integer that is less than or equal to x. For exam- functions? If not, prove it; if so, give some examples for
ple, [2.7] =2, |—2.3] = —3,and |4] = 4. In each part, which it is true.

sketch the graph of y = f(x).

I/ QUICK CHECK ANSWERS 0.2

L@ (f+e@)=3/x—2+xx>0 (1) (f—g)x) =3J/x—2—x; x>0 (c) (fg)(x) =3x¥?—2x; x>0

2
@ (f/9)x) = %; x>0 2.@) (fog)(x)=2—x; x>0 (b) (gof)x)=+2—x2 —«/QSx < V2
3. right; 2; up; 1 4. (a) W (b) yes

m FAMILIES OF FUNCTIONS

Functions are often grouped into families according to the form of their defining formulas
or other common characteristics. In this section we will discuss some of the most basic
families of functions.

Ay B FAMILIES OF CURVES
The graph of a constant function f(x) = c is the graph of the equation y = ¢, which is
(0, ¢) y=c the horizontal line shown in Figure 0.3.1a. If we vary ¢, then we obtain a set or family of
horizontal lines such as those in Figure 0.3.15.

Constants that are varied to produce families of curves are called parameters. For
example, recall that an equation of the form y = mx + b represents a line of slope m and
y-intercept b. If we keep b fixed and treat m as a parameter, then we obtain a family of
lines whose members all have y-intercept b (Figure 0.3.2a), and if we keep m fixed and
treat b as a parameter, we obtain a family of parallel lines whose members all have slope m
(Figure 0.3.2b).

(@) y y
y
I c=4
— /
c=2 / X X
c=1
c=0 X
c=-1
Py
c=-3
- c=-45
i The family y = mx + b The family y = mx + b
(b) (b fixed and m varying) (m fixed and b varying)

A Figure 0.3.1 > Figure 0.3.2 (a) ()
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Il POWER FUNCTIONS; THE FAMILY y = x"
A function of the form f(x) = x?, where p is constant, is called a power function. For the
moment, let us consider the case where p is a positive integer, say p = n. The graphs of
the curves y = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 0.3.3. The first graph is the
line with slope 1 that passes through the origin, and the second is a parabola that opens up

and has its vertex at the origin (see Web Appendix H).

y o y=x y o y=x y y=x \y Y= y y=x
1F 1F 1 / k s 1F
X X X X
1 1 1 1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1 1 -1 1
-1+ -1+ -1} -1+ -1+
A Figure 0.3.3
For n > 2 the shape of the curve y = x" depends on whether n is even or odd (Fig-
ure 0.3.4):

e Foreven values of n, the functions f(x) = x" are even, so their graphs are symmetric
about the y-axis. The graphs all have the general shape of the graph of y = x2, and
each graph passes through the points (—1, 1), (0, 0), and (1, 1). As n increases, the
graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>1landx < —1.

e For odd values of n, the functions f(x) = x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = x3, and
each graph passes through the points (—1, —1), (0, 0), and (1, 1). As n increases,
the graphs become flatter over the interval —1 < x < 1 and steeper over the intervals
x>landx < —1.

5
I3
Y= x7 y yx: X
1
1 1 Y
-1 1
! -1
-1
The family y = x" The family y = x"
> Figure 0.3.4 (n even) (n odd)

REMARK

The flattening and steepening effects can be understood by considering what happens when a number

x is raised to higher and higher powers: If —1 < x < 1, then the absolute value of x" decreases as
n increases, thereby causing the graphs to become flatter on this interval as n increases (try raising 1
or —3 to higher and higher powers). On the other hand, if x > 1 or x < —1, then the absolute value
of x" increases as n increases, thereby causing the graphs to become steeper on these intervals as n
increases (try raising 2 or —2 to higher and higher powers).
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If p is a negative integer, say p = —n, then the power functions f(x) = x? have the form
f(x) =x" = 1/x". Figure 0.3.5 shows the graphs of y = 1/x and y = 1/x2. The graph
of y = 1/x is called an equilateral hyperbola (for reasons to be discussed later).

As illustrated in Figure 0.3.5, the shape of the curve y = 1/x" depends on whether 7 is

even or odd:

¢ For even values of 7, the functions f(x) = 1/x" are even, so their graphs are sym-
metric about the y-axis. The graphs all have the general shape of the curve y = 1/x2,
and each graph passes through the points (—1, 1) and (1, 1). As n increases, the
graphs become steeper over the intervals —1 <x < 0 and 0 < x < 1 and become

flatter over the intervals x > 1 and x < —1.

By considering the value of 1/x" for a
fixed x as n increases, explain why the
graphs become flatter or steeper as de-
scribed here for increasing values of n.

* For odd values of n, the functions f(x) = 1/x" are odd, so their graphs are symmetric
about the origin. The graphs all have the general shape of the curve y = 1/x, and
each graph passes through the points (1, —1) and (—1, —1). As n increases, the
graphs become steeper over the intervals —1 < x < 0 and 0 < x < 1 and become

flatter over the intervals x > 1 and x < —1.

¢ For both even and odd values of n the graph y = 1/x" has a break at the origin (called
a discontinuity), which occurs because division by zero is undefined.

y = 1/x?

LD ., n -1, 1

y=1/x
(1,1
X
=1,-1)
A Figure 0.3.5
Table 0.3.1
x| 08 |1]25| 4 [625|10
y| 6255 2 |1.25| 08 |05

The family y = 1/x"
(n even)

Il INVERSE PROPORTIONS

Tyy= 1/x3

ey =1/x

=1,-D

The family y = 1/x"
(n odd)

Recall that a variable y is said to be inversely proportional to a variable x if there is a
positive constant k, called the constant of proportionality, such that

y=-
X

ey

Since k is assumed to be positive, the graph of (1) has the same shape as y = 1/x but is
compressed or stretched in the y-direction. Also, it should be evident from (1) that doubling

x multiplies y by 1, tripling x multiplies y by 1, and so forth.

Equation (1) can be expressed as xy = k, which tells us that the product of inversely
proportional variables is a positive constant. This is a useful form for identifying inverse

proportionality in experimental data.

» Example 1 Table 0.3.1 shows some experimental data.

(a) Explain why the data suggest that y is inversely proportional to x.

(b) Express y as a function of x.

(c) Graph your function and the data together for x > 0.
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y
y=+x
a0 x
(@)
—)7
y= 3
(1, 1) x
(b)
)7
y=+x
, 1
y=-Vx
(©
A Figure 0.3.8
y
4
3k y=x3
2 -
1 -
X
1 1 1 1 1 1 1 1
-4 -3 -2 -1 1 2 3 4
A Figure 0.3.9
TECHNOLOGY
MASTERY

Solution. For every data point we have xy = 5, so y is inversely proportional to x and
y = 5/x. The graph of this equation with the data points is shown in Figure 0.3.6. <«

Inverse proportions arise in various laws of physics. For example, Boyle’s law in physics
states that if a fixed amount of an ideal gas is held at a constant temperature, then the product
of the pressure P exerted by the gas and the volume V that it occupies is constant; that is,

PV =k

This implies that the variables P and V are inversely proportional to one another. Fig-
ure 0.3.7 shows a typical graph of volume versus pressure under the conditions of Boyle’s
law. Note how doubling the pressure corresponds to halving the volume, as expected.

P (Pressure)

10
9
8
7
6
5 2Py |
N |
3 \
Py —
: 1
Ir |
N N T T T T M R X 1 [ V (Volume)
123 45678 910 §V0 Vo
A Figure 0.3.6 A Figure 0.3.7 Doubling pressure corresponds

to halving volume

POWER FUNCTIONS WITH NONINTEGER EXPONENTS
If p = 1/n, where n is a positive integer, then the power functions f(x) = x” have the

form F) = Pl _ oy

In particular, if n = 2, then f(x) = 4/, and if n = 3, then f(x) = J/x. The graphs of
these functions are shown in parts (a) and () of Figure 0.3.8.

Since every real number has a real cube root, the domain of the function f(x) = J/x
is (—oo, +0), and hence the graph of y = Q/f extends over the entire x-axis. In contrast,
the graph of y = /x extends only over the interval [0, +o) because /x is imaginary for
negative x. As illustrated in Figure 0.3.8c, the graphs of y = \/x and y = —./x form the
upper and lower halves of the parabola x = y?. In general, the graph of y = /x extends
over the entire x-axis if n is odd, but extends only over the interval [0, +) if n is even.

Power functions can have other fractional exponents. Some examples are

f)y =3 fx) = V3, f)y=x""8 @

The graph of f(x) = x?3 is shown in Figure 0.3.9. We will discuss expressions involving
irrational exponents later.

Graphing utilities sometimes omit portions of the graph of a function involving fractional exponents
(or radicals). If f(x) = x?/, where p/q is a positive fraction in lowest terms, then you can circumvent
this problem as follows:

 If pis even and g is odd, then graph g(x) = |x|7/? instead of f(x).
e If pisodd and ¢ is odd, then graph g(x) = (|x|/x)|x|"/¢ instead of f(x).

Use a graphing utility to generate graphs of f(x) = +/x? and f(x) = x~7/8 that show all of their signif-
icant features.



A more detailed review of polynomials
appears in Appendix C.

The constant 0 is a polynomial called
the zero polynomial. In this text we
will take the degree of the zero poly-
nomial to be undefined. Other texts
may use different conventions for the
degree of the zero polynomial.
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H POLYNOMIALS

A polynomialin x is a function that is expressible as a sum of finitely many terms of the form
cx", where c is a constant and n is a nonnegative integer. Some examples of polynomials

are x4+ 1, 3x2+5x—+2, X%, 4(=4x%, 5x7—x*+3

The function (x> — 4)? is also a polynomial because it can be expanded by the binomial
formula (see the inside front cover) and expressed as a sum of terms of the form cx”:

(2 =43 = (2 =30’ @) + 3@ — @) =x — 12x* +48x2 — 64  (3)

A general polynomial can be written in either of the following forms, depending on
whether one wants the powers of x in ascending or descending order:

co+c1x +eax? 4+ opx”

X"+ ey X" eix + ¢
The constants ¢y, ¢y, . .., ¢, are called the coefficients of the polynomial. When a polyno-
mial is expressed in one of these forms, the highest power of x that occurs with a nonzero
coefficient is called the degree of the polynomial. Nonzero constant polynomials are con-

sidered to have degree 0, since we can write ¢ = cx”. Polynomials of degree 1, 2, 3, 4,
and 5 are described as linear, quadratic, cubic, quartic, and quintic, respectively. For

example
pe, 34 5x x2—3x+1 2% =7
Has degree 1 (linear) Has degree 2 (quadratic) Has degree 3 (cubic)
8x* —9x3 +5x —3 V343440 (x2 —4)°
Has degree 4 (quartic) Has degree 5 (quintic) Has degree 6 [see (3)]

The natural domain of a polynomial in x is (—ce, 4+0), since the only operations involved
are multiplication and addition; the range depends on the particular polynomial. We already
know that the graphs of polynomials of degree 0 and 1 are lines and that the graphs of
polynomials of degree 2 are parabolas. Figure 0.3.10 shows the graphs of some typical
polynomials of higher degree. Later, we will discuss polynomial graphs in detail, but for
now it suffices to observe that graphs of polynomials are very well behaved in the sense that
they have no discontinuities or sharp corners. As illustrated in Figure 0.3.10, the graphs of
polynomials wander up and down for awhile in a roller-coaster fashion, but eventually that
behavior stops and the graphs steadily rise or fall indefinitely as one travels along the curve
in either the positive or negative direction. We will see later that the number of peaks and
valleys is less than the degree of the polynomial.

y y Ay

A Figure 0.3.10

oA VL Al
~

Il RATIONAL FUNCTIONS

A function that can be expressed as a ratio of two polynomials is called a rational function.
If P(x) and Q(x) are polynomials, then the domain of the rational function
P(x)

T =56
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consists of all values of x such that Q(x) # 0. For example, the domain of the rational
function

2
x4 2x
fO=——

consists of all values of x, except x = 1 and x = —1. Its graph is shown in Figure 0.3.11

along with the graphs of two other typical rational functions.
The graphs of rational functions with nonconstant denominators differ from the graphs
of polynomials in some essential ways:

e Unlike polynomials whose graphs are continuous (unbroken) curves, the graphs of
rational functions have discontinuities at the points where the denominator is zero.

e Unlike polynomials, rational functions may have numbers at which they are not
defined. Near such points, many rational functions have graphs that closely approxi-
mate a vertical line, called a vertical asymptote. These are represented by the dashed
vertical lines in Figure 0.3.11.

e Unlike the graphs of nonconstant polynomials, which eventually rise or fall indefi-
nitely, the graphs of many rational functions eventually get closer and closer to some
horizontal line, called a horizontal asymptote, as one traverses the curve in either
the positive or negative direction. The horizontal asymptotes are represented by the
dashed horizontal lines in the first two parts of Figure 0.3.11. In the third part of the
figure the x-axis is a horizontal asymptote.

\ | y Y
g4t | |
| | 4+ |
N L }
NI
,,,,,,, Nl TTe— [ S
TR T T ! L X [T R N e R R B A R ’:
-5 \ \ 5 -5 B } 7 —4
| | u
I Y B \ B
I LY -3 |
\ \ \ L
4111
| I
y_x2+2x y= -1 y= 3
x2-1 x2-2x-3 X241
A Figure 0.3.11

Il ALGEBRAIC FUNCTIONS

In this text we will assume that the in-
dependent variable of a trigonometric
function is in radians unless otherwise
stated. A review of trigonometric func-
tions can be found in Appendix B.

Functions that can be constructed from polynomials by applying finitely many algebraic
operations (addition, subtraction, multiplication, division, and root extraction) are called
algebraic functions. Some examples are

f)=vVx2—4, f(x)=3Jx2+x),

As illustrated in Figure 0.3.12, the graphs of algebraic functions vary widely, so it is difficult
to make general statements about them. Later in this text we will develop general calculus
methods for analyzing such functions.

) =x¥3(x +2)

THE FAMILIES y = A sin Bx AND y = A cos Bx
Many important applications lead to trigonometric functions of the form

f(x)=Asin(Bx —C) and g(x)=Acos(Bx —C) “)

where A, B, and C are nonzero constants. The graphs of such functions can be obtained by
stretching, compressing, translating, and reflecting the graphs of y = sinx and y = cosx
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y
4+
y y s
5 [~ 15 -
4r 10 2]
3+ \ sk
2F X
| | | x
L x -3 =2 12 L L L
[ | | [ S5 -4 -3 -2 1 1
-5-4-3-2-1 1 2 3 45
y= \x2—4 y=3%/f(2+x) y=)c2/3(x+2)2
A Figure 0.3.12

appropriately. To see why this is so, let us start with the case where C = 0 and consider
how the graphs of the equations

y=AsinBx and y = AcosBx

relate to the graphs of y = sinx and y = cos x. If A and B are positive, then the effect of the
constant A is to stretch or compress the graphs of y = sin x and y = cos x vertically and the
effect of the constant B is to compress or stretch the graphs of sin x and cos x horizontally.
For example, the graph of y = 2 sin 4x can be obtained by stretching the graph of y = sin x
vertically by a factor of 2 and compressing it horizontally by a factor of 4. (Recall from
Section 0.2 that the multiplier of x stretches when it is less than 1 and compresses when it is
greater than 1.) Thus, as shown in Figure 0.3.13, the graph of y = 2 sin 4x varies between
—2 and 2, and repeats every 27r/4 = 7/2 units.

y =2sin4x

y =sinx

» Figure 0.3.13

In general, if A and B are positive numbers, then the graphs of

y=AsinBx and y = AcosBx

oscillate between —A and A and repeat every 27/ B units, so we say that these functions
have amplitude A and period 27/ B. In addition, we define the frequency of these func-
tions to be the reciprocal of the period, that is, the frequency is B/2m. If A or B is negative,
then these constants cause reflections of the graphs about the axes as well as compressing
or stretching them; and in this case the amplitude, period, and frequency are given by

B|

. 2w |
period = —, frequency = p

amplitude = |A]|, i3]

» Example2 Make sketches of the following graphs that show the period and amplitude.

(a) y =3sin2nx (b) y = —3co0s0.5x (¢) y=1+sinx
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Solution (a). The equation is of the form y = A sin Bx with A = 3 and B = 27, so the
graph has the shape of a sine function, but it has an amplitude of A = 3 and a period of
27/B = 27/2m = 1 (Figure 0.3.14a).

Solution (b). The equation is of the form y = A cos Bx with A = —3 and B = 0.5, so
the graph has the shape of a cosine curve that has been reflected about the x-axis (be-
cause A = —3 is negative), but with amplitude |A| = 3 and period 277/ B = 27/0.5 = 47
(Figure 0.3.14D).

Solution (c¢). The graph has the shape of a sine curve that has been translated up 1 unit
(Figure 0.3.14c¢). «

e N3 TN e
Amplitudel ]\ /\ /\ /\JAmplitude Amplitude
X X
| |

A Figure 0.3.14

TR/ VARN

Period Period
(@) (b) ()

B THE FAMILIES y = A sin(Bx - C) AND y = A cos(Bx - C)

To investigate the graphs of the more general families
y=Asin(Bx —C) and y= Acos(Bx —C)

it will be helpful to rewrite these equations as

SN Y ORI YA

In this form we see that the graphs of these equations can be obtained by translating the
graphs of y = Asin Bx and y = A cos Bx to the left or right, depending on the sign of
C/B. For example, if C/B > 0, then the graph of

y = Asin[B(x — C/B)] = Asin(Bx — C)

can be obtained by translating the graph of y = A sin Bx to the right by C/B units (Fig-
ure 0.3.15). If C/B < 0, the graph of y = Asin(Bx — C) is obtained by translating the
graph of y = A sin Bx to the left by |C/B]| units.

Amplitude = A
x
\y =Asin(Bx—-C)
y = Asin Bx

» Example 3 Find the amplitude and period of

g
y=3005(2x+5>

> Figure 0.3.15
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and determine how the graph of y = 3 cos 2x should be translated to produce the graph of
this equation. Confirm your results by graphing the equation on a calculator or computer.

Solution.

which is of the form

VQUICK CHECK EXERCISES 0.3

NN
IS
(3]
3

(See page 38 for answers.)

The equation can be rewritten as

oy y =3cos [Ex - (—g)] — 3cos [2 (x _ (—g))]

IREVATR

A Figure 0.3.16

s aonfn (-]

with A =3, B =2, and C/B = —n/4. It follows that the amplitude is A = 3, the period
is 2/ B = 7, and the graph is obtained by translating the graph of y = 3 cos 2x left by
|C/B| = 7/4 units (Figure 0.3.16). <«

1.

2.
3.

EXERCISE SET 0.3

Consider the family of functions y = x”, where 7 is an in-
teger. The graphs of y = x” are symmetric with respect to
the y-axis if n is . These graphs are symmetric
with respect to the origin if n is . The y-axis is a
vertical asymptote for these graphs if n is

What is the natural domain of a polynomial?

Consider the family of functions y = x'/ where n is a

nonzero integer. Find the natural domain of these functions
ifnis

(a) positive and even
(c) negative and even

(b) positive and odd
(d) negative and odd.

~ Graphing Utility

. The graph of y = A sin Bx has amplitude

. Classify each equation as a polynomial, rational, algebraic,

or not an algebraic function.

(@) y=4/x+2
(c) y = 5x3 4 cos4x

b) y=+3x*—x+1

X245
d y=
dy P

(e) y=3x>+4x72
and is
periodic with period

1.

(a) Find an equation for the family of lines whose members
have slope m = 3.

(b) Find an equation for the member of the family that
passes through (—1, 3).

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

. Find an equation for the family of lines whose members are

perpendicular to those in Exercise 1.

. (a) Find an equation for the family of lines with y-intercept

b=2.

(b) Find an equation for the member of the family whose
angle of inclination is 135°.

(c) Sketch some members of the family, and label them
with their equations. Include the line in part (b).

. Find an equation for the family of lines that pass through the

intersection of 5x —3y + 11 =0and 2x — 9y +7 =0.

. The U.S. Internal Revenue Service uses a 10-year linear de-

preciation schedule to determine the value of various busi-
ness items. This means that an item is assumed to have a
value of zero at the end of the tenth year and that at inter-
mediate times the value is a linear function of the elapsed
time. Sketch some typical depreciation lines, and explain
the practical significance of the y-intercepts.

. Find all lines through (6, —1) for which the product of the

x- and y-intercepts is 3.

4. Find an equation for

(a) the family of lines that pass through the origin

(b) the family of lines with x-intercept a = 1

(c) the family of lines that pass through the point (1, —2)
(d) the family of lines parallel to 2x + 4y = 1.

5. Find an equation for the family of lines tangent to the circle
with center at the origin and radius 3.

FOCUS ON CONCEPTS

9-10 State a geometric property common to all lines in the
family, and sketch five of the lines.
9. (a) The family y = —x + b
(b) The family y = mx — 1
(c) The family y = m(x +4) +2
(d) The family x — ky =1
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10. (a) The family y =5
(b) The family Ax +2y+1=20
(c) The family 2x + By + 1 =0
(d) The family y — 1 = m(x + 1)

11. In each part, match the equation with one of the accom-

panying graphs.

@ y=x (b) y =2x°

© y=—1/x8 (d) y=val -1

© y=Vx-2 (f) y=—x7

y y y

. : ;
T

N~

v

’

A Figure Ex-11

VI

12. The accompanying table gives approximate values of three
functions: one of the form kx2, one of the form kx—3, and
one of the form kx*2. Identify which is which, and estimate
k in each case.

x [ 025 | 037 | 21 4.0 5.8 6.2 79 9.3
fx) | 640 197 | 1.08 | 0.156 {0.0513|0.0420|0.0203|0.0124
g(x) [0.0312]0.0684| 2.20 | 8.00 | 16.8 | 19.2 | 31.2 | 432
h(x) | 0.250 | 0.450 | 6.09 | 16.0 | 27.9 | 30.9 | 44.4 | 56.7

A Table Ex-12

4 13-14 Sketch the graph of the equation for n = 1, 3, and 5 in
one coordinate system and for n = 2, 4, and 6 in another coordi-
nate system. If you have a graphing utility, use it to check your
work.

13. (a)
14. (a) y =2x"
© y=-=30x+2"
15. (a) Sketch the graph of y = ax? fora = £1, £2, and £3
in a single coordinate system.
(b) Sketch the graph of y = x> + b for b = &1, £2, and
=43 in a single coordinate system.
(c) Sketch some typical members of the family of curves
y =ax>+b.
Sketch the graph of y = a+/x fora = +1, £2, and +3
in a single coordinate system.

y=—x" (b) y=2x"  (¢) y=(x— D
(b) y=—x""

16. (a)

(b) Sketch the graph of y = /x + b for b = £1, +2, and
43 in a single coordinate system.
(c) Sketch some typical members of the family of curves

y =a/x +b.

[ 17-18 Sketch the graph of the equation by making appropriate
transformations to the graph of a basic power function. If you
have a graphing utility, use it to check your work.

17. (@) y =2(x +1)2 b) y=-3x-2)°

(C))’:m (d)y:m
18. @) y=1—+x+2 b)) y=1-—Ix+2
5 2
(C))’=m (d)y=m

19. Use the graph of y = /x to help sketch the graph of

y = lxl.
20. Use the graph of y = 3/x to help sketch the graph of
y = Il

21. Asdiscussed in this section, Boyle’s law states that at a con-
stant temperature the pressure P exerted by a gas is related
to the volume V by the equation PV = k.

(a) Find the appropriate units for the constant k if pressure
(which is force per unit area) is in newtons per square
meter (N/m?) and volume is in cubic meters (m?).

(b) Find k if the gas exerts a pressure of 20,000 N/m? when
the volume is 1 liter (0.001 m?).

(c) Make a table that shows the pressures for volumes of
0.25,0.5, 1.0, 1.5, and 2.0 liters.

(d) Make a graph of P versus V.

22. A manufacturer of cardboard drink containers wants to con-
struct a closed rectangular container that has a square base
and will hold 11—0 liter (100 cm?). Estimate the dimension of
the container that will require the least amount of material
for its manufacture.

23-24 A variable y is said to be inversely proportional to the
square of a variable x if y is related to x by an equation of
the form y = k/x?%, where k is a nonzero constant, called the
constant of proportionality. This terminology is used in these
exercises.

23. According to Coulomb’s law, the force F of attraction be-
tween positive and negative point charges is inversely pro-
portional to the square of the distance x between them.

(a) Assuming that the force of attraction between two point
charges is 0.0005 newton when the distance between
them is 0.3 meter, find the constant of proportionality
(with proper units).

(b) Find the force of attraction between the point charges
when they are 3 meters apart.

(c) Make a graph of force versus distance for the two
charges.

(cont.)



24.

(d) What happens to the force as the particles get closer and
closer together? What happens as they get farther and
farther apart?

It follows from Newton’s Law of Universal Gravitation that
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4 30. Find an equation of the form y = k/(x> + bx +¢)

whose graph is a reasonable match to that in the ac-
companying figure. If you have a graphing utility, use
it to check your work.

the weight W of an object (relative to the Earth) is inversely Ay
proportional to the square of the distance x between the \ \
object and the center of the Earth, that is, W = C/ x2. i i
(a) Assuming that a weather satellite weighs 2000 pounds ! !
on the surface of the Earth and that the Earth is a sphere | |

of radius 4000 miles, find the constant C. ] { . { 1
\ \
\ \
\ \
\ \
\ \
\ \
\ \

Y =

(b) Find the weight of the satellite when it is 1000 miles
above the surface of the Earth.

(c) Make a graph of the satellite’s weight versus its distance
from the center of the Earth.

(d) Is there any distance from the center of the Earth at
which the weight of the satellite is zero? Explain your
reasoning.

< Figure Ex-30

31-32 Find an equation of the form y = D + A sin Bx or
y = D + A cos Bx for each graph.

25-28 True-False Determine whether the statement is true or 31.
5 4
s £ /\ s

false. Explain your answer. 3%\
Vs \/ ' T
-3 s 2
Not drawn to scale

Not drawn to scale

25. Each curve in the family y = 2x + b is parallel to the line
y = 2x.

26. Each curve in the family y = x2 4 bx + ¢ is a translation
of the graph of y= x2. Not drawn to scale

27. If a curve passes through the point (2, 6) and y is inversely (a) (b) (c)
proportional to x, then the constant of proportionality is 3. A Figure Ex-31

28. Curves in the family y = —5 sin(Amwx) have amplitude 5 3

and period 2/|A].

y
FOCUS ON CONCEPTS 2 | 3%\ sg
L1z | \\\//‘ X A i X
T
2 _1F o E/ \\5
-5 J

Not drawn to scale

29. In each part, match the equation with one of the accom- |
panying graphs, and give the equations for the horizontal
and vertical asymptotes.

Not drawn to scale Not drawn to scale

@ y= b y= 1 @ ®) ©
x2—x =2 x2—x—6 A Figure Ex-32
9t 4 gure Ex-
© vy=—= d y= :
x*+1 (x +2)2 33. In each part, find an equation for the graph that has the

form y = yo + Asin(Bx — C).

y

WAV
\/2;:

orn -1 I/ RN

-1
Not drawn to scale
(a) () (©)

A Figure Ex-33

Not drawn to scale Not drawn to scale

34. In the United States, a standard electrical outlet supplies
sinusoidal electrical current with a maximum voltage of
V = 120+/2 volts (V) ata frequency of 60 hertz (Hz). Write
an equation that expresses V as a function of the time ¢, as-
suming that V. =0 1if t = 0. [Note: 1 Hz = 1 cycle per
second. ]

A Figure Ex-29
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M 35-36 Find the amplitude and period, and sketch at least two arise in the study of vibrations and other periodic motion.
periods of the graph by hand. If you have a graphing utility, use Express the equation

it to check your work.

x = «/Esin27t+\/gcos2m

35. (a) y =3sindx (b) y =—2cosmx in the form x = A sin(wt + ), and use a graphing utility to

(c) y =2+ cos (%)

36. (a) y=—1—4sin2x (b) y = §cos(3x —m)

(©) y = —4sin (% n 271)
[ 37. Equations of the form

confirm that both equations have the same graph.

B 38. Determine the number of solutions of x = 2 sin x, and use
a graphing or calculating utility to estimate them.

x = A;sinwt + A, cos wt

l/ QUICK CHECK ANSWERS 0.3

1. even; odd; negative 2. (—oo, +) 3. (a) [0, ) (b) (—oo, +2) (c) (0, +2) (d) (—ow,0)U (0, +x) 4. (a) algebraic
(b) polynomial (c) not algebraic (d) rational (e) rational 5. |A|; 27/|B|

m INVERSE FUNCTIONS; INVERSE TRIGONOMETRIC FUNCTIONS

y=x+1

A Figure 0.4.1

In everyday language the term “inversion” conveys the idea of a reversal. For example,
in meteorology a temperature inversion is a reversal in the usual temperature properties
of air layers, and in music a melodic inversion reverses an ascending interval to the
corresponding descending interval. In mathematics the term inverse is used to describe
functions that reverse one another in the sense that each undoes the effect of the other. In
this section we discuss this fundamental mathematical idea. In particular, we introduce
inverse trigonometric functions to address the problem of recovering an angle that could
produce a given trigonometric function value.

INVERSE FUNCTIONS

The idea of solving an equation y = f(x) for x as a function of y, say x = g(y), is one
of the most important ideas in mathematics. Sometimes, solving an equation is a simple
process; for example, using basic algebra the equation

y=x+1 y=f)
can be solved for x as a function of y:
x=Jy—1 [x=s

The first equation is better for computing y if x is known, and the second is better for
computing x if y is known (Figure 0.4.1).

Our primary interest in this section is to identify relationships that may exist between
the functions f and g when an equation y = f(x) is expressed as x = g(y), or conversely.
For example, consider the functions f(x) = x*> + 1 and g(y) = /y — I discussed above.
When these functions are composed in either order, they cancel out the effect of one another
in the sense that

g(fx)) = \3/f(x)— 1= \3/(x3+1)— 1 = x
FleON =lgMP+1=(/y—1)P+1=y

Pairs of functions with these two properties are so important that there is special terminology
for them.

ey



WARNING

If f is a function, then the —1 in the
symbol f~! always denotes an inverse
and never an exponent. That is,

1
f ’l(x) never means ——

Jx)

The results in Example 2 should make
sense to you intuitively, since the oper-
ations of multiplying by 2 and multiply-
ing by % in either order cancel the effect
of one another, as do the operations of
cubing and taking a cube root.
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0.4.1 perFINITION If the functions f and g satisfy the two conditions
g(f(x)) = x for every x in the domain of f
f(g(y)) =y for every y in the domain of g

then we say that f'is an inverse of g and g is an inverse of f or that f and g are inverse
functions.

It can be shown (Exercise 60) that if a function f has an inverse, then that inverse is
unique. Thus, if a function f has an inverse, then we are entitled to talk about “the” inverse
of f, in which case we denote it by the symbol f~'.

» Example 1 The computations in (1) show that g(y) = Yy —1 is the inverse of
f(x) = x> 4+ 1. Thus, we can express g in inverse notation as

o=Jy-1

and we can express the equations in Definition 0.4.1 as

f7'(f(x)) = x forevery x in the domain of f @
f(f7'(») =y forevery y in the domain of f~!

We will call these the cancellation equations for f and f~'. <«

CHANGING THE INDEPENDENT VARIABLE

The formulas in (2) use x as the independent variable for f and y as the independent variable
for f~!. Although it is often convenient to use different independent variables for f and
f~!, there will be occasions on which it is desirable to use the same independent variable
for both. For example, if we want to graph the functions f and f~' together in the same
xy-coordinate system, then we would want to use x as the independent variable and y as
the dependent variable for both functions. Thus, to graph the functions f(x) = x> + 1 and
f~'(y) = ¥y =T of Example 1 in the same xy-coordinate system, we would change the
independent variable y to x, use y as the dependent variable for both functions, and graph

the equations y=x34+1 and y= Ve —1

We will talk more about graphs of inverse functions later in this section, but for reference
we give the following reformulation of the cancellation equations in (2) using x as the
independent variable for both f and f~!:

f'(f(x)) =x forevery x in the domain of f

3
f(ffl(x)) =x forevery x in the domain of f~! )

» Example 2 Confirm each of the following.
(a) The inverse of f(x) =2xis f~'(x) = ix.

(b) The inverse of f(x) =x3is f~'(x) = x'/3.

Solution (a).

FUF@) = £ Qo) = L@x) =x
U @) = F(b) =2(3) =
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Solution (b). FUF) = £ @) = (x3)1/3 .

FOf7 ) = f(xl/S) = ()61/3)3 —x <

In general, if a function f has an inverse
and f(a) = b, then the procedure in
Example 3 shows that a = f~!(b);
that is, f~! maps each output of f
back into the corresponding input (Fig-
ure 0.4.2).

A Figure 0.4.2 If f maps a to b, then
£~ maps b back to a.

An alternative way to obtain a formula
for f~!(x) with x as the independent
variable is to reverse the roles of x and
y at the outset and solve the equation
x = f(y) for y as a function of x.

» Example 3 Given that the function f has an inverse and that f(3) = 5, find 715).

Solution. Apply f~' to both sides of the equation f(3) = 5 to obtain

e =176
and now apply the first equation in (3) to conclude that f~'(5) = 3. <«

DOMAIN AND RANGE OF INVERSE FUNCTIONS
The equations in (3) imply the following relationships between the domains and ranges of

and f1:
f f domain of f~! = range of f @

range of f~! = domain of f

One way to show that two sets are the same is to show that each is a subset of the other.
Thus we can establish the first equality in (4) by showing that the domain of f~! is a subset
of the range of f and that the range of f is a subset of the domain of f~'. We do this
as follows: The first equation in (3) implies that £~ is defined at f(x) for all values of x
in the domain of f, and this implies that the range of f is a subset of the domain of f~!.
Conversely, if x is in the domain of f~!, then the second equation in (3) implies that x is
in the range of f because it is the image of f~'(x). Thus, the domain of f~! is a subset of
the range of f. We leave the proof of the second equation in (4) as an exercise.

A METHOD FOR FINDING INVERSE FUNCTIONS

At the beginning of this section we observed that solving y = f(x) = x> + 1 for x as a
function of y produces x = f~'(y) = J/y — 1. The following theorem shows that this is
not accidental.

0.4.2 THEOREM Ifan equation’y = f(x) can be solved for x as a function of y, say
x = g(v), then f has an inverse and that inverse is g(y) = f~'(y).

PROOF Substituting y = f(x) intox = g(y) yields x = g(f(x)), which confirms the first
equation in Definition 0.4.1, and substituting x = g(y) into y = f(x) yields y = f(g(y)),
which confirms the second equation in Definition 0.4.1.

Theorem 0.4.2 provides us with the following procedure for finding the inverse of a
function.

A Procedure for Finding the Inverse of a Function f
Step 1. Write down the equation y = f(x).
Step 2. If possible, solve this equation for x as a function of y.

Step 3. The resulting equation will be x = f~!(y), which provides a formula for f~!
with y as the independent variable.

Step 4. If y is acceptable as the independent variable for the inverse function, then you
are done, but if you want to have x as the independent variable, then you need
to interchange x and y in the equation x = f~'(y) to obtain y = f~'(x).
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» Example 4 Find a formula for the inverse of f(x) = +/3x — 2 with x as the indepen-
dent variable, and state the domain of f -1

Solution. Following the procedure stated above, we first write

y=+3x-2
Then we solve this equation for x as a function of y:
y2=3x -2
x=30"+2)
which tells us that ) = %(y2 +2) 5)
Since we want x to be the independent variable, we reverse x and y in (5) to produce the
formula fﬁl(x) _ %(xz +2) )

We know from (4) that the domain of f~! is the range of f. In general, this need not be
the same as the natural domain of the formula for f —1 Indeed, in this example the natural
domain of (6) is (—o, +0), whereas the range of f(x) = +/3x — 21is [0, +). Thus, if we
want to make the domain of f~! clear, we must express it explicitly by rewriting (6) as

o) =1x242), x>0 «

EXISTENCE OF INVERSE FUNCTIONS
The procedure we gave above for finding the inverse of a function f was based on solving
the equation y = f(x) for x as a function of y. This procedure can fail for two reasons—the
function f may not have an inverse, or it may have an inverse but the equation y = f(x)
cannot be solved explicitly for x as a function of y. Thus, it is important to establish
conditions that ensure the existence of an inverse, even if it cannot be found explicitly.

If a function f has an inverse, then it must assign distinct outputs to distinct inputs. For
example, the function f(x) = x? cannot have an inverse because it assigns the same value
tox =2 and x = —2, namely,

f@Q)=f(=2)=4

Thus, if f(x) = x? were to have an inverse, then the equation f(2) =4 would imply
that f~'(4) = 2, and the equation f(—2) =4 would imply that f~'(4) = —2. But this
is impossible because f~'(4) cannot have two different values. Another way to see that
f(x) = x? has no inverse is to attempt to find the inverse by solving the equation y = x>
for x as a function of y. We run into trouble immediately because the resulting equation
x = £,/y does not express x as a single function of y.

A function that assigns distinct outputs to distinct inputs is said to be one-fo-one or
invertible, so we know from the preceding discussion that if a function f has an inverse,
then it must be one-to-one. The converse is also true, thereby establishing the following
theorem.

0.4.3 THEOREM A function has an inverse if and only if it is one-to-one.

Stated algebraically, a function f is one-to-one if and only if f(x;) # f(x,) whenever
X1 # Xxp; stated geometrically, a function f is one-to-one if and only if the graphof y = f(x)
is cut at most once by any horizontal line (Figure 0.4.3). The latter statement together with
Theorem 0.4.3 provides the following geometric test for determining whether a function
has an inverse.



42 Chapter 0 / Before Calculus

y Y

)
fon) = flx) /\

-

S(xp)

Sflxp

\ \

\ \

\ \

\ \

| |
X X,

One-to-one, since f(x;) # f(x,) Not one-to-one, since
if x, #x, Sf@xp) = flxy) and x; # Xy

> Figure 0.4.3

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and
only if its graph is cut at most once by any horizontal line.

» Example 5 Use the horizontal line test to show that f(x) = x2 has no inverse but that
fx) = x> does.

Solution. Figure 0.4.4 shows a horizontal line that cuts the graph of y = x? more than
once, so f(x) = x? is not invertible. Figure 0.4.5 shows that the graph of y = x is cut at
most once by any horizontal line, so f(x) = x> is invertible. [Recall from Example 2 that
the inverse of f(x) = x%is f~!1(x) = x'/3.] <

!
\
\
!
!
|
-2

o ———

A Figure 0.4.4 A Figure 0.4.5

» Example 6 Explain why the function f that is graphed in Figure 0.4.6 has an inverse,
and find f~'(3).

N W

Solution. The function f has an inverse since its graph passes the horizontal line test.
. Toevaluate f ~1(3), we view £7'(3) as that number x for which f(x) = 3. From the graph
320 01 23 4 5 6 we see that f(2) =3,s0 f~'(3) =2. «
A Figure 0.4.6

1

Il INCREASING OR DECREASING FUNCTIONS ARE INVERTIBLE

A function whose graph is always rising as it is traversed from left to right is said to be an
! - i - increasing function, and a function whose graph is always falling as it is traversed from
is an example of an increasing function. -y ¢ riohy js said to be a decreasing function. If x; and x, are points in the domain of a
Give an example of a decreasing func- K o N X
fion and compute its inverse. function f, then f is increasing if

The function f(x) = x3 in Figure 0.4.5

f(x1) < f(x2) whenever x| < x»
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a

The points (a, b) and (b, a)
are reflections about y = x.

A Figure 0.4.8

y=F") e

y =/

The graphs of fand f’l are
reflections about y = x.

A Figure 0.4.9
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d fisd ing if
and f is decreasing i f(x1) > f(x2) whenever x; < x;

(Figure 0.4.7). It is evident geometrically that increasing and decreasing functions pass the
horizontal line test and hence are invertible.

y y
Increasing Decreasing
\ \
} Sxy) Sflxp }
\ \ \ \
\ \ \ \
\ \ \ \
Sl } } x } }f(xz) X
1 X g B3| %)

[ < flxy) ifx; <x, [ > flxy) ifx; <x,

> Figure 0.4.7

GRAPHS OF INVERSE FUNCTIONS

Our next objective is to explore the relationship between the graphs of f and f~!. For this
purpose, it will be desirable to use x as the independent variable for both functions so we
can compare the graphs of y = f(x) and y = f~'(x).

If (a, b) is a point on the graph y = f(x), then b = f(a). This is equivalent to the
statement that @ = f~'(b), which means that (b, a) is a point on the graph of y = f~!(x).
In short, reversing the coordinates of a point on the graph of f produces a point on the graph
of f~!. Similarly, reversing the coordinates of a point on the graph of f~! produces a point
on the graph of f (verify). However, the geometric effect of reversing the coordinates of
a point is to reflect that point about the line y = x (Figure 0.4.8), and hence the graphs of
y = f(x) and y = f~!(x) are reflections of one another about this line (Figure 0.4.9). In
summary, we have the following result.

0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and y = f~'(x)
are reflections of one another about the line y = x; that is, each graph is the mirror
image of the other with respect to that line.

» Example 7 Figure 0.4.10 shows the graphs of the inverse functions discussed in
Examples 2 and 4. «

A Figure 0.4.10
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Il RESTRICTING DOMAINS FOR INVERTIBILITY

If a function g is obtained from a function f by placing restrictions on the domain of f,
then g is called a restriction of f. Thus, for example, the function

gy =x>, x>0
is a restriction of the function f(x) = x>. More precisely, it is called the restriction of x>
to the interval [0, +o).
Sometimes it is possible to create an invertible function from a function that is not
invertible by restricting the domain appropriately. For example, we showed earlier that
f(x) = x? is not invertible. However, consider the restricted functions

fi(x) =x2, x>0 and Hx) = X3, x<0

the union of whose graphs is the complete graph of f(x) = x> (Figure 0.4.11). These
restricted functions are each one-to-one (hence invertible), since their graphs pass the hor-
izontal line test. As illustrated in Figure 0.4.12, their inverses are

M@ =vax and f;'(x)=—Vx

y=x%x<0 hY y=x%x20 e
S5F //
7/
4+ s
y e
3 e
7/
2k yd
Va y:\/)?
4
1,
7/
| | | Z | | | | | X
y=x%x<0 y=x%x20 -3 -2 -1/ 1 2 3 4 5
X /,l,
X N o E
A Figure 0.4.11 A Figure 0.4.12

B INVERSE TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle x using a known value of sin x,
cos x, or some other trigonometric function. Recall that problems of this type involve the
computation of “arc functions” such as arcsin x, arccos x, and so forth. We will conclude
this section by studying these arc functions from the viewpoint of general inverse functions.

The six basic trigonometric functions do not have inverses because their graphs repeat
periodically and hence do not pass the horizontal line test. To circumvent this problem
we will restrict the domains of the trigonometric functions to produce one-to-one functions
and then define the “inverse trigonometric functions” to be the inverses of these restricted
functions. The top part of Figure 0.4.13 shows geometrically how these restrictions are
made for sin x, cos x, tan x, and sec x, and the bottom part of the figure shows the graphs
of the corresponding inverse functions

(also denoted by arcsin x, arccos x, arctan x, and arcsec x). Inverses of cot x and csc x are
of lesser importance and will be considered in the exercises.
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A Figure 0.4.13

The following formal definitions summarize the preceding discussion.

If you have trouble visualizing the cor-

respondence between the top and bot-

tom parts of Figure 0.4.13, keep in 0.4.6 DEFINITION The inverse sine function, denoted by sin™', is defined to be the

mind that a reflection about y = x . . . .
S ; inverse of the restricted sine function
converts vertical lines into horizontal

lines, and vice versa; and it converts sinx, —-m/2<x<mn/2
x-intercepts into y-intercepts, and vice
versa.

0.4.7 DEFINITION The inverse cosine function, denoted by cos™!, is defined to be
the inverse of the restricted cosine function

cosx, O0<x<m

0.4.8 DEFINITION The inverse tangent function, denoted by tan~!, is defined to be
the inverse of the restricted tangent function

tanx, —n/2<x<mn/2
WARNING
The notations sin ™" x,cos lx, ... are
reserved exclusively for the inverse 0.4.9 pEFINITION® The inverse secant function, denoted by sec™!, is defined to be
trigonometric functions and are not the inverse of the restricted secant function
used for reciprocals of the trigonomet- .
ric functions. If we want to express the secx, 0<ux <mwithx # /2

reciprocal 1/ sinx using an exponent,
we would write (sinx)~! and never
sin™! x.

"There is no universal agreement on the definition of sec”! x, and some mathematicians prefer to restrict the
domain of sec x so that 0 < x < 7/2 or w < x < 37/2, which was the definition used in some earlier editions
of this text. Each definition has advantages and disadvantages, but we will use the current definition to conform
with the conventions used by the CAS programs Mathematica, Maple, and Sage.
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A Figure 0.4.14

TECHNOLOGY MASTERY

Refer to the documentation for your
calculating utility to determine how to
calculate inverse sines, inverse cosines,
and inverse tangents; and then confirm
Equation (9) numerically by showing
that

sin~! (0.5) ~ 0.523598775598 . ..
~ /6

If x = cos™! y is viewed as an angle
in radian measure whose cosineis y, in
what possible quadrants can x lie? An-
swer the same question for

x=tan"'y and x =sec”!y

Table 0.4.1 summarizes the basic properties of the inverse trigonometric functions we
have considered. You should confirm that the domains and ranges listed in this table are
consistent with the graphs shown in Figure 0.4.13.

Table 0.4.1
PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

FUNCTION DOMAIN RANGE BASIC RELATIONSHIPS

sin”!(sinx) = x if —w/2<x<m/2

-1
s (=1, 1] [=m/2, 2] sin(sin™'x) = x if —1<x<1
—1 .
1 . cos (cosx)=xif O<x<m
cos =1.1] [0, 7] cos(cos'x)=x if —1<x<1
—1 .
] o oo . tan” (tanx) = x if —w/2 <x<7m/2
tan (zeo, +eo) (m/2, 212) tan(tan™! x) = x if —oo < x < 400
,1 _ .
sec! (oo =11 U [1.400) [0.7/2) U (/2. 7] sec (secx) =x if O<x<m x=m/2

sec(sec!x) = x if |x|=>1

Il EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS

A common problem in trigonometry is to find an angle whose sine is known. For example,
you might want to find an angle x in radian measure such that

sinx = % @)

and, more generally, for a given value of y in the interval —1 < y < 1 you might want to
solve the equation sinx =y ®)
Because sin x repeats periodically, this equation has infinitely many solutions for x; how-

ever, if we solve this equation as 1

X =sin""y

then we isolate the specific solution that lies in the interval [—/2, /2], since this is the
range of the inverse sine. For example, Figure 0.4.14 shows four solutions of Equation
(7), namely, —117/6, —77/6, /6, and 57/6. Of these, /6 is the solution in the interval

[=/2, w21, s0 sin”! (L) = /6 ©)

In general, if we view x = sin~' y as an angle in radian measure whose sine is y, then
the restriction —7/2 < x < 7/2 imposes the geometric requirement that the angle x in
standard position terminate in either the first or fourth quadrant or on an axis adjacent to
those quadrants.

» Example 8 Find exact values of
(@ sin”'(1/v2) () sin”'(=1)

by inspection, and confirm your results numerically using a calculating utility.

Solution (a). Because sin~'(1/+/2) > 0, we can view x = sin~'(1/4/2) as that angle
in the first quadrant such that sin & = 1/+4/2. Thus, sin~'(1/+/2) = /4. You can confirm
this with your calculating utility by showing that sin~'(1/+/2) &~ 0.785 ~ /4.

Solution (b). Because sin~'(—1) < 0, we can view x = sin~'(—1) as an angle in the
fourth quadrant (or an adjacent axis) such that sin x = —1. Thus, sin"!(=1) = —7/2. You
can confirm this with your calculating utility by showing that sin~' (—1) &~ —1.57 &~ —7/2.

<
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Most calculators do not provide a direct method for calculating inverse secants. In such situations the

MASTERY | identity

There is little to be gained by memoriz-
ing these identities. What is important
is the mastery of the method used to
obtain them.

sin~!x

sec” ! x = cos™' (1/x) (10)
is useful (Exercise 48). Use this formula to show that
sec™1(2.25) ~ 1.11 and sec™!(—2.25) ~ 2.03

If you have a calculating utility (such as a CAS) that can find sec™! x directly, use it to check these
values.

Il IDENTITIES FOR INVERSE TRIGONOMETRIC FUNCTIONS

If we interpret sin”' x as an angle in radian measure whose sine is x, and if that angle is
nonnegative, then we can represent sin~' x geometrically as an angle in a right triangle in
which the hypotenuse has length 1 and the side opposite to the angle sin~! x has length x
(Figure 0.4.15a). Moreover, the unlabeled acute angle in Figure 0.4.15a is cos™! x, since
the cosine of that angle is x, and the unlabeled side in that figure has length +/1 — x? by
the Theorem of Pythagoras (Figure 0.4.15b). This triangle motivates a number of useful
identities involving inverse trigonometric functions that are valid for —1 < x < 1; for
example,

Ix==

sin”! x +coslx = 5 (11)

cos(sin"'x) =1 —x2 (12)
sin(cos ™' x) = 1 — x2 (13)

X
(14)

V1—x?
In a similar manner, tan~! x and sec ™! x can be represented as angles in the right triangles
shown in Figures 0.4.15¢ and 0.4.15d (verify). Those triangles reveal additional useful

identities; for example,
P sec(tan™' x) = /1 + x2 (15)

vxr—1
x

tan(sin_l x) =

1

sin(sec” x) = x=1 (16)

sin” " x tan”! x sec' x

(@)
A Figure 0.4.15

() (©) (d)

REMARK | The triangle technique does not always produce the most general form of an identity. For example, in

Exercise 59 we will ask you to derive the following extension of Formula (16) that is valid for x < —1
aswell as x > 1:

Va2 —1
| x|

sin(sec™' x) = (Ix[ =1 )

Referring to Figure 0.4.13, observe that the inverse sine and inverse tangent are odd func-
tions; that is,

sin"!(—x) = —sin"'(x) and tan~!'(—x) = —tan"'(x) (18-19)
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» Example 9 Figure 0.4.16 shows a computer-generated graph of y = sin~! (sin x).
One might think that this graph should be the line y = x, since sin”'(sinx) = x. Why
isn’t it?

Solution. The relationship sin~' (sinx) = x is valid on the interval —/2 < x < 7/2,
so we can say with certainty that the graphs of y = sin~'(sinx) and y = x coincide on
this interval (which is confirmed by Figure 0.4.16). However, outside of this interval the
relationship sin~!(sinx) = x does not hold. For example, if the quantity x lies in the
interval 7/2 < x < 37/2, then the quantity x — m lies in the interval —/2 < x < 7/2, so

sin"![sin(x — )] =x — 7

Thus, by using the identity sin(x — 77) = — sin x and the fact that sin~' is an odd function,
we can express sin"!(sin x) as

sin’l(sin X) = sin’l[— sin(x —m)] = — sinfl[sin(x —m)]=—(x—m)

This shows that on the interval 7/2 < x < 37/2 the graph of y = sin™'(sinx) coincides
with the line y = —(x — ), which has slope —1 and an x-intercept at x = . This agrees
with Figure 0.4.16. «

y

_rk
> Figure 0.4.16
VQU]CK CHECK EXERCISES 0.4  (See page 52 for answers.)
1. In each part, determine whether the function f is one-to- 4. In each part, determine the exact value without using a cal-
one. culating utility.
(a) f(¢) is the number of people in line at a movie theater (a) sin”! (- =
at time 7. ®) tan~'(H)=__
(b) f(x) is the measured high temperature (rounded to the (c) sin”! (%ﬁ ) =
nearest °F) in a city on the xth day of the year. (d) cos™! (%) _

(c) f(v) is the weight of v cubic inches of lead.

2. A student enters a number on a calculator, doubles it, adds 8
to the result, divides the sum by 2, subtracts 3 from the quo-
tient, and then cubes the difference. If the resulting number

(e) sec™ ' (=2)=___

5. In each part, determine the exact value without using a cal-
culating utility.
(@) sin"'(sinm/7) =

isx,then ____ was the student’s original number. (b) sin~ (sin 57/7) =

3. If (3, —2) is a point on the graph of an odd invertible func- (c) tan~!(tan 137/6) =
tion f, then and are points on the graph (d) cos™!(cos 127/7) =
of =1

EXERCISE SET 0.4 [ Graphing Utility

1. In (a)—(d), determine whether f and g are inverse functions. © fx)= Ix =2, gy =x3+2

(@) f(x)=4x, gx)=1x

@ fx) =x* gx)=Jx

(b) f(x)=3x+1, g(x) =3x—1



[ 2. Check your answers to Exercise 1 with a graphing utility by
determining whether the graphs of f and g are reflections
of one another about the line y = x.

3. Ineach part, use the horizontal line test to determine whether

the function f is one-to-one.
(@ f(x)=3x+2 () fx)=vx—1
@ fx)=x>

©) fx)=Ix|
(e) f(x)=x>—-2x+2 ) f(x) =sinx

[ 4. In each part, generate the graph of the function f with a

graphing utility, and determine whether f is one-to-one.
@ fx)=x>—=3x4+2 () f(x)=x>—3x>+3x—1

FOCUS ON CONCEPTS

5. In each part, determine whether the function f defined
by the table is one-to-one.

@bl 1] 23 |als|e

fo|-2(-1101]1]2]3

®F s 1 203 456

fo| 4 | 716|314

6. A face of a broken clock lies in the xy-plane with the cen-
ter of the clock at the origin and 3:00 in the direction of
the positive x-axis. When the clock broke, the tip of the
hour hand stopped on the graph of y = f(x), where f is
a function that satisfies f(0) = 0.

(a) Are there any times of the day that cannot appear in
such a configuration? Explain.

(b) How does your answer to part (a) change if f must
be an invertible function?

(c) How do your answers to parts (a) and (b) change if
it was the tip of the minute hand that stopped on the
graph of f?

7. (a) The accompanying figure shows the graph of a func-

tion f over its domain —8 < x < 8. Explain why
f has an inverse, and use the graph to find f~1(2),
£ (=1), and £~ (0).

(b) Find the domain and range of f~!.

(c) Sketch the graph of f~!.

-8-7-6-5-4-3-2-1 01 23456738
A Figure Ex-7

8. (a) Explain why the function f graphed in the accompa-
nying figure has no inverse function on its domain
-3 <x<4
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(b) Subdivide the domain into three adjacent intervals on
each of which the function f has an inverse.

y

A

-3 4

< Figure Ex-8

9-16 Find a formula for f~!(x).
1
10. fo =%
x—1

12. f(x) = J4x +2
4. f(x)=5/x*+1), x>0

9. fx)=7x—6

11. f(x) =3x>-5
13. f(x) =3/x% x<0

15. ()= {5/2 —x, x<2
1/x, x>2
2x, x<0

16. f() = {xz, x>0

17-20 Find a formula for f ~I(x), and state the domain of the
function f~!.

17. f)=(x+2)* x>0

18. f(x) =+/x+3 19. f(x) = —/3—2x

20. f(x)=3x>+5x—-2, x>0

21. Let f(x) = ax>+bx +c¢,a > 0. Find f~! if the domain

of f is restricted to
(@) x = —b/(2a)

FOCUS ON CONCEPTS

22. The formula F = 3C + 32, where C > —273.15 ex-
presses the Fahrenheit temperature F as a function of
the Celsius temperature C.
(a) Find a formula for the inverse function.
(b) In words, what does the inverse function tell you?
(c) Find the domain and range of the inverse function.

23. (a) One meter is about 6.214 x 10~* miles. Find a for-
mula y = f(x) that expresses a length y in meters
as a function of the same length x in miles.

(b) Find a formula for the inverse of f.
(c) Describe what the formula x = f~!(y) tells you in
practical terms.

24. Let f(x) = x%, x > 1, and g(x) = /x.

(a) Show that f(g(x)) =x, x > 1, and g(f(x)) = x,
x> 1.

(b) Show that f and g are not inverses by showing that
the graphs of y = f(x) and y = g(x) are not reflec-
tions of one another about y = x.

(c) Do parts (a) and (b) contradict one another? Ex-
plain.

(b) x < —b/(2a).
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25. (a) Show that f(x) = (3 — x)/(1 — x) is its own in-
Verse.
(b) What does the result in part (a) tell you about the
graph of f?
26. Sketch the graph of a function that is one-to-one on
(—o0, +0), yet not increasing on (—oo, +o0) and not de-
creasing on (—oo, +0).

27. Let f(x) = 2x3 + 5x + 3. Find x if f~1(x) = 1.
3

28. Let f(x) = ——. Find x if f~'(x) = 2.
X

+1
29. Prove that if a® 4+ bc # 0, then the graph of
ax +b
fx) =
cx —a

is symmetric about the line y = x.

30. (a) Prove: If f and g are one-to-one, then so is the compo-
sition fog.
(b) Prove: If f and g are one-to-one, then

(fog) ' =g lof!

31-34 True-False Determine whether the statement is true or
false. Explain your answer.

31. If f is an invertible function such that f(2) =2, then

=14
32. If f and g are inverse functions, then f and g have the same
domain.

33. A one-to-one function is invertible.

34. The range of the inverse tangent function is the interval
—n/2 <y <mn/2.

35. Given that § = tan~! (%), find the exact values of sin 9,
cos B, cotf, secO, and csc .

36. Given that = sec™! 2.6, find the exact values of sin9,
cos @, tan 6, cotd, and cscH.

37. For which values of x is it true that
(a) cos~!(cosx) = x (b) cos(cos™' x) =x
(c) tan~!(tanx) = x (d) tan(tan—'x) = x?

1

38-39 Find the exact value of the given quantity.
38. sec [sinfl (—%)] 39. sin [2 cos™! (%)]

40-41 Complete the identities using the triangle method (Fig-

ure 0.4.15).

40. (a) sin(cos™'x) =?
(c) csc(tan~! x) =7

41. (a) cos(tan"! x) =?
(c) sin(sec™!x) =?

(b) tan(cos™! x) =?
(d) sin(tan™' x) =?
(b) tan(cos™! x) =?
(d) cot(sec™'x) =2

[ 42. (a) Use a calculating utility set to radian measure to make

tables of values of y =sin~' x and y = cos™' x for
x=-1,-0.8, —0.6,...,0,0.2,...,1. Round your
answers to two decimal places.

(b) Plot the points obtained in part (a), and use the points to
sketch the graphsof y = sin”! x and y = cos~!' x. Con-
firm that your sketches agree with those in Figure 0.4.13.

(c) Use your graphing utility to graph y = sin~'x and
y = cos™! x; confirm that the graphs agree with those
in Figure 0.4.13.

[ 43. In each part, sketch the graph and check your work with a

graphing utility.
(a) y=sin"'2x (b) y=tan"!1x
44. The law of cosines states that

c? = a*+ b* — 2abcos b

where a, b, and c are the lengths of the sides of a triangle and
0 is the angle formed by sides a and b. Find 0, to the nearest
degree, for the triangle witha = 2, b = 3, and ¢ = 4.

FOCUS ON CONCEPTS

45. (a) Use a calculating utility to evaluate the expressions
sin”!(sin™' 0.25) and sin ! (sin"' 0.9), and explain
what you think is happening in the second calcula-
tion.

(b) For what values of x in the interval —1 < x < 1 will
your calculating utility produce a real value for the
function sin~!(sin~! x)?

46. A soccer player kicks a ball with an initial speed of 14
m/s at an angle § with the horizontal (see the accom-
panying figure). The ball lands 18 m down the field.
If air resistance is neglected, then the ball will have a
parabolic trajectory and the horizontal range R will be
given by ’

R="sin20
8
where v is the initial speed of the ball and g is the ac-
celeration due to gravity. Using g = 9.8 m/s?, approx-
imate two values of 6, to the nearest degree, at which
the ball could have been kicked. Which angle results in
the shorter time of flight? Why?

0 S ~
a9 24 \\\
R 0 ~
7R Y:3) \
l R !

A Figure Ex-46

47-48 The function cot™! x is defined to be the inverse of
the restricted cotangent function

cotx, O<x<m

and the function csc~' x is defined to be the inverse of the
restricted cosecant function

cscx, —-m/2<x<m/2, x#O

Use these definitions in these and in all subsequent exercises
that involve these functions.




47. (a) Sketch the graphs of cot™! x and csc™! x.

48. Show that

(b) Find the domain and range of cot™! x and csc™! x.

tan~'(1/x), ifx >0
(a) cot™lx = .

m+tan~'(1/x), ifx <0
(b) sec™'x =cos™! —, if x| >1

() esclx = sin~!

LI B ST RS

. if x| > 1.

49.

50.

51.

Most scientific calculators have keys for the values of only
sin"'x, cos™' x, and tan~!x. The formulas in Exercise
48 show how a calculator can be used to obtain values of
cot~!x, sec™!x, and csc! x for positive values of x. Use
these formulas and a calculator to find numerical values for
each of the following inverse trigonometric functions. Ex-
press your answers in degrees, rounded to the nearest tenth
of a degree.

(a) cot=10.7 (b) sec™'1.2 (c) csc12.3

An Earth-observing satellite has horizon sensors that can
measure the angle 6 shown in the accompanying figure.
Let R be the radius of the Earth (assumed spherical) and &

the distance between the satellite and the Earth’s surface.
R

(a) Show that sinf = Rih
(b) Find 6, to the nearest degree, for a satellite that is 10,000
km from the Earth’s surface (use R = 6378 km).

I
h

Earth < Figure Ex-50

The number of hours of daylight on a given day at a given
point on the Earth’s surface depends on the latitude A of the
point, the angle y through which the Earth has moved in its
orbital plane during the time period from the vernal equinox
(March 21), and the angle of inclination ¢ of the Earth’s
axis of rotation measured from ecliptic north (¢ ~ 23.45°).
The number of hours of daylight z can be approximated by
the formula

24, D=>1
h={12+ Zsin"' D, |D|<1
0, D<-1

where sin ¢ sin y tan A

V'1 — sin? ¢ sin? y

and sin~' D is in degree measure. Given that Fairbanks,

Alaska, is located at a latitude of A = 65° N and also that

y = 90° on June 20 and y = 270° on December 20, ap-

proximate

(a) the maximum number of daylight hours at Fairbanks to
one decimal place
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52,

53.

54.

5S.

56.

(b) the minimum number of daylight hours at Fairbanks to
one decimal place.

Source: This problem was adapted from TEAM, A Path to Applied Mathematics,
The Mathematical Association of America, Washington, D.C., 1985.

A camera is positioned x feet from the base of a missile
launching pad (see the accompanying figure). If a missile
of length a feet is launched vertically, show that when the
base of the missile is b feet above the camera lens, the angle
6 subtended at the lens by the missile is

0 = cot™!

X |
Can‘wera

Launchpad < Figure Ex-52

An airplane is flying at a constant height of 3000 ft above
water at a speed of 400 ft/s. The pilot is to release a sur-
vival package so that it lands in the water at a sighted point
P. If air resistance is neglected, then the package will fol-
low a parabolic trajectory whose equation relative to the
coordinate system in the accompanying figure is
y = 3000 — %xz

where g is the acceleration due to gravity and v is the speed
of the airplane. Using g = 32 ft/s2, find the “line of sight”
angle 6, to the nearest degree, that will result in the package
hitting the target point.

T

3000 ft

Parabolic
trajectory
of object

P < Figure Ex-53

Prove:
(@) sin”'(=x) = —sin"'x
(b) tan~!(—x) = —tan"! x.
Prove:

(a) cos~!'(—=x) =m—cos~'x

(b) sec™!(—x) = 7 —sec”! x.

Prove: X
(@ sin"'x =tan! —— (x| < 1)
V1—x2
(b) cos~!x = g — tan™! (x| < 1).
1—x
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57. Prove: 58. Use the result in Exercise 57 to show that
(a) tan~! % + tan™! % =n/4
tan™' x + tan~! y= tan~! ( Xty ) (b) 2tan! % + tan~! % = /4.
L=xy 59. Use identities (10) and (13) to obtain identity (17).
provided —7/2 < tan~! x 4+ tan~! y < 7/2. [Hint: Use an 60. Prove: A one-to-one function f cannot have two different
identity for tan(o + B).] inverses.

VQUICK CHECK ANSWERS 0.4

1. (a) not one-to-one (b) not one-to-one (c) one-to-one 2. Jx —1 3. (=2,3); (2,-3) 4. (a) —7/2(b) n/4 (c) n/3
(d) /3 (e) 2x/3 5. (a) /7 (b) 2n/7 (¢) #w/6 (d) 27/7

m EXPONENTIAL AND LOGARITHMIC FUNCTIONS

When logarithms were introduced in the seventeenth century as a computational tool, they
provided scientists of that period computing power that was previously unimaginable.
Although computers and calculators have replaced logarithm tables for numerical
calculations, the logarithmic functions have wide-ranging applications in mathematics
and science. In this section we will review some properties of exponents and logarithms
and then use our work on inverse functions to develop results about exponential and
logarithmic functions.

Il IRRATIONAL EXPONENTS
Recall from algebra that if b is a nonzero real number, then nonzero integer powers of b

are defined by 1
b"=bxbx---xb and b7"=—

n factors b

and if n = 0, then b° = 1. Also, if p/q is a positive rational number expressed in lowest

terms, then 1
b4 = Ybr = (V)P and b7 = 7

If b is negative, then some fractional powers of b will have imaginary values—the quantity
(=22 = /=2, for example. To avoid this complication, we will assume throughout this
section that b > 0, even if it is not stated explicitly.

There are various methods for defining irrational powers such as

om, V2 VT
One approach is to define irrational powers of b via successive approximations using rational
Table 0.5.1 powers of b. For example, to define 27 consider the decimal representation of
N o 3.1415926. ..

3 .000000 From this decimal we can form a sequence of rational numbers that gets closer and closer
3.1 8.574188 (o 7, namely, 3.1, 3.14, 3.141, 3.1415, 3.14159
3.14 8.815241 .
3141 8.821353 and from these we can form a sequence of rational powers of 2:
3.1415 8.824411 231 9314 p3I4L - H3MIS 9314159
3.14159 8.824962 , o , ,
3141592 §.824974 Since the exponents of the terms in this sequence get successively closer to , it seems
31415926  8.824977 plausible that the terms themselves will get successively closer to some number. It is that

number that we define to be 27. This is illustrated in Table 0.5.1, which we generated using
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Use a calculating utility to verify the re-

sults in Table 0.5.1, and then verify (1)

by using the utility to compute 27 di-

rectly.
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a calculator. The table suggests that to four decimal places the value of 27 is
2" ~ 8.8250 (H

With this notion for irrational powers, we remark without proof that the following familiar
laws of exponents hold for all real values of p and g:
bP

bPb? = pPT, b_q = pPa, (bp)‘l — pPi

THE FAMILY OF EXPONENTIAL FUNCTIONS
A function of the form f(x) = b*, where b > 0, is called an exponential function with
base b. Some examples are

fo =2 fo=01)", fo=x

Note that an exponential function has a constant base and variable exponent. Thus, functions
such as f(x) = x? and f(x) = x™ would not be classified as exponential functions, since
they have a variable base and a constant exponent.

Figure 0.5.1 illustrates that the graph of y = b* has one of three general forms, depending
on the value of b. The graph of y = b* has the following properties:

e The graph passes through (0, 1) because »° = 1.

e Ifb > 1, the value of b* increases as x increases. As you traverse the graph of y = b*
from left to right, the values of b* increase indefinitely. If you traverse the graph from
right to left, the values of b* decrease toward zero but never reach zero. Thus, the
x-axis is a horizontal asymptote of the graph of b*.

e If 0 < b < 1, the value of b* decreases as x increases. As you traverse the graph
of y = b* from left to right, the values of b* decrease toward zero but never reach
zero. Thus, the x-axis is a horizontal asymptote of the graph of 5*. If you traverse
the graph from right to left, the values of b* increase indefinitely.

e If b =1, then the value of b* is constant.

Some typical members of the family of exponential functions are graphed in Figure
0.5.2. This figure illustrates that the graph of y = (1/b)* is the reflection of the graph of
y = b* about the y-axis. This is because replacing x by —x in the equation y = b* yields

y=b""=(1/b)*

The figure also conveys that for b > 1, the larger the base b, the more rapidly the function
f(x) = b* increases for x > 0.

<o“‘<’7,lil1) Y ()b:>li) (%)X (%)x(lo)x Yo10% 3r 27

4
3
2
/ -Z/‘/ | | 5
| 1 2

A Figure 0.5.1 A Figure 0.5.2 The family
y=b*(b>0)
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The domain and range of the exponential function f(x) = b* can also be found by
examining Figure 0.5.1:

e Ifb > 0, then f(x) = b* is defined and has a real value for every real value of x, so
the natural domain of every exponential function is (—oo, +0).

e If b > 0and b # 1, then as noted earlier the graph of y = b* increases indefinitely
as it is traversed in one direction and decreases toward zero but never reaches zero
as it is traversed in the other direction. This implies that the range of f(x) = b* is
(0, +00).”

» Example 1 Sketch the graph of the function f(x) =1 — 2* and find its domain and
range.

Solution. Start with a graph of y = 2. Reflect this graph across the x-axis to obtain
the graph of y = —2%, then translate that graph upward by 1 unit to obtain the graph of
y =1 — 2" (Figure 0.5.3). The dashed line in the third part of Figure 0.5.3 is a horizontal
asymptote for the graph. You should be able to see from the graph that the domain of f is
(—o0, +0) and the range is (—o, 1). «

y y= 2x y y

v =
<
Il
—

y=-2%

A Figure 0.5.3

I THE NATURAL EXPONENTIAL FUNCTION
Among all possible bases for exponential functions there is one particular base that plays
The use of the letter e is in honor of a special role in calculus. That base, denoted by the letter e, is a certain irrational number

the Swiss mathematician Leonhard Eu- (1) 5ce yalye to six decimal places is
ler (biography on p. 3) who is credited

with recognizing the mathematical im- e~ 2718282 2)
portance of this constant.

This base is important in calculus because, as we will prove later, b = e is the only base
for which the slope of the tangent line™” to the curve y = b* at any point P on the curve is

y y=e' equal to the y-coordinate at P. Thus, for example, the tangent line to y = e* at (0, 1) has
slope 1 (Figure 0.5.4).
Slope =1 The function f(x) = e* is called the natural exponential function. To simplify typog-

raphy, the natural exponential function is sometimes written as exp(x), in which case the

—/ ©. D relationship e ™2 = ¢"1¢*2 would be expressed as
X

exp(x; + x2) = exp(x1) exp(x2)

A Figure 0.5.4 The tangent line to the
graph of y = ¢* at (0, 1) has slope 1.

“We are assuming without proof that the graph of y = b* is a curve without breaks, gaps, or holes.
“*The precise definition of a tangent line will be discussed later. For now your intuition will suffice.
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Your technology utility should have keys or commands for approximating ¢ and for graphing the natural
exponential function. Read your documentation on how to do this and use your utility to confirm (2)
and to generate the graphs in Figures 0.5.2 and 0.5.4.

The constant e also arises in the context of the graph of the equation

1 X
y=(1+—)
X

As shown in Figure 0.5.5, y = e is a horizontal asymptote of this graph. As a result, the
value of e can be approximated to any degree of accuracy by evaluating (3) for x sufficiently
large in absolute value (Table 0.5.2).

3

Table 0.5.2

APPROXIMATIONS OF ¢ BY (1 + l/x)x
FOR INCREASING VALUES OF x

Y X
6 X lh=r )l_c (l * )1_6)
Z (i) I 2 ~ 2.000000
B 10 11 2593742
—_ 3F Y7 100 1.01 2704814
2 /”_ 1000 1.001 2716924
16 i 10,000 1.0001 2718146
B i 100,000 1.00001 2718268
1,000,000 1.000001 2718280

A Figure 0.5.5

M LOGARITHMIC FUNCTIONS

Logarithms with base 10 are called
common logarithms and are often
written without explicit reference to the
base. Thus, the symbol log x generally
denotes log; x.

Recall from algebra that a logarithm is an exponent. More precisely, if b > 0 and b # 1,
then for a positive value of x the expression

log, x

(read “the logarithm to the base b of x”’) denotes that exponent to which b must be raised
to produce x. Thus, for example,

log,, 100 = 2, log,,(1/1000) = —3, log,16 =4, log,1 =0, log,b=1

102 = 100 103 = 1/1000 24 =16 B =1 b =b
We call the function f(x) = log,, x the logarithmic function with base b.

Logarithmic functions can also be viewed as inverses of exponential functions. To
see why this is so, observe from Figure 0.5.1 that if » > 0 and b # 1, then the graph of
f(x) = b* passes the horizontal line test, so b* has an inverse. We can find a formula for

this inverse with x as the independent variable by solving the equation
x=b"

for y as a function of x. But this equation states that y is the logarithm to the base b of x,

so it can be rewritten as
y = log, x

Thus, we have established the following result.

0.5.1 THEOREM Ifb > 0andb # 1, then b* and log, x are inverse functions.
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y y:bx
v
v
v
v
v
v
v
v
v
v
bl s y=log, x
L
| 7
M~ x
//1 b .
%
v
%
7/

A Figure 0.5.6
y=log,x.
y y=logx.
4 y=log,x
3 y =log,x-
2
1

I I I I I |
_1V2345678910

A Figure 0.5.7 The family
y =log,x (b >1)

TECHNOLOGY MASTERY

Use your graphing utility to generate
the graphs of y = Inx and y = log x.

It follows from this theorem that the graphs of y = b* and y = log, x are reflections of
one another about the line y = x (see Figure 0.5.6 for the case where b > 1). Figure 0.5.7
shows the graphs of y = log,, x for various values of b. Observe that they all pass through
the point (1, 0).

The most important logarithms in applications are those with base e. These are called
natural logarithms because the function log, x is the inverse of the natural exponential
function e*. It is standard to denote the natural logarithm of x by In x (read “ell en of x”),
rather than log, x. For example,

Inl =0, Ine =1, Inl/e=—1, In(e?) =2
Since ¢ = 1 Sincee! = ¢ Since e ! = 1/e Since % = €2
In general,
y=Inx ifandonlyif x =¢"

As shown in Table 0.5.3, the inverse relationship between b* and log, x produces a
correspondence between some basic properties of those functions.

Table 0.5.3
CORRESPONDENCE BETWEEN PROPERTIES OF
LOGARITHMIC AND EXPONENTIAL FUNCTIONS

PROPERTY OF b* PROPERTY OF logbx

=1 log,1=0

bl=b log,b=1

Range is (0, +o0) Domain is (0, 4+o0)

Domain is (—oo, +o0)

Range is (—oo, +o0)

x-axis is a
horizontal asymptote

y-axis is a
vertical asymptote

It also follows from the cancellation properties of inverse functions [see (3) in Section
0.4] that

log,(b*) = x for all real values of x

4
bt —x forx >0 @
In the special case where b = e, these equations become
In(e*) = x for all real values of x )

e =x forx >0

In words, the functions b* and log, x cancel out the effect of one another when composed
in either order; for example,
Ine’> =5, e""=gx

IOg lox =x, lologx =x, In ex =x, elnx =x,
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Il SOLVING EQUATIONS INVOLVING EXPONENTIALS AND LOGARITHMS
You should be familiar with the following properties of logarithms from your earlier studies.

0.5.2 THEOREM (Algebraic Properties of Logarithms) Ifb > 0,b # 1,a > 0,c > 0, and
r is any real number, then:

(a) log,(ac) =log,a+log,c Product property

(b) lOgb (a/c) = IOgb a — IOgb Cc Quotient property

(C) IOgb (Clr) =r lOgb a Power property
(d) IOgb(l/C) = — logb c Reciprocal property
WARNING These properties are often used to expand a single logarithm into sums, differences, and

multiples of other logarithms and, conversely, to condense sums, differences, and multiples

Expressions of the form log, (u + v R . i K
P & ) of logarithms into a single logarithm. For example,

and log, (u — v) have no useful sim-

plifications. In particular, 5
X
logy ( + v) # log, () + log, (v) log % = logxy’ — log /z = logx +log y* — logz'/* = logx + 5logy — $ logz

log;, (u — v) # log, (u) — log, (v)

3
S5log2 4 log3 —log 8 =1log 32 4 log3 — log 8 = log =log12

Sx(x+3)?

Iinx—InG? = D+2In(x +3) =Inx' —In(> = 1) +In(x +3)> =In ~—; .
2 _

An equation of the form log;, x = k can be solved for x by rewriting it in the exponential
form x = b*, and an equation of the form b* = k can be solved by rewriting it in the
logarithm form x = log,, k. Alternatively, the equation b* = k can be solved by taking any
logarithm of both sides (but usually log or In) and applying part (c) of Theorem 0.5.2. These
ideas are illustrated in the following example.

» Example 2 Find x such that
(@logx=+v2 ®)Ihx+D)=5 (©5=7

Solution (a). Converting the equation to exponential form yields

x =10Y2 ~25.95
Solution (b). Converting the equation to exponential form yields

x+l=¢ o x=¢ —1~14741

Solution (c). Converting the equation to logarithmic form yields

x =logs 7~ 1.21

Alternatively, taking the natural logarithm of both sides and using the power property of
logarithms yields

In7
xIn5=In7 or x=—=x121 «
In5
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Erik Simonsen/Getty Images
Power to satellites can be supplied by
batteries, fuel cells, solar cells, or radio-
isotope devices.

» Example 3 A satellite that requires 7 watts of power to operate at full capacity is
equipped with a radioisotope power supply whose power output P in watts is given by the
equation P — 7501125
where ¢ is the time in days that the supply is used. How long can the satellite operate at full
capacity?
Solution. The power P will fall to 7 watts when
7 — 75 €7t /125

The solution for ¢ is as follows:

7/75 = e7/1%

In(7/75) = In(e"/125)

In(7/75) = —t/125

t = —1251n(7/75) ~ 296.4

so the satellite can operate at full capacity for about 296 days. «

Here is a more complicated example.

X —X

» Example 4 Solve % = 1 for x.

Solution. Multiplying both sides of the given equation by 2 yields

or equivalently,

Multiplying through by e* yields
e —1=2¢ or ¥ —2-1=0
This is really a quadratic equation in disguise, as can be seen by rewriting it in the form
() —2¢" —1=0
and letting u = ¢* to obtain
u>—2u—1=0
Solving for u by the quadratic formula yields

2+44+4 2+ 48
= te_ leiﬁ

u

2 2
or, since u = e*,
& =1+2
But ¢* cannot be negative, so we discard the negative value 1 — ﬁ; thus,
=142

Ine* =In(l ++2)
x =In(1++2)~0.881 <
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B CHANGE OF BASE FORMULA FOR LOGARITHMS

Table 0.5.4
B (dB) 11,
0 109=1
10 10" =10
20 10% = 100
30 103 = 1000
40 10* = 10,000
50 10° = 100,000
120 10'? = 1,000,000,000,000

Scientific calculators generally have no keys for evaluating logarithms with bases other
than 10 or e. However, this is not a serious deficiency because it is possible to express
a logarithm with any base in terms of logarithms with any other base (see Exercise 42).
For example, the following formula expresses a logarithm with base b in terms of natural
logarithms:

In x

1 = — 6
0gy, X Inb (6)

We can derive this result by letting y = log,, x, from which it follows that 5* = x. Taking
the natural logarithm of both sides of this equation we obtain y In b = In x, from which (6)
follows.

» Example 5 Use a calculating utility to evaluate log, 5 by expressing this logarithm in
terms of natural logarithms.

Solution. From (6) we obtain

In5

— & 2.321928 «
In2

log, 5 =

LOGARITHMIC SCALES IN SCIENCE AND ENGINEERING

Logarithms are used in science and engineering to deal with quantities whose units vary
over an excessively wide range of values. For example, the “loudness” of a sound can
be measured by its intensity I (in watts per square meter), which is related to the energy
transmitted by the sound wave—the greater the intensity, the greater the transmitted energy,
and the louder the sound is perceived by the human ear. However, intensity units are
unwieldy because they vary over an enormous range. For example, a sound at the threshold
of human hearing has an intensity of about 10~'> W/m?, a close whisper has an intensity that
is about 100 times the hearing threshold, and a jet engine at 50 meters has an intensity that
is about 10,000,000,000,000 = 10'3 times the hearing threshold. To see how logarithms
can be used to reduce this wide spread, observe that if

y =logx
then increasing x by a factor of 10 adds 1 unit to y since
log 10x =log10+logx =1+

Physicists and engineers take advantage of this property by measuring loudness in terms of
the sound level B, which is defined by

B = 10log(1/Iy)

where Iy = 10712 W/m? is a reference intensity close to the threshold of human hearing.
The units of S are decibels (dB), named in honor of the telephone inventor Alexander
Graham Bell. With this scale of measurement, multiplying the intensity I by a factor of 10
adds 10 dB to the sound level 8 (verify). This results in a more tractable scale than intensity
for measuring sound loudness (Table 0.5.4). Some other familiar logarithmic scales are
the Richter scale used to measure earthquake intensity and the pH scale used to measure
acidity in chemistry, both of which are discussed in the exercises.
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» Example 6 A space shuttle taking off generates a sound level of 150 dB near the launch
pad. A person exposed to this level of sound would experience severe physical injury. By
comparison, a car horn at one meter has a sound level of 110 dB, near the threshold of pain
for many people. What is the ratio of sound intensity of a space shuttle takeoft to that of a
car horn?

Solution. Let I} and B; (= 150 dB) denote the sound intensity and sound level of the
space shuttle taking off, and let /, and 8, (= 110 dB) denote the sound intensity and sound
level of a car horn. Then
I/ L = (1I1/Ip)/ (I/ 1y)
log(11/ 1) = log(11/1y) — log(12/Ip)
101og(1;/ 1) = 101og(1;/1y) — 101log(L»/1y) = B1 — >
10log(1,/1) = 150 — 100 = 40
log(I/1,) =4

Regina Mitchell-Ryall, Tony Gray/NASA/Getty Images  Thus, I;/1, = 10*, which tells us that the sound intensity of the space shuttle taking off is

The roar of a space shuttle near the 10,000 times greater than a car horn! <
launch pad would damage your hearing ’

without ear protection.

Il EXPONENTIAL AND LOGARITHMIC GROWTH
The growth patterns of ¢* and In x illustrated in Table 0.5.5 are worth noting. Both functions
Table 0.5.5 increase as x increases, but they increase in dramatically different ways—the value of e*

e e oz increases extremely rapidly and that of In x increases extremely slowly. For example, the
| 270 0.00 value of e* atx = 10isover 22,000, butat x = 1000 the value of In x has not even reached 7.
> 7'39 0' 69 A function f is said to increase without bound as x increases if the values of f(x)
3 20'09 1'1 0 eventually exceed any specified positive number M (no matter how large) as x increases
4 54.60 139 indefinitely. Table 0.5.5 strongly suggests that f(x) = e¢* increases without bound, which
3 148.41 161 is consistent with the fact that the range of this function is (0, +). Indeed, if we choose
6 403.43 179 any positive number M, then we will have ¢* = M when x = In M, and since the values
7 1096.63 1.95 of e increase as x increases, we will have
8 2980.96 2.08 e >M if x>InM
9 8103.08 2.20
10 22026.47 2.30 (Figure 0.5.8). It is not clear from Table 0.5.5 whether In x increases without bound as x
100 | 2.69x10% | 4.61 increases because the values grow so slowly, but we know this to be so since the range of this
1000 | 1.97 x 104% | 6.91 function is (—oo, +20). To see this algebraically, let M be any positive number. We will have
Inx = M when x = ¢, and since the values of In x increase as x increases, we will have
Inx >M if x>eM
(Figure 0.5.9).
y y
y=e
y= M y= M y= Inx
\ \
_/ | . /T/x
InM / oM

A Figure 0.5.8 The value of y = e* A Figure 0.5.9 The value of y = Inx
will exceed an arbitrary positive value will exceed an arbitrary positive value
of M whenx > InM. of M when x > M
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1. The function y = (3)" has domain and range

2. The function y = In(1 — x) has domain andrange
3. Express as a power of 4:

@1 ®m2 ©f V8 (@S5

EXERCISE SET 0.5 [ Graphing utility

4. Solve each equation for x.

(a) ef = % (b) 10* = 1,000,000
(c) 7€* =56

5. Solve each equation for x.
(@A Inx =3 (b) log(x —1) =2

(c) 2logx —log(x + 1) =log4 —log3

1-2 Simplify the expression without using a calculating utility.

(©) 8—2/3
(© 9703

(b) (=8)*3
(b) 4!

1. (a) —8%3
2. (a) 274

3-4 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

3. (@ 2" (b) 57!
4. (2) V24 (b) V0.6

5-6 Find the exact value of the expression without using a cal-
culating utility.

5. (a) log, 16 (b) log, (35)

(c) log, 4 (d) logy3
6. (a) log,,(0.001) (b) log10(104)
(c) In(e?) (d) In(y/e)

7-8 Use a calculating utility to approximate the expression.
Round your answer to four decimal places.

7. (a) log23.2 (b) In0.74
8. (a) log0.3 () Inm

9-10 Use the logarithm properties in Theorem 0.5.2 to rewrite
the expression in terms of r, s, and ¢, where r =Ina, s =Inb,
andt =Inc.

9. (a) Ina*vbc (b) ln%
a’c
3 3
10. (a) In ¥° (b) In ab’
ab c?

11-12 Expand the logarithm in terms of sums, differences, and
multiples of simpler logarithms.

23
11. (2) log(10x+/x = 3) (b) In 220X
x2+1
\3/x +2 241

12. (a) 1 b) In,/
(@) log cos 5x (®) In x345

13-15 Rewrite the expression as a single logarithm.

13. 4log2 —log3 +log 16
14. 1logx — 3log(sin2x) + 2
15. 2In(x + 1) + 1 Inx — In(cos x)

16-23 Solve for x without using a calculating utility.
16. log;((1 +x) =3 17. log,(v/x) = —1
18. In(x?) =4 19. In(1/x) = -2
20. log;(3%) =7 21. logs(5%) =8
22. In4x —31In(x?) =In2

23. In(1/x) +In(2x*) =1n3

24-29 Solve for x without using a calculating utility. Use the
natural logarithm anywhere that logarithms are needed.

24. 3* =2 25. 5% =3

26. 3¢ =5 27. 2e¥ =7

28. ¢* —2xe* =0 29. xe™" +2eF =0

30. Solve e=2* — 3¢~* = —2 for x without using a calculating

utility. [Hint: Rewrite the equation as a quadratic equation
inu =e*.]

FOCUS ON CONCEPTS

31-34 In each part, identify the domain and range of the
function, and then sketch the graph of the function without
using a graphing utility.

x—1

3. (@ f()=(3) -1
32. (@) f(x)=1+In(x—2)
33. (@) f(x) =In(x?)

4. (@) f(x)=1—e*

(b) g(x) =1In|x]|

(b) g(x) =3 +¢"2
(b) g(x) =

(b) g(x) =3InJYx—1

35-38 True-False Determine whether the statement is true or
false. Explain your answer.

3

35. The function y = x° is an exponential function.

36. The graph of the exponential function with base b passes
through the point (0, 1).

37. The natural logarithm function is the logarithmic function
with base e.
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38. The domain of a logarithmic function is the interval x > 1.

39. Use a calculating utility and the change of base formula (6)
to find the values of log, 7.35 and logs 0.6, rounded to four
decimal places.

M 40-41 Graph the functions on the same screen of a graphing
utility. [Use the change of base formula (6), where needed.]

40. Inx, ¢*, logx, 10*
41. log, x, Inx, logsx, logx
42. (a) Derive the general change of base formula

log, x
log, b

(b) Use the result in part (a) to find the exact value of
(log, 81)(log; 32) without using a calculating utility.

™ 43. (a) Isthe curve in the accompanying figure the graph of

an exponential function? Explain your reasoning.

(b) Find the equation of an exponential function that
passes through the point (4, 2).

(c) Find the equation of an exponential function that
passes through the point (2, %)

(d) Use a graphing utility to generate the graph of an
exponential function that passes through the point
2,95).

y

| < Figure Ex-43

M 44. (a) Make a conjecture about the general shape of the
graph of y =log(logx), and sketch the graph of
this equation and y = log x in the same coordinate
system.

(b) Check your work in part (a) with a graphing utility.

1.

Multiply both sides of the inequality 3 > 2 by log % to

get

45. Find the fallacy in the following “proof” that é >

3log % > 210g%
3 2
log (3)” > log (3)
log % > log %

1

§>

=

46. Prove the four algebraic properties of logarithms in Theo-
rem 0.5.2.

47. If equipment in the satellite of Example 3 requires 15 watts
to operate correctly, what is the operational lifetime of the
power supply?

48. The equation Q = 12795 gives the mass Q in grams of
radioactive potassium-42 that will remain from some initial
quantity after ¢ hours of radioactive decay.

(a) How many grams were there initially?

(b) How many grams remain after 4 hours?

(c) How long will it take to reduce the amount of radioac-
tive potassium-42 to half of the initial amount?

49. The acidity of a substance is measured by its pH value,
which is defined by the formula

pH = —log[H™"]
where the symbol [ H ] denotes the concentration of hydro-
gen ions measured in moles per liter. Distilled water has a
pH of 7; a substance is called acidic if it has pH < 7 and

basic if it has pH > 7. Find the pH of each of the following
substances and state whether it is acidic or basic.

SUBSTANCE [HT

3.9 % 1078 mol/L
6.3 x 107 mol/L
4.0 x 1077 mol/L
1.2%107% mol/L

(a)  Arterial blood
(b) Tomatoes

(¢) Milk

(d) Coffee

50. Use the definition of pH in Exercise 49 to find [H™] in a
solution having a pH equal to
(a) 2.44 (b) 8.06.

51. The perceived loudness § of a sound in decibels (dB) is re-
lated to its intensity I in watts per square meter (W/ m2) by
the equation

B = 101log(1/1p)
where Iy = 10712 W/m?. Damage to the average ear occurs
at 90 dB or greater. Find the decibel level of each of the
following sounds and state whether it will cause ear damage.

SOUND 1

1.0 x 102 W/m?

1.0 W/m?

1.0 x 107 W/m?
3.2%107 W/m?

(a) Jet aircraft (from 50 ft)

(b)  Amplified rock music

(c)  Garbage disposal

(d) TV (mid volume from 10 ft)

52-54 Use the definition of the decibel level of a sound (see
Exercise 51).

52. If one sound is three times as intense as another, how much
greater is its decibel level?

53. According to one source, the noise inside a moving automo-
bile is about 70 dB, whereas an electric blender generates 93
dB. Find the ratio of the intensity of the noise of the blender
to that of the automobile.

54. Suppose that the intensity level of an echo is % the intensity
level of the original sound. If each echo results in another



echo, how many echoes will be heard from a 120 dB sound
given that the average human ear can hear a sound as low
as 10 dB?

55. On the Richter scale, the magnitude M of an earthquake is
related to the released energy E in joules (J) by the equation

logE =444+ 15M
(a) Findtheenergy E of the 1906 San Francisco earthquake
that registered M = 8.2 on the Richter scale.

i/ QUICK CHECK ANSWERS 0.5
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(b) If the released energy of one earthquake is 10 times that
of another, how much greater is its magnitude on the
Richter scale?

56. Suppose that the magnitudes of two earthquakes differ by 1
on the Richter scale. Find the ratio of the released energy
of the larger earthquake to that of the smaller earthquake.
[Note: See Exercise 55 for terminology.]

1. (=0, +); (0, +%) 2. (—»,1); (—o0, +o0)
() In2 5. (a) ¢ (b) 101 (c) 2

CHAPTER 0 REVIEW EXERCISES I Graphing Utility

3. (a) 40 (b) 41/2 (c) 42 () 43/4 (e) 4log, 5

4. (@ Ini=-In2 (b) 2

1. Sketch the graph of the function

-1, x <-5
f(x) =34/25—x2, -5<x<5
x —5, x>5

2. Use the graphs of the functions f and g in the accompanying
figure to solve the following problems.
(a) Find the values of f(—2) and g(3).
(b) For what values of x is f(x) = g(x)?
(c) For what values of x is f(x) < 2?
(d) What are the domain and range of f?
(e) What are the domain and range of g?
(f) Find the zeros of f and g.

< Figure Ex-2

3. A glass filled with water that has a temperature of 40°F
is placed in a room in which the temperature is a constant
70°F. Sketch a rough graph that reasonably describes the
temperature of the water in the glass as a function of the
elapsed time.

4. You want to paint the top of a circular table. Find a formula
that expresses the amount of paint required as a function
of the radius, and discuss all of the assumptions you have
made in finding the formula.

5. A rectangular storage container with an open top and a
square base has a volume of 8 cubic meters. Material for
the base costs $5 per square meter and material for the sides
$2 per square meter.

(a) Find a formula that expresses the total cost of materials
as a function of the length of a side of the base.

(b) What is the domain of the cost function obtained in
part (a)?

6. A ball of radius 3 inches is coated uniformly with plastic.

(a) Express the volume of the plastic as a function of its
thickness.

(b) What is the domain of the volume function obtained in
part (a)?

7. A box with a closed top is to be made from a 6 ft by 10

ft piece of cardboard by cutting out four squares of equal

size (see the accompanying figure), folding along the dashed

lines, and tucking the two extra flaps inside.

(a) Find a formula that expresses the volume of the box as a
function of the length of the sides of the cut-out squares.

(b) Find an inequality that specifies the domain of the func-
tion in part (a).

(c) Use the graph of the volume function to estimate the
dimensions of the box of largest volume.

e S5f s —]

< Figure Ex-7

1 8. Let C denote the graph of y = 1/x,x > 0.

(a) Express the distance between the point P(1,0) and a
point Q on C as a function of the x-coordinate of Q.

(b) What is the domain of the distance function obtained in
part (a)? (cont.)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(c) Use the graph of the distance function obtained in part
(a) to estimate the point Q on C that is closest to the
point P.

. Sketch the graph of the equation x> — 4y? = 0.

~ 10.

Generate the graph of f(x) = x* — 24x3 — 25x? in two dif-
ferent viewing windows, each of which illustrates a different
property of f. Identify each viewing window and a char-
acteristic of the graph of f that is illustrated well in the
window.

Complete the following table.

x |4 |3 |2 |-1]0|1]2]3]4
f |0 -1 | 2] 1|32 |-3|4]|-4
gy |3 2| 1|3 |-11]-4|4|21]0
(fog)(x)

(gof)x)

A Table Ex-11

Let f(x) = —x?and g(x) = 1//x. Find formulas for fog
and go f and state the domain of each composition.

Given that f(x) = x> + 1 and g(x) = 3x + 2, find all val-
ues of x such that f(g(x)) = g(f(x)).

Let f(x) = 2x —1)/(x+ 1D and g(x) = 1/(x — 1).

(2) Find f(g(x)).

(b) Is the natural domain of the function h(x) = (3 — x)/x
the same as the domain of f o g? Explain.

Given that

x h(x) = x> — 1

1
f&x) = , gx) =—,
X

x—1

find a formula for f o g o h and state the domain of this com-

position.

Given that f(x) = 2x + 1 and h(x) = 2x> + 4x + 1, find

a function g such that f(g(x)) = h(x).

In each part, classify the function as even, odd, or neither.

(@ x%sinx (b) sin’x  (c) x +x% (d) sinxtanx

(a) Write an equation for the graph that is obtained by re-
flecting the graph of y = |x — 1| about the y-axis, then
stretching that graph vertically by a factor of 2, then
translating that graph down 3 units, and then reflecting
that graph about the x-axis.

(b) Sketch the original graph and the final graph.

In each part, describe the family of curves.

@ —a)P+@y-a)=1

(b) y=a+(x-2a)

Find an equation for a parabola that passes through the
points (2, 0), (8, 18), and (-8, 18).

21.

22,

23.

24,

Suppose that the expected low temperature in Anchorage,
Alaska (in °F), is modeled by the equation

T = 50sin 2% (1 — 101) + 25
YT

where ¢ is in days and ¢ = 0 corresponds to January 1.

(a) Sketch the graph of T versus ¢ for 0 <t < 365.

(b) Use the model to predict when the coldest day of the
year will occur.

(c) Based on this model, how many days during the year
would you expect the temperature to be below 0°F?

The accompanying figure shows a model for the tide varia-
tionin aninlet to San Francisco Bay during a 24-hour period.
Find an equation of the form y = yg + y; sin(at + b) for the
model, assuming that ¢+ = O corresponds to midnight.

35
30
25
20
15
10

5

Height of water y (ft)

Noon  p.M.

Time 7 (h) < Figure Ex-22

The accompanying figure shows the graphs of the equa-
tions y = 1 + 2sinx and y = 2sin(x/2) + 2 cos(x/2) for
—2m < x < 2m. Without the aid of a calculator, label each
curve by its equation, and find the coordinates of the points
A, B, C, and D. Explain your reasoning.

M\
T,

The electrical resistance R in ohms (£2) for a pure metal
wire is related to its temperature 7 in °C by the formula
R = Ro(1 +kT)

in which Ry and k are positive constants.

(a) Make a hand-drawn sketch of the graph of R versus T,
and explain the geometric significance of Ry and k for
your graph.

(b) In theory, the resistance R of a pure metal wire drops
to zero when the temperature reaches absolute zero
(T = —273°C). What information does this give you
about k?

(c) A tungsten bulb filament has a resistance of 1.1 Q ata
temperature of 20°C. What information does this give
you about Ry for the filament?

—-2r

< Figure Ex-23

(cont.)



25.

26.

27.

28.

29.

i~ 30.

31.

32.

33.

(d) At what temperature will the tungsten filament have a
resistance of 1.5 ©?

(a) State conditions under which two functions, f and g,
will be inverses, and give several examples of such
functions.

(b) In words, what is the relationship between the graphs
of y = f(x) and y = g(x) when f and g are inverse
functions?

(c) What is the relationship between the domains and
ranges of inverse functions f and g?

(d) What condition must be satisfied for a function f to
have an inverse? Give some examples of functions that
do not have inverses.

(a) State the restrictions on the domains of sinx, cosux,
tan x, and sec x that are imposed to make those func-
tions one-to-one in the definitions of sin™! x, cos™! x,
tan~! x, and sec™! x.

(b) Sketch the graphs of the restricted trigonometric func-

tions in part (a) and their inverses.

In each part, find f~'(x) if the inverse exists.
(@ f(x)=8x3—1 b) fx)=x>-2x+1

(©) fx)=(e)+1 @ fx)=@@+2)/x—-1)
(1 —=2x 2 2
O] f(x)=sm< e ) <x=

O = e

Let f(x) = (ax + b)/(cx + d). What conditions on a, b,
¢, and d guarantee that f~! exists? Find f~!(x).

In each part, find the exact numerical value of the given
expression.

(a) cos[cos™!(4/5) + sin~!(5/13)]

(b) sin[sin~!(4/5) + cos™1(5/13)]

In each part, sketch the graph, and check your work with a
graphing utility.

(@) f(x)=23sin"'(x/2)

(b) f(x) =cos~'x —m/2

(©) f(x) =2tan"!(-3x)

d f(x)=cos'x+ sin”!'x

Suppose that the graph of y = logx is drawn with equal
scales of 1 inch per unit in both the x- and y-directions. If a
bug wants to walk along the graph until it reaches a height
of 5 ft above the x-axis, how many miles to the right of the
origin will it have to travel?

Suppose that the graph of y = 10" is drawn with equal scales
of 1 inch per unit in both the x- and y-directions. If a bug
wants to walk along the graph until it reaches a height of
100 mi above the x-axis, how many feet to the right of the
origin will it have to travel?

Express the following function as a rational function of x:

31In (62" (e")3) +2exp(In1)

34.

N 3s.

~ 36.

~ 37.

38.

~ 39.

~ 40.
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Suppose that y = Ce*’, where C and k are constants, and
let Y =Iny. Show that the graph of Y versus ¢ is a line,
and state its slope and Y -intercept.

(a) Sketch the curves y = +e~/2 and y= e™/2 sin 2x for

—m/2 < x < 37/2 in the same coordinate system, and
check your work using a graphing utility.

Find all x-intercepts of the curve y = e~*/2 sin 2x in the
stated interval, and find the x-coordinates of all points
where this curve intersects the curves y = +e2,

(b)

Suppose that a package of medical supplies is dropped from
a helicopter straight down by parachute into a remote area.
The velocity v (in feet per second) of the package ¢ seconds
after it is released is given by v = 24.61(1 — ¢~!3").

(a) Graph v versus .

(b) Show that the graph has a horizontal asymptote v = c.
(c) The constant c is called the terminal velocity. Explain
what the terminal velocity means in practical terms.

(d) Can the package actually reach its terminal velocity?

Explain.
(e) How long does it take for the package to reach 98% of
its terminal velocity?

A breeding group of 20 bighorn sheep is released in a pro-
tected area in Colorado. It is expected that with careful
management the number of sheep, N, after ¢ years will be
given by the formula
220
N=—""
1+ 10(0.837)
and that the sheep population will be able to maintain itself
without further supervision once the population reaches a
size of 80.
(a) Graph N versus t.
(b) How many years must the state of Colorado maintain a
program to care for the sheep?
(c) How many bighorn sheep can the environment in the
protected area support? [Hint: Examine the graph of
N versus ¢ for large values of 7.]

An oven is preheated and then remains at a constant temper-

ature. A potato is placed in the oven to bake. Suppose that

the temperature 7' (in °F) of the potato ¢ minutes later is

givenby T' = 400 — 325(0.97"). The potato will be consid-

ered done when its temperature is anywhere between 260°F

and 280°F.

(a) During what interval of time would the potato be con-
sidered done?

(b) How long does it take for the difference between the
potato and oven temperatures to be cut in half?

(a) Show that the graphs of y = In x and y = x%? intersect.

(b) Approximate the solution(s) of the equation In x = x°?2
to three decimal places.

(a) Show that for x > 0 and k # 0 the equations

Inx 1

and — = —
X k

xk=¢"

have the same solutions. (cont.)
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(b) Use the graph of y = (In x)/x to determine the values [ 41. Consider f(x) = x?tanx +Inx,0 < x < /2.
grap

of k for which the equation x* = ¢* has two distinct (a) Explain why f is one-to-one.
positive solutions. (b) Use a graphing utility to generate the graph of f. Then
(c) Estimate the positive solution(s) of x® = e*. sketch the graphs of f and f~! together. What are the

asymptotes for each graph?
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Air resistance prevents the velocity
of a skydiver from increasing
indefinitely. The velocity
approaches a limit, called the

Joe McBride/Stone/Getty Images

“terminal velocity.”

LIMITS AND
CONTINUITY

The development of calculus in the seventeenth century by Newton and Leibniz provided
scientists with their first real understanding of what is meant by an “instantaneous rate of
change” such as velocity and acceleration. Once the idea was understood conceptually,
efficient computational methods followed, and science took a quantum leap forward. The
fundamental building block on which rates of change rest is the concept of a “limit,” an idea
that is so important that all other calculus concepts are now based on it.

In this chapter we will develop the concept of a limit in stages, proceeding from an
informal, intuitive notion to a precise mathematical definition. We will also develop theorems
and procedures for calculating limits, and we will conclude the chapter by using the limits to
study “continuous” curves.

m LIMITS (AN INTUITIVE APPROACH)

Tangent at P

P(x()s )’0)

The concept of a “limit” is the fundamental building block on which all calculus concepts
are based. In this section we will study limits informally, with the goal of developing an
intuitive feel for the basic ideas. In the next three sections we will focus on computational
methods and precise definitions.

A Figure 1.1.1

Many of the ideas of calculus originated with the following two geometric problems:

THE TANGENT LINE PROBLEM Given a function f and a point P (xq, y) on its graph,
find an equation of the line that is tangent to the graph at P (Figure 1.1.1).

THE AREA PROBLEM Given a function f, find the area between the graph of f and
an interval [a, b] on the x-axis (Figure 1.1.2).

Traditionally, that portion of calculus arising from the tangent line problem is called

differential calculus and that arising from the area problem is called integral calculus.
However, we will see later that the tangent line and area problems are so closely related
that the distinction between differential and integral calculus is somewhat artificial.

67
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Y
y =)
—
X
a b
A Figure 1.1.2
(a) )

[\
INJ N\

A Figure 1.1.3

> Figure 1.1.4

Why are we requiring that P and Q be
distinct?

Il TANGENT LINES AND LIMITS

In plane geometry, a line is called tangent to a circle if it meets the circle at precisely one
point (Figure 1.1.3a). Although this definition is adequate for circles, it is not appropriate
for more general curves. For example, in Figure 1.1.3b, the line meets the curve exactly
once but is obviously not what we would regard to be a tangent line; and in Figure 1.1.3c,
the line appears to be tangent to the curve, yet it intersects the curve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must
view tangent lines another way. For this purpose, suppose that we are interested in the
tangent line at a point P on a curve in the xy-plane and that Q is any point that lies on the
curve and is different from P. The line through P and Q is called a secant line for the curve
at P. Intuition suggests that if we move the point Q along the curve toward P, then the
secant line will rotate toward a limiting position. The line in this limiting position is what
we will consider to be the fangent line at P (Figure 1.1.4a). As suggested by Figure 1.1.4D,
this new concept of a tangent line coincides with the traditional concept when applied to
circles.

Tangent
line

Secant
line

Secant
line

\

(@) (b)

» Example 1 Find an equation for the tangent line to the parabola y = x? at the point
P(1,1).

Solution. 1f we can find the slope m,, of the tangent line at P, then we can use the point
P and the point-slope formula for a line (Web Appendix G) to write the equation of the
tangent line as

y—1=mgkx -1 (D
To find the slope my,,, consider the secant line through P and a point Q(x, x?) on the
parabola that is distinct from P. The slope m. of this secant line is

x2—1
x—1

Mgec = 2

Figure 1.1.4a suggests that if we now let Q move along the parabola, getting closer and
closer to P, then the limiting position of the secant line through P and Q will coincide with
that of the tangent line at P. This in turn suggests that the value of m.. will get closer and
closer to the value of m,, as P moves toward Q along the curve. However, to say that
Q(x, x?) gets closer and closer to P (1, 1) is algebraically equivalent to saying that x gets
closer and closer to 1. Thus, the problem of finding m,, reduces to finding the “limiting
value” of mg.. in Formula (2) as x gets closer and closer to 1 (but with x 7 1 to ensure that
P and Q remain distinct).



A Figure 1.1.5

A Figure 1.1.6

4
Ay
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We can rewrite (2) as

x2—1 =Dl +1)
x—1  (x=1
where the cancellation of the factor (x — 1) is allowed because x # 1. It is now evident

that mg gets closer and closer to 2 as x gets closer and closer to 1. Thus, m,, = 2 and (1)
implies that the equation of the tangent line is

x+1

Mgec =

y—1=2(x —1) orequivalently y=2x —1

Figure 1.1.5 shows the graph of y = x? and this tangent line. <

AREAS AND LIMITS

Just as the general notion of a tangent line leads to the concept of limit, so does the general
notion of area. For plane regions with straight-line boundaries, areas can often be calculated
by subdividing the region into rectangles or triangles and adding the areas of the constituent
parts (Figure 1.1.6). However, for regions with curved boundaries, such as that in Figure
1.1.7a, a more general approach is needed. One such approach is to begin by approximating
the area of the region by inscribing a number of rectangles of equal width under the curve
and adding the areas of these rectangles (Figure 1.1.7b). Intuition suggests that if we repeat
that approximation process using more and more rectangles, then the rectangles will tend
to fill in the gaps under the curve, and the approximations will get closer and closer to the
exact area under the curve (Figure 1.1.7¢). This suggests that we can define the area under
the curve to be the limiting value of these approximations. This idea will be considered in
detail later, but the point to note here is that once again the concept of a limit comes into play.

/

(@)
A Figure 1.1.7

© James Oakley/Alamy

This figure shows a region called the
Mandelbrot Set. It illustrates how
complicated a region in the plane can be
and why the notion of area requires
careful definition.

(b) ()

DECIMALS AND LIMITS
Limits also arise in the familiar context of decimals. For example, the decimal expansion

of the fraction % is

1
3 =033333.. A3)

in which the dots indicate that the digit 3 repeats indefinitely. Although you may not have
thought about decimals in this way, we can write (3) as

1
3= 0.33333... = 0.3+ 0.03 4 0.003 4- 0.0003 + 0.00003 +- - - - “

which is a sum with “infinitely many” terms. As we will discuss in more detail later, we
interpret (4) to mean that the succession of finite sums

0.3, 0.340.03, 0.340.03 +0.003, 0.3 4 0.03 +0.003 + 0.0003, ...

gets closer and closer to a limiting value of % as more and more terms are included. Thus,
limits even occur in the familiar context of decimal representations of real numbers.
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B LIMITS

Now that we have seen how limits arise in various ways, let us focus on the limit concept

itself.

The most basic use of limits is to describe how a function behaves as the independent
variable approaches a given value. For example, let us examine the behavior of the function

f(x)=x2—x+1

for x-values closer and closer to 2. It is evident from the graph and table in Figure 1.1.8
that the values of f(x) get closer and closer to 3 as values of x are selected closer and closer
to 2 on either the left or the right side of 2. We describe this by saying that the “limit of

2

x* —x + 11is 3 as x approaches 2 from either side,” and we write

lim x> —x+1) =3 (5)
x—2
AY
JO 9
y=fx) =x>—x+1
34
S0
X
X 1.0 1.5 1.9 1.95 1.99 1.995 1.999 |2 | 2.001 2.005 2.01 2.05 2.1 2.5 3.0
f(x) |1.000000(1.750000|2.710000{2.852500(2.970100{2.985025|2.997001 3.003001(3.015025 (3.030100{3.152500(3.310000|4.750000 | 7.000000
Left side . - Right side

A Figure 1.1.8

This leads us to the following general idea.

1.1.1 LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we

write
lim f(x) =L

X—a

Since x is required to be different from
a in (6), the value of f at a, or even
whether f is defined at g, has no bear-
ing on the limit L. The limit describes
the behavior of f close to a but not
ata.

(6)

which is read “the limit of f(x) as x approaches a is L” or “ f(x) approaches L as x
approaches a.” The expression in (6) can also be written as

fx)—L as x—a

(N




TECHNOLOGY MASTERY

Use a graphing utility to generate the
graph of the equation y = f(x) for the
function in (9). Find a window contain-
ing x = 1 in which all values of f(x)
are within 0.5 of y =2 and one in
which all values of f(x) are within 0.1
of y= 2.
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» Example 2 Use numerical evidence to make a conjecture about the value of

fim ! (8)
m
x—1 ﬁ —1
Solution. Although the function
foy = 21 ©)
X) =
Jx =1

is undefined at x = 1, this has no bearing on the limit. Table 1.1.1 shows sample x-values
approaching 1 from the left side and from the right side. In both cases the corresponding
values of f(x), calculated to six decimal places, appear to get closer and closer to 2, and
hence we conjecture that x—1
lim
x—>1.Jx — 1

=2

This is consistent with the graph of f shown in Figure 1.1.9. In the next section we will
show how to obtain this result algebraically. «

A Figure 1.1.9

Use numerical evidence to determine
whether the limit in (11) changes if x
is measured in degrees.

Table 1.1.2
X sin x
(RADIANS) Y=

+1.0 0.84147
+0.9 0.87036
+0.8 0.89670
+0.7 0.92031
+0.6 0.94107
+0.5 0.95885 u
+0.4 0.97355
+0.3 0.98507
+0.2 0.99335
+0.1 0.99833
+0.01 0.99998

Table 1.1.1
X 0.99 0.999 0.9999 0.99999 1.00001 1.0001 1.001 1.01
f(x) | 1.994987 1.999500 1.999950 1.999995 2.000005 | 2.000050 | 2.000500 | 2.004988
y > <
o Left side . Right side
N y=f)= N
i I / » Example 3 Use numerical evidence to make a conjecture about the value of
2 ———0
| [ } . sinx
Nz lim (10)
. x—0 X
o
\ \
| } L ‘ x  Solution. With the help of a calculating utility set in radian mode, we obtain Table 1.1.2.
x> lex 2 3 The data in the table suggest that

. sinx
lim

x—0 X

=1 (11)

The result is consistent with the graph of f(x) = (sin x)/x shown in Figure 1.1.10. Later
in this chapter we will give a geometric argument to prove that our conjecture is correct. <

As x approaches 0 from the left

or right, approaches 1.
» Figure 1.1.10 gnt, fx) app

SAMPLING PITFALLS

Numerical evidence can sometimes lead to incorrect conclusions about limits because of
roundoff error or because the sample values chosen do not reveal the true limiting behavior.
For example, one might incorrectly conclude from Table 1.1.3 that

. . Y
lim sin (—) =0
x—0 X
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The fact that this is not correct is evidenced by the graph of f in Figure 1.1.11. The graph
reveals that the values of f oscillate between —1 and 1 with increasing rapidity as x — 0
and hence do not approach a limit. The data in the table deceived us because the x-values
selected all happened to be x-intercepts for f(x). This points out the need for having
alternative methods for corroborating limits conjectured from numerical evidence.

Table 1.1.3

x % Jf(x) = sin (%) e y = sin (%)
x==1 +7T sin(xm) =0
x==0.1 +107 sin(+107) =0 X
x ==0.01 +1007 sin(+100m) = 0 1 1
x ==0.001 +10007 sin(+10007) = 0
x==0.0001 +10,000r sin(+10,0007) =0

. . . _1 [

A Figure 1.1.12

As with two-sided limits, the one-sided
limits in (14) and (15) can also be writ-

ten as

f@)—>L as x—a"

and
f(x)—>L as x—a~

respectively.

A Figure 1.1.11

Il ONE-SIDED LIMITS

The limit in (6) is called a two-sided limit because it requires the values of f(x) to get
closer and closer to L as values of x are taken from either side of x = a. However, some
functions exhibit different behaviors on the two sides of an x-value a, in which case it is
necessary to distinguish whether values of x near a are on the left side or on the right side
of a for purposes of investigating limiting behavior. For example, consider the function

x| { 1, x>0 (12)

FO="T=1-1 x<o
which is graphed in Figure 1.1.12. As x approaches O from the right, the values of f(x)
approach a limit of 1 [in fact, the values of f(x) are exactly 1 for all such x], and similarly,
as x approaches 0 from the left, the values of f(x) approach a limit of —1. We denote these
limits by writing
. x] ]
Iim — =1 and Im — =-—1 (13)
x—>0t Xx x—=0" X
With this notation, the superscript “+” indicates a limit from the right and the superscript
“—" indicates a limit from the left.
This leads to the general idea of a one-sided limit.

1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),

then we write
_lim+ fx)=L (14)

and if the values of f(x) can be made as close as we like to L by taking values of x
sufficiently close to a (but less than a), then we write

lim f(x)=1L 15)

X—a~

Expression (14) is read “the limit of f(x) as x approaches a from the right is L” or
“f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “the limit of f(x) as x approaches a from the left is L” or “ f(x) approaches L as
x approaches a from the left.”



P Figure 1.1.13
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B THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS

In general, there is no guarantee that a function f will have a two-sided limit at a given
point a; that is, the values of f(x) may not get closer and closer to any single real number
L as x — a. In this case we say that

lim f(x) does not exist
X—a

Similarly, the values of f(x) may not get closer and closer to a single real number L as
x—a"’ oras x—a. In these cases we say that

lim+ f(x) does not exist

X—a
or that lim f(x) does not exist
X—>a-
In order for the two-sided limit of a function f(x) to exist at a point a, the values of f(x)
must approach some real number L as x approaches a, and this number must be the same
regardless of whether x approaches a from the left or the right. This suggests the following
result, which we state without formal proof.

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-
sided limit of a function f(x) exists at @ if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim f(x) =L ifandonlyif lim f(x)=L= lim+ f(x)

» Example 4 Explain why
x|
x—=0 Xx
does not exist.

Solution. As x approaches 0, the values of f(x) = |x|/x approach —1 from the left and
approach 1 from the right [see (13)]. Thus, the one-sided limits at O are not the same. <

» Example 5 For the functions in Figure 1.1.13, find the one-sided and two-sided limits
at x = a if they exist.

Solution. The functions in all three figures have the same one-sided limits as x — a,
since the functions are identical, except at x = a. These limits are

lim f(x)=3 and Ilim f(x)=1
x—>at x—a-

In all three cases the two-sided limit does not exist as x — a because the one-sided limits
are not equal. <
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The symbols 40 and —c here are not
real numbers; they simply describe par-
ticular ways in which the limits fail to
exist. Do not make the mistake of ma-
nipulating these symbols using rules of
algebra. For example, it is incorrect to
write (4-00) — (4o0) = 0.

» Example 6 For the functions in Figure 1.1.14, find the one-sided and two-sided limits

at x = a if they exist.

Solution. As in the preceding example, the value of f at x = a has no bearing on the
limits as x — a, so in all three cases we have

lim f(x)=2 and

X—a

lim f(x) =2

Since the one-sided limits are equal, the two-sided limit exists and

y =/

lim f(x) =2 <

X—>a

y =

AN

A Figure 1.1.14

INFINITE LIMITS

Sometimes one-sided or two-sided limits fail to exist because the values of the function
increase or decrease without bound. For example, consider the behavior of f(x) = 1/x for
values of x near 0. It is evident from the table and graph in Figure 1.1.15 that as x-values
are taken closer and closer to 0 from the right, the values of f(x) = 1/x are positive and
increase without bound; and as x-values are taken closer and closer to O from the left, the
values of f(x) = 1/x are negative and decrease without bound. We describe these limiting

behaviors by writing

1 1

=+ and lim — = —

X x—0" Xx

A Figure 1.1.15

Increases
without
bound
1
X x
?
\ 1
il
* Decreases
without
bound
X -1 -0.1 -0.01 | —0.001 [-0.0001 |0 | 0.0001 0.001 0.01 0.1 1
% -1 -10 -100 —1000 | —10,000 10,000 1000 100 10 1
Left side T Right side
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1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

lim f(x) =+ and lim+ f(x) =4

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim f(x) =+
X—>a
Similarly, the expressions

lim f(x) =—c and lim f(x) = —»
x—>a- x—>at

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write
lim f(x) = —

X—>da

» Example 7 For the functions in Figure 1.1.16, describe the limits at x = a in appro-
priate limit notation.

Solution (a). In Figure 1.1.16a, the function increases without bound as x approaches

a from the right and decreases without bound as x approaches a from the left. Thus,
1

lim =40 and lim = —
x—at X —a x—a X —da

Solution (b). InFigure 1.1.16b, the function increases without bound as x approaches a
from both the left and right. Thus,

1 1 1
lim — = lim —— = lim —— =+
x>a(x —a)?  x—at (x —a)?  x—a (x —a)? *

Solution (¢). In Figure 1.1.16¢, the function decreases without bound as x approaches
a from the right and increases without bound as x approaches a from the left. Thus,
—1 —1

lim = —o and lim = 4o
x—at X —a x—a- X —d

Solution (d). In Figure 1.1.16d, the function decreases without bound as x approaches
a from both the left and right. Thus,
—1 . -1 . —1

lim —— = lim —— = lim — = —» <«
x—a (x —a)? x—oa (x —a)? x-a (x —a)?

(a) (b) (©) (d)
A Figure 1.1.16
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B VERTICAL ASYMPTOTES
Figure 1.1.17 illustrates geometrically what happens when any of the following situations
occur:

lim f(x) =+, lim f(x) =+, lim f(x)=—w, lim f(x) = —x
x—a~ x—at x—a~ x—>at
In each case the graph of y = f(x) either rises or falls without bound, squeezing closer
and closer to the vertical line x = a as x approaches a from the side indicated in the limit.

The line x = a is called a vertical asymptote of the curve y = f(x) (from the Greek word
asymptotos, meaning “‘nonintersecting”).

y y y y

: | | | |

\ I \ \

| | | |

/N | x | /X /N1 |
N AR U A T =

\ \ \

\ } \ \

\ I \ \

\ | \ \

\ I I \
lim f(x) =+o0 X1L1r1u+f(x) =+oo lim f(x) = —oco lim+f(x) = —o0

A Figure 1.1.17

» Example 8 Referring to Figure 0.5.7 we see that the y-axis is a vertical asymptote for
y =log, x if b > 1 since

lim log,x = —
x—0F &b *
For the function in (16), find expres- and referring to Figure 0.3.11 we see that x = —1 and x = 1 are vertical asymptotes of the
sions for the left- and right-hand limits graph of 5
2x
at each asymptote. X) = X+ < 16
fo) =5 (16)
VQUICK CHECK EXERCISES 1.1 (See page 80 for answers.)
1. We write lim,_, f(x) =L provided the values of (b) lim f(x)=
can be made as close to ________ as desired, by © X17n21 Fx) =
taking valuesof ____ sufficientlycloseto____ but x—>2%
n @ lm fx)=_—
ot x—3"
2. Wewritelim, _, ,- f(x) = 4+ooprovided________increases y
withoutbound,as ___ approaches _____ from the oL \
left. 1 |
3. State what must be true about L i\, =
lim f(x) and lim f(x) R
xX—a- x—at |
in order for it to be the case that -2F | <«Figure Ex-4

lim f(x) = L

o 5. The slope of the secant line through P (2, 4) and Q(x, x?)

4. Use the accompanying graphof y = f(x) (—o < x < 3)to on the parabola y = x? is mg. = x + 2. It follows that the
determine the limits. slope of the tangent line to this parabola at the point P is
(@) )}i_r)n() fx)y=—
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1-10 In these exercises, make reasonable assumptions about
the graph of the indicated function outside of the region de-
picted.

1. For the function g graphed in the accompanying figure, find
(@) lir% g(x) (b) lim g(x)
x—>0" X

— 0+

(©) lim g(x) (@ g(0).
AY y=8()

\ i ]

\ /

\ /.

N iy

N et

- < Figure Ex-1

2. For the function G graphed in the accompanying figure, find
(a) lim G(x) (b) lim G(x)
x—0" x—0+
(c) lin% G(x) (d) G(0).

o y=G6W

AN

—
~

- < Figure Ex-2

3. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim_f(x)

© lim f(x) @ ().
% y =/
3 )\
1 ; 1IO;
o] ‘
“FLETT

<A Figure Ex-3

4. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim f(x)
(© lim f(x) @ /).

¥ y=fx)

r < Figure Ex-4

5. For the function F graphed in the accompanying figure, find
(a) lim2 F(x) (b) lim2+ F(x)
x—=2" x——

(o) linle(x) d) F(-2).

B < Figure Ex-5

6. For the function G graphed in the accompanying figure, find
(a) lin(} G(x) (b) lin(}Jr G(x)
X I~ X —>

() li%rn0 G(x) (d) G(0).
) 7,\’ y=G(x)
TN
| // \\ | X
-3 - 3
e N
-2F < Figure Ex-6

7. For the function f graphed in the accompanying figure, find
@ lim f(x) (b) lim f(x)
© lim f(x) @ f3).

<

y=f(
4

_/—\

YA

3

\\\\\\/\\\\

< Figure Ex-7

8. For the function ¢ graphed in the accompanying figure, find
@ lim $(x) (b) lim ¢(x)
(© )}@4 ¢ (x) (d) ¢(4).

y Y=o

———rT | | | |
L 4

X
S I S A I |

- < Figure Ex-8

9. For the function f graphed in the accompanying figure on
the next page, find

(@ lim f(x)
© lim f(x)

(b) lim f(x)
@ f(0).
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Yy =f)

< Figure Ex-9

10. For the function g graphed in the accompanying figure, find

(@) linllfg(x) (b) linlgg(X)
(©) lim g(x) (d) g(1).
y
y=2gx

1 N

-1 2

< Figure Ex-10

M 11-12 (i) Complete the table and make a guess about the limit
indicated. (ii) Confirm your conclusions about the limit by
graphing a function over an appropriate interval. [Note: For
the inverse trigonometric function, be sure to put your calculat-
ing and graphing utilities in radian mode.]

ef —1

1. f(x) = —— lim f(x)

X -0.01 | =0.001 | —0.0001 | 0.0001 | 0.001 | 0.01

S
A Table Ex-11

sin™!' 2x

12, f() = =1 lim f(x)

x | -0.1|-0.01| -0.001 | 0.001 | 0.01 | 0.1

S
A Table Ex-12

[c] 13-16 (i) Make a guess at the limit (if it exists) by evaluating the
function at the specified x-values. (ii) Confirm your conclusions
about the limit by graphing the function over an appropriate in-
terval. (iii) If you have a CAS, then use it to find the limit. [Note:
For the trigonometric functions, be sure to put your calculating
and graphing utilities in radian mode.]

-1
13. (@) lim =——; x =2, 1.5, 1.1,1.01, 1.001,0,0.5, 0.9,

m S
0.99, 0.999
1
(b) lim %; x=2,1.5,1.1,1.01, 1.001, 1.0001
x—>1t x> —1
1
© lim %; x =0,0.5,0.9,0.99, 0.999, 0.9999
x—>1- x> =1
Viti-1
14. (a) 1im0x7; x = +0.25, +0.1, £0.001,
X —> X
£0.0001
ViFi+1
() lim, Nt 025.0.1,0.001,0.0001
X — X
Viti41
© tim XXt 025 0.1, —0.001,
x— 0" X
—0.0001
sin 3x

15. (a) limo ; x = £0.25, £0.1, £0.001, £0.0001

X
®) lim 2%, v 20,05, -0.9, —0.99, —0.999,
x—>—-1x4+1
—1.5,—1.1, —1.01, —1.001

t 1
@+ D0, 0.5, -0.9, ~0.99, ~0.999,

-1.5,-1.1,-1.01, —1.001
x = %£0.25, £0.1, £0.001, £0.0001

16. (a) lim

--1 x+1

® lim sin(5x)
x—0 sin(2x) ’

17-20 True-False Determine whether the statement is true or
false. Explain your answer.

17. If f(a) = L, then lim, _, , f(x) = L.

18. If lim,_, f(x) exists, then so do lim,_ ., f(x) and
lil’nxa(fr f(x)

19. If lim,_ .- f(x) and lim,_ ,+ f(x) exist, then so does
lim, , , f(x).

20. If lim, _, 4+ f(x) = +oo, then f(a) is undefined.

21-26 Sketch a possible graph for a function f with the speci-
fied properties. (Many different solutions are possible.)

21. (i) the domain of fis[—1, 1]
() f(=D=f0)=f1)=0
(iii) hIPH flx) = hmo fx) = linll, fx)y=1
22. (i) the domain of fis[—2, 1]
(i) f(=2)=f0O)=f1)=0
(iii) 1ir112+ flx)=2, lim0 f(x) =0, and
hmx—)l’ f(x) =1
23. (i) the domain of f is (—oo, 0]
() f(=2)=f0) =1
(iii) linl2 f(x) =+
24. (i) the domain of f is (0, +)
i f1)=0
(iii) the y-axis is a vertical asymptote for the graph of f
(iv) f(x) <0if0<x <1



25. () f(=3)=fO0O=f2=0
(i) lir£127 f(x) = 4o and lirllz+ f(x) = —oo
(iii) lim1 f(x) =4
® f-D=0,f0O=1r1)=0
(ii) hrfll_ f(x) =0and lir£11+ f(x) =+

(iii) lim f(r)=1Tand lim f(x) = 4o

26.

27-30 Modify the argument of Example 1 to find the equation
of the tangent line to the specified graph at the point given.

217.
28.
29.
30.

the graph of y = x% at (-1, 1)
the graph of y = x? at (0, 0)
the graph of y = x* at (1, 1)
the graph of y = x* at (—1, 1)

FOCUS ON CONCEPTS

31. Inthe special theory of relativity the length / of a narrow
rod moving longitudinally is a function / = I(v) of the
rod’s speed v. The accompanying figure, in which c de-
notes the speed of light, displays some of the qualitative
features of this function.

(a) What is the physical interpretation of /y?
(b) Whatis lim,_, .- /(v)? What is the physical signif-
icance of this limit?

l

Iy [=1@)

Length

Speed
A Figure Ex-31
32. Inthe special theory of relativity the mass m of a moving
object is a function m = m(v) of the object’s speed v.
The accompanying figure, in which ¢ denotes the speed
of light, displays some of the qualitative features of this
function.
(a) What is the physical interpretation of m(?
(b) What is lim,_, .- m(v)? What is the physical sig-
nificance of this limit?

m

Mass

ny

A Figure Ex-32

1.1 Limits (An Intuitive Approach) 79

33. Whatdo the graphs in Figure 0.5.4 imply about the value

of Lot —1

x—0 X
Explain your answer.

[c] 34.

i~ 3s.

36.

37.

Let —sinx

X
fo) =%

X
(a) Make a conjecture about the limit of f as x — 0" by
completing the table.

X 0.5
S

0.1 | 0.05 | 0.01

(b) Make another conjecture about the limit of f as x — 0
by evaluating f(x) at x = 0.0001, 0.00001, 0.000001,
0.0000001, 0.00000001, 0.000000001.

(c) The phenomenon exhibited in part (b) is called cata-
strophic subtraction. What do you think causes cata-
strophic subtraction? How does it put restrictions on the
use of numerical evidence to make conjectures about
limits?

(d) If you have a CAS, use it to show that the exact value
of the limit is .

Let L1/

f@) = (1+x%)

(a) Graph f in the window

[—1,1] x [2.5,3.5]
and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window

[—0.001, 0.001] x [2.5, 3.5]
and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Graph f in the window
[—0.000001, 0.000001] x [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x — 0.
Later we will be able to show that

. oy 1.1/x2
lim (1+x%) """ ~ 3.00416602

What flaw do your graphs reveal about using numerical
evidence (as revealed by the graphs you obtained) to
make conjectures about limits?

(b)

(©)

(d

Writing Two students are discussing the limit of /X as
x approaches 0. One student maintains that the limit is 0,
while the other claims that the limit does not exist. Write
a short paragraph that discusses the pros and cons of each
student’s position.

Writing Given a function f and a real number a, explain
informally why

lim f(x +a) = lim f(x)

x—0 x—a
(Here “equality” means that either both limits exist and are
equal or that both limits fail to exist.)
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t/ QUICK CHECK ANSWERS 1.1

1. f(x); L;x;a 2. f(x);x;a 3. Both one-sided limits must exist and equal L. 4. (a) 0 (b) 1 (¢) +o (d) —= 5. 4

m COMPUTING LIMITS

In this section we will discuss techniques for computing limits of many functions. We
base these results on the informal development of the limit concept discussed in the
preceding section. A more formal derivation of these results is possible after Section 1.4.

Il SOME BASIC LIMITS
Our strategy for finding limits algebraically has two parts:

¢ First we will obtain the limits of some simple functions.

e Then we will develop a repertoire of theorems that will enable us to use the limits
of those simple functions as building blocks for finding limits of more complicated
functions.

We start with the following basic results, which are illustrated in Figure 1.2.1.

1.2.1 THEOREM Let a and k be real numbers.

1 1
(@) limk =k ®) limx=a (¢) lim - = - (d) lim — = 4o
x—a xX—a x—>0" X x—=0t X

y y=x
fO=x¢-———————
! | !
Y } l
k —> <« Y=k arT \ *
— 4 | | T,
\ \ ‘ fx)=xé — \ \ =
o L !
Py
\ £ \ f X —» ad «— X L
X —» a «— X
. 1 . 1
lim k =k lim x=a lim — = -0 lim + = +oo
x—a x—a x—0" x—0"
A Figure 1.2.1

The following examples explain these results further.

» Example 1 If f(x) =k is a constant function, then the values of f(x) remain fixed
5 e e (e e e e at k as x varies, which explains why f(x)— k as x — a for all values of a. For example,

number with its closeness to zero. For lim 3 =3,
positive numbers, the smaller the num- x— =25

ber the closer it is to zero, but for neg-
ative numbers, the larger the number
the closer it is to zero. For example,
—2 is larger than —4, but it is closer to

zero. lim x =0, lim x = -2, limx=m «

x—0 x— =2 xX—>1

1in103:3, Iim3=3 «

X—>T

» Example2 If f(x) = x,thenasx — aitmustalsobe true that f(x) — a. Forexample,



Theorem 1.2.2(e) remains valid for n
even and L; =0, provided f(x) is
nonnegative for x near a with x # a.

1.2 Computing Limits 81

» Example 3 You should know from your experience with fractions that for a fixed
nonzero numerator, the closer the denominator is to zero, the larger the absolute value of
the fraction. This fact and the data in Table 1.2.1 suggest why 1/x — +o as x — 0" and
why 1/x — —ccas x — 0. <«

Table 1.2.1
VALUES CONCLUSION
X -1 -0.1 -0.01 -0.001 -=0.0001 ---| As x — 0 the value of 1/x
1/x | -1 -10 =100 —-1000 -—10,000 --- | decreases without bound.
x 1 0.1 0.01 0.001 0.0001 --- | As x — 07 the value of 1/x
1/x 1 10 100 1000 10,000 --- | increases without bound.

The following theorem, parts of which are proved in Appendix D, will be our basic tool
for finding limits algebraically.

1.2.2 THEOREM Let a be a real number, and suppose that
lim f(x)=L; and lim g(x)= L,
X—a X—a
That is, the limits exist and have values Ly and L,, respectively. Then:

(@ lim [£(0)+g(0] = lim f(x)+ lim g(x) = Ly + Lo
() lim [£(r) = g(0)] = lim f(x) = lim g(r) = L — L,

© lim [F0ge0] = (lim 7(0) (Jim g(0) = L1Ls

0 F0 I

x=ag() i g(x) Ly’

provided L, # 0

(e) xhir}l (Z/f(x) = \%{hﬁma f(x) = /Ly, provided Ly > 0ifn is even.

Moreover, these statements are also true for the one-sided limitsas x —a~ orasx — a™.

This theorem can be stated informally as follows:

(a) The limit of a sum is the sum of the limits.
(b) The limit of a difference is the difference of the limits.
(c) The limit of a product is the product of the limits.

(d) The limit of a quotient is the quotient of the limits, provided the limit of the denom-
inator is not zero.

(e) The limit of an nth root is the nth root of the limit.

For the special case of part (¢) in which f(x) = k is a constant function, we have

lim (kg(x)) = lim k- lim g(x) = k lim g(x) €))]
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and similarly for one-sided limits. This result can be rephrased as follows:

A constant factor can be moved through a limit symbol.

Although parts (a) and (c) of Theorem 1.2.2 are stated for two functions, the results hold
for any finite number of functions. Moreover, the various parts of the theorem can be used
in combination to reformulate expressions involving limits.

» Example 4

Iim[f(x) — g(x) 4+ 2h(x)] = lim f(x) — lim g(x) 4+ 2 lim A(x)

Tim [/(0)g(0R(0] = (Jim f()) (lim g(0) ( lim hx))

3
lim [f(x)]3 = ( lim f(x)) Take g(x) = h(x) = f(x) in the last equation.
x—>a x—>a

n

: n o__ : The extension of Theorem 1.2.2(c) in which
Xh_l;na[f(x)] - (xll_)nla f(x)) there are n factors, each of which is f(x)
n

lim x" = ( lim )C) =a" Apply the previous result with f(x) =x. <
x—a x—a

B LIMITS OF POLYNOMIALS AND RATIONAL FUNCTIONS AS x —> a

» Example 5 Find lim, (x? —4x +3).

Solution.
lim (x2 —4x +3) = lim x% — lim 4x + lim 3 Theorem 1.2.2(a), (b)
x—5 x—5 x—5 x—5
= lim x2 — 4 lim x 4+ lim 3 A constant can be moved
x—5 x— x—5 through a limit symbol.
=52 4(5)+3 The last part of Example 4
=8 «

Observe that in Example 5 the limit of the polynomial p(x) = x> —4x +3 as x > 5
turned out to be the same as p(5). This is not an accident. The next result shows that, in
general, the limit of a polynomial p(x) as x — a is the same as the value of the polynomial
at a. Knowing this fact allows us to reduce the computation of limits of polynomials to
simply evaluating the polynomial at the appropriate point.

1.2.3 THEOREM For any polynomial
px) =co+cix + -+ cpx"
and any real number a,

lim p(x) = co+cia+--- +c,a" = p(a)

X—>a
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PROOF lim p(x) = lim (co ‘x4 4+ c,,x”)

X—a

= lim ¢p + lim ¢;x + --- + lim ¢, x"
X—a

X—a X—a

= lim ¢y + ¢y lim x + -+ + ¢, lim x"

X—a X—a X—a

=cy+cia+---+c,a" =pa) m

» Example 6 Find liml(x7 —2x° + )%,

Solution. The function involved is a polynomial (why?), so the limit can be obtained by
evaluating this polynomial at x = 1. This yields

liml(x7 —2°+D)¥ =0 «

Recall that a rational function is a ratio of two polynomials. The following example
illustrates how Theorems 1.2.2(d) and 1.2.3 can sometimes be used in combination to
compute limits of rational functions.

5x3 44
> Example 7 Find lim 2>~
x—=2 X — 3
Solution. ' s
5x3 14 lun2 5x7 4+ 4)
lim == Theorem 1.2.2(d)
x—>2 x—3 11m2(x—3)
5.-2244
= —+ = —44 Theorem 1.2.3 <«
2-3

The method used in the last example will not work for rational functions in which the
limit of the denominator is zero because Theorem 1.2.2(d) is not applicable. There are
two cases of this type to be considered—the case where the limit of the denominator is
zero and the limit of the numerator is not, and the case where the limits of the numerator
and denominator are both zero. If the limit of the denominator is zero but the limit of the
numerator is not, then one can prove that the limit of the rational function does not exist
and that one of the following situations occurs:

e The limit may be —oo from one side and +oo from the other.
¢ The limit may be +oo.
e The limit may be —c.

Figure 1.2.2 illustrates these three possibilities graphically for rational functions of the form
1/(x —a), 1/(x —a)?, and —1/(x — a)2.

» Example 8 Find

(@) li e ®) i Z;x (©) li Z;X
VR T Hx+2 e a-dHa+2 NG —Hr+2

Solution. In all three parts the limit of the numerator is —2, and the limit of the denom-
inator is 0, so the limit of the ratio does not exist. To be more specific than this, we need
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+++‘————(‘)++‘———x
-2 2 4
’ 2—x
S f—-
B G+
A Figure 1.2.3

In Example 9(a), the simplified function
x — 3 is defined at x = 3, but the orig-
inal function is not. However, this has
no effect on the limit as x approaches
3 since the two functions are identical
if x # 3 (Exercise 50).

A Figure 1.2.2

to analyze the sign of the ratio. The sign of the ratio, which is given in Figure 1.2.3, is
determined by the signs of 2 — x, x — 4, and x + 2. (The method of test points, discussed
in Web Appendix E, provides a way of finding the sign of the ratio here.) It follows from
this figure that as x approaches 4 from the right, the ratio is always negative; and as x
approaches 4 from the left, the ratio is eventually positive. Thus,
. 2—x . 2—x
lim —— — =—-» and lm —— = 4w
=>4t (x —4H(x +2) =4 (x—4Hx+2)

Because the one-sided limits have opposite signs, all we can say about the two-sided limit
is that it does not exist. <«

In the case where p(x)/qg(x) is a rational function for which p(a) = 0 and ¢(a) = 0, the
numerator and denominator must have one or more common factors of x — a. In this case
the limit of p(x)/g(x) as x — a can be found by canceling all common factors of x — a
and using one of the methods already considered to find the limit of the simplified function.
Here is an example.

» Example 9 Find

Coxr—6x+4+9 . 2x + 8 o x2=3x—-10
(a) Im ——— (b) lim ——— (¢) im ———
x—3 x—3 x—>—4x2+x—12 x—>5x2—10x+25

Solution (a). The numerator and the denominator both have a zero at x = 3, so there is
a common factor of x — 3. Then

x2—6x+9 o (x=3)?
—— = lim ————

lim = 1irr13(x—3):0

x—3 X — 3 x—=3 X — 3
Solution (b). The numerator and the denominator both have a zero at x = —4, so there
is a common factor of x — (—4) = x 4+ 4. Then
. 2x +8 . 2(x +4) . 2 2
Iim —— = lim —————— = lim ==
xo—4x24+x—12 i>-4x+Hx—-3) 1—>-4x-3 7

Solution (c¢). The numerator and the denominator both have a zero at x = 5, so there is
a common factor of x — 5. Then
oo x2=3x-10 o x=5Kx+2) Cox+2
lim ————— = lim ————~ = lim
x=>5x2—=10x+25 x->5(x—=5x—5) 1-5x—5




A Figure 1.24

Discuss the logical errors in the follow-
ing statement: An indeterminate form
of type 0/0 must have a limit of zero be-
cause zero divided by anything is zero.

1.2 Computing Limits 85

However,
lims(x—l—2)=7750 and lims(x—5)=0
xX— x—

SO
x2=3x—-10 Coox+2

lim = lim
x=>5x2—10x+25 x>5x—35
does not exist. More precisely, the sign analysis in Figure 1.2.4 implies that

x2=3x—10 . x+2_

li - = —
e i S TP T My
and
. x2—=3x—10 o ox+2
11m —_—_— = = — <

= m
o5 X2 —10x+25 o5 x—5

A quotient f(x)/g(x) in which the numerator and denominator both have a limit of zero
as x — a is called an indeterminate form of type 0/0. The problem with such limits is that
it is difficult to tell by inspection whether the limit exists, and, if so, its value. Informally
stated, this is because there are two conflicting influences at work. The value of f(x)/g(x)
would tend to zero as f(x) approached zero if g(x) were to remain at some fixed nonzero
value, whereas the value of this ratio would tend to increase or decrease without bound as
g(x) approached zero if f(x) were to remain at some fixed nonzero value. But with both
f(x) and g(x) approaching zero, the behavior of the ratio depends on precisely how these
conflicting tendencies offset one another for the particular f and g.

Sometimes, limits of indeterminate forms of type 0/0 can be found by algebraic simpli-
fication, as in the last example, but frequently this will not work and other methods must
be used. We will study such methods in later sections.

The following theorem summarizes our observations about limits of rational functions.

1.2.4 THEOREM Let

be a rational function, and let a be any real number.
(@) Ifq(a) #0, then lim f(x) = f(a).
() Ifq(a) =0 but p(a) # 0, then lim f(x) does not exist.

LIMITS INVOLVING RADICALS

» Example 10 Find lim .
x—=1/x —1

Solution. 1In Example 2 of Section 1.1 we used numerical evidence to conjecture that

this limit is 2. Here we will confirm this algebraically. Since this limit is an indeterminate

form of type 0/0, we will need to devise some strategy for making the limit (if it exists)

evident. One such strategy is to rationalize the denominator of the function. This yields
x—1 (x—D(/x+1) _(x—l)(«/EJrl):ﬁJrl

G DEED T xd v
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Therefore,
Confirm the limit in Example 10 by fac-
toring the numerator.

coox—1 :
—_— = 4
A T (D =2

B LIMITS OF PIECEWISE-DEFINED FUNCTIONS

For functions that are defined piecewise, a two-sided limit at a point where the formula
changes is best obtained by first finding the one-sided limits at that point.

» Example 11 Let
1/(x+2), x<-2

fx)={x*-5, —2<x<3
Vx +13, x >3

Find
@ lim f( (0 lim () (© lim £(0)

Solution (a). We will determine the stated two-sided limit by first considering the cor-
responding one-sided limits. For each one-sided limit, we must use that part of the formula
that is applicable on the interval over which x varies. For example, as x approaches —2
from the left, the applicable part of the formula is

1
0=
and as x approaches —2 from the right, the applicable part of the formula near —2 is
fx)=x>-=5
Thus,
li = lim ——=—
x—}lzl2* f(X) x—irIIZ* x+2 *

. _ . 2 M2 _
lim f) = lim (=5 = (-2’ =5 =1

from which it follows that lim2 f(x) does not exist.

Solution (b). The applicable part of the formula is f(x) = x> — 5 on both sides of 0, so
there is no need to consider one-sided limits here. We see directly that

lim f(x) = limo(x2 -5 =0-5=-5

y Solution (c). Using the applicable parts of the formula for f(x), we obtain

lim f(x) = lim (* =5)=3"-5=4

lim f(x)= lim v/x+13= /lim (x +13) =+3+13=4
x—3t x—3t x—3t
Since the one-sided limits are equal, we have

lim3 fx) =4

We note that the limit calculations in parts (a), (b), and (c) are consistent with the graph of
A Figure 1.2.5 Jf shown in Figure 1.2.5. «
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(See page 88 for answers.)

1.2 Computing Limits

87

1. In each part, find the limit by inspection. 3. Find the limits.
(@ lim7 = (b) 1im+ Ry=___ (@) lim 1(x3 +x24+x)0 =
©) hm X (d) hm el =_ (b) lim @—-Dx-2 —
[x] -5 |w| x—>2- x+1
1 —Dx -2
© lim o = © tim % -
_ _ xX—— X
= 1 = 2 - ]6
2. C.}1V.en thatlim, ,, f(x) = landlim,_,, g(x) = 2, find the (d) lim X _
limits. x—>4 x —4
(@ lim[3f(x)+2g(x)]=— 4. Let
x—a fx) = x+1, x<I1
2f(x)+1 x—1, x>1
®) lim ———— =
roal = fl)gx) Find the limits that exist.
(©) lim Y/ 3 _ (@ lim f() =
x=a  g(x) (b) lim f(x) =
x— 1t
(© lim f(x) =
x—1
EXERCISE SET 1.2
1. Given that 3. lim x(x = D(x+1) 4. lim x? —3x% 4+ 9x
lim f(x) =2, limgkx)=-4, 1limh(x)=0 X2 2x 6x —9
X—a X—a X—a 5. llm 6- m 37
find the limits. x—>3 X4+1 xﬁ0x3— 12x +3
(@ lim [£(x) +2g(x)] 7 lim L 8. fim _t8
(b) hm [h(x) _ 3g(x) + 1] x—1t xz— 1 t— =2 ;+2
X—a
: . 2 . Xx“+6x+5 . o x-—4x+4
(© lim [f(x)g(x)] (d) lim [g(zx)] 9. xlinll PR —I 10. Xh_)mz Trr_6
(e) lim Y6+ f(x) (f) lim —— 2x2+x—1 . 3xr—x-2
x—a x—>a g(x) 11. _ 12. lim ——
2. Use th h ff deinth . q ‘ x——1 x+1 x—>12x?4+x—3
. Use the graphs of f and g in the accompanying figure to 3 2 3,0
find the limits that exist. If the limit does not exist, explain 13. lim rt 3t — 12 +4 14. lim rArostt3
why. t—2 — 4t -1 3 =342
(a) lim [f(x)+ g(x)] (b) lim [f(x) 4+ g(x)] 15. lim 16. lim
x—2 x—0 x—=3tx —3 x—=3"x—3
(©) xlln(; [f(x) +g(x0)] (d) xllf% [f(x) + g(x)] 7. lim 18, lim —
f( ) . 1+g(x) x—>3x—3 x—2+ x2 —4
(e) lim f) lim ———— .
=21+ g0 =2 f) R S 200 a
(&) lim V/F(x) () tim V/f(x) y+6 y+6
x—=0" 21. linr61+ a6 22. linr61 a6
y— — — 6~ —
Yy =1 T y=g §+6 e 3y
i i 23. lim — 24. lim —
| y—>6 y2—36 x4+t x2 —2x — 8
3—x 3—x
- T 25. lim — 26. lim —
L] ‘ / X /\ X x—4-x2—2x —8 x1—>4x2 2x — 8
|| HEN 27. lim 28. lim
x—2t |2—x| x—3- |x—3|
B x—=9 4—y
29, lim —— 30. 1i
g g 0 X =3 Va2 — )y
- ; 31. Let
A Figure Ex-2 = 1, x<3
S 3x -7, x>3 (cont)

3-30 Find the limits.
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Find
(a) 1in317 Fx) (b) lirr31+ f&x)y (0 lim3 fx).
32. Let t — 2’ t < 0
g = {12, 0<t=<?2
2t, t>2
Find
(a) lim g(¢) (b) lim g(r) (c) lim g(¢).
t—0 t—1 t—2

33-36 True-False Determine whether the statement is true or
false. Explain your answer.

33. If lim,_, f(x) and lim,_, g(x) exist, then so does
limy o[ f(x) + g(x)].

34. If lim,_,g(x)=0 and Ilim,_, f(x) exists, then
lim, _, ,[ f(x)/g(x)] does not exist.

35. If lim, _,, f(x) and lim, _, , g(x) both exist and are equal,
then lim, _, ,[ f(x)/g(x)] = 1.

36. If f(x) is a rational function and x = a is in the domain of
f,thenlim, ., f(x) = f(a).

37-38 First rationalize the numerator and then find the limit.

Jit4-2 V2 +4-2
37, fim X0 38, lim Y2 T2
x—0 X x—0 X
39. Let ¥$_1

fx) =
x—1

(a) Find lim, . f(x).
(b) Sketch the graph of y = f(x).

40. Let ¥2_9 L 3
I x£—

fx)=1 x+3
k, x=-3

(a) Find k so that f(—3) = lim,_, _3 f(x).
(b) With k assigned the value lim,_, _3 f(x), show that
f(x) can be expressed as a polynomial.

FOCUS ON CONCEPTS

41. (a) Explain why the following calculation is incorrect.

. 1 1 .1 . 1
Iim (-——= )= lim — — lim —
x—>0t \ x x2 x—>0t X x—0+ x2

x—>0t \ x

1 1
(b) Show that lim (7 — —2> = —oo,
X

t/ QUICK CHECK ANSWERS 1.2

42. (a) Explain why the following argument is incorrect.

43. Find all values of a such that

44. (a) Explain informally why

45. Let p(x) and g (x) be polynomials, with g (xo) = 0. Dis-

. 1 2 o1 2
Iim(-————)=Ilim—(1-—
x—=>0\ X x2 + 2x x—>0Xx x+2

=0 -0=0

. 1 2 1
(b) Show that lim | - — — | = —.
x—>0\ X x2+2x 2

. 1 a
lim -
x=>1\x —1 x2—1
exists and is finite.
. 1 1
lim <f + 7) = 4o
x—=0" \ x X
(b) Verify the limit in part (a) algebraically.

cuss the behavior of the graph of y = p(x)/q(x) in the
vicinity of x = x¢. Give examples to support your con-
clusions.

47.

48.

50.

. Suppose that f and g are two functions such that

lim, ., f(x) exists but lim, _, ,[ f(x) + g(x)] does not ex-
ist. Use Theorem 1.2.2. to prove that lim, _, , g(x) does not
exist.

Suppose that f and g are two functions such that both
lim, ., f(x) and lim, _, ,[ f(x) + g(x)] exist. Use Theo-
rem 1.2.2 to prove that lim, _, , g(x) exists.

Suppose that f and g are two functions such that
lim g(x) =0 and lim L0
x—a x—a g ( x)

exists. Use Theorem 1.2.2 to prove that lim, _, , f(x) = 0.

. Writing According to Newton’s Law of Universal Grav-

itation, the gravitational force of attraction between two
masses is inversely proportional to the square of the dis-
tance between them. What results of this section are useful
in describing the gravitational force of attraction between
the masses as they get closer and closer together?

Writing Suppose that f and g are two functions that are
equal except at a finite number of points and that @ denotes
a real number. Explain informally why both

lim f(x) and lim g(x)

X—>a
exist and are equal, or why both limits fail to exist. Write a
short paragraph that explains the relationship of this result
to the use of “algebraic simplification” in the evaluation of
a limit.

1. (@A) 7 (b) 36 (c) —1 (d) 1 (e) +» 2. (a) 7 (b) =3 (c) 1
4. (a) 2 (b) 0 (c) does not exist

3.

(@) =1 (b) 0 (c) + (d) 8
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m LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

<«
= —

lim L 0
X—>+oo

A Figure 1.3.1

Up to now we have been concerned with limits that describe the behavior of a function
f(x) as x approaches some real number a. In this section we will be concerned with the
behavior of f(x) as x increases or decreases without bound.

Il LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
If the values of a variable x increase without bound, then we write x — 400, and if the
values of x decrease without bound, then we write x — —oo. The behavior of a function
f(x) as x increases without bound or decreases without bound is sometimes called the end
behavior of the function. For example,

1 1
lim — =0 and Iim — =0 (1-2)

X—> —0 X X—+o X

are illustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1
VALUES CONCLUSION
X -1 -10 -100 -1000 -10,000 --- | As x — —oo the value of 1/x
1/x | -1 -0.1 -0.01 -0.001 -0.0001 --- | increases toward zero.
X 1 10 100 1000 10,000 --- | As x — +oo the value of 1/x
1/x 1 0.1 0.01 0.001 0.0001 - -- | decreases toward zero.

In general, we will use the following notation.

1.3.1 LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x) eventually
get as close as we like to a number L as x increases without bound, then we write

linl f(x)=L or f(x)—Lasx— -+ 3)
y X —> T+
\ ~ Horizontal asymptote  y =L Similarly, if the values of f(x) eventually get as close as we like to a number L as x
decreases without bound, then we write
y=fx)
lim f(x)=L or f(x)—>Lasx— —x (@]
X
lim f(x)=L Figure 1.3.2 illustrates the end behavior of a function f when
lirpF fx)=L or lim f(x)=1L
y X— 4w X —> —0w
In the first case the graph of f eventually comes as close as we like to the line y = L as x
increases without bound, and in the second case it eventually comes as close as we like to
the line y = L as x decreases without bound. If either limit holds, we call the line y = L

\,

a horizontal asymptote for the graph of f.

lim f(x)=L

X——oo

A Figure 1.3.2

» Example 1 It follows from (1) and (2) that y = 0 is a horizontal asymptote for the
graph of f(x) = 1/x in both the positive and negative directions. This is consistent with
the graph of y = 1/x shown in Figure 1.3.1. <«
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y =tan~

A Figure 1.3.3

' x

y= (l +
A Figure 1.34

» Example 2 Figure 1.3.3 is the graph of f(x) = tan~! x. As suggested by this graph,

. 1 4
lim tan™ x = ——
X —> —o© 2

. _ T
lim tan~'x = = and
X —> o0 2

(5-6)

so the line y = /2 is a horizontal asymptote for f in the positive direction and the line
y = —7n/2 is a horizontal asymptote in the negative direction. <

» Example 3 Figure 1.3.4 is the graph of f(x) = (1 + 1/x)*. As suggested by this

graph,
1\* 1\*
lim (1 + —) =e¢ and lim (1 + —) =e
X —> 40 X X — —o0 X

so the line y = e is a horizontal asymptote for f in both the positive and negative directions.
<

(7-8)

LIMIT LAWS FOR LIMITS AT INFINITY

It can be shown that the limit laws in Theorem 1.2.2 carry over without change to limits at
o0 and —co. Moreover, it follows by the same argument used in Section 1.2 thatif n is a
positive integer, then

lim (f(x)" = < lim f(x)) lim (f(x)" = < lim f(x)) (9-10)
X — 4+ X — 4+ X —> —oo X —> —0
provided the indicated limit of f(x) exists. It also follows that constants can be moved
through the limit symbols for limits at infinity:
linl kf(x) =k lin_lF fx) lim kf(x) =k lim f(x) (11-12)
provided the indicated limit of f(x) exists.
Finally, if f(x) = k is a constant function, then the values of f do not change as x — +oo
or as x — —, SO
lim k=k

X —> +o©

Iim k=k

X — —©

(13-14)

» Example 4

(a) It follows from (1), (2), (9), and (10) that if n is a positive integer, then

. 1 . 1\"
11m—=<11m —) =0
x— —oo x xX—>—o X

(b) It follows from (7) and the extension of Theorem 1.2.2(e) to the case x — oo that

1 ¥ | 2 1/2
li 14+ — li 14+ —
x—lﬁlkoc( +2x> x—l>r20c |:< + 2x> :|

1 2x 1/2
|:1im <1+—> } =2 = /e «
X — 4o 2x

. 1 . 1\"
lim —:(hm —) =0 and

x— 4o xN xX— 4o X

INFINITE LIMITS AT INFINITY

Limits at infinity, like limits at a real number a, can fail to exist for various reasons. One
such possibility is that the values of f(x) increase or decrease without bound as x — +oo
or as x — —oo. We will use the following notation to describe this situation.



1.3 Limits at Infinity; End Behavior of a Function 91
1.3.2 INFINITE LIMITS AT INFINITY (AN INFORMAL VIEW) If the values of f(x)
increase without bound as x — +o or as x — —oo, then we write
lim f(x) =4 or Ilim f(x)=-4x
x— +o X — —
as appropriate; and if the values of f(x) decrease without bound as x — 4 or as
x — —oo, then we write

lin+1 f(x)=—0 or lim f(x)=—o

as appropriate.

B LIMITS OF x" AS x — +
Figure 1.3.5 illustrates the end behavior of the polynomials x” forn = 1, 2, 3, and 4. These
are special cases of the following general results:

. . —o, n=1,3,5,...
lim x"=+4w, n=1,2,3,... lim x" = ’ T (15-16)
X — +o X —> —© —+o0, n=2,4,6,...
y AY y y
_ 4
8 8 S y =x3 gL [ Y=X
L y —x L y :xz L L
X X X X
| | | | | | | |
-4 4 -4 4 —4 4 -4 4
8 -8 -8 -8
lim x = +oo lim x2 = 4oo lim x3 = 400 lim x* = 400
X—>+o0 xX—+o0 X—>+oo X—>+o0
lim x = —oo lim x2 = +oo lim x3 = —oo lim x* =400
X——o0 X——o0 X——o0 X——o0
A Figure 1.3.5

Multiplying x" by a positive real number does not affect limits (15) and (16), but mul-
tiplying by a negative real number reverses the sign.

» Example 5

lim 2x° = +oo, lim 2x° = —
X — 4o X —> —

lim —7x% = —oo, lim —7x% = —» <«
X — +o© X — —

B LIMITS OF POLYNOMIALS AS x — +x
There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.
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More precisely, if ¢, # 0, then

lim (co +cx+---+ c,,x") = lim c¢,x" (17)
X —> —0o0 X —> —
linl (co +cix+---+ c,,x") = liIE cpx” (18)

We can motivate these results by factoring out the highest power of x from the polynomial
and examining the limit of the factored expression. Thus,

€o C1
+

c0+c1x+~-~+cnx”:x"( +~-~+cn)

xn el
As x — —oo or x — oo, it follows from Example 4(a) that all of the terms with positive
powers of x in the denominator approach 0, so (17) and (18) are certainly plausible.

» Example 6

lim (7x° —4x° 4+2x —9) = lim 7x° = —o

X —> —x

lim (—4x®+17x* =5x + 1) = lim —4x® = - «

X — —% X —> —©

LIMITS OF RATIONAL FUNCTIONS AS x — +

One technique for determining the end behavior of a rational function is to divide each term
in the numerator and denominator by the highest power of x that occurs in the denomi-
nator, after which the limiting behavior can be determined using results we have already
established. Here are some examples.

— 3x +5
> Example 7 Find lim >
x—+o 6x — 8

Solution. Divide each term in the numerator and denominator by the highest power of
x that occurs in the denominator, namely, x! = x. We obtain

5
x5 3T
lim = lim Divide each term by x.
x—>+40o Ox — 8 X — 4o
X
lim (3 + —)
_ x> 4o X Limit of a quotient is the
- 8 quotient of the limits.
lim (6 — —
X — 4o X

5
lim 3+ lim —
X —> 4 X—>to X Limit of a sum is the
sum of the limits.

lim 6 — lim —
X =+ X—> 4w X

1
34+5 lim —
X—>+ox 340 _ 1 A constant can be moved through a
. - 6+0 - 2 limit symbol; Formulas (2) and (13).

6—8 lim —

x—+0w X
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» Example 8 Find

2 3 2
— 5x° =2 1
* a (b) lim o]
x——2x3 =5 x—>4ee 1 —3x

Solution (a). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x3. We obtain

4 1
4x? — x . x x2
im = lim Divide each term by x3.
x>—02x3 =5 x> -o 5
x3
(41
lim |- — =
R X Limit of a quotient is the
- 5 quotient of the limits.
lim (2 — =
X— — X
. . 1
lim — — lim —
_ o= Xx X—>—*X Limit of a difference is the
. . 5 difference of the limits.
lim 2— lim —
X —> —© X— —w X
1 o1
4 . lirgx )_C -, EII}x ; 0—-0 A c?orTstant can be moved through
= 1 = ) 0 =0 a limit symbol; Formula (14) and
2-5 lim — Example 4.

X— —0 X

Solution (b). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x! = x. We obtain

1
3 2 5x2—2x + —
i o (19)

In this case we cannot argue that the limit of the quotient is the quotient of the limits because
the limit of the numerator does not exist. However, we have

1 1
lim 5x*>—2x =40, lim — =0, lim (- - 3) =-3
X — +oo X —+oe x X =+ \ X

Thus, the numerator on the right side of (19) approaches +cc and the denominator has a
finite negative limit. We conclude from this that the quotient approaches —oo; that is,

1
503 —2x2 4 1 5x%—2x+
lim =——— = lim ——— % = —» «
X — 4 1—3x X — 4o 1
--3
X

B A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS x — +x
OR X — —0
Since the end behavior of a polynomial matches the end behavior of its highest degree term,
one can reasonably conclude:

The end behavior of a rational function matches the end behavior of the quotient of
the highest degree term in the numerator divided by the highest degree term in the
denominator.
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» Example 9 Use the preceding observation to compute the limits in Examples 7 and 8.

Solution.
3x+5 oy 3x . 1 1

— =1l _ = —

im = lim
x—>+obx —8 x—>+wbx x—+o2 2

. 4x2 — x . 4x2 . 2
Iim —— = lim — = lim — =0
x—>-»2x3 —5§ x— —o 2x3 X—>—w X

. Sxd—2xr+1 . 5x3 . 5,
lim —— = lim = lim —=X = —oo 4
x — +oo 1 —3x x>0 (=3x) x>+ 3

B LIMITS INVOLVING RADICALS

» Example 10 Find

VxZ+2 Vxz+2
@ lim Y2 () fim LT
x>+ 3x — 6 x—>—» 3x —6
In both parts it would be helpful to manipulate the function so that the powers of x are
transformed to powers of 1/x. This can be achieved in both cases by dividing the numerator

and denominator by |x| and using the fact that v/x2 = |x|.

Solution (a). As x — +oo, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain

x242 VxZ 42

+

. x2 42 . x| . Vx2
xgnlw 3x — 6 —XLHEOO 3x —6 _xgn-ll»w 3x —6
|x] X
2 2
1+—2 lim 1+—2
= lim X _ X — 4o X
X — 4o 6 . 6
- = lim {3 - -
X X —> +0 X

JI+20) 1

T 3—-(6-00 3

Solution (b). As x — —ox, the values of x under consideration are negative, so we can

replace |x| by —x where helpful. We obtain

It follows from Example 10 that the
function X242 x2 42
2 2
fay= Y2 lim VA2 lim —Vx*
3x -6 x—>—» 3x — X — —® 3x —6 X — —®© 3x —6
=1 f
has.fm a'sym.ptote of y= 3 in the x| (—x)
positive direction and an asymptote of
y= —% in the negative direction. 2
Confirm this using a graphing utility. ) 1+ F 1
= lim —— =—— <«



y:\)x°+5x3—x3,x20

D)
A Figure 1.3.6

We noted in Section 1.1 that the stan-
dard rules of algebra do not apply to
the symbols 4o and —cc. Part (b) of
Example 11 illustrates this. The terms
~/x6 + 5x3 and x both approach +
as x — +oo, but their difference does
not approach 0.

There is no limit as

X — +00 Or X — —oo.

A Figure 1.3.7
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» Example 11 Find

() 1in+1 (Vx6+5—x%) (b) 1in+1 (Vx6 +5x3 — x3)

Solution. Graphs of the functions f(x) = v/x%4+5 — x3, and g(x) = v/x° 4 5x3 — x*
forx > 0, are shown in Figure 1.3.6. From the graphs we might conjecture that the requested
limits are 0 and %, respectively. To confirm this, we treat each function as a fraction with a
denominator of 1 and rationalize the numerator.

VX0 +5+x
Jim (Vxb+5—x%) = lim (Va®+5— 3
1m( X x) 1m( X X)(«/x6—+x3)

x®+5) —x . 5
= m —— = llm —
x— +o /x6+5+x3 X — +o /x6+5+x3
5
= lim Vx0 =x3forx >0
X — 4o 5
I+ —=+1
X
0
=0

Vx6 4+ 5x3 423
lim (vVx6 +5x3 —x°) = lim (Vx645x3 —x%) | —=——"
X —> +o X —> +o© /x6+5x3 +x3

. (x® 4+ 5x3) — x° . 5x3
= lim —— = lim ———
x>t fx0 4 5x3 4 x3 ¥t (/x0 4 5x3 4 3
. 5
= lim ——— Vxb =x3forx >0
X —> +oo 5
‘/1+—3+1
X
5 5
= 4

Il END BEHAVIOR OF TRIGONOMETRIC, EXPONENTIAL,

AND LOGARITHMIC FUNCTIONS
Consider the function f(x) = sinx that is graphed in Figure 1.3.7. For this function the
limits as x — 40 and as x — —oo fail to exist not because f(x) increases or decreases
without bound, but rather because the values vary between —1 and 1 without approaching
some specific real number. In general, the trigonometric functions fail to have limits as
x — +oo0 and as x — —oo because of periodicity. There is no specific notation to denote this
kind of behavior.

In Section 0.5 we showed that the functions e* and In x both increase without bound as
x — oo (Figures 0.5.8 and 0.5.9). Thus, in limit notation we have

lim Inx = 4o lim e = 4w (20-21)

x— 4o X — +o0

For reference, we also list the following limits, which are consistent with the graphs in

Figure 1.3.8:
lim e =0 lim Inx = —oo (22-23)

X —> —x x— 0t
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/| /1
/
/
/
/

A Figure 1.3.8 A Figure 1.3.9

Finally, the following limits can be deduced by noting that the graph of y = e is the
reflection about the y-axis of the graph of y = ¢* (Figure 1.3.9).

lim e =0 lim e = 4w (24-25)

X — +o X—> —®

VQU]CK CHECK EXERCISES 1.3  (See page 100 for answers.)

1. Find the limits. 3. Given that
(@ lim 3—x)=
X —> —0

' 1 xl_l)nlm f(x) =2 and xngg(x) =-3
®) lim (5——-)=_____
o ° find the limits that exist.
© lim () - @ lim [3f()— gl =—
X — 00 x X — 00
1 (b) lim @ _
(@ x1—1>n-}1-oog_x - X — 4% g(x)
2. Find the limits that exist (c) lim 2/ 3800 _
« 1N ¢ I1mits that exist. - =
2x2 4+ x +e 3 f(x) +2g(x)

@ fm 3= —— @ tim 10— fogo=—

) 1
(b) 1_1)12 T snar 4. Consider the graphs of 1/x, sinx, Inx, ¢*, and e*. Which
Tsinx of these graphs has a horizontal asymptote?

1 X
(¢) lim (l + —) =_
X —> 4o X

EXERCISE SET 1.3 I Graphing utility

1-4 In these exercises, make reasonable assumptions about the 2. For the function ¢ graphed in the accompanying figure, find
end behavior of the indicated function. (a) lim ¢(x)
X — —
1. For the function g graphed in the accompanying figure, find (b)) lim ¢(x).
. . X — +oo
(@) lim g(x) (b) lim g(x).
X—> —x X —> +oo
- v =800 T

| \

4 3

< Figure Ex-1 < Figure Ex-2
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3. For the function ¢ graphed in the accompanying figure, find (b) Use Figure 1.3.3 to find the exact value of the limit in
(a) lim ¢(x) (b) lin+1 ¢ (x). part (a).
xX— —o X — 4o
8. Complete the table and make a guess about the limit indi-
y y =) cated.

fay=x" o dim fo)

N X 10 | 100 | 1000 | 10,000 | 100,000 | 1,000,000
—— = | | | N Y I I |

EENEE VB £
< Figure Ex-3

4. For the function G graphed in the accompanying figure, find 9-40 Find the limits.
(@ lim G(x) (b) lim G(x). 9. lim (14 2x —3x%) 10. lim (2x* — 100x + 5)
X—> —x X —> 4w X — +ow X —> 4o
y y = G(x) 11. lim /x 12. lim +/5—x
4 : X =+ xX— —®
1 24
3. lim 2T 4. lim
x—>+o2x — 5 x>+ 2x2 43
15. lim 3 16. lim
< Figure Ex-4 yo-—=y+4 x—>4e x — 12
. x—2 . 5x2+7
5. Given that 17. Xl_l)rgx x242x+1 18. xl—l>m+oc 3x2 —x
lim f(x)=3, lim gx)=-5lim A(x)=0 7 — 6x3 5243
X — 4o X — +o0o X — o 19. lim al 20. lim 3
find the limits that exist. If the limit does not exist, explain x—fe x+3 t—>—= 241
why. . 6—13 . x + 4x3
@ lim [£() +3g()] 2L lim o3 2. m e
®) lim_ [h(x) —4gx) + 1] 23 g Y2t 3r -5 st pim 3354
. . . lim [ ———— . lim ————
© lim [f0)g()] @ lim [gCoP S T s e
3
(e) lim 5+ f(x) (f) lim — o V5x2 =2 ) 5x2—2
X — 4% X — 4o g(x) 25. lim 73 26. lim 73
_ 3h(x) +4 _ 6£(x) Fooe Xt Fote X+t
(9 lim == ) lim ——to 2y 2y
x> oo X x—~>+= 5 f(x) +3g(x) 27. lim ——— 28. lim

6. Given that Y= =2 T+ 6y? y=+e ST 4 6y?
Jlim f(x)=7 and  lim g(x)=—6 o VB3xtx o VB3xttx

29. lim — 30. lim 3
find the limits that exist. If the limit does not exist, explain x—>-w x> —8 x—>4w x*—8

why. 31. liIE WVx24+3—x) 32. lim (vVx%2—3x—x)
X — 4o )

@ lim [2f(x) —g()] (b) lim [6f(x)+7g(x)]

1—¢* 1—e¢*
: 2 . 2 . .
(© lim [x*+g(x)] (@) lim [x*g(x)] 3. lim SAL L prp:
(e) xl—ljgoo v f(X)g(X) (f) xErEoo % 35’ lim < +67X 36. lim 76)( +€7X
x—4w et —e X x——w e¥ —e™X
. g(x) . xf(x)
1 Shuia h) lim — 22 2 2
(® [lim [f @+ = ] ® e 37. lim In <7> 38. lim In (—2>
X =+ X x—0t X

7. (a) Complete the table and make a guess about the limit (x+ 1) 1\~
indicated. 39. lim 40. lim (1 + 7>
1 xX—> +oo xx X —> +oo X
f(x) = tan™! (7) lim f(x)
X x—0F

41-44 True-False Determine whether the statement is true or
false. Explain your answer.

X 0.1 | 0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001 2
41. We h li 1+ - =1+ =1=1
£ ¢ aV%i“L( +x> 1+0)
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42,

43.

4.

FOCUS ON CONCEPTS

45. Assume that a particle is accelerated by a constant force.

If y = L is a horizontal asymptote for the curve y = f(x),
then

lim f(x)=L and lim f(x)=1L
X — —o x— +o»

If y = L is a horizontal asymptote for the curve y = f(x),
then it is possible for the graph of f to intersect the line
y = L infinitely many times.

If arational function p(x)/q(x) has a horizontal asymptote,
then the degree of p(x) must equal the degree of g (x).

The two curves v = n(¢) and v = e(¢) in the accompa-
nying figure provide velocity versus time curves for the
particle as predicted by classical physics and by the spe-
cial theory of relativity, respectively. The parameter ¢
represents the speed of light. Using the language of lim-
its, describe the differences in the long-term predictions
of the two theories.

’ v =n(t)
(Classical)
v =e(t)
(Relativity)

G

*
|
|

Velocity

Time < Figure Ex-45

48.

50.

51.

52.

FOCUS ON CONCEPTS

Let
243t
Zr ¢ < 1,000,000
o = 5t2+6
8= e — 100
Y . > 1,000,000
5—¢
Find

(a) ,En}mg(’) (b) tglgmg(t)-

. Discuss the limits of p(x) = (1 —x)" as x — 4o and

x — —oo for positive integer values of 7.

In each part, find examples of polynomials p(x) and g(x)
that satisfy the stated condition and such that p(x) — 4o
and g (x) — o0 as x — 0.

@ lim P Ex; =1 (b) lim P Ex; —0
x—>+o g(x X—> 4w g(x
. opx) . _
(©) Xlinlm 0 oo (@ xlil}lm[l’(x) —q(x)] =3

(a) Do any of the trigonometric functions sin x, cos x, tan x,
cot x, sec x, and csc x have horizontal asymptotes?

(b) Do any of the trigonometric functions have vertical
asymptotes? Where?

Find ) C0+C1X+"'+Cnxn
lim

x =+ do+d1x+ +dmx’"

where ¢, # 0and d,, # 0. [Hint: Your answer will depend
on whetherm <n,m =n,orm > n.]

46. Let T = f(t) denote the temperature of a baked potato
¢t minutes after it has been removed from a hot oven.
The accompanying figure shows the temperature versus
time curve for the potato, where r is the temperature of
the room.

(a) What is the physical significance of lim, _, o+ f(¢)?
(b) What is the physical significance of lim, _, 1, f(¢)?

T
& 400
L
§_ T=f(1)
IS
Y S ——— e
t
Time (min) < Figure Ex-46
47. Let
2x% + 5, x <0
— 5,3
fx) = 3 —5x x>0
1+ 4x + x3 -
Find

@ lim f(x) (b) lim f(x).

53-54 These exercises develop some versions of the sub-
stitution principle, a useful tool for the evaluation of limits.

53. (a) Explain why we can evaluate lim, _, 4, e’ by mak-

ing the substitution t = x? and writing

lim ¢ = lim ¢ = 4o

X =+ t— +oo
(b) Suppose g(x)— +w as x— 4. Given any
function f(x), explain why we can evaluate
lim, 4., f[g(x)] by substituting t = g(x) and
writing

Jlim flg] = lim f()

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, ;. is replaced everywhere by one of
lim, _, _., lim, _, ., lim, _, .—, or lim, _, .+?

54. (a) Explain why we can evaluate lim,_, . e by
making the substitution ¢ = —x? and writing

2 .
= lim e’ =0 (cont.)

> —o

lim e~
X —> 4o




(b) Suppose g(x)— —o as x—+4ow. Given any
function f(x), explain why we can evaluate
lim, 4 f[g(x)] by substituting t = g(x) and
writing

Jim flg(ol = lim f(r)

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if lim,_, 4, is replaced everywhere by one of
lim, _, _, lim, _, ¢, lim, _, .-, or lim, _, o+ ?

55-
55.

57.

59.
60.

61.

62.
63.

64.

i~ 6s5.

~ 66.

62 Evaluate the limit using an appropriate substitution.

lim ¢!/~ 56. lim €'/~
x—0t x—0-
lim e 58. lim ¢
x—0t x—>0-
. n2x .
lim [Hint: t = Inx]
x—+= In3x
mE [In(x* = 1) — In(x + D] [Hint: t = x — 1]
X —> +o

1 —X
lim (1 — 7> [Hint: t = —x]

X — 4o X

. 2\

lim <1 + f) [Hint: t = x/2]

X —> 4o X

Let f(x) = b*, where 0 < b. Use the substitution principle

to verify the asymptotic behavior of f that is illustrated in

Figure 0.5.1. [Hint: f(x) = b* = (e™?)* = ¢Inb)¥]

Prove that lim,_, o(1 + x)'/* = ¢ by completing parts (a)

and (b).

(a) Use Equation (7) and the substitution ¢ = 1/x to prove
that lim, _ o+ (1 + x)1/* = e.

(b) Use Equation (8) and the substitution = 1/x to prove
that lim, .o~ (1 +x)/* =e.

Suppose that the speed v (in ft/s) of a skydiver ¢ sec-
onds after leaping from a plane is given by the equation
v =190(1 — ¢=0-1687),

(a) Graph v versus .

(b) By evaluating an appropriate limit, show that the graph
of v versus ¢ has a horizontal asymptote v = ¢ for an
appropriate constant c.

(c) What is the physical significance of the constant ¢ in
part (b)?

The population p of the United States (in millions) in year

t may be modeled by the function

3 50371.7
T 151.3 + 181.626¢~0031636(~1950)

p

(a) Based on this model, what was the U.S. population in
19507

(b) Plot p versus ¢ for the 200-year period from 1950 to
2150.
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(c) By evaluating an appropriate limit, show that the graph
of p versus ¢ has a horizontal asymptote p = ¢ for an
appropriate constant c.

(d) What is the significance of the constant ¢ in part (b) for
population predicted by this model?

67. (a) Compute the (approximate) values of the terms in the
sequence

10119, 1,001, 1.0001°%!, 1.00001 10000t
1.000001 1900001 "1 0000001 10000001 .

What number do these terms appear to be approaching?
(b) Use Equation (7) to verify your answer in part (a).
(c) Let1 < a < 9 denote a positive integer. What number
is approached more and more closely by the terms in
the following sequence?

1.019% 1.,0019%%,1.00019%%%, 1.0000140000
1000001400000 1 0000001000000

(The powers are positive integers that begin and end
with the digit a and have 0’s in the remaining positions).

68. Let f(x) = (1 + %) .
(a) Prove the identity
flx) = -1
x—1

(b) Use Equation (7) and the identity from part (a) to prove
Equation (8).

[ 69-73 The notion of an asymptote can be extended to include

curves as well as lines. Specifically, we say thatcurves y = f(x)
and y = g(x) are asymptotic as x — + o provided

Aim [f(x) —g()]=0
and are asymptotic as x — — o provided

i [f(x) = g()] =0
In these exercises, determine a simpler function g(x) such that
y = f(x) is asymptotic to y = g(x) as x — 4w or x — —o.

Use a graphing utility to generate the graphs of y = f(x) and
y = g(x) and identify all vertical asymptotes.

2
-2
69. f(x) = ol > [Hint: Divide x — 2 into x2 — 2.]
X —
3
— 3
70. f(x):g
X
—x34+3xr+x -1
. flr) = L T EX
x—3
x> —x34+3
72. fx) = —F5—7
x2—1

1
73. f(x) =sinx + ——
x—1

74. Writing Insome models for learning a skill (e.g., juggling),
it is assumed that the skill level for an individual increases
with practice but cannot become arbitrarily high. How do
concepts of this section apply to such a model?
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75. Writing In some population models it is assumed that a capacity tend to increase toward L. Explain why these as-
given ecological system possesses a carrying capacity L. sumptions are reasonable, and discuss how the concepts of
Populations greater than the carrying capacity tend to de- this section apply to such a model.

cline toward L, while populations less than the carrying

VQUICK CHECK ANSWERS 1.3

1. (a) +% (b) 5 (¢) — (d) 0 2. (a) 5 (b) doesnotexist (c) e 3. (a) 9 (b) —3 (c) does not exist (d) 4
4. 1/x, e*, and e~ each has a horizontal asymptote.

m LIMITS (DISCUSSED MORE RIGOROUSLY)

In the previous sections of this chapter we focused on the discovery of values of limits,
either by sampling selected x-values or by applying limit theorems that were stated
without proof. Our main goal in this section is to define the notion of a limit precisely,
thereby making it possible to establish limits with certainty and to prove theorems about
them. This will also provide us with a deeper understanding of some of the more subtle
properties of functions.

H MOTIVATION FOR THE DEFINITION OF A TWO-SIDED LIMIT

The statement lim, _, , f(x) = L can be interpreted informally to mean that we can make the
value of f(x) as close as we like to the real number L by making the value of x sufficiently
close to a. It is our goal to make the informal phrases “as close as we like to L” and
“sufficiently close to a” mathematically precise.

To do this, consider the function f graphed in Figure 1.4.1a for which f(x)— L as
x — a. For visual simplicity we have drawn the graph of f to be increasing on an open
interval containing a, and we have intentionally placed a hole in the graph at x = a to
emphasize that f need not be defined at x = a to have a limit there.

f(x): 7777777 y=f® L ,y,,,,,,,,fzﬂx)
v | (&) |
L= \' | o i |

b F/ | L-e / |

\ ‘ ‘ X \ ‘ \ x
T a—— Yo 4 ¥ 0
(@) (b) ()
A Figure 1.4.1

Next, let us choose any positive number € and ask how close x must be to a in order
for the values of f(x) to be within € units of L. We can answer this geometrically by
drawing horizontal lines from the points L + € and L — € on the y-axis until they meet the
curve y = f(x), and then drawing vertical lines from those points on the curve to the x-axis
(Figure 1.4.1b). As indicated in the figure, let x¢ and x; be the points where those vertical
lines intersect the x-axis.



X

ra 2 5 A A}

€ o
Xy a-8 a a+d X,

A Figure 1.4.2

The definitions of one-sided limits re-
quire minor adjustments to Defini-
tion 1.4.1. For example, for a limit from
the right we need only assume that
f(x) is defined on an interval (a, b)
extending to the right of a and that
the e condition is met for x in an in-
terval a < x < a + § extending to the
right of a. A similar adjustment must
be made for a limit from the left. (See
Exercise 27.)
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Now imagine that x gets closer and closer to a (from either side). Eventually, x will
lie inside the interval (xg, x1), which is marked in green in Figure 1.4.1c¢; and when this
happens, the value of f(x) will fall between L — € and L + €, marked in red in the figure.
Thus, we conclude:

If f(x)— L as x — a, then for any positive number €, we can find an open interval
(x0, x1) on the x-axis that contains a and has the property that for each x in that
interval (except possibly for x = a), the value of f(x) is between L — € and L + €.

What is important about this result is that it holds no matter how small we make €.
However, making € smaller and smaller forces f(x) closer and closer to L—which is
precisely the concept we were trying to capture mathematically.

Observe that in Figure 1.4.1 the interval (x, x;) extends farther on the right side of a
than on the left side. However, for many purposes it is preferable to have an interval that
extends the same distance on both sides of a. For this purpose, let us choose any positive
number § that is smaller than both x; — a and a — x(, and consider the interval

(a—6,a+9d)

This interval extends the same distance § on both sides of a and lies inside of the interval
(x0, x1) (Figure 1.4.2). Moreover, the condition

L—e< f(x)<L+e (1)

holds for every x in this interval (except possibly x = a), since this condition holds on the
larger interval (xg, x1).
Since (1) can be expressed as

|f(x) =Ll <e
and the condition that x lies in the interval (a — 8, a + §), but x # a, can be expressed as
O<|x—al<$

we are led to the following precise definition of a two-sided limit.

1.4.1 viMiT DEFINITION Let f(x) be defined for all x in some open interval con-
taining the number a, with the possible exception that f(x) need not be defined at a.
We will write

lim f(x) =L

X—a

if given any number € > 0 we can find a number § > 0 such that

|[f(x)— Ll <e if O<|x—al<$

This definition, which is attributed to the German mathematician Karl Weierstrass and
is commonly called the “epsilon-delta” definition of a two-sided limit, makes the transition
from an informal concept of a limit to a precise definition. Specifically, the informal phrase
“as close as we like to L” is given quantitative meaning by our ability to choose the positive
number € arbitrarily, and the phrase “sufficiently close to a” is quantified by the positive
number 4.

In the preceding sections we illustrated various numerical and graphical methods for
guessing at limits. Now that we have a precise definition to work with, we can actually
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confirm the validity of those guesses with mathematical proof. Here is a typical example
of such a proof.

» Example 1 Use Definition 1.4.1 to prove that lim2 (Bx —5) = 1.

Solution. 'We must show that given any positive number €, we can find a positive number
§ such that )
[Bx =5 —1]<e if O<|x—2|<3$ 2)
—— ~ ~
S L a

There are two things to do. First, we must discover a value of § for which this statement
holds, and then we must prove that the statement holds for that §. For the discovery part
we begin by simplifying (2) and writing it as

Bx—6l<e if O<|x—2]<$

Next we will rewrite this statement in a form that will facilitate the discovery of an appro-
priate §: .
3x -2l <e if O0<|x—2|<$

, (3)
x -2l <e€/3 if O<|x—2] <8
It should be self-evident that this last statement holds if § = €/3, which completes the
discovery portion of our work. Now we need to prove that (2) holds for this choice of §.
However, statement (2) is equivalent to (3), and (3) holds with § = €/3, so (2) also holds
with § = €/3. This proves that liﬁm2 Bx—5=1. «

This example illustrates the general form of a limit proof: We assume that we are given a positive
number ¢, and we try to prove that we can find a positive number § such that

|[f(x)—Ll<e if 0<|x—a|l<3$ “)

This is done by first discovering 8, and then proving that the discovered § works. Since the argument
has to be general enough to work for all positive values of ¢, the quantity § has to be expressed as a
function of €. In Example 1 we found the function § = ¢/3 by some simple algebra; however, most
limit proofs require a little more algebraic and logical ingenuity. Thus, if you find our ensuing discussion
of “e-3" proofs challenging, do not become discouraged; the concepts and techniques are intrinsically
difficult. In fact, a precise understanding of limits evaded the finest mathematical minds for more than
150 years after the basic concepts of calculus were discovered.

Karl Weierstrass (1815-1897) Weierstrass, the son of a
customs officer, was born in Ostenfelde, Germany. As a
youth Weierstrass showed outstanding skills in languages
and mathematics. However, at the urging of his domi-
nant father, Weierstrass entered the law and commerce
program at the University of Bonn. To the chagrin of his
family, the rugged and congenial young man concentrated instead

was ignored because he was a secondary schoolteacher and not a
college professor. Then, in 1854, he published a paper of major
importance that created a sensation in the mathematics world and
catapulted him to international fame overnight. He was immediately
given an honorary Doctorate at the University of Konigsberg and
began a new career in college teaching at the University of Berlin
in 1856. In 1859 the strain of his mathematical research caused

on fencing and beer drinking. Four years later he returned home
without a degree. In 1839 Weierstrass entered the Academy of
Miinster to study for a career in secondary education, and he met
and studied under an excellent mathematician named Christof Gud-
ermann. Gudermann’s ideas greatly influenced the work of Weier-
strass. After receiving his teaching certificate, Weierstrass spent the
next 15 years in secondary education teaching German, geography,
and mathematics. In addition, he taught handwriting to small chil-
dren. During this period much of Weierstrass’s mathematical work

a temporary nervous breakdown and led to spells of dizziness that
plagued him for the rest of his life. Weierstrass was a brilliant
teacher and his classes overflowed with multitudes of auditors. In
spite of his fame, he never lost his early beer-drinking congeniality
and was always in the company of students, both ordinary and bril-
liant. Weierstrass was acknowledged as the leading mathematical
analyst in the world. He and his students opened the door to the
modern school of mathematical analysis.



In Example 2 the limit from the left
and the two-sided limit do not exist at
x = 0 because /x is defined only for
nonnegative values of x.

X

Loy
a-8 a-86, a a+d a+d

A Figure 1.4.3

If you are wondering how we knew
to make the restriction § < 1, as op-
posedto§ < 5ord < %, for example,
the answer is that 1 is merely a con-
venient choice—any restriction of the
form 8 < ¢ would work equally well.
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» Example 2 Prove that lin(}+\/_ =0.

Solution. Note that the domain of /x is 0 < x, so it is valid to discuss the limit as
x — 0%, We must show that given € > 0, there exists a § > 0 such that
[Vx—0<e if 0<x—0<3$
or more simply,
Jrx<e if 0<x<3$ (@)

But, by squaring both sides of the inequality \/x < €, we can rewrite (5) as
x<e if 0<x<3$§ (6)

It should be self-evident that (6) is true if § = €2; and since (6) is a reformulation of (5),
we have shown that (5) holds with § = €2. This proves that lin&+ Jx=0. <

THE VALUE OF § IS NOT UNIQUE

In preparation for our next example, we note that the value of § in Definition 1.4.1 is not
unique; once we have found a value of ¢ that fulfills the requirements of the definition, then
any smaller positive number §; will also fulfill those requirements. That is, if it is true that

|f(x) =L <e if O<|x—a|l<$§
then it will also be true that
|[f(x) =Ll <e if O0<|x—al<d

This is because {x : 0 < |[x —a| < §;} is a subset of {x : 0 < |x — a| < §} (Figure 1.4.3),
and hence if | f(x) — L| < € is satisfied for all x in the larger set, then it will automatically
be satisfied for all x in the subset. Thus, in Example 1, where we used § = ¢/3, we could
have used any smaller value of § such as § = €/4,8 = €/5,0r§ = €/6.

» Example 3 Prove that lim x*> = 9.

x—3

Solution. 'We must show that given any positive number €, we can find a positive number
8 such that
W2 —9 <e if O<|x—3] <8 0)

Because |x — 3| occurs on the right side of this “if statement,” it will be helpful to factor the
left side to introduce a factor of |x — 3|. This yields the following alternative form of (7):

lx+3|lx =3 <e if O<|x—-3]<é ®)

We wish to bound the factor |x + 3|. If we knew, for example, that § < 1, then we would
have —1 <x -3 < 1,505 <x +3 <7, and consequently |x + 3| < 7. Thus, if § <1
and 0 < |[x — 3| < 4, then

lx +3]lx =3] <76

It follows that (8) will be satisfied for any positive § such that § < 1 and 7§ < €. We can
achieve this by taking § to be the minimum of the numbers 1 and €/7, which is sometimes
written as § = min(1, €/7). This proves that lim3 x>=9. «

LIMITS AS x -+«
In Section 1.3 we discussed the limits

lim f(x)=L and linl fx)=1L

X — 4
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from an intuitive point of view. The first limit can be interpreted to mean that we can make
the value of f(x) as close as we like to L by taking x sufficiently large, and the second can
be interpreted to mean that we can make the value of f(x) as close as we like to L by taking
x sufficiently far to the left of 0. These ideas are captured in the following definitions and

are illustrated in Figure 1.4.4.

1.4.2 peEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the positive x-direction. We will write

JAm for) =L

if given any number € > 0, there corresponds a positive number N such that

|[fx) =Ll <e if x>N

1.4.3 DpEFINITION Let f(x) be defined for all x in some infinite open interval ex-
tending in the negative x-direction. We will write

lirE fx)=1L

if given any number € > 0, there corresponds a negative number N such that

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x)— L as x — oo, and for a given € let N be the positive number described in
Definition 1.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the
interval (N, 4o0), which is marked in green in Figure 1.4.4a; when this happens, the value
of f(x) will fall between L — € and L + €, marked in red in the figure. Since this is true
for all positive values of € (no matter how small), we can force the values of f(x) as close
as we like to L by making N sufficiently large. This agrees with our informal concept of

|[f(x) =Ll <e if x<N

this limit. Similarly, Figure 1.4.4b illustrates Definition 1.4.3.

L+e

Jx)
L

[f)—L|<eifx>N

A Figure 1.44

|f(x)-L|<eifx <N

(b

- . 1
» Example 4 Prove that lim — =0.

X—> 4w X



(@)

fO)<Mif0O<|x-a|<¥d

(b)

A Figure 1.4.5

How would you define these limits?

lim_f(x) =+

X—a

lim f(x) = 4o

xX—a-

i f() =+

lim f(x) = +oo
X—> —w

lim_f(x) = oo
lim f(x)=—o

xX—>a-

m - fx) = —

Jim f(x) = —oo
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Solution. Applying Definition 1.4.2 with f(x) = 1/x and L = 0, we must show that
given € > 0, we can find a number N > 0 such that

1
-—0
X

<e if x>N ©)]

Because x — +oo we can assume that x > 0. Thus, we can eliminate the absolute values in
this statement and rewrite it as

1 .
—<e if x>N
X

or, on taking reciprocals,

1
x>—- if x>N (10)
€

Itis self-evident that N = 1/e satisfies this requirement, and since (10) and (9) are equivalent
for x > 0, the proof is complete. <«

INFINITE LIMITS
In Section 1.1 we discussed limits of the following type from an intuitive viewpoint:

lim f(x) = 4o, lim f(x) = —o (11)
lim f(x) = o0, lim f(x) = —o0 (12)
lim f(x) =+,  lim f(x)=—o (13)

Recall that each of these expressions describes a particular way in which the limit fails to
exist. The 4+ indicates that the limit fails to exist because f(x) increases without bound,
and the —oo indicates that the limit fails to exist because f(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated in
Figure 1.4.5.

1.4.4 DpEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim f(x) = +oo
if given any positive number M, we can find a number § > 0 such that f(x) satisfies

fx)y>M if O<|x—al<$

1.4.5 DEFINITION Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write
lim f(x) = —o

X—>a

if given any negative number M, we can find a number § > 0 such that f(x) satisfies

fx)y <M if O<|x—al<$

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x) — +o as x — a, and for a given M let § be the corresponding positive number
described in Definition 1.4.4. Next, imagine that x gets closer and closer to a (from ei-
ther side). Eventually, x will lie in the interval (a — §, a + §), which is marked in green
in Figure 1.4.5a; when this happens the value of f(x) will be greater than M, marked in red in
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the figure. Since this is true for any positive value of M (no matter how large), we can force
the values of f(x) to be as large as we like by making x sufficiently close to a. This agrees
with our informal concept of this limit. Similarly, Figure 1.4.5b illustrates Definition 1.4.5.

1
» Example 5 Prove that lin}) — =+
x—0X

Solution. Applying Definition 1.4.4 with f(x) = 1/x? and a = 0, we must show that
given a number M > 0, we can find a number 6 > O such that

1
S >M if 0<|x—0]<$§ (14)
X

or, on taking reciprocals and simplifying,

1
<— if 0<|x|<3$ (15)
M

But x> < 1/M if |x| < 1/+/M, so that § = 1/+/M satisfies (15). Since (14) is equivalent
to (15), the proof is complete. <«

VQU]CK CHECK EXERCISES 1.4  (See page 109 for answers.)

1. The definition of a two-sided limit states: lim, _,, f(x) = L 4. The definition of limit at 4oo states: lim,_, 1. f(x) =L

if given any number _______ there is a number
suchthat | f(x) — L] <eif .

. Suppose that f(x) is a function such that for any given
€ > 0, the condition 0 < |x — 1| < €/2 guarantees that
| f(x) — 5| < €. What limit results from this property?

. Suppose that € is any positive number. Find the largest value
of § such that |[5Sx — 10| < €if 0 < |[x — 2| < .

EXERCISE SET 1.4 [ Graphing Utility

if given any number there is a positive number
_ suchthat|f(x)—L|<eif .

. Find the smallest positive number N such that for each

x > N, the value of f(x) = 1/ﬁ is within 0.01 of 0.

1. (a) Find the largest open interval, centered at the origin on

the x-axis, such that for each x in the interval the value
of the function f(x) = x + 2 is within 0.1 unit of the
number f(0) = 2.

(b) Find the largest open interval, centered at x = 3, such
that for each x in the interval the value of the func-
tion f(x) =4x — 5 is within 0.01 unit of the number
f3 =1

(c) Find the largest open interval, centered at x = 4, such
that for each x in the interval the value of the func-
tion f(x) = x? is within 0.001 unit of the number

f4) = 16.

. In each part, find the largest open interval, centered at
x =0, such that for each x in the interval the value of
f(x) = 2x 4 3 is within € units of the number f(0) = 3.
(a) e =0.1 (b) € =0.01

(c) € =0.0012

. (a) Find the values of xj and x; in the accompanying figure.

(b) Find a positive number § such that |,/x — 2| < 0.05 if
0<|x—4]|<3d.

24005} —————————————— —

2-005F—————=

Not drawn to scale
A Figure Ex-3

. (a) Find the values of xj and x; in the accompanying figure

on the next page.
(b) Find a positive number § such that |(1/x) — 1| < 0.1 if
0<|x—1] <.



14+0.1}—

1-0.1

Not drawn to scale

< Figure Ex-4

[ 5. Generate the graph of f(x) = x> — 4x 4+ 5 with a graph-
ing utility, and use the graph to find a number § such
that | f(x) — 2| < 0.05 if 0 < |x — 1] < §. [Hint: Show
that the inequality |f(x) — 2| < 0.05 can be rewritten as
1.95 < x3 —4x 4+ 5 < 2.05, and estimate the values of x
for which x* —4x +5 = 1.95 and x* — 4x + 5 = 2.05.]
[~ 6. Use the method of Exercise 5 to find a number 8 such that
[v/5x4+1—-4] <05if 0 < |x — 3| <.

7. Let f(x) = x + J/x withL = lim,_,| f(x)andlete = 0.2.
Use a graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if 0 < [x — 1] < 4.

1 8. Let f(x) = (sin2x)/x and use a graphing utility to conjec-
ture the value of L = lim, o f(x). Then let ¢ = 0.1 and
use the graphing utility and its trace feature to find a positive
number § such that | f(x) — L] < €if 0 < |x| < 8.

FOCUS ON CONCEPTS

9. What is wrong with the following “proof” that
lim, _, 3 2x = 6? Suppose thate = 1 and § = % Then
if |[x —3| < % we have

2x —6]=2lx —3| <2(3)=1=¢

Therefore, lim, _, 3 2x = 6.

10. What is wrong with the following “proof” that
lim, ,32x = 6? Given any § > 0, choose € = 24.
Then if |[x — 3] < &, we have

2x —6]=2|x —3| <26 =¢
Therefore, lim, _, 3 2x = 6.

11. Recall from Example 1 that the creation of a limit proof
involves two stages. The first is a discovery stage in
which § is found, and the second is the proof stage
in which the discovered § is shown to work. Fill in
the blanks to give an explicit proof that the choice of
8 = €/3 in Example 1 works. Suppose that € > 0. Set
8 = €/3 and assume that 0 < |x — 2| < §. Then

BGx =5 —1l=] —|
=3  |<3.____ =€
12. Suppose that f(x) = c is a constant function and that a

is some fixed real number. Explain why any choice of
8 > 0 (e.g., 6 = 1) works to prove lim, _, , f(x) = c.
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13-22 Use Definition 1.4.1 to prove that the limit is correct.
13. lin123 =3 14. 1im4(x+2) =6

15. lim5 3x =15 16. lim1(7x +5)==2
x— X— —
2x? ’-9
17. lim 25 18. lim ~—— =6
x—0 X x—-3 x+3
. _ _fx+2, x#1
19. xh_)rnl f(x) =3, where f(x) = 10, 1
. . ]9 —2x, x#2
20. )}1_)1112 f(x) =5, where f(x) = 49, =9
21. lim |[x| =0
x—0
. 9—-2x, x<2
22. )}1_)m2 f(x) =5, where f(x) = dr—1. x>2

23-26 True—False Determine whether the statement is true or

false. Explain your answer.

23. Suppose that f(x) =mx+b,m #0. To prove that
lim, _,, f(x) = f(a), we can take § = €/|m|.

24. Suppose that f(x) =mx+b,m #0. To prove that
lim,_,, f(x) = f(a), we can take § = €/(2|m]).

25. For certain functions, the same § will work for all € > 0 in
a limit proof.

26. Suppose that f(x) > O for all x in the interval (—1, 1). If
lim, ¢ f(x) = L, then L > 0.

FOCUS ON CONCEPTS

27. Give rigorous definitions of lim,_, ,+ f(x) = L and
lim, .- f(x) = L.
28. Consider the statement that lim, _, , | f(x) — L| = 0.
(a) Using Definition 1.4.1, write down precisely what
this limit statement means.
(b) Explain why your answer to part (a) shows that

lim |f(x) — L| =0 ifandonlyif lim f(x)=L
29. (a) Show that
|(3x% + 2x — 20) — 300| = [3x + 32| - |x — 10|

(b) Find an upper bound for [3x 4+ 32| if x satisfies
lx —10] < 1.
(c) Fill in the blanks to complete a proof that

lim [3x% + 2x — 20] = 300
x—10

Suppose thate > 0. Set§ = min(1l, ) and
assume that 0 < |x — 10| < §. Then

|(3x* +2x — 20) — 300| = [3x + 32| - |x — 10]

“Jx — 10|

AN

I
m
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30. (a) Show that

=2

3x+1 ‘3 +1

(b) Is [12/(3x + 1)| bounded if |x — 2| < 4? If not,
explain; if so, give a bound.

(¢) Is |12/(3x + 1)| bounded if |x —2| < 1? If not,
explain; if so, give a bound.

(d) Fill in the blanks to complete a proof that

. 28
lim =
x—2 [3x + 1i|

Suppose thate > 0. Set§ = min(l, ) and
assume that 0 < |x — 2| < §. Then
28 12
—4| = lx =2
3x+1 3x+1
< - x =2
<
=€

31-36 Use Definition 1.4.1 to prove that the stated limit is
correct. In each case, to show that lim,_,, f(x) = L, factor
| f(x) — L] in the form

| f(x) — L| = |“something”| - |x — a|
and then bound the size of |“something”| by putting restrictions
on the size of §.

31. lim 2x> =2 [Hint: Assume § < 1.]

x—1

32. 111113 (x> 4+x) =12 [Hint: Assume § < 1.]
xX—

2 3
33. lim =1 34, lim — 0 3
x—»-2x+1 x—1/2 X
35. lim Jx=2 36. lim =8
37. Let 0, if x is rational
fx) = e
x, if x is irrational
Use Definition 1.4.1 to prove that lim, _, o f(x) = 0.
38. Let 0, if x is rational
fx) = e
1, if x is irrational

Use Definition 1.4.1 to prove that lim, ¢ f(x) does not
exist. [Hint: Assume lim, _ o f(x) = L and apply Defi-
nition 1.4.1 with € = 1 to conclude that |1 — L| < § and
IL| =10—L| < 1. Then show I < |1 — L| + |L| and de-
rive a contradiction.]

39. (a) Findthe values of x; and x; in the accompanying figure.

(b) Find a positive number N such that

x2

— —1| <€
14 x2
forx > N.

(c) Find a negative number N such that

x2

T2 =€

forx < N.

Not drawn to scale

< Figure Ex-39

40. (a) Find the values of x| and x; in the accompanying figure.
(b) Find a positive number N such that

forx > N.
(c) Find a negative number N such that

forx < N.

< Figure Ex-40

41-44 Apositive number € and the limit L of a function f at 4o
are given. Find a positive number N such that | f(x) — L| < €
ifx > N.

1
41. lim = =0; € =0.01
X—> 4w X

1
42. lim =0; € =0.005
x—>4o x + 2

43. lim —— =1; € = 0.001
x—>+e x 4+ 1

dx — 1
4. lim -
x>+ 2x +5

=2;€=0.1

45-48 Apositive number € and the limit L of a function f at —
are given. Find a negative number N such that | f(x) — L| < €
ifx < N.

1
45. lim > =0; € =0.005

X—>—x X +

1
46. lim — =0; € =0.01

Xx— —ow x2

4x — 1

47. lim

=2;¢=0.1
x—>-»2x +5 €



48. lim —- - =1 € =0.001

X—)—xx—"—

49-54 Use Definition 1.4.2 or 1.4.3 to prove that the stated limit
is correct.

1
49. lim - = 0 50. lim =
X —>too X x—>+4o x 4+ 2
4x — 1 . X
51. lim =2 52. lim =1
x—>-»2x +5 x—-wx 4+ 1
2
53. vx =2 54. lim 2* =0
x—+4w J/x — 1 X— —%

55. (a) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = 1/x? are greater
than 100.

(b) Find the largest open interval, centered at x = 1, such
that for each x in the interval, other than the center,
the values of the function f(x) = 1/|x — 1| are greater
than 1000.

(c) Find the largest open interval, centered at x = 3, such
that for each x in the interval, other than the center,
the values of the function f(x) = —1/(x — 3)? are less
than —1000.

(d) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = —1/x* are less
than —10,000.

56. Ineach part, find the largest open interval centered at x = 1,
such that for each x in the interval, other than the center, the
value of f(x) = 1/(x — 1)?is greater than M.

(a) M =10 (b) M = 1000 (c) M = 100,000

57-62 Use Definition 1.4.4 or 1.4.5 to prove that the stated limit
is correct.

1 —
57. im —— = 58. lim —— — —
XLIT% (x — 3)2 te xg (x - 3)2
1
59. lim — = 4 60. lim =+
xa0|x| X~>l|x—1|
. 1 o
61. lim <——4) = — 62. lim - =t
x—0 X x—=>0x

63-68 Use the definitions in Exercise 27 to prove that the stated
one-sided limit is correct.

63. lim (x+1)=3 64. lim (Gx +2) =5
65. lim Vx —4=0 66. lim /=x =0

X, x>2

67. XILH%Jr f(x) = 2, where f(x) = {3)6, x <2

l/ QUICK CHECK ANSWERS 1.4
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. x, x>2
68. Xlglzl— f(x) = 6, where f(x) = {3x, <2
69-72 Write out the definition for the corresponding limit in
the marginal note on page 105, and use your definition to prove
that the stated limit is correct.
1 1
69. (a) lim —— = — (b) lim —— =4

x—>1t1—x x—>1-1—x
1
b)) lim — = —x
x—=>0" X
) lim (x+1) = -
X— —w

1
70. (a) lim — = 4o

x—0t x

71. (a) xgnlw (x+1) =+

72. (a) xgrgw (x2=3)=+4x (b) lim x3+5) = -

73. According to Ohm’s law, when a voltage of V volts is ap-
plied across a resistor with a resistance of R ohms, a current
of I = V/R amperes flows through the resistor.

(a) How much current flows if a voltage of 3.0 volts is ap-
plied across a resistance of 7.5 ohms?

(b) If the resistance varies by £0.1 ohm, and the voltage
remains constant at 3.0 volts, what is the resulting range
of values for the current?

(c) If temperature variations cause the resistance to vary
by £4 from its value of 7.5 ohms, and the voltage re-
mains constant at 3.0 volts, what is the resulting range
of values for the current?

(d) If the current is not allowed to vary by more than
€ = £0.001 ampere at a voltage of 3.0 volts, what vari-
ation of &4 from the value of 7.5 ohms is allowable?

(e) Certain alloys become superconductors as their tem-
perature approaches absolute zero (—273°C), meaning
that their resistance approaches zero. If the voltage
remains constant, what happens to the current in a su-
perconductor as R — 01?

74. Writing Compare informal Definition 1.1.1 with Definition

1.4.1.

(a) What portions of Definition 1.4.1 correspond to the ex-
pression “values of f(x) can be made as close as we
like to L” in Definition 1.1.1? Explain.

(b) What portions of Definition 1.4.1 correspond to the ex-
pression “taking values of x sufficiently close to a (but
not equal to @)” in Definition 1.1.1? Explain.

75. Writing Compare informal Definition 1.3.1 with Definition

1.4.2.

(a) What portions of Definition 1.4.2 correspond to the ex-
pression “values of f(x) eventually get as close as we
like to a number L” in Definition 1.3.1? Explain.

(b) What portions of Definition 1.4.2 correspond to the ex-
pression “as x increases without bound” in Definition
1.3.1? Explain.

1. e>0;6>0;0<|x —a|l <8 2. lim; f(x)=5

3.8=¢/5

4. e >0;N;x >N 5. N =10,000
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m CONTINUITY
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A baseball moves along a "continu-
ous" trajectory after leaving the
pitcher's hand.

/

d

%

A thrown baseball cannot vanish at some point and reappear someplace else to continue
its motion. Thus, we perceive the path of the ball as an unbroken curve. In this section, we
translate “unbroken curve” into a precise mathematical formulation called continuity,
and develop some fundamental properties of continuous curves.

., Il DEFINITION OF CONTINUITY

Intuitively, the graph of a function can be described as a “continuous curve” if it has no
breaks or holes. To make this idea more precise we need to understand what properties of
a function can cause breaks or holes. Referring to Figure 1.5.1, we see that the graph of a
function has a break or hole if any of the following conditions occur:

e The function f is undefined at ¢ (Figure 1.5.1a).
e The limit of f(x) does not exist as x approaches ¢ (Figures 1.5.1b, 1.5.1c).
e The value of the function and the value of the limit at ¢ are different (Figure 1.5.1d).

|

| y=f()
‘, . /
| { /
| |
| |
|

| |
C C

(@)
A Figure 1.5.1

The third condition in Definition 1.5.1
actually implies the first two, since it is
tacitly understood in the statement

lim () = f(©)

that the limit exists and the function is
defined at ¢. Thus, when we want to
establish continuity at ¢ our usual pro-
cedure will be to verify the third condi-
tion only.

(b) () (d)

This suggests the following definition.

1.5.1 DEFINITION A function f is said to be continuous at x = ¢ provided the
following conditions are satisfied:

1. f(c) is defined.

2. lim f(x) exists.

3. lim f(x) = f(o).

If one or more of the conditions of this definition fails to hold, then we will say that f has
a discontinuity at x = ¢. Each function drawn in Figure 1.5.1 illustrates a discontinuity
at x = c¢. In Figure 1.5.1a, the function is not defined at ¢, violating the first condition
of Definition 1.5.1. In Figure 1.5.1b, the one-sided limits of f(x) as x approaches ¢ both
exist but are not equal. Thus, lim, _, . f(x) does not exist, and this violates the second
condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1b has a
Jump discontinuity at c. In Figure 1.5.1c¢, the one-sided limits of f(x) as x approaches
c are infinite. Thus, lim, . f(x) does not exist, and this violates the second condition
of Definition 1.5.1. We will say that a function like that in Figure 1.5.1¢ has an infinite
discontinuity at c. In Figure 1.5.1d, the function is defined at ¢ and lim, _, . f(x) exists,
but these two values are not equal, violating the third condition of Definition 1.5.1. We will
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say that a function like that in Figure 1.5.1d has a removable discontinuity at c. Exercises
33 and 34 help to explain why discontinuities of this type are given this name.

» Example 1 Determine whether the following functions are continuous at x = 2.

2_4 x2_4
24 r- 2 - 2
f@ =" gm={x-2’ * ho=1x-2 *7
* 3, x =2, 4, x=2

Solution. 1In each case we must determine whether the limit of the function as x — 2 is
the same as the value of the function at x = 2. In all three cases the functions are identical,
except at x = 2, and hence all three have the same limit at x = 2, namely,
. . . . xt— .
Jm, ) = im, 809 = lim ) = fiy T2 = i e+ =4

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 1.5.2a).
The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as
the limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure 1.5.2b). The
value of the function & at x = 2 is £(2) = 4, which is the same as the limit as x approaches
2; hence, h is continuous at x = 2 (Figure 1.5.2¢). (Note that the function 4 could have
been written more simply as 2(x) = x + 2, but we wrote it in piecewise form to emphasize
its relationship to f and g.) <«

A Figure 1.5.2

CONTINUITY IN APPLICATIONS

In applications, discontinuities often signal the occurrence of important physical events.
For example, Figure 1.5.3a is a graph of voltage versus time for an underground cable that
is accidentally cut by a work crew at time ¢ = f (the voltage drops to zero when the line is
cut). Figure 1.5.3b shows the graph of inventory versus time for a company that restocks
its warehouse to y; units when the inventory falls to yy units. The discontinuities occur at
those times when restocking occurs.

V (Voltage) y (Amount of inventory)

W\/\/\fj‘
\
\
\

Chris Hondros/Getty Images

A poor connection in a transmission
cable can cause a discontinuity in the
electrical signal it carries.

Line—"ty
cut Restocking occurs

(@) (b)

A Figure 1.5.3
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A Figure 1.5.4

Modify Definition 1.5.2 appropriately
so that it applies to intervals of the form
[a, +), (=<, b], (a, b], and [a, b).

Y
2,
l,
¥ § | | | | & X
-3 -2 -1 1 2 3
f) =9 -

A Figure 1.5.5

Il CONTINUITY ON AN INTERVAL

If a function f is continuous at each number in an open interval (a, b), then we say that f is
continuous on (a, b). This definition applies to infinite open intervals of the form (a, +),
(—o0, b), and (—oo, 4+o0). In the case where f is continuous on (—oe, 4+o0), we will say that
f is continuous everywhere.

Because Definition 1.5.1 involves a two-sided limit, that definition does not generally
apply at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the
form [a, b), (a, b], (—=, b], or [a, +). To remedy this problem, we will agree that a
function is continuous at an endpoint of an interval if its value at the endpoint is equal
to the appropriate one-sided limit at that endpoint. For example, the function graphed in
Figure 1.5.4 is continuous at the right endpoint of the interval [a, b] because

Tim f() = £(b)
but it is not continuous at the left endpoint because
lim_f(x) # f(a)
X—>da
In general, we will say a function f is continuous from the left at c if
Jim f(x) = f(e)
and is continuous from the right at c if
Jlim f(x) = f(e)

Using this terminology we define continuity on a closed interval as follows.

1.5.2 DEFINITION A function f is said to be continuous on a closed interval |a, b]
if the following conditions are satisfied:

1. f is continuous on (a, b).
2. f is continuous from the right at a.

3. f is continuous from the left at b.

» Example 2 What can you say about the continuity of the function f(x) = v9 — x2?

Solution. Because the natural domain of this function is the closed interval [—3, 3], we
will need to investigate the continuity of f on the open interval (—3, 3) and at the two
endpoints. If ¢ is any point in the interval (—3, 3), then it follows from Theorem 1.2.2(e)

that
a lim f(x) = lim \/9—x2=\/lim O—x2) =v9—c2 = f(c)

which proves f is continuous at each point in the interval (—3, 3). The function f is also
continuous at the endpoints since

lim f(x) = lim V9 —x2= lim (9 —x?) =0= /()

lim f(0) = lim V9 —x2= / lim (9 —x%)=0=f(-3)

Thus, f is continuous on the closed interval [—3, 3] (Figure 1.5.5). <«
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Il SOME PROPERTIES OF CONTINUOUS FUNCTIONS
The following theorem, which is a consequence of Theorem 1.2.2, will enable us to reach
conclusions about the continuity of functions that are obtained by adding, subtracting,
multiplying, and dividing continuous functions.

1.5.3 THEOREM [fthe functions f and g are continuous at c, then
(@) f + g is continuous at c.

(b) f — g is continuous at c.

(c¢) fgis continuous at c.

(d) f/gis continuous at c if g(c) # 0 and has a discontinuity at c if g(c) = 0.

We will prove part (d ). The remaining proofs are similar and will be left to the exercises.

PROOF  First, consider the case where g(c) = 0. In this case f(c)/g(c) is undefined, so
the function f/g has a discontinuity at c.
Next, consider the case where g(c) # 0. To prove that f/g is continuous at ¢, we must

show that fx)  f(o)
lim =

x~cgx)  g()

(1)
Since f and g are continuous at c,

lim f(x) = f(¢) and lim g(x) = g(c)
Thus, by Theorem 1.2.2(d)

fo M@ e

1m = -
x—>c g(x) gl_)mcg(x) g(o)

which proves (1). |

Il CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS
The general procedure for showing that a function is continuous everywhere is to show that
it is continuous at an arbitrary point. For example, we know from Theorem 1.2.3 that if
p(x) is a polynomial and a is any real number, then

Xlig]a p(x) = p(a)

This shows that polynomials are continuous everywhere. Moreover, since rational functions
are ratios of polynomials, it follows from part (d) of Theorem 1.5.3 that rational functions
are continuous at points other than the zeros of the denominator, and at these zeros they
have discontinuities. Thus, we have the following result.

1.5.4 THEOREM
(a) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is nonzero,
and has discontinuities at the points where the denominator is zero.
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» Example 3 For what values of x is there a discontinuity in the graph of

If you use a graphing utility to generate x> -9

the graph of the equation in Example 3, y =
there is a good chance you will see

_ 7
x2—-5x+6

the discontinuity at x = 2 but not at . . . . . . . .
x =3. Try it, and explain what you Solution. The function being graphed is a rational function, and hence is continuous at

think is happening. every number where the denominator is nonzero. Solving the equation

x2—5x4+6=0

~

yields discontinuities at x = 2 and at x = 3 (Figure 1.5.6). «

81
{3
4 E } \\ » Example 4 Show that |x| is continuous everywhere (Figure 0.1.9).
2
[ SR } Lii i ¥ Solution. We can write |x| as
-8 6 -4 -2~ 2 4 6 38 )
\ x if x>0
| Ix]=4 0 if x=0
} —x if x<0O
‘ so |x| is the same as the polynomial x on the interval (0, +o) and is the same as the
polynomial —x on the interval (—o, 0). But polynomials are continuous everywhere, so
= 2"2 -9 x = 0 is the only possible discontinuity for |x|. Since |0] = 0, to prove the continuity at
AR x = 0 we must show that .
lim |x] =0 2)
A Figure 1.5.6 x—0
Because the piecewise formula for |x| changes at 0, it will be helpful to consider the one-
sided limits at O rather than the two-sided limit. We obtain
Iim |x| = lim x=0 and Ilim |x|]= lim (—x) =0
x—0t x—0t x—0- x—0"
Thus, (2) holds and |x| is continuous at x = 0. <«
Il CONTINUITY OF COMPOSITIONS
The following theorem, whose proof is given in Appendix D, will be useful for calculating
limits of compositions of functions.
In words, Theorem 1.5.5 states that a 1.5.5 THEOREM [flim,_ . g(x) = L and if the function f is continuous at L, then
limit symbol can be moved through a lim, . f(g(x)) = f(L). Thatis,
function sign provided the limit of the
expression inside the function sign ex- lim f(g(x)) = f ( lim g(x))
X—C X—C

ists and the function is continuous at

this limit.

This equality remains valid if lim, . is replaced everywhere by one of lim, _ .+,
lim, ., limy _ 4o, or lim, _, ..

In the special case of this theorem where f(x) = |x|, the fact that |x| is continuous
everywhere allows us to write

lim |g(0)] = [lim g(x)| 3)

provided lim, _, . g(x) exists. Thus, for example,

lim |5 —x? = )lim%(S —x2)| =|-4|=4



Can the absolute value of a function
that is not continuous everywhere be
continuous everywhere? Justify your
answer.

AY y:|4—x2|

[
-4 -3 -2 -1 1 2 3 4

A Figure 1.5.7

fof————————————

f@ [~

A Figure 1.5.8
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The following theorem is concerned with the continuity of compositions of functions;
the first part deals with continuity at a specific number and the second with continuity
everywhere.

1.5.6 THEOREM

(a) Ifthe function g is continuous at c, and the function f is continuous at g(c), then
the composition f o g is continuous at c.

(b) If'the function g is continuous everywhere and the function f is continuous every-
where, then the composition f o g is continuous everywhere.

PROOF We will prove part (a) only; the proof of part (b) can be obtained by applying part
(a) at an arbitrary number c¢. To prove that f o g is continuous at ¢, we must show that the
value of f og and the value of its limit are the same at x = ¢. But this is so, since we can
write

lim (fog)(x) = lim f(g(x)) = f (lim g()) = f(g() = (fog)(c) m
Theorem 1.5.5 g is continuous at c.

We know from Example 4 that the function |x| is continuous everywhere. Thus, if g(x)
is continuous at ¢, then by part (a) of Theorem 1.5.6, the function |g(x)| must also be
continuous at ¢; and, more generally, if g(x) is continuous everywhere, then so is |g(x)|.
Stated informally:

The absolute value of a continuous function is continuous.

For example, the polynomial g(x) = 4 — x? is continuous everywhere, so we can conclude
that the function |4 — x?| is also continuous everywhere (Figure 1.5.7).

B THE INTERMEDIATE-VALUE THEOREM

Figure 1.5.8 shows the graph of a function that is continuous on the closed interval [a, b].
The figure suggests that if we draw any horizontal line y = k, where k is between f(a)
and f(b), then that line will cross the curve y = f(x) at least once over the interval [a, b].
Stated in numerical terms, if f is continuous on [a, b], then the function f must take on
every value k between f(a) and f(b) at least once as x varies from a to b. For example,
the polynomial p(x) = x> — x + 3 has a value of 3 at x = 1 and a value of 33 at x = 2.
Thus, it follows from the continuity of p that the equation x> — x 4+ 3 = k has at least one
solution in the interval [1, 2] for every value of k between 3 and 33. This idea is stated
more precisely in the following theorem.

1.5.7 THEOREM (Intermediate-Value Theorem) If f is continuous on a closed interval
[a, b] and k is any number between f(a) and f(b), inclusive, then there is at least one
number x in the interval [a, b] such that f(x) = k.

Although this theorem is intuitively obvious, its proof depends on a mathematically precise
development of the real number system, which is beyond the scope of this text.
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fla)>0—
| >
/

O

A Figure 1.5.9

y=x

A Figure 1.5.10

-x-1

Il APPROXIMATING ROOTS USING THE INTERMEDIATE-VALUE THEOREM

A variety of problems can be reduced to solving an equation f(x) = 0 for its roots. Some-
times it is possible to solve for the roots exactly using algebra, but often this is not possible
and one must settle for decimal approximations of the roots. One procedure for approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

1.5.8 THEOREM [f f is continuous on [a, b], and if f(a) and f(b) are nonzero and
have opposite signs, then there is at least one solution of the equation f(x) = 0 in the
interval (a, b).

This result, which is illustrated in Figure 1.5.9, can be proved as follows.

PROOF Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by
the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such
that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),
which completes the proof. m

Before we illustrate how this theorem can be used to approximate roots, it will be helpful
to discuss some standard terminology for describing errors in approximations. If x is an
approximation to a quantity x,, then we call

€ = |x — xol

the absolute error or (less precisely) the error in the approximation. The terminology in
Table 1.5.1 is used to describe the size of such errors.

Table 1.5.1
ERROR DESCRIPTION
[x—x0| 0.1 X approximates x with an error of at most 0.1.
|x —xo| <0.01 X approximates x( with an error of at most 0.01.
|x = x| < 0.001 X approximates x with an error of at most 0.001.

|x —xp| <0.0001  x approximates xy with an error of at most 0.0001.

|[x—2x0| 0.5 X approximates x to the nearest integer.

|x = xo| < 0.05 X approximates x to 1 decimal place (i.e., to the nearest tenth).

|x = xo| < 0.005 X approximates x, to 2 decimal places (i.e., to the nearest hundredth).
|x —xp| <£0.0005  x approximates x; to 3 decimal places (i.e., to the nearest thousandth).

» Example 5 The equation X
x> —=x—-1=0

cannot be solved algebraically very easily because the left side has no simple factors.
However, if we graph p(x) = x* — x — 1 with a graphing utility (Figure 1.5.10), then we
are led to conjecture that there is one real root and that this root lies inside the interval
[1,2]. The existence of a root in this interval is also confirmed by Theorem 1.5.8, since
p(l) = —1and p(2) = 5 have opposite signs. Approximate this root to two decimal-place
accuracy.
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Solution. Our objective is to approximate the unknown root xy with an error of at most
0.005. It follows that if we can find an interval of length 0.01 that contains the root, then the
midpoint of that interval will approximate the root with an error of at most % (0.01) = 0.005,
which will achieve the desired accuracy.

We know that the root x lies in the interval [1, 2]. However, this interval has length
1, which is too large. We can pinpoint the location of the root more precisely by dividing
the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using
a calculating utility (Table 1.5.2). In this table p(1.3) and p(1.4) have opposite signs, so
we know that the root lies in the interval [1.3, 1.4]. This interval has length 0.1, which is
still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and
evaluating p at the points of subdivision; this yields Table 1.5.3, which tells us that the root
is inside the interval [1.32, 1.33] (Figure 1.5.11). Since this interval has length 0.01, its
midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, xo ~ 1.325
to two decimal-place accuracy. <

Table 1.5.2

X 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
px)| -1 |-0.77|-047|-0.10| 0.34 | 0.88 | 1.50 | 2.21 | 3.03 | 3.96 5

Table 1.5.3

0.02 F y:P(x)=X3—X—1
0.01 |- /
LAt ! ! ! L X
1.322 4 1.326 1.328 1.330
—-0.01 -
-0.02

A Figure 1.5.11

REMARK

TECHNOLOGY MASTERY

Use a graphing or calculating utility to
show that the root x( in Example 5
can be approximated as xp ~ 1.3245
to three decimal-place accuracy.

X 1.3 131 1.32| 1.33| 1.34 | 1.35 | 1.36 | 1.37 | 1.38 | 1.39 1.4
p(x) [—0.103|-0.062|-0.020| 0.023 | 0.066 | 0.110 | 0.155 | 0.201 | 0.248 | 0.296 | 0.344

To say that x approximates x, to n decimal places does not mean that the first n decimal places of x
and xo will be the same when the numbers are rounded to n decimal places. For example, x = 1.084
approximates x, = 1.087 to two decimal places because |x — xy| = 0.003 (< 0.005). However, if we
round these values to two decimal places, then we obtain x ~ 1.08 and x, ~ 1.09. Thus, if you
approximate a number to n decimal places, then you should display that approximation to at least
n + 1 decimal places to preserve the accuracy.

VQUICK CHECK EXERCISES 1.5  (See page 120 for answers.)

1. What three conditions are satisfied if f is continuous at 4. For what values of x, if any, is the function
x=c? x2—16
2. Suppose that f and g are continuous functions such that fo = x2—5x+4
f(@2)=1and }1_)1112 [f(x) +4g(x)] = 13. Find discontinuous?
(a) g(2) 5. Suppose that a function f is continuous everywhere and

(b) lim2 g(x).

that f(=2) =3, f(—1)=—1, f(0) = —4, f(1) =1, and
f(2) = 5. Does the Intermediate-Value Theorem guarantee

3. Suppose that f and g are continuous functions such that that f has a root on the following intervals?
lim g(x) =5 and f(3) = —2. Find lim [f(x)/g(0)]. (@ [-2,-1]1 () [-1,0]1 (o) [-1,1] (d) [0,2]
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EXERCISE SET 1.5 [ Graphing Utility

1-4 Let f be the function whose graph is shown. On which of
the following intervals, if any, is f continuous?

(@ [1,3] (b (1,3) (o [1,2]

(@ (1,2) (o) [2,3] () 2,3)

For each interval on which f is not continuous, indicate which
conditions for the continuity of f do not hold.

1. Y 2. Y
>~ /.
o
*—0
1 1 1 X 1 1 1 X
12 3 12 3
3 y 4 y
\ \
| |
| |
| |
| |
| |
| |
| |
‘ ‘ X X
| I | I I
1 2 3 12 3
5. Consider the functions
1, x#4 _ [4x—10, x#4
f(x)—{—L x =4 g(x)_{—6, x =4
In each part, is the given function continuous at x = 47
(@) f(x) (b) g(x) (©) —g(x) (D) [f(0)]

(&) fx)gx) () g(f(x) (&) gx) —6f(x)
6. Consider the functions

P
In each part, is the given function continuous at x = 0?
(@) f(x) (b) g(x) (© f(=x) (d) 8]
(&) f)gx) (f) g(f(x)) (&) f(x)+gx)

FOCUS ON CONCEPTS

7. Ineach part sketch the graph of a function f that satisfies
the stated conditions.

(a) f is continuous everywhere except at x = 3, at
which point it is continuous from the right.

(b) f has a two-sided limit at x = 3, but it is not con-
tinuous at x = 3.

(c) fisnotcontinuousatx = 3, butifits valueatx = 3
is changed from f(3) = 1to f(3) = 0, it becomes
continuous at x = 3.

(d) f is continuous on the interval [0, 3) and is defined
on the closed interval [0, 3]; but f is not continuous
on the interval [0, 3].

8. Assume that a function f is defined at x = ¢, and, with
the aid of Definition 1.4.1, write down precisely what

condition (involving € and &) must be satisfied for f
to be continuous at x = ¢. Explain why the condition
0 < |x — ¢| < & can be replaced by |x — ¢| < §.

9. A student parking lot at a university charges $2.00 for
the first half hour (or any part) and $1.00 for each sub-
sequent half hour (or any part) up to a daily maximum
of $10.00.

(a) Sketch a graph of cost as a function of the time
parked.

(b) Discuss the significance of the discontinuities in the
graph to a student who parks there.

10. In each part determine whether the function is continu-

ous or not, and explain your reasoning.

(a) The Earth’s population as a function of time.

(b) Your exact height as a function of time.

(c) The cost of a taxi ride in your city as a function of
the distance traveled.

(d) The volume of a melting ice cube as a function of
time.

11-22 Find values of x, if any, at which f is not continuous.

1. f(x)=5x*—-3x+7 12. f(x)=x—38

x+2 x+2
13. = 14. =
fo =527 f@ =5
X 2x +1
15. = —F 16. = —-—
F0 = s = T ax+s
3 x—1 5 2x
17. = — 18, = —
f&) x+x2—1 f&) x+x+4
x24+6x+9 8
19. = 20. =4 -
f) = f@) ’ T
2x+3, x<4
21 f(x) = 16
f T+ —, x>4
x
, 1
2 fo=lro1 7
3, x=1

23-28 True-False Determine whether the statement is true or
false. Explain your answer.

23. If f(x) is continuous at x = c, then so is | f(x)|.

24. If | f(x)| is continuous at x = c, then so is f(x).

25. If f and g are discontinuous at x = ¢, then sois f + g.
26. If f and g are discontinuous at x = ¢, then so is fg.
27. If \/f(x) is continuous at x = ¢, then so is f(x).

28. If f(x) is continuous at x = c, then so is v/ f(x).



29-30 Find a value of the constant k, if possible, that will make
the function continuous everywhere.

®o@ =0 T
o fo= {8, 152
30. (@) f(x) = z/;;fz’ ii:g
o o =170 120

31. Find values of the constants k and m, if possible, that will
make the function f continuous everywhere.

x2+5, x>2
fy=imx+1D+k —-1<x<2
233+ x +7, x< -1

32. On which of the following intervals is

Jx) =

x—2
continuous?
(@) [2,+%) (b) (=, +») (c) (2,+») (d) [1,2)

33-36 A function f is said to have a removable discontinuity
at x = ciflim,_ . f(x) exists but f is not continuous at x = c,
either because f is not defined at ¢ or because the definition for
f(c) differs from the value of the limit. This terminology will
be needed in these exercises.

33. (a) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is undefined.
(b) Sketch the graph of a function with a removable dis-
continuity at x = ¢ for which f(c) is defined.

34. (a) The terminology removable discontinuity is appropri-
ate because a removable discontinuity of a function f
at x = ¢ can be “removed” by redefining the value of
f appropriately at x = ¢. What value for f(c) removes
the discontinuity?

(b) Show that the following functions have removable dis-
continuities at x = 1, and sketch their graphs.

£2_ 1, x>1

fx) = and g(x)=140, x=1
x—1

1, x<1

(c) What values should be assigned to f(1) and g(1) to
remove the discontinuities?

35-36 Find the values of x (if any) at which f is not contin-
uous, and determine whether each such value is a removable
discontinuity.

_ _x?43x
35. (a) f(x)—7 b) fx)= 13
x—2
©) flx)=

x| —2
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2_4 _
%o fw=5"g o sw={37Y 15
2
(©) f(x):{zx +3 ii}

] 37. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = (x + 3)/(2x*> + 5x — 3), and then use the
graph to make a conjecture about the number and loca-
tions of all discontinuities.

(b) Check your conjecture by factoring the denominator.

[ 38. (a) Use a graphing utility to generate the graph of the func-

tion f(x) = x/(x® — x + 2), and then use the graph to
make a conjecture about the number and locations of
all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate
the locations of all discontinuities to two decimal places.

39. Prove that f(x) = x%/5 is continuous everywhere, carefully
justifying each step.

40. Prove that f(x) = 1/v/x*+ 7x2 + 1 is continuous every-

where, carefully justifying each step.

41. Prove:
(a) part (a) of Theorem 1.5.3
(b) part (b) of Theorem 1.5.3
(c) part (c) of Theorem 1.5.3.

42. Prove part (b) of Theorem 1.5.4.

43. (a) Use Theorem 1.5.5 to prove that if f is continuous at
x = ¢, then lim;, o f(c + h) = f(c).
(b) Prove that if lim,_, ¢ f(c + h) = f(c), then f is con-
tinuous at x = c¢. [Hint: What does this limit tell you
about the continuity of g(h) = f(c + h)?]
(c) Conclude from parts (a) and (b) that f is continuous at
x = cifand only if lim, ¢ f(c + h) = f(c).

44. Prove: If f and g are continuouson [a, b], and f(a) > g(a),
f(b) < g(b), then there is at least one solution of the equa-
tion f(x) = g(x) in (a, b). [Hint: Consider f(x) — g(x).]

FOCUS ON CONCEPTS

45. Give an example of a function f that is defined on a
closed interval, and whose values at the endpoints have
opposite signs, but for which the equation f(x) = 0 has
no solution in the interval.

46. Let f be the function whose graph is shown in Exercise
2. For each interval, determine (i) whether the hypoth-
esis of the Intermediate-Value Theorem is satisfied, and
(ii) whether the conclusion of the Intermediate-Value
Theorem is satisfied.

(a) [1,2] (b) [2,3] (©) [1,3]

47. Show that the equation x* + x2 — 2x = 1 has at least one
solution in the interval [—1, 1].
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48.

49.

50.

51.

Prove: If p(x) is a polynomial of odd degree, then the equa-
tion p(x) = 0 has at least one real solution.

The accompanying figure shows the graph of the equation
y = x* 4+ x — 1. Use the method of Example 5 to approxi-
mate the x-intercepts with an error of at most 0.05.

[-5, 4] x [-3, 6]
xScl =1, yScl =1 <A Figure Ex-49
The accompanying figure shows the graph of the equation
y=5—x—x* Use the method of Example 5 to ap-
proximate the roots of the equation 5 — x — x* = 0 to two
decimal-place accuracy.

[=5, 4] x[-3, 6]
xScl =1, yScl =1 < Figure Ex-50
Use the fact that +/5 is a solution of x2 — 5 = 0 to approx-

imate +/5 with an error of at most 0.005.

52. A sprinter, who is timed with a stopwatch, runs a hundred

53.

yarddashin 10s. The stopwatchis reset to 0, and the sprinter
is timed jogging back to the starting block. Show that there
is at least one point on the track at which the reading on
the stopwatch during the sprint is the same as the reading
during the return jog. [Hint: Use the result in Exercise 44.]

Prove that there exist points on opposite sides of the equator
that are at the same temperature. [Hint: Consider the ac-
companying figure, which shows a view of the equator from
a point above the North Pole. Assume that the temperature
T (9) is a continuous function of the angle 6, and consider
the function f(0) =T + ) — T(6).]

‘/QUICK CHECK ANSWERS 1.5

54.

5S.

56.

57.

58.

Temperature at this
point is T(0)

P Intersection of the
equator and the
prime meridian

A Figure Ex-53

Let R denote an elliptical region in the xy-plane, and de-
fine f(z) to be the area within R that is on, or to the left
of, the vertical line x = z. Prove that f is a continu-
ous function of z. [Hint: Assume the ellipse is between
the horizontal lines y =a and y = b, a < b. Argue that
1f(z) = fe)| = b —a)-|z1 — z2l.]

Let R denote an elliptical region in the plane. For any line
L, prove there is a line perpendicular to L that divides R in
half by area. [Hint: Introduce coordinates so that L is the
x-axis. Use the result in Exercise 54 and the Intermediate-
Value Theorem.]

Suppose that f is continuous on the interval [0, 1] and that

0 < f(x) <1 for all x in this interval.

(a) Sketchthe graphof y = x together with a possible graph
for f over the interval [0, 1].

(b) Use the Intermediate-Value Theorem to help prove that
there is at least one number c in the interval [0, 1] such
that f(c) = c.

Writing It is often assumed that changing physical quan-

tities such as the height of a falling object or the weight of

a melting snowball, are continuous functions of time. Use

specific examples to discuss the merits of this assumption.

Writing The Intermediate-Value Theorem (Theorem 1.5.7)
is an example of what is known as an “existence theorem.”
In your own words, describe how to recognize an existence
theorem, and discuss some of the ways in which an existence
theorem can be useful.

1. f(c) is defined; lim, _, . f(x) exists; lim, . f(x) = f(c)
5. (a) yes (b) no (c) yes (d) yes

2. (a) 3 (b) 3

3. -2/5 4.x=1,4
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CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL,
AND INVERSE FUNCTIONS

///" Q(cos ¢, sin ¢)
c P(cos x, sin x)

"X

As x approaches ¢ the point
P approaches the point Q.

A Figure 1.6.1

Theorem 1.6.1 implies that the six basic
trigonometric functions are continuous
on their domains. In particular, sin x
and cos x are continuous everywhere.

In this section we will discuss the continuity properties of trigonometric functions,
exponential functions, and inverses of various continuous functions. We will also discuss
some important limits involving such functions.

CONTINUITY OF TRIGONOMETRIC FUNCTIONS

Recall from trigonometry that the graphs of sin x and cos x are drawn as continuous curves.
We will not formally prove that these functions are continuous, but we can motivate this fact
by letting c be a fixed angle in radian measure and x a variable angle in radian measure. If, as
illustrated in Figure 1.6.1, the angle x approaches the angle c, then the point P (cos x, sin x)
moves along the unit circle toward Q(cos c, sin ¢), and the coordinates of P approach the
corresponding coordinates of Q. This implies that

lim cos x = cosc €))]

X—>cC

lim sinx = sinc and

X—>cC

Thus, sin x and cos x are continuous at the arbitrary point c; that is, these functions are con-
tinuous everywhere.

The formulas in (1) can be used to find limits of the remaining trigonometric functions
by expressing them in terms of sin x and cos x; for example, if cos ¢ # 0, then

sin x sin ¢

lim tan x = lim =
xX—>c xX—c COSX

=tanc

cos ¢
Thus, we are led to the following theorem.

1.6.1 THEOREM [fc is any number in the natural domain of the stated trigonometric
function, then

lim sinx = sinc¢ lim cosx = cosc lim tan x = tanc

X—C X—>C X—C
lim cscx = cscce lim sec x = secc lim cotx = cotc
X—C X—>C X—C

» Example 1 Find the limit

. x> -1
lim cos
x—1 x—1
Since the cosine function is continuous everywhere, it follows from Theorem

lim1 cos(g(x)) = cos <lim1 g(x))

Solution.
1.5.5 that

provided lim1 g(x) exists. Thus,

2
lim cos (x 7 ) = lim1 cos(x + 1) = cos <lim1 (x + 1)) =cos2 «

x—1 X —

CONTINUITY OF INVERSE FUNCTIONS

Since the graphs of a one-to-one function f anditsinverse ! are reflections of one another
about the line y = x, it is clear geometrically that if the graph of f has no breaks or holes
in it, then neither does the graph of f~!. This, and the fact that the range of f is the domain
of f~!, suggests the following result, which we state without formal proof.
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To paraphrase Theorem 1.6.2, the in-
verse of a continuous function is con-
tinuous.

A Figure 1.6.2

1.6.2 THEOREM If f is a one-to-one function that is continuous at each point of its
domain, then =" is continuous at each point of its domain; that is, =" is continuous
at each point in the range of f.

» Example 2 Use Theorem 1.6.2 to prove that sin™' x is continuous on the interval
[—1,1].

Solution. Recall that sin~' x is the inverse of the restricted sine function whose domain
is the interval [—m/2, /2] and whose range is the interval [—1, 1] (Definition 0.4.6 and
Figure 0.4.13). Since sin x is continuous on the interval [—7/2, 7r/2], Theorem 1.6.2 implies
sin”! x is continuous on the interval [—1,1]. «

Arguments similar to the solution of Example 2 show that each of the inverse trigono-
metric functions defined in Section 0.4 is continuous at each point of its domain.

When we introduced the exponential function f(x) = b* in Section 0.5, we assumed
that its graph is a curve without breaks, gaps, or holes; that is, we assumed that the graph
of y = b* is a continuous curve. This assumption and Theorem 1.6.2 imply the following
theorem, which we state without formal proof.

1.6.3 THEOREM Letb > 0,b # 1.

(a) The function b* is continuous on (—o, 4.

(b) The function log,, x is continuous on (0, 4-o0).

: . tan~' x + Inx )
» Example 3 Where is the function f(x) = -7 continuous?
x2 —

Solution. The fraction will be continuous at all points where the numerator and denom-
inator are both continuous and the denominator is nonzero. Since tan~! x is continuous
everywhere and In x is continuous if x > 0, the numerator is continuous if x > 0. The
denominator, being a polynomial, is continuous everywhere, so the fraction will be contin-
uous at all points where x > 0 and the denominator is nonzero. Thus, f is continuous on
the intervals (0, 2) and (2, +x). <

OBTAINING LIMITS BY SQUEEZING
In Section 1.1 we used numerical evidence to conjecture that
. sinx
lim
x—0 X

=1 2)

However, this limit is not easy to establish with certainty. The limit is an indeterminate
form of type 0/0, and there is no simple algebraic manipulation that one can perform to
obtain the limit. Later in the text we will develop general methods for finding limits of
indeterminate forms, but in this particular case we can use a technique called squeezing.

The method of squeezing is used to prove that f(x)— L as x — c by “trapping” or
“squeezing” f between two functions, g and /&, whose limits as x — ¢ are known with
certainty to be L. As illustrated in Figure 1.6.2, this forces f to have a limit of L as well.
This is the idea behind the following theorem, which we state without proof.
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1.6.4 THEOREM (The Squeezing Theorem) Let f, g, and h be functions satisfying
gx) = f(x) = h(x)

for all x in some open interval containing the number c, with the possible exception that
The Squeezing Theorem also holds for the inequalities need not hold at c. If g and h have the same limit as x approaches c,
one-sided limits and limits at +oc and say
—co. How do you think the hypotheses

would change in those cases?

lim.g(x) = lim.h(x) =L

then f also has this limit as x approaches c, that is,

lim f(x) =L

To illustrate how the Squeezing Theorem works, we will prove the following results,

];y\‘ sin x which are illustrated in Figure 1.6.3.
Y=
—), | 1 | 1 | I X

’: 2r

-2
1.6.5 THEOREM

. . sinx 1 —cosx
lim S0X _ 4 (a) lim =1 (b) lim =
oo X x—0 Xx x—>0 X
y
y= 1—cosx
1 * . PROOF (a) In this proof we will interpret x as an angle in radian measure, and we will
_;&_‘/ — 2‘71 assume to start that 0 < x < /2. As illustrated in Figure 1.6.4, the area of a sector with
r central angle x and radius 1 lies between the areas of two triangles, one with area % tan x
and the other with area % sin x. Since the sector has area %x (see marginal note), it follows
lim l_iﬁ =0 that
x—0

—tanx > —x > —sinx
A Figure 1.6.3 2 2 2
Multiplying through by 2/(sin x) and using the fact that sin x > 0 for 0 < x < 7/2, we

obtain 1 X
> —
COS X sin x

>1

Next, taking reciprocals reverses the inequalities, so we obtain
sin x
cosx < — <1 3)
X

which squeezes the function (sinx)/x between the functions cos x and 1. Although we
derived these inequalities by assuming that 0 < x < 7/2, they also hold for —7/2 < x < 0
[since replacing x by —x and using the identities sin(—x) = — sin x, and cos(—x) = cos x

(1, tan x)

I .
/e (COs x, sin x)

| \ A\
\\ | \ } \\ sin x
X M (1, 0) Nx X x|

" 1 1 1
! Area of triangle > Areaof sector >  Area of triangle
tan x X sin x
> = >
2 2 2

> Figure 1.6.4
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leaves (3) unchanged]. Finally, since
Recall that the area A of a sector of ra-

dius r and central angle 6 is limo cosx =1 and lim() 1=1
x= x—
1, . . .
A= 7 the Squeezing Theorem implies that
This can be derived from the relation- . sinx
hi lim =1
ship x—>0 X
A 0

= PROOF (b) For this proof we will use the limit in part (a), the continuity of the sine

=
nr 2 . . .. . . .

T e o e D function, and the trigonometric identity sin® x = 1 — cos? x. We obtain

is to the area of the circle as the central 1 —cosx ) 1 —cosx 1+4cosx ) sin? x
angle of the sector is to the central an- lim —— = lim . =lm —
gle of the circle. x>0 X x=>0 x 14 cosx x=0 (1 4 cosx)x

tim 20 (i ) — ) (-2 ) =0 m
- =(1 m-—— | = T 7=
Area = A x—0 X x—0 1+ cosx 1+1

» Example 4 Find

= in 26 in 3
@ lim X (b lim o () lim 2222
x—0 X 6—0 x—0 sin Sx
Solution (a).
. tanx . sin x 1 . sinx . 1
lim —— = lim . = | lim lim =) =1
x—=0 X x—0 X COS Xx x—=0 X x—>0 COSX
Solution (b). The trick is to multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [ just as in Theorem 1.6.5(a)]:
. sin20 . sin 20 . sin20
lim = lim 2 - =2 lim
60 60 20 6—-0 20
Now make the substitution x = 26, and use the fact that x — 0 as 6 — 0. This yields
sin 20 . sin20 . sinx
lim =2 lim =2 lim =2(1)=2
-0 6 N x—0
TECHNOLOGY MASTERY Solution (c)‘
Use a graphing utility to confirm the sin 3x 3 sin 3x
limits in Example 4, and if you have a _ sin3x ) X . ' 3x 3.1 3
CAS, use it to obtain the limits. lim — = lim — =lm ——=—=- <
x—>0sin5x  x—0 sinSx x—>05 sin 5x 5.1 5
X Sx
y
» Example 5 Discuss the limits
.1 . (1
(a) lim sin | — (b) lim xsin | —
‘ ‘ X x—0 X x—0 X
-1 1
Solution (a). Let us view 1/x as an angle in radian measure. As x — 0T, the angle
Jl 1/x approaches oo, so the values of sin(1/x) keep oscillating between —1 and 1 without
approaching a limit. Similarly, as x — 0=, the angle 1/x approaches —co, so again the

values of sin(1/x) keep oscillating between —1 and 1 without approaching a limit. These
y = sin (%) conclusions are consistent with the graph shown in Figure 1.6.5. Note that the oscillations
become more and more rapid as x — 0 because 1/x increases (or decreases) more and more

A Figure 1.6.5 rapidly as x approaches 0.
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Solution (b). Since 1
—1 <sin (—) <1

Confirm (4) by considering the cases
x > 0 and x < 0 separately.

\

it follows that if x # 0, then

¥

—lx| < xsin (1> < x| @)
X

y=|x]

Since |x| — 0 as x — 0, the inequalities in (4) and the Squeezing Theorem imply that
/.X

1
lim x sin (—) =0
> x—0 X

This is consistent with the graph shown in Figure 1.6.6. <

y ==
y = xsin (%)
A Figure 1.6.6 REMARK | It follows from part (b) of this example that the function
_ fxsin(l/x), x#0
flo) = {0’ P

is continuous at x = 0, since the value of the function and the value of the limit are the same at 0.
This shows that the behavior of a function can be very complex in the vicinity of x = ¢, even though
the function is continuous at c.

I/ QUICK CHECK EXERCISES 1.6  (See page 128 for answers.)

1. Ineach part, is the given function continuous on the interval 3. Suppose a function f has the property that for all real num-
[0, /2)? bers x _
(a) sinx (b) cosx (c) tanx (d) cscx 3l = f) =3+ 1x
2. Evaluate From this we can conclude that f(x)—>__ as x—
sin x
(a) lim
= 4. In each part, give the largest interval on which the function
(b) lim ﬂ. is continuous.
=0 x (@) e () Inx (¢) sin"'x (d) tan~!x
EXERCISE SET 1.6 [ Graphing utility
1-8 Find the discontinuities, if any. 9-14 Determine where f is continuous.
— qin~!
1. f(x) =sin(x> —2) 2. f(x) = cos ( ) 9 J00) = sin2x
Xx—-7 10. f(x) = cos '(Inx)
3. f(x) = |cotx| 4. f(x) =secx In(tan~" x) sin x
1 11. fx) = ——— 12. f(x) =exp| —
5. f(x) =cscx 6. f(x) = ——75— x2—-9 x
1+ sin“x

in~!'(1/
7 0 = 8. f(r) = V2 + tan’x 137 =" e 0 = Il - 2+ 3)

— 2sinx
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15-16 Ineach part, use Theorem 1.5.6(b) to show that the func-
tion is continuous everywhere.

15. (@) sinGx>*+7x+1)  (b) [sinx| (c) cos*(x +1)

16. (a) |3 + sin 2x]| (b) sin(sin x)
(c) cos’x —2cos®x + 1

17-42 Find the limits.

1
17. lim cos <7> 18. lim sin( ™ )
x— oo X x— oo 2—3x
1
19. lim sin—‘< o ) 20. 1lim In (x+ )
x—> oo 1—2x x—> oo X
21. lim &8™¥ 22. lim cos(2tan”!x)
x—0 xX— +®
23. 1im S0 24. lim S0
>0 0 h—0 2h
ino . 20
25. lim - 26. lim -2
90+ 62 0—>0 6
27. 1im 27 28, 1im 2P
x—0 sin 3x x—0 sin 8x
. .2
sin x sin~ x
29. lim —~= 30. li
xirr(}Jr Sﬁ xl—I>n0 3_x2
. 2 . h
31. lim S2Y 32 lim ——
x—0 X h—01—cosh
t2
33, lim —— 34, lim— >
t—01—cos?t x>0 cos(%n—x)
62 1 —cos3h
35. lim —— 36. lim ———>>2"
9501 —cos6 h—0 cos?5h — 1
1 2 _3si
37. lim sin (7) 38. lim — o1
x— 0t X x—0 X

2 —cos3x — cos4dx

39. lim
x—0 X

40. lim tan 3x2 + sin® 5x
x—0 )C2

41-42 (a) Complete the table and make a guess about the limit
indicated. (b) Find the exact value of the limit.

a1 o0 = 2 i o)

x | 4454951556
f)

< Table Ex-41

sin(x? +3x +2)

2. f(x)= ) ’xll“lz Sx)

x | =21 | -2.01|-2.001 | =1.999 | -1.99 | -1.9

)
A Table Ex-42

43-46 True—False Determine whether the statement is true or
false. Explain your answer.

43. Suppose that for all real numbers x, a function f satisfies
[f(x) +5] < [x + 1]

Then lim, _, _; f(x) = —5.

44. For 0 < x < 7/2, the graph of y = sinx lies below the
graph of y = x and above the graph of y = x cos x.

45. If an invertible function f is continuous everywhere, then
its inverse f ! is also continuous everywhere.

46. Suppose that M is a positive number and that for all real
numbers x, a function f satisfies

-M =< f(x) =M
Then
limxf()=0 and lim 2% o
x—=0 x—>4o X

FOCUS ON CONCEPTS

47. In an attempt to verify that lim, _, ¢ (sin x)/x = 1, a stu-
dent constructs the accompanying table.
(a) What mistake did the student make?
(b) What is the exact value of the limit illustrated by
this table?

X -0.01
sinx/x | 0.017453

-0.001 0.001 0.01
0.017453 | 0.017453 | 0.017453

A Table Ex-47

48. Consider lim,_, o (1 — cosx)/x, where x is in degrees.
Why is it possible to evaluate this limit with little or no
computation?

49. In the circle in the accompanying figure, a central an-
gle of measure 6 radians subtends a chord of length
c(0) and a circular arc of length s(8). Based on your
intuition, what would you conjecture is the value of
limg _, g+ ¢(8)/s(9)? Verify your conjecture by com-
puting the limit.

< Figure Ex-49

50. What is wrong with the following “proof” that
lim, , o[(sin 2x)/x] = 1? Since

lim (sin2x —x) = lim sin2x — limx =0—-0=0
x—0 x—0

x—0
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if x is close to O, then sin2x —x =~ 0 or, equiva-
lently, sin 2x &~ x. Dividing both sides of this approx-
imate equality by x yields (sin2x)/x ~ 1. That is,
lim, _, o[(sin 2x)/x] = 1.

51. Find a nonzero value for the constant k that makes

tan kx

fx) = x
3x +2k%, x>0

, x <0

continuous at x = 0.
52. Is

sin x

fo =1 Ixl’
1, x=0

continuous at x = 0? Explain.

53. In parts (a)—(c), find the limit by making the indicated sub-

stitution. |
(a) lim xsin—; t=—
X

X — 4o

. 1 1
(b) Iim x{1—cos—); t=—
X— —x X X

. o mT—x
(¢) lim — D t=m—x
x—7 sin x

54. Find lim 7). [Hint: Letr = = — Z]
=2 x—2 2 x
55. Find lim 00 tanx—1

x—>1 X —

56. Find 1 .
m X—1>r71:[1/4 x—m/4

cosx — sinx
57. Find lim ———
xon/4 x —m/4

58. Suppose that f is an invertible function, f(0) =0, f is
continuous at 0, and lim,_, o( f(x)/x) exists. Given that
L = lim,_,o(f(x)/x), show
lim ——— =1L
x=0 f1(x)
[Hint: Apply Theorem 1.5.5 to the composition /2 o g, where

oo = [0 <20

and g(x) = f'(x).]

59-62 Apply the result of Exercise 58, if needed, to find the
limits.
-1

. . tan” ' x
59. lim —— 60. lim
x—=0s8in"  x x—0
.1 .1
5 —1
61. lim S >* 62. lim S~ D

x—>0 X x—1 x2—1

[~ 64. Sketch the graphs of the curves y = 1 — x2, y = cosx,

[~ 65. Sketch the graphs of the curves y = 1/x, y = —1/x,

FOCUS ON CONCEPTS

63. In Example 5 we used the Squeezing Theorem to prove

that
1
lim x sin <7> =0
x—0 X

Why couldn’t we have obtained the same result by writ-

ing
. (1 . .. (1
lim xsin{ — ) = lim x - lim sin | —
x—0 X x—0 x—0 X
1
=0- lim sin <7> =0?
x—0 X

and y = f(x), where f is a function that satisfies the
inequalities

1—x2< f(x) <cosx

for all x in the interval (—7/2, 7/2). What can you say
about the limit of f(x) as x — 07 Explain.

and y = f(x), where f is a function that satisfies the
inequalities 1 1
——=f)=-

X X

for all x in the interval [1, +o0). What can you say about
the limit of f(x) as x — 4? Explain your reasoning.

66. Draw pictures analogous to Figure 1.6.2 that illus-
trate the Squeezing Theorem for limits of the forms
1imx—>+oo f(-x) and 1imx—>—oo f(-x)

67. (a) Use the Intermediate-Value Theorem to show that the
equation x = cosx has at least one solution in the in-
terval [0, 7r/2].

(b) Show graphically that there is exactly one solution in
the interval.
(c) Approximate the solution to three decimal places.

68. (a) Use the Intermediate-Value Theorem to show that the
equation x + sinx = 1 has at least one solution in the
interval [0, 77/6].
(b) Show graphically that there is exactly one solution in
the interval.
(c) Approximate the solution to three decimal places.

™ 69. In the study of falling objects near the surface of the Earth,

the acceleration g due to gravity is commonly taken to be
a constant 9.8 m/s?. However, the elliptical shape of the
Earth and other factors cause variations in this value that
depend on latitude. The following formula, known as the
World Geodetic System 1984 (WGS 84) Ellipsoidal Grav-
ity Formula, is used to predict the value of g at a latitude of
¢ degrees (either north or south of the equator):

1 4+ 0.0019318526461 sin* ¢

m/s?
VT = 0.0066943799901 sin’ ¢

g = 9.7803253359

(cont.)
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(a) Use a graphing utility to graph the curve y = g(¢) for
0° < ¢ < 90°. What do the values of g at ¢ = 0° and
at ¢ = 90° tell you about the WGS 84 ellipsoid model
for the Earth?

(b) Show that g = 9.8 m/s? somewhere between latitudes
of 38° and 39°.

70. Writing In your own words, explain the practical value of
the Squeezing Theorem.

I/ QUICK CHECK ANSWERS 1.6

71. Writing A careful examination of the proof of Theorem
1.6.5 raises the issue of whether the proof might actually
be a circular argument! Read the article “A Circular Ar-
gument” by Fred Richman in the March 1993 issue of The
College Mathematics Journal, and write a short report on
the author’s principal points.

1. (a) yes (b) yes (c) yes (d) no

CHAPTER 1 REVIEW EXERCISES

2.( 1 ()0 3.30 4. (a) (—wo,+») (b) (0,+x) (c) [—1,1] (d) (—o, +x)

~ Graphing Utility CAS

1. For the function f graphed in the accompanying figure, find
the limit if it exists.

@ lim f(x)
(@ lim f(x)
(&) lim f()

(b) lim2 fx)
(e grg fx)
(h) 1irr317 fx)

© lim f(x)
(f) lim_f(x)
() lim £(0)

X

| | | | |
45 6 7 8  qFigure Ex-1
2. Ineach part, complete the table and make a conjecture about
the value of the limit indicated. Confirm your conjecture by
finding the limit analytically.
x—2

@ fO) = Z—7 lim fx)

x | 2.00001 | 2.0001 | 2.001 | 2.01 | 2.1 | 2.5

4. Approximate

S)
tan 4x .
(b) f(x)= ;3 lim f(x)
X x—0
X —-0.01 | =0.001 | —0.0001 | 0.0001 | 0.001 | 0.01

)

3. (a) Approximate the value for the limit
3 )X

lim

x—0 X

to three decimal places by constructing an appropriate
table of values.
(b) Confirm your approximation using graphical evidence.

VAR
lim
x—=3 x—3

both by looking at a graph and by calculating values for
some appropriate choices of x. Compare your answer with
the value produced by a CAS.

5-10 Find the limits.

3,2 3.2
5. lim —— 6. lim =~
x—=-1 x—1 x—>1 X —
3 9 2
7. lim — 2 8 lim "
x—>-3x24+4x +3 x—=2-x —2
. (2x —1)°
9. lim
x—>+o (3x2 4 2x — T)(x3 — 9x)
X2 +4-2
10. lim ————
x—0 X
11. In each part, find the horizontal asymptotes, if any.
@) 2x —17 ®) x> —x24+10
a = —— =
(R Y 3x2 — 4x
© 2x2 -6
C = -
Y x2 4 5x

12. In each part, find lim, _, , f(x), if it exists, where a is re-
placed by 0, 57, =57, —5, 5, —oo, and —+oo.
(@ f(x)=+5—x

_J&=5)/Ix =5, x#5
b) f(x) = [07 i
13-20 Find the limits.
13. lim 503 14. lim 00
x—0 tan 3x x—=01—cosx
3x — sin(k
15 Tim S0
x—0 X
16. lim tan <ﬂ>
0—0 0
17. lim ™ 18. lim In(sin 26) — In(tan 6)
t—/2+ 60— 0t



19.
21.

22,

M 23.

24,

25.

26.

27.

an bx
20. lim (1+f) . ab>0
X

n(13)
lim (1+ —
X — +ow X X — oo
If $1000 is invested in an account that pays 7% interest
compounded 7 times each year, then in 10 years there will
be 1000(1 + 0.07/n)'%" dollars in the account. How much
money will be in the account in 10 years if the interest is
compounded quarterly (n = 4)? Monthly (n = 12)? Daily
(n = 365)? Determine the amount of money that will be
in the account in 10 years if the interest is compounded

continuously, that is, as n — +oo,

(a) Write a paragraph or two that describes how the limit
of a function can fail to exist at x = a, and accompany
your description with some specific examples.

(b) Write a paragraph or two that describes how the limit
of a function can fail to exist as x — +o or x — —oo,
and accompany your description with some specific
examples.

(c) Write a paragraph or two that describes how a function
can fail to be continuous at x = a, and accompany your
description with some specific examples.

(a) Find a formula for a rational function that has a verti-
cal asymptote at x = 1 and a horizontal asymptote at
y=2.

(b) Check your work by using a graphing utility to graph
the function.

Paraphrase the €-§ definition for lim, _,, f(x) = L in terms

of a graphing utility viewing window centered at the point

(a, L).

Suppose that f(x) is a function and that for any given
€ > 0, the condition 0 < |x — 2| < %e guarantees that
[f(x) = 5] <e.

(a) What limit is described by this statement?

(b) Find a value of § such that 0 < |x — 2| < § guarantees

that |8 f(x) — 40| < 0.048.
The limit . sinx
lim

x—0 Xx

=1

ensures that there is a number § such that

sin x

— 1| < 0.001

X
if 0 < |x| < . Estimate the largest such §.
In each part, a positive number € and the limit L of a function
f ata are given. Find a number § such that | f(x) — L| < €
if0 < |x —al <.
(a) limz(4x -7 =1; e =0.01
4x? -9

®) lim —

x—3/2 2x =3
(©) 1irn4x2 = 16; € = 0.001

x—

=6; ¢ =0.05

28.

29.

R~ 30.

31.

32.

33.

34.

35.

36.

37.
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Use Definition 1.4.1 to prove the stated limits are correct.

4x2 -9
a) lim@x —7) =1 b) lim =6

@ x—>2( ) ®) x—=3/2 2x =3

Suppose that f is continuous at xo and that f(xg) > 0. Give

either an €-§ proof or a convincing verbal argument to show

that there must be an open interval containing x, on which

fx) > 0.

(a) Let

sinx —sin 1
-1
Approximate lim, _, ; f(x) by graphing f and calculat-

ing values for some appropriate choices of x.
(b) Use the identity

fx) =

a—p at+p

sine — sin 8 = 2sin cos 5

to find the exact value of lim1 fx).

Find values of x, if any, at which the given function is not
continuous.

@ f)=—3— (b) f(x) = |x* — 2x|
x+3
© fx)= m
Determine where f is continuous.
@ f)=—"— (b) f(x) = cos™! <1)
x| —3 x
© flx)=e"
Suppose that
—x*4+3, x<2
f(x)={ x24+9, x>2

Is f continuous everywhere? Justify your conclusion.

One dictionary describes a continuous function as “one
whose value at each point is closely approached by its values
at neighboring points.”

(a) How would you explain the meaning of the terms
“neighboring points” and “closely approached” to a
nonmathematician?

(b) Write a paragraph that explains why the dictionary def-
inition is consistent with Definition 1.5.1.

Show that the conclusion of the Intermediate-Value The-
orem may be false if f is not continuous on the interval
[a, b].

Suppose that f is continuous on the interval [0, 1], that
f(0) = 2, and that f has no zeros in the interval. Prove that
f(x) > O forall x in [0, 1].

Show that the equation x* + 5x 4+ 5x — 1 = 0 has at least
two real solutions in the interval [—6, 2].
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In Section 1.1 we developed the notion of a tangent line to a
graph at a given point by considering it as a limiting position
of secant lines through that point (Figure 1.1.4a). In these ex-
ercises we will develop an analogous idea in which secant lines
are replaced by “secant circles” and the tangent line is replaced
by a “tangent circle” (called the osculating circle). We begin
with the graph of y = x2.
1. Recall that there is a unique circle through any three non-
collinear points in the plane. For any positive real number
x, consider the unique “secant circle” that passes through the
fixed point O (0, 0) and the variable points Q(—x, x?) and
P(x, x?) (see the accompanying figure). Use plane geome-
try to explain why the center of this circle is the intersection
of the y-axis and the perpendicular bisector of segment OP.

Secant
circle

X
| | |

S Figure Ex-1

|
0(0, 0)

2. (a) Let (0, C(x)) denote the center of the circle in Exercise 1
and show that

(b) Show that as x — 0T, the secant circles approach a lim-
iting position given by the circle that passes through the
origin and is centered at (0, %) As shown in the accom-

panying figure, this circle is the osculating circle to the
graph of y = x? at the origin.

-5 “«X 5 Figure Ex-2

3. Show that if we replace the curve y = x? by the curve

y = f(x), where f is an even function, then the formula
for C(x) becomes

1 x?
e =310+ 10+ 757
[Here we assume that f(x) # f(0) for positive values of x
closeto 0.] Iflim, _, g+ C(x) = L # f(0), then we define the
osculating circle to the curve y = f(x) at (0, f(0)) to be the
unique circle through (0, f(0)) with center (0, L). If C(x)
does not have a finite limit different from f(0) asx — 0T, then
we say that the curve has no osculating circle at (0, £(0)).

4. In each part, determine the osculating circle to the curve

y = f(x) at (0, £(0)), if it exists.

(@) f(x) = 4x? (b) f(x) = x%cosx

© flx) = x| (d) f(x) ==xsinx

(e) f(x) =cosx

(f) f(x) = x*g(x), where g(x) is an even continuous func-
tion with g(0) #£ 0

(@ fx)=x*
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One of the crowning achievements
of calculus is its ability to capture
continuous motion mathematically,
allowing that motion to be analyzed
instant by instant.

<1 THE DERIVATIVE

Many real-world phenomena involve changing quantities—the speed of a rocket, the inflation
of currency, the number of bacteria in a culture, the shock intensity of an earthquake, the
voltage of an electrical signal, and so forth. In this chapter we will develop the concept of a
“derivative,” which is the mathematical tool for studying the rate at which one quantity
changes relative to another. The study of rates of change is closely related to the geometric
concept of a tangent line to a curve, so we will also be discussing the general definition of a
tangent line and methods for finding its slope and equation.

m TANGENT LINES AND RATES OF CHANGE

In this section we will discuss three ideas: tangent lines to curves, the velocity of an object
moving along a line, and the rate at which one variable changes relative to another. Our
goal is to show how these seemingly unrelated ideas are, in actuality, closely linked.

B TANGENT LINES

In Example 1 of Section 1.1, we showed how the notion of a limit could be used to find
an equation of a tangent line to a curve. At that stage in the text we did not have precise
definitions of tangent lines and limits to work with, so the argument was intuitive and
informal. However, now that limits have been defined precisely, we are in a position to
give amathematical definition of the tangent line toacurve y = f(x) atapoint P (xg, f(xo))
on the curve. As illustrated in Figure 2.1.1, consider a point Q(x, f(x)) on the curve that
is distinct from P, and compute the slope m p¢ of the secant line through P and Q:

Jf(x) — f(xo)
mpgp = —"—"—"
X — Xo
If we let x approach x, then the point Q will move along the curve and approach the point
P. If the secant line through P and Q approaches a limiting position as x — xo, then we
will regard that position to be the position of the tangent line at P. Stated another way, if
the slope m pg of the secant line through P and Q approaches a limit as x — x, then we
regard that limit to be the slope m,, of the tangent line at P. Thus, we make the following
definition.
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f)

fxy)

» Figure 2.1.1

2.1.1 DEFINITION Suppose that xy is in the domain of the function f. The tangent
line to the curve y = f(x) at the point P (xg, f(xo)) is the line with equation

y — f(x0) = Mn(x — xo)

where

e = fim T8 =G0 0
xX—>Xo X — Xo
provided the limit exists. For simplicity, we will also call this the tangent line to
y = f(x) at xo.

» Example 1 Use Definition 2.1.1 to find an equation for the tangent line to the parabola
y = x?2 at the point P(1, 1), and confirm the result agrees with that obtained in Example 1
of Section 1.1.

Solution. Applying Formula (1) with f(x) = x? and xo = 1, we have

O (0)
Mgy = lim ————
x—1 x—1
|
= lim
x—1 x—l
-1 1
—im $ DD G =2
x—1 x—1 x—1

Thus, the tangent line to y = x? at (1, 1) has equation
y—1=2(x —1) orequivalently y=2x—1

which agrees with Example 1 of Section 1.1. <«

There is an alternative way of expressing Formula (1) that is commonly used. If we let
h denote the difference
h=x—xg
then the statement that x — x is equivalent to the statement z — 0, so we can rewrite (1)
in terms of xq and & as

h —
—— ;}Lmo fxo + ;), f(xo) @)




Formulas (1) and (2) for m,, usually
lead to indeterminate forms of type
0/0, so you will generally need to per-
form algebraic simplifications or use
other methods to determine limits of

such indeterminate forms.

A Figure 2.1.3
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Figure 2.1.2 shows how Formula (2) expresses the slope of the tangent line as a limit of
slopes of secant lines.

Sflxy+h)

)

> Figure 2.1.2

» Example 2 Compute the slope in Example 1 using Formula (2).

Solution. Applying Formula (2) with f(x) = x? and xo = 1, we obtain
S +h)— f(1)

n — li
Man = 10 h
(14+h)?>—1?
= lim ———
h—0 h
1+2h+h?—1
~ fim et lim (2 +h) =2
h—0 h h—0

which agrees with the slope found in Example 1. «

» Example 3 Find an equation for the tangent line to the curve y = 2/x at the point
(2, 1) on this curve.

Solution. First, we will find the slope of the tangent line by applying Formula (2) with
f(x) = 2/x and xo = 2. This yields

fC+m—-fQ

Mgy = lim
h—0 h
2 | <2— (2+h))
— lim 2+h = lim $
h—0 h h—0 h

. —h . 1 1
=lim —=—(lm —— )| =—=
h—>()h(2+h) h—02+h 2
Thus, an equation of the tangent line at (2, 1) is
y—1= —%(x —2) orequivalently y = —%x +2

(see Figure 2.1.3). «
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» Example 4 Find the slopes of the tangent lines to the curve y = /x atxg = 1,x9 = 4,
and xo = 9.

Solution. 'We could compute each of these slopes separately, but it will be more efficient
to find the slope for a general value of x, and then substitute the specific numerical values.
Proceeding in this way we obtain

fxo+h) — f(xo)
Mgy = lim
h—0 h

vxo+

= lim
h—0
lim /X0 +h /X0 /X0 +h+ . Jx Rationalize the numerator to
= lim help eliminate the indeterminate
h—0 h Vxo+h+ VX form of the limit.

X0+ h — xg

= lim
h—=0 h(x/Xo + + /Xo)

=i hw—xo Th+ JT0)
1 1
h=0 /xo+h+ /X0  2/%0
The slopes at xo = 1,4, and 9 can now be obtained by substituting these values into our
general formula for m,,. Thus,

1 1
slopeatxozlzz—ﬁzz
slopeat)c0=4:L=l

2J/4 4
slopeatxo=9:L=l

279 6

(see Figure 2.1.4). «

> Figure 2.1.4

B VELOCITY
One of the important themes in calculus is the study of motion. To describe the motion of
an object completely, one must specify its speed (how fast it is going) and the direction
in which it is moving. The speed and the direction of motion together comprise what is
called the velocity of the object. For example, knowing that the speed of an aircraft is 500
mi/h tells us how fast it is going, but not which way it is moving. In contrast, knowing that
the velocity of the aircraft is 500 mi/h due south pins down the speed and the direction of
motion.

Later, we will study the motion of objects that move along curves in two- or three-
The velocity of an airplane describes its dimensional space, but for now we will only consider motion along a line; this is called
speed and direction. rectilinear motion. Some examples are a piston moving up and down in a cylinder, a race

Carlos Santa Maria/iStockphoto
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car moving along a straight track, an object dropped from the top of a building and falling
straight down, a ball thrown straight up and then falling down along the same line, and so
forth.

For computational purposes, we will assume that a particle in rectilinear motion moves
along a coordinate line, which we will call the s-axis. A graphical description of rectilinear
motion along an s-axis can be obtained by making a plot of the s-coordinate of the particle
versus the elapsed time ¢ from starting time ¢+ = 0. This is called the position versus time
curve for the particle. Figure 2.1.5 shows two typical position versus time curves. The first
is for a car that starts at the origin and moves only in the positive direction of the s-axis.
In this case s increases as ¢ increases. The second is for a ball that is thrown straight up in
the positive direction of an s-axis from some initial height sy and then falls straight down
in the negative direction. In this case s increases as the ball moves up and decreases as it
moves down.

0
t
N
|
|
\
\
8, }
Elapsed time |
Ball | Ball
> moving | moving
7/ W
‘ S0 0=, s 4 up 1 down t
0
Car moves only in the positive direction. Position versus time curve Position versus time curve
A Figure 2.1.5

Show that (4) is also correct for a time
interval [to + A, tp], h < 0.

The change in position

flto +h) — f(to)

is also called the displacement of the
particle over the time interval between
to and to + h.

If a particle in rectilinear motion moves along an s-axis so that its position coordinate
function of the elapsed time ¢ is
s = f@) 3

then f is called the position function of the particle; the graph of (3) is the position versus
time curve. The average velocity of the particle over a time interval [fy, o + h], h > 0, is

defined to be . o
change in position _ f (10 4 h) — f(t)

time elapsed h

vave -

“

» Example 5 Suppose thats = f(t) = 1 + 5¢ — 2t is the position function of a parti-
cle, where s is in meters and ¢ is in seconds. Find the average velocities of the particle over
the time intervals (a) [0, 2] and (b) [2, 3].

Solution (a). Applying (4) with 7y = 0 and & = 2, we see that the average velocity is
flo+h) — ft) _ fQ—fO) _3-1_2

=—-—=1m/s
h 2 2 2

UElVC -

Solution (b). Applying (4) with 7o = 2 and h = 1, we see that the average velocity is

Jo+h) —f@) [ —-f2 _-2-3_ -5
h o 1 1 T

ave —

=—-5m/s «

For a particle in rectilinear motion, average velocity describes its behavior over an in-
terval of time. We are interested in the particle’s “instantaneous velocity,” which describes
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N
5,
4,
3+ 2,3)
2,
1
t
| | | >
1 2 \3 4
_1—
,2,

s=1+51-2¢%

A Figure 2.1.6

Table 2.1.1

TIME INTERVAL AVERAGE
VELOCITY (m/s)

20<1<3.0 -5
20<1<2.1 -3.2
2.0<1<2.01 -3.02
2.0<1<2.001 -3.002
2.0<1<2.0001 —3.0002

Note the negative values for the veloc-
ities in Example 6. This is consistent
with the fact that the object is mov-
ing in the negative direction along the

s-axis.

Confirm the solution to Example 5(b)
by computing the slope of an appro-

priate secant line.

its behavior at a specific instant in time. Formula (4) is not directly applicable for com-
puting instantaneous velocity because the “time elapsed” at a specific instant is zero, so
(4) is undefined. One way to circumvent this problem is to compute average velocities
for small time intervals between t = ¢y and t = ) + h. These average velocities may be
viewed as approximations to the “instantaneous velocity” of the particle at time #y. If these
average velocities have a limit as /& approaches zero, then we can take that limit to be the
instantaneous velocity of the particle at time fy. Here is an example.

» Example 6 Consider the particle in Example 5, whose position function is
s = f(t) =145t —2¢*

The position of the particle at time ¢t =2 s is s = 3 m (Figure 2.1.6). Find the particle’s
instantaneous velocity at time ¢ = 2 s.

Solution. As a first approximation to the particle’s instantaneous velocity at time ¢ = 2
s, let us recall from Example 5(b) that the average velocity over the time interval from ¢ = 2
t0 t = 3 1S vaye = —5 m/s. To improve on this initial approximation we will compute the
average velocity over a succession of smaller and smaller time intervals. We leave it to
you to verify the results in Table 2.1.1. The average velocities in this table appear to be
approaching a limit of —3 m/s, providing strong evidence that the instantaneous velocity
at time = 2 s is —3 m/s. To confirm this analytically, we start by computing the object’s
average velocity over a general time interval between ¢ = 2 and ¢ = 2 + h using Formula

4):
“@ f(2+h)—f(2):[1+5(2+h)—2(2+h)2]—3

Vave = h h

The object’s instantaneous velocity at time ¢ = 2 is calculated as a limit as 4 — 0:

[1+52+h) —2Q+h)?]-3

instantaneous velocity = lim
h—0

h
i —2 4 (10 4+ 5h) — (8 + 8h + 2h?)
T h—0 h
—3h —2h?
= lim M = lim (-3 — 2h) = -3
h—0 h h—0

This confirms our numerical conjecture that the instantaneous velocity after 2 s is —3 m/s.
<

Consider a particle in rectilinear motion with position function s = f(¢). Motivated by
Example 6, we define the instantaneous velocity v, of the particle at time 7, to be the limit
as h— 0 of its average velocities v,y Over time intervals between t =ty and t =ty + h.
Thus, from (4) we obtain

fto +h) — f(to)

Y &)

Vinst = lim
h—0

Geometrically, the average velocity v,y between r = 1y and t = 79 + h is the slope of the
secant line through points P (g, f(#y)) and Q(ty + h, f(to + h)) on the position versus time
curve, and the instantaneous velocity vipg at time 7 is the slope of the tangent line to the
position versus time curve at the point P (¢, f(fy)) (Figure 2.1.7).
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A 1-unit increase in x always
produces an m-unit change in y.

A Figure 2.1.8
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_Va®

o
Sty +h) = f(t)

Sy +h) |-——

) fopfr———————

» Figure 2.1.7

Il SLOPES AND RATES OF CHANGE

Velocity can be viewed as rate of change—the rate of change of position with respect to
time. Rates of change occur in other applications as well. For example:

* A microbiologist might be interested in the rate at which the number of bacteria in a
colony changes with time.

* An engineer might be interested in the rate at which the length of a metal rod changes
with temperature.

* An economist might be interested in the rate at which production cost changes with
the quantity of a product that is manufactured.

* A medical researcher might be interested in the rate at which the radius of an artery
changes with the concentration of alcohol in the bloodstream.

Our next objective is to define precisely what is meant by the “rate of change of y with
respect to x”” when y is a function of x. In the case where y is a linear function of x, say
y = mx + b, the slope m is the natural measure of the rate of change of y with respect to x.
As illustrated in Figure 2.1.8, each 1-unit increase in x anywhere along the line produces
an m-unit change in y, so we see that y changes at a constant rate with respect to x along
the line and that m measures this rate of change.

» Example 7 Find the rate of change of y with respect to x if
(@ y=2x—1 b)) y=-5x+1

Solution. In part (a) the rate of change of y with respect to x is m = 2, so each 1-unit
increase in x produces a 2-unit increase in y. In part (b) the rate of change of y with respect
to x is m = —5, so each 1-unit increase in x produces a 5-unit decrease in y. <«

In applied problems, changing the units of measurement can change the slope of a line,
so it is essential to include the units when calculating the slope and describing rates of
change. The following example illustrates this.

» Example 8 Suppose that a uniform rod of length 40 cm (= 0.4 m) is thermally insu-
lated around the lateral surface and that the exposed ends of the rod are held at constant
temperatures of 25°C and 5°C, respectively (Figure 2.1.9a). It is shown in physics that
under appropriate conditions the graph of the temperature 7 versus the distance x from the
left-hand end of the rod will be a straight line. Parts (b) and (c) of Figure 2.1.9 show two
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25%€ ™ . . 5°C such graphs: one in which x is measured in centimeters and one in which it is measured in
ermal insulation .
N\ meters. The slopes in the two cases are
. - 5-25 =20
! Rod | X m=—=——=-05 (6)
0 40 40-0 40
5-25 =20
(@) m = == = 50 )
~ 25 04-0 04
(@]
= 20 The slope in (6) implies that the temperature decreases at a rate of 0.5°C per centimeter
g 15 of distance from the left end of the rod, and the slope in (7) implies that the temperature
B 10 decreases at a rate of 50°C per meter of distance from the left end of the rod. The two
L
g s statements are equivalent physically, even though the slopes differ. «
[}
T 0 10 20 30 40
Distance x (cm) Although the rate of change of y with respect to x is constant along a nonvertical line
(b) y = mx + b, this is not true for a general curve y = f(x). For example, in Figure 2.1.10

the change in y that results from a 1-unit increase in x tends to have greater magnitude in

S regions where the curve rises or falls rapidly than in regions where it rises or falls slowly.
~ 20 As with velocity, we will distinguish between the average rate of change over an interval
fs: 15 and the instantaneous rate of change at a specific point.
g 10 If y = f(x), then we define the average rate of change of y with respect to x over the
E 5 interval [x(, x1] to be
= x1) — fx

0 01 02 03 04 Fave = F) = fxo) (8)

Distance x (m) 2 =2
(©

and we define the instantaneous rate of change of y with respect to x at x to be

i = lim L&) ZS00) ©)
y X1 —> X0 X1 — X0

A Figure 2.1.9

Geometrically, the average rate of change of y with respect to x over the interval [xg, x1] is
the slope of the secant line through the points P (xo, f(x0)) and Q(x;, f(x;)) (Figure2.1.11),
and the instantaneous rate of change of y with respect to x at x is the slope of the tangent
line at the point P (xo, f(xo)) (since it is the limit of the slopes of the secant lines through P).

A Figure 2.1.10
e

£y

P Figure 2.1.11

If desired, we can let A = x; — x(, and rewrite (8) and (9) as

. foth) — fxo)
ave — h
fxo+h) — f(xo)

Tinst Z}}I_)Ino h an

(10)




Perform the calculations in Example 9
using Formulas (10) and (11).

Weight Lifting Stress Test

¥

0 300 600 900 1200 1500
Workload W (kg-m)
A Figure 2.1.12

Cardiac output V (L)
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» Example9 Lety=x?+1.

(a) Find the average rate of change of y with respect to x over the interval [3, 5].

(b) Find the instantaneous rate of change of y with respect to x when x = —4.

Solution (a). We will apply Formula (8) with f(x) = x>+ 1, xo = 3, and x; = 5. This
yields f) = fxo) _ f(5) = f3) _26—10
rave = = = =
X1 — Xo 5-3 2

Thus, y increases an average of 8 units per unit increase in x over the interval [3, 5].

8

Solution (b). We will apply Formula (9) with f(x) = x> + 1 and xo = —4. This yields
SGx1) — f(xo) i Sx) — f(=4) .+ =17
" = lim ——~ = lim ———

Fint = lim
X1 — Xo X1 — Xo x—>—4  x;— (—4) xp—>—4 x1+4
2_16 4 —4
= lim ! —gim VO G —d =8
x| — —4 x1+4 x;— —4 x1+4 x1— —4
Thus, a small increase in x from x = —4 will produce approximately an 8-fold decrease

iny. «

RATES OF CHANGE IN APPLICATIONS

In applied problems, average and instantaneous rates of change must be accompanied by
appropriate units. In general, the units for arate of change of y with respect to x are obtained
by “dividing” the units of y by the units of x and then simplifying according to the standard
rules of algebra. Here are some examples:

e If y is in degrees Fahrenheit (°F) and x is in inches (in), then a rate of change of y
with respect to x has units of degrees Fahrenheit per inch (°F/in).

e If yisin feet per second (ft/s) and x is in seconds (s), then a rate of change of y with
respect to x has units of feet per second per second (ft/s/s), which would usually be
written as ft/s.

e If y is in newton-meters (N-m) and x is in meters (m), then a rate of change of y with
respect to x has units of newtons (N), since N-m/m = N.

e If y is in foot-pounds (ft-1b) and x is in hours (h), then a rate of change of y with
respect to x has units of foot-pounds per hour (ft-1b/h).

» Example 10 The limiting factor in athletic endurance is cardiac output, that is, the
volume of blood that the heart can pump per unit of time during an athletic competition.
Figure 2.1.12 shows a stress-test graph of cardiac output V in liters (L) of blood versus
workload W in kilogram-meters (kg-m) for 1 minute of weight lifting. This graph illustrates
the known medical fact that cardiac output increases with the workload, but after reaching
a peak value begins to decrease.

(a) Use the secant line shown in Figure 2.1.13a to estimate the average rate of change
of cardiac output with respect to workload as the workload increases from 300 to
1200 kg-m.

(b) Use the line segment shown in Figure 2.1.13b to estimate the instantaneous rate of
change of cardiac output with respect to workload at the point where the workload is
300 kg-m.
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Solution (a). Using the estimated points (300, 13) and (1200, 19) to find the slope of
the secant line, we obtain

=D 00067
Faye = ~ 0.
71200 — 300 kg-m

This means that on average a 1-unit increase in workload produced a 0.0067 L increase in
cardiac output over the interval.

Solution (b). We estimate the slope of the cardiac output curve at W = 300 by sketching
a line that appears to meet the curve at W = 300 with slope equal to that of the curve
(Figure 2.1.13b). Estimating points (0, 7) and (900, 25) on this line, we obtain

25 -7 0.02 L <
Finst & ——— = 0.02——
900 — 0 kg-m
g g 25
> =~ 20
2 a1
3 3 10
& &
° T 9
300 600 900 1200 1500 300 600 900 1200 1500
Workload W (kg-m) Workload W (kg-m)
» Figure 2.1.13 (@) )
VQU]CK CHECK EXERCISES 2.1 (See page 143 for answers.)
1. The slope m,, of the tangent line to the curve y = f(x) at (a) Initially, the particle moves a distance of ___ ft
the point P (xg, f(xp)) is given by in the (positive/negative) direction; then it
] ) reverses direction, traveling a distance of ___ ft
Mean = XILH}CO = }}Lmo during the remainder of the 5-second period.

2. The tangent line to the curve y = (x — 1) at the point
(—1,4) has equation 4x + y = 0. Thus, the value of the
limit 223

x——1 x+1
is

3. Aparticle is moving along an s-axis, where s is in feet. Dur-
ing the first 5 seconds of motion, the position of the particle
is given by

s=10-(3-1?% 0<t<5

Use this position function to complete each part.

EXERCISE SET 2.1

(b) The average velocity of the particle over the 5-second
period is

. Lets = f(¢) be the equation of a position versus time curve

for a particle in rectilinear motion, where s is in meters and
t is in seconds. Assume that s = —1 when ¢t = 2 and that
the instantaneous velocity of the particle at this instant is 3
m/s. The equation of the tangent line to the position versus
time curve at time t = 2 is

. Suppose that y = x2 + x.

(a) The average rate of change of y with respect to x over
the interval 2 < x < 5is

(b) The instantaneous rate of change of y with respect to x
at x = 2, ripg, 1S given by the limit

1. The accompanying figure on the next page shows the posi-
tion versus time curve for an elevator that moves upward a
distance of 60 m and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at
t =10s.

(b) Sketch a velocity versus time curve for the motion of
the elevator for 0 < ¢ < 20.
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< Figure Ex-1

The accompanying figure shows the position versus time
curve for an automobile over a period of time of 10 s. Use
the line segments shown in the figure to estimate the instan-
taneous velocity of the automobile at time ¢ = 4 s and again
attimer = 8 s.
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0 2 4 6 8 10
Time (s) < Figure Ex-2

The accompanying figure shows the position versus time

curve for a certain particle moving along a straight line.

Estimate each of the following from the graph:

(a) the average velocity over the interval 0 <t <3

(b) the values of ¢ at which the instantaneous velocity is

Zero

the values of ¢ at which the instantaneous velocity is

either a maximum or a minimum

the instantaneous velocity when 7 = 3 s.

(©
(d)
20 -
15

10

Distance (cm)

Time (s) < Figure Ex-3

. The accompanying figure shows the position versus time

curves of four different particles moving on a straight line.
For each particle, determine whether its instantaneous ve-
locity is increasing or decreasing with time.

s N S S

(a) ) (©
A Figure Ex-4

(d)

FOCUS ON CONCEPTS

7

1

ing the stated conditions.
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5. If a particle moves at constant velocity, what can you
say about its position versus time curve?

6. An automobile, initially at rest, begins to move along
a straight track. The velocity increases steadily until
suddenly the driver sees a concrete barrier in the road
and applies the brakes sharply at time #y. The car de-
celerates rapidly, but it is too late—the car crashes into
the barrier at time #; and instantaneously comes to rest.
Sketch a position versus time curve that might represent
the motion of the car. Indicate how characteristics of
your curve correspond to the events of this scenario.

—-10 For each exercise, sketch a curve and a line L satisfy-

7. L is tangent to the curve and intersects the curve in at
least two points.

8. L intersects the curve in exactly one point, but L is not
tangent to the curve.

9. L is tangent to the curve at two different points.

0. L is tangent to the curve at two different points and in-
tersects the curve at a third point.

11-14 A function y = f(x) and values of xy and x; are given.

(a)
(b)
(©)
(d)

11.
13.

Find the average rate of change of y with respect to x over
the interval [xg, x1].

Find the instantaneous rate of change of y with respect to x
at the specified value of xg.

Find the instantaneous rate of change of y with respect to x
at an arbitrary value of xo.

The average rate of change in part (a) is the slope of a certain
secant line, and the instantaneous rate of change in part (b)
is the slope of a certain tangent line. Sketch the graph of
y = f(x) together with those two lines.

y=2x%x=0 x=112. y=x> xo=1, x;, =2

y=1/x; x0=2, x; =314, y=1/x% xo=1, x;, =2

15-18 A function y = f(x) and an x-value x, are given.

(a)
(b)

15.
16.
17.
18.

Find a formula for the slope of the tangent line to the graph
of f at a general point x = x.

Use the formula obtained in part (a) to find the slope of the
tangent line for the given value of xy.

fx)=x>=1; xg=—1
Fx) =x243x+2; x9=2
FO) = x4+ V3 xo =1
F0) = 1/4x; x = 4

19-22 True-False Determine whether the statement is true or
false. Explain your answer.

19.

J@) - {(1) 3

X —

= 3, then hlim —f(l +h— s =

If lim
x—1 -0 h



142 Chapter 2 / The Derivative

20.

21.

22,

23.

24,

25.

A tangent line to a curve y = f(x) is a particular kind of
secant line to the curve.

The velocity of an object represents a change in the object’s
position.

A 50-foot horizontal metal beam is supported on either end
by concrete pillars and a weight is placed on the middle of
the beam. If f(x) models how many inches the center of
the beam sags when the weight measures x tons, then the
units of the rate of change of y = f(x) with respect to x are
inches/ton.

Suppose that the outside temperature versus time curve over

a 24-hour period is as shown in the accompanying figure.

(a) Estimate the maximum temperature and the time at
which it occurs.

(b) The temperature rise is fairly linear from 8 A.m. to 2 P.M.
Estimate the rate at which the temperature is increasing
during this time period.

(c) Estimate the time at which the temperature is decreasing
most rapidly. Estimate the instantaneous rate of change
of temperature with respect to time at this instant.

80 -
70 -

D
(=}

W
(=}
T

)
(=]
T

Temperature (°F)
B
[=}

IS IS I N I Y N I N
12 2 4 6 8 1012 2 4 6 8 10 12

A.M. P.M.

Time
A Figure Ex-23

The accompanying figure shows the graph of the pressure
p in atmospheres (atm) versus the volume V in liters (L) of
1 mole of an ideal gas at a constant temperature of 300 K
(kelvins). Use the line segments shown in the figure to esti-
mate the rate of change of pressure with respect to volume
at the points where V = 10 Land V =25 L.

Pressure p (atm)

S = N W kW

I I |
0 5 10 15 20 25 30 35 40

Volume V (L)

< Figure Ex-24

The accompanying figure shows the graph of the height / in
centimeters versus the age ¢ in years of an individual from
birth to age 20.

26.

27.

28.

(a) When is the growth rate greatest?

(b) Estimate the growth rate at age 5.

(c) At approximately what age between 10 and 20 is the
growth rate greatest? Estimate the growth rate at this
age.

(d) Draw a rough graph of the growth rate versus age.

200 -
150 [

100 -

Height i (cm)

50

| | | J
0 5 10 15 20

Age ¢ (years)

< Figure Ex-25

An object is released from rest (its initial velocity is zero)
from the Empire State Building at a height of 1250 ft above
street level (Figure Ex-26). The height of the object can be
modeled by the position function s = f(¢) = 1250 — 16¢2.
(a) Verify that the object is still falling att = 5 s.

(b) Find the average velocity of the object over the time

interval fromt =5tot =6s.
(c) Find the object’s instantaneous velocity at time f = 5s.

1250

= L0 < Figure Ex-26

During the first 40 s of a rocket flight, the rocket is pro-

pelled straight up so that in ¢ seconds it reaches a height of

s = 03¢ ft.

(a) How high does the rocket travel in 40 s?

(b) What is the average velocity of the rocket during the
first 40 s?

(c) What is the average velocity of the rocket during the
first 1000 ft of its flight?

(d) What is the instantaneous velocity of the rocket at the
end of 40 s?

An automobile is driven down a straight highway such that
after 0 < ¢ < 12 seconds it is s = 4.5¢2 feet from its initial
position.

(cont.)
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(a) Find the average velocity of the car over the interval 30. Writing A particle is in rectilinear motion during the time

[0, 12]. interval 0 < r < 2. Explain the connection between the in-

(b) Find the instantaneous velocity of the car at 1 = 6. stantaneous velocity of the particle at time t = 1 and the

29. Writing Discuss how the tangent line to the graph of a func- average velocities of the particle during portions of the in-

tion y = f(x) ata point P (xg, f(xo)) is defined in terms of terval 0 <7 < 2.

secant lines to the graph through point P.

t/ QUICK CHECK ANSWERS 2.1

fx) — f(xo)  f(xo+h) — f(xo)
’ xX—x0 h
*2+x)—6 [(Q+h)?*+Q2+N1)]—-6

@8 0 fim o

1

2. —4 3. (a) 9; positive; 4 (b) 1ft/s 4. s=3t—7

m THE DERIVATIVE FUNCTION

In this section we will discuss the concept of a “derivative,” which is the primary
mathematical tool that is used to calculate and study rates of change.

[ DEFINITION OF THE DERIVATIVE FUNCTION
In the last section we showed that if the limit

i f(xo+h) — f(xo)
im
h—0 h

exists, then it can be interpreted either as the slope of the tangent line to the curve y = f(x) at
X = X or as the instantaneous rate of change of y with respect to x at x = x( [see Formulas
(2) and (11) of that section]. This limit is so important that it has a special notation:
. fxo+h) — f(xo)
'(xp) = lim 1
fxo) = lim . (1)
You can think of f’ (read “ f prime”) as a function whose input is xo and whose output is
the number f’(xo) that represents either the slope of the tangent line to y = f(x) at x = xg
or the instantaneous rate of change of y with respect to x at x = xy. To emphasize this
function point of view, we will replace xy by x in (1) and make the following definition.

2.2.1 DEFINITION The function f’ defined by the formula

o +h) — f(x) F1x) = lim Sx+h)— f(x) )
h h—0 h

that appears in (2) is commonly called
the difference quotient.

The expression

is called the derivative of f with respect to x. The domain of f” consists of all x in the
domain of f for which the limit exists.

The term “derivative” is used because the function f” is derived from the function f by
a limiting process.

» Example 1 Find the derivative with respect to x of f(x) = x2, and use it to find the
equation of the tangent line to y = x? at x = 2.
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y
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A Figure 2.2.1
» Figure 2.2.2

Solution. 1t follows from (2) that

, . flx+h)— f(x) . (+h)?—x?
f'x)=1lm ——— = lim ——
h—0 h h—0 h
XX 4 2xh+hr—x2 . 2xh+R?
= lim = lim ——
h—0 h h—0 h

= lim 2x + h) = 2x
h—0

Thus, the slope of the tangent line to y = x> at x = 2is f'(2) = 4. Since y =4 if x =2,
the point-slope form of the tangent line is

y—4=4(x —2)

which we can rewrite in slope-intercept form as y = 4x — 4 (Figure 2.2.1). «

You can think of f” as a “slope-producing function” in the sense that the value of f'(x)
at x = xo is the slope of the tangent line to the graph of f at x = xo. This aspect of
the derivative is illustrated in Figure 2.2.2, which shows the graphs of f(x) = x? and its
derivative f’(x) = 2x (obtained in Example 1). The figure illustrates that the values of
f'(x) =2x at x = —2,0, and 2 correspond to the slopes of the tangent lines to the graph
of f(x) = x? at those values of x.

y
or y=fx) = x? ¥
8 o
Ao y=fw=2
7+ 3 }
6 2+ }
50 1+ |
| X
| | | | | Il | |
4r -4 =3 -2 -1 1 2 3 4
3t } i
| /~2F
2 |
Slope = —4 Slope = 4 | -3+
s a4l
| | | | | \f
-3 -2 -1 1 2 3
Slope =0

In general, if f'(x) is defined at x = x, then the point-slope form of the equation of the
tangent line to the graph of y = f(x) at x = x¢ may be found using the following steps.

Finding an Equation for the Tangent Line to y = f(x) at x = xy.

Step 1. Evaluate f(x); the point of tangency is (xo, f(xp))-

Step 2. Find f’(x) and evaluate f’(x(), which is the slope m of the line.

Step 3. Substitute the value of the slope m and the point (xg, f(xp)) into the point-slope
form of the line Y — Fxo) = f(xo)(x — x0)

or, equivalently,

y = f(xo) + f'(xo)(x — x0) 3



In Solution (a), the binomial formula is
used to expand (x + h)3. This formula
may be found on the front endpaper.

v =

At each value of x the
tangent line has slope m.

A Figure 2.2.4

The result in Example 3 is consistent
with our earlier observation that the
rate of change of y with respect to x
along a line y = mx + b is constant
and that constant is 7.

2.2 The Derivative Function

» Example 2

(a) Find the derivative with respect to x of f(x) = x> — x.

(b) Graph f and f’ together, and discuss the relationship between the two graphs.

Solution (a).

Ja+h) - fx)

fx) = lim

h

. [+ h)? =+ )] =[x —x]
= lim

h—0 h

I H+3x2h 4+ 3xhr+ 0 — x —h] — [x3 — x]
= lim

h—0 h

3x2h +3xh2+ K3 —h

= lim

h—0 h

=hlimo[3x2+3xh+h2— 11=3x>—-1

145

Solution (b). Since f'(x) can be interpreted as the slope of the tangent line to the graph
of y = f(x) at x, it follows that f’(x) is positive where the tangent line has positive
slope, is negative where the tangent line has negative slope, and is zero where the tangent
line is horizontal. We leave it for you to verify that this is consistent with the graphs of

f(x) =x3—xand f'(x) = 3x> — 1 shown in Figure 2.2.3. <«

» Example 3 At each value of x, the tangent line to a line y = mx + b coincides with
the line itself (Figure 2.2.4), and hence all tangent lines have slope m. This suggests
geometrically that if f(x) = mx + b, then f’(x) = m for all x. This is confirmed by the

following computations:

. flx+h) - fx)
m= = A

o = im S
. [m&x+h)+b] —[mx +b]
= lim
h—0 h
mh

I
5
I
=
S
I
S
A

» Example 4

(a) Find the derivative with respect to x of f(x) = /x.
(b) Find the slope of the tangent line to y = 4/x at x = 9.

(c) Find the limits of f’(x) as x — 0" and as x — oo, and explain what those limits say

about the graph of f.

Solution (a). Recall from Example 4 of Section 2.1 that the slope of the tangent line to

y = /X at x = xq is given by men = 1/(2/xg ). Thus, f'(x) = 1/2/x).

Solution (b). The slope of the tangent line at x = 9 is f/(9). From part (a), this slope is

O =1/2V9) = ¢.
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X
1

| I ——
1 23 456 7 89

=y = L
y=1 N

A Figure 2.2.5

Solution (c¢). Thegraphsof f(x) = 4/xand f'(x) = 1/(24/x ) are shownin Figure 2.2.5.
Observe that f/(x) > 0if x > 0, which means that all tangent lines to the graph of y = /x
have positive slope at all points in this interval. Since

1 1
=400 and lim =0
2/x x—tw 2, /x
the graph of f becomes more and more vertical as x — 0" and more and more horizontal
as x — +oo. o

lim
x— 0t

COMPUTING INSTANTANEOUS VELOCITY
It follows from Formula (5) of Section 2.1 (with  replacing #) thatif s = f(¢) is the position
function of a particle in rectilinear motion, then the instantaneous velocity at an arbitrary
time ¢ is given by FLh) — f(t

b i LOHD = 1O

h—0 h

Since the right side of this equation is the derivative of the function f (with ¢ rather than x
as the independent variable), it follows that if f(¢) is the position function of a particle in
rectilinear motion, then the function

J+h) - f@)

7 “

v(n) = f'(1) = lim

represents the instantaneous velocity of the particle at time #. Accordingly, we call (4) the
instantaneous velocity function or, more simply, the velocity function of the particle.

» Example 5 Recall the particle from Example 5 of Section 2.1 with position function
s = f(t) = 14 5t — 2¢>. Here f(t) is measured in meters and ¢ is measured in seconds.
Find the velocity function of the particle.

Solution. 1t follows from (4) that the velocity function is

. fa+h)— f@) o [ +50@+h) =20+ k) —[1+ 5t —2¢7]
v(t) = lim = lim
h—0 h h—0 h
o =2[t> +2th +h* — 1?1+ 5h . —4th —2h*>+5h
= lim =lim ——
h—0 h—0 h

h
= lim (=41 —2h +5) =5 — 4

where the units of velocity are meters per second. <

DIFFERENTIABILITY

It is possible that the limit that defines the derivative of a function f may not exist at certain
points in the domain of f. At such points the derivative is undefined. To account for this
possibility we make the following definition.

2.2.2 DEFINITION A function f is said to be differentiable at x if the limit

f(xo+h) — f(xo)
h

! = li 5
f'(xo) = lim 5)
exists. If f is differentiable at each point of the open interval (a, b), then we say that itis
differentiable on (a, b), and similarly for open intervals of the form (a, 4+), (—c, b),
and (—oo, +0). In the last case we say that f is differentiable everywhere.
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Geometrically, a function f is differentiable at x if the graph of f has a tangent line at
xo. Thus, f is not differentiable at any point xo where the secant lines from P (xy, f(xg)) to
points Q(x, f(x)) distinct from P do not approach a unique nonvertical limiting position
as x — xg. Figure 2.2.6 illustrates two common ways in which a function that is continuous
at xo can fail to be differentiable at xo. These can be described informally as

® corner points

* points of vertical tangency

Ata corner point, the slopes of the secant lines have different limits from the left and from the
right, and hence the rwo-sided limit that defines the derivative does not exist (Figure 2.2.7).
Ata point of vertical tangency the slopes of the secant lines approach +oc or —oo from the left
and from the right (Figure 2.2.8), so again the limit that defines the derivative does not exist.

X —>» Xg «<—

A Figure 2.2.7

There are other less obvious circum-
stances under which a function may fail
to be differentiable. (See Exercise 49,
for example.)
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|
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|
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%
o
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‘ \ \
. | .
x Xy €— Xx
A Figure 2.2.8

Differentiability at xy can also be described informally in terms of the behavior of
the graph of f under increasingly stronger magnification at the point P (xg, f(xo)) (Fig-
ure 2.2.9). If f is differentiable at x(, then under sufficiently strong magnification at P the

%o

Differentiable at X,

A Figure 2.2.9

\
\
\
1
X,

0

Not differentiable at X,

Not differentiable at X,
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0
y = |x]

A Figure 2.2.10

-1, x<0

y=f'(x)={ 1, x>0

A Figure 2.2.11

A theorem that says “If statement A is
true, then statement B is true” is equiv-
alent to the theorem that says “If state-
ment B is not true, then statement A is
not true” The two theorems are called
contrapositive forms of one another.
Thus, Theorem 2.2.3 can be rewritten
in contrapositive form as “If a function
f is not continuous at xo, then f is not
differentiable at x(.”

graph looks like a nonvertical line (the tangent line); if a corner point occurs at xy, then no
matter how great the magnification at P the corner persists and the graph never looks like
a nonvertical line; and if vertical tangency occurs at x, then the graph of f looks like a
vertical line under sufficiently strong magnification at P.

» Example 6 The graphofy = |x|inFigure 2.2.10 has a corner atx = 0, which implies
that f(x) = |x| is not differentiable at x = 0.

(a) Prove that f(x) = |x| is not differentiable at x = 0 by showing that the limit in Defi-
nition 2.2.2 does not exist at x = 0.

(b) Find a formula for f'(x).

Solution (a). From Formula (5) with xy = 0, the value of f’(0), if it were to exist, would
be given by

£'(0) = lim JOXM = JO _yypy SO =SO i =00 1B )
h—0 h h—0 h h—0 h h—0 h
But
Ih_l B 1, h>0
h -1, h<oO
so that

h h
lim u:—1 and lim u:1
h—0- h h—0t h

Since these one-sided limits are not equal, the two-sided limit in (5) does not exist, and
hence f is not differentiable at x = 0.

Solution (b). Aformula for the derivative of f(x) = |x| can be obtained by writing |x| in
piecewise form and treating the cases x > 0 and x < 0 separately. If x > 0, then f(x) = x
and f'(x) = 1;if x <0, then f(x) = —x and f'(x) = —1. Thus,

1, x>0

f/(x)z{—l x<0

The graph of f’ is shown in Figure 2.2.11. Observe that f’ is not continuous at x = 0, so
this example shows that a function that is continuous everywhere may have a derivative
that fails to be continuous everywhere. <

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

We already know that functions are not differentiable at corner points and points of ver-
tical tangency. The next theorem shows that functions are not differentiable at points of
discontinuity. We will do this by proving that if f is differentiable at a point, then it must
be continuous at that point.

2.2.3 THEOREM Ifa function f is differentiable at xo, then f is continuous at x.

PROOF We are given that f is differentiable at xo, so it follows from (5) that f'(xo) exists

and is given by flxo+h) — f(xo)}
h

f(xo) = ,}E“o[ )
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To show that f is continuous at xj, we must show that lim, _, ;, f(x) = f(xo) or, equiva-
fently lim [£(0) = f(x0)] = 0
Expressing this in terms of the variable 7 = x — xp, we must prove that

Jim[f(xo +h) — f(x0)] =0

However, this can be proved using (7) as follows:

oo +h) = fxo) h}

lim [ f(xo + h) = f(x0)] = lim [

h
~ lim [f(xo+h) —f(xO)} lim B
h—0 h h—0
=f'(x)-0=0 m

WARNING

The relationship between continuity and differentiability was of great historical signif-
icance in the development of calculus. In the early nineteenth century mathematicians
believed that if a continuous function had many points of nondifferentiability, these points,
like the tips of a sawblade, would have to be separated from one another and joined by
smooth curve segments (Figure 2.2.12). This misconception was corrected by a series of
discoveries beginning in 1834. In that year a Bohemian priest, philosopher, and mathe-
matician named Bernhard Bolzano discovered a procedure for constructing a continuous
function that is not differentiable at any point. Later, in 1860, the great German mathemati-
cian Karl Weierstrass (biography on p. 102) produced the first formula for such a function.
The graphs of such functions are impossible to draw; it is as if the corners are so numerous
that any segment of the curve, when suitably enlarged, reveals more corners. The discovery
of these functions was important in that it made mathematicians distrustful of their geo-
metric intuition and more reliant on precise mathematical proof. Recently, such functions
have started to play a fundamental role in the study of geometric objects called fractals.
Fractals have revealed an order to natural phenomena that were previously dismissed as
random and chaotic.

The converse of Theorem 2.2.3 is false;
that is, a function may be continuous
at a point but not differentiable at that
point. This occurs, for example, at cor-
ner points of continuous functions. For
instance, f(x) = |x| is continuous at
x = 0 but not differentiable there (Ex-
ample 6).

> Figure 2.2.12

Bernhard Bolzano (1781-1848) Bolzano, the son of an
art dealer, was born in Prague, Bohemia (Czech Repub-
lic). He was educated at the University of Prague, and
eventually won enough mathematical fame to be recom-
mended for a mathematics chair there. However, Bolzano
became an ordained Roman Catholic priest, and in 1805

of war and militarism. His views so disenchanted Emperor Franz I
of Austria that the emperor pressed the Archbishop of Prague to have
Bolzano recant his statements. Bolzano refused and was then forced
to retire in 1824 on a small pension. Bolzano’s main contribution to
mathematics was philosophical. His work helped convince mathe-
maticians that sound mathematics must ultimately rest on rigorous

he was appointed to a chair of Philosophy at the University of
Prague. Bolzano was a man of great human compassion; he spoke
out for educational reform, he voiced the right of individual con-
science over government demands, and he lectured on the absurdity

proof rather than intuition. In addition to his work in mathematics,
Bolzano investigated problems concerning space, force, and wave
propagation.
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Il DERIVATIVES AT THE ENDPOINTS OF AN INTERVAL

Slope = £/ (@)

y=f(x)
Slope = f/(b)

|
|
\
\
|
|
|
a
A Figure 2.2.13

Later, the symbols dy and dx will be
given specific meanings. However, for
the time being do not regard dy/dx as
a ratio, but rather as a single symbol
denoting the derivative.

If a function f is defined on a closed interval [a, b] but not outside that interval, then f’
is not defined at the endpoints of the interval because derivatives are two-sided limits. To
deal with this we define left-hand derivatives and right-hand derivatives by

/ - fx+h) - fx) / . fe+h) = flx)
fey= g T A= g T
respectively. These are called one-sided derivatives. Geometrically, f’ (x) is the limit of
the slopes of the secant lines as x is approached from the left and f/ (x) is the limit of the
slopes of the secant lines as x is approached from the right. For a closed interval [a, b], we
will understand the derivative at the left endpoint to be f7 () and at the right endpoint to
be f’ (b) (Figure 2.2.13).

In general, we will say that f is differentiable on an interval of the form [a, b], [a, +»),
(=00, b], [a, b), or (a, b] if it is differentiable at all points inside the interval and the appro-
priate one-sided derivative exists at each included endpoint.

It can be proved that a function f is continuous from the left at those points where
the left-hand derivative exists and is continuous from the right at those points where the

right-hand derivative exists.

OTHER DERIVATIVE NOTATIONS

The process of finding a derivative is called differentiation. You can think of differentiation
as an operation on functions that associates a function f’ with a function f. When the
independent variable is x, the differentiation operation is also commonly denoted by

d
') = T W1 or f'(x) = Du[f ()]

In the case where there is a dependent variable y = f(x), the derivative is also commonly
denoted by

/ / / dy
Jix)=y() or f(x)=d—
x

With the above notations, the value of the derivative at a point xy can be expressed as

dy

d
fxo) = i AC f'xo) =Dl f@I|, s f'o) =Y (x0),  f(x0) = ==
X . 0 dx

=X0 X=X
If a variable w changes from some initial value wy to some final value wy, then the final
value minus the initial value is called an increment in w and is denoted by

Aw = w; — wy (8)

Increments can be positive or negative, depending on whether the final value is larger or
smaller than the initial value. The increment symbol in (8) should not be interpreted as a
product; rather, Aw should be regarded as a single symbol representing the change in the
value of w.

It is common to regard the variable 4 in the derivative formula

. fe+h) - fx)
m — -

-0 h

f =1 ©)

as an increment Ax in x and write (9) as

ron e S+ AX) — f(x)
&= Al)}glo Ax (10)
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Moreover, if y = f(x), then the numerator in (10) can be regarded as the increment

Ay = f(x + Ax) — f(x) (11)
in which case
A Ax) —
W fim A gy SEFAD T (12)
dx Ax—0 Ax Ax—0 Ax

The geometric interpretations of Ax and Ay are shown in Figure 2.2.14.

Sometimes it is desirable to express derivatives in a form that does not use increments
at all. For example, if we let w = x + & in Formula (9), then w — x as h — 0, so we can
rewrite that formula as

w) — f(x

w—Xx w —X

(Compare Figures 2.2.14 and 2.2.15.)

Ay =flx+Ax) - f(x) Ay =fw) - f(x)

| y=fw I y =/
|
| ¥ | 1 X
X «— x+Ax X < w
4y _ jim AY o gim J@) = f)
dx  Ax>0 Ay F= 0 w—x
A Figure 2.2.14 A Figure 2.2.15

When letters other than x and y are used for the independent and dependent variables,
the derivative notations must be adjusted accordingly. Thus, for example, if s = f(¢) is the
position function for a particle in rectilinear motion, then the velocity function v(¢) in (4)
can be expressed as

ds . f+ A = f(0)
V0= g A N T T A “‘”
VQUICK CHECK EXERCISES 2.2  (See page 155 for answers.)
1. The function f’'(x) is defined by the formula 4. Which theorem guarantees us that if

/ .
Jlay = fim, o G0t = f0)
2. (a) The derivative of f(x) = x%is f'(x) = . h—0 h
(b) The derivative of f(x) = 4/xis f'(x) =
3. Suppose that the line 2x + 3y = 5 is tangent to the graph
of y = f(x) at x = 1. The value of f(1)is—_ and
the value of f/(1)is — .

exists, then lim f(x) = f(xg)?
X — X0
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EXERCISE SET 2.2 [ Graphing Utility

1. Use the graph of y = f(x) in the accompanying figure to
estimate the value of (1), f'(3), f'(5), and f'(6).

y

NEVAN

—_— N W R D

< Figure Ex-1

2. For the function graphed in the accompanying figure, arrange
the numbers 0, f'(=3), f(0), f'(2), and f’(4) in increasing
order.

< Figure Ex-2

FOCUS ON CONCEPTS

3. (a) If you are given an equation for the tangent line at

the point (a, f(a)) onacurve y = f(x), how would
you go about finding f'(a)?

(b) Given that the tangent line to the graph of y = f(x)
at the point (2, 5) has the equation y = 3x — 1, find
1.

(c) For the function y = f(x) in part (b), what is the in-
stantaneous rate of change of y with respect to x at
x =27

4. Given that the tangent line to y = f(x) at the point (1, 2)
passes through the point (—1, —1), find f'(1).

5. Sketch the graph of a function f for which f(0) = —1,
f'(0)=0, f'(x) <0if x < 0,and f'(x) > 0if x > 0.

6. Sketch the graph of a function f for which f(0) =0,
f'(0) =0,and f'(x) > 0ifx <Oorx > 0.

7. Given that f(3) = —1 and f'(3) = 5, find an equation for
the tangent line to the graph of y = f(x) at x = 3.

8. Given that f(—2) = 3 and f/(—2) = —4, find an equation
for the tangent line to the graph of y = f(x) at x = —2.

9-14 Use Definition 2.2.1 to find f’(x), and then find the tan-
gent line to the graph of y = f(x) at x = a.

9. fx)=2x% a=1 10. f(x) =1/x% a=—1
11. f(x)=x3; a=0 12. fx)=2x34+1; a=—1
13. fx)=+/x+1;,a=28 4. fx)=/2x+1; a=4
15-20 Use Formula (12) to find dy/dx.

17. y=x>—x

1
15. y = — 16. y =
X

x+1

1 1
19- = —= 20. =
Y Jx Y Vx—1

21-22 Use Definition 2.2.1 (with appropriate change in nota-
tion) to obtain the derivative requested.

21. Find f'(r) if f(t) = 46> + 1.
22. Find dV/drif V = 37r3,

FOCUS ON CONCEPTS

23. Match the graphs of the functions shown in (a)—(f) with
the graphs of their derivatives in (A)—(F).

18. y =x*

(@) (b) (©)
y AY AY
> > N
(d (e ®
y y AY

(A) (B) ©

(D) B (F)




24. Let f(x) = +/1 — x2. Use a geometric argument to find

25-26 Sketch the graph of the derivative of the function
whose graph is shown.

25. (a) (b) (

6. @) (b) (

f'2/2).

y y
X %\I X
N

1

c)
-1
c)

—1 . AL
— _

27
fal

27.

28.

29.

30.

31

31

-30 True-False Determine whether the statement is true or
se. Explain your answer.

If a curve y = f(x) has a horizontal tangent line at x = a,
then f’(a) is not defined.

If the tangent line to the graph of y = f(x) at x = —2 has
negative slope, then f'(—2) < 0.

If a function f is continuous at x = 0, then f is differen-
tiable at x = 0.

If a function f is differentiable at x = 0, then f is contin-
uous at x = 0.

—-32 The given limit represents f'(a) for some function f
and some number a. Find f(x) and a in each case.
T+ Ax -1 29
D@ lim AL ) im A
Ax—0 Ax x1—3 x1—3
h 1 71
(a) lim m (b) lim X
h—0 h x—>1 x —

32.

33.
34.

M 3s.

~ 36.

i~ 37.

Find dy/dx|<—,, given that y = 1 — x2.
Find dy/dx|.—_», given that y = (x + 2)/x.

Find an equation for the line that is tangent to the curve

y = x> — 2x + 1 at the point (0, 1), and use a graphing util-

ity to graph the curve and its tangent line on the same screen.

Use a graphing utility to graph the following on the same

screen: the curve y = x2/4, the tangent line to this curve

at x = 1, and the secant line joining the points (0, 0) and

(2, 1) on this curve.

Let f(x) = 2*. Estimate f'(1) by

(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope

(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching 1.
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[ 38. Let f(x) = sin x. Estimate f'(r/4) by
(a) using a graphing utility to zoom in at an appropriate
point until the graph looks like a straight line, and then
estimating the slope
(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching /4.

39-40 The function f whose graph is shown below has values
as given in the accompanying table.

,L x [-1 o1 |2]3
)
1 fx) | 1.56 | 0.58 | 2.12 [ 234 |22

39. (a) Use data from the table to calculate the difference quo-
tients
fA-fd  fO-fd  fO - fO)
3—1 2—-1 2-0
(b) Using the graph of y = f(x), indicate which difference
quotient in part (a) best approximates f’(1) and which
difference quotient gives the worst approximation to

’

J'(.
40. Use data from the table to approximate the derivative values.
(@ f'0.5) (b) f'(2.5)

FOCUS ON CONCEPTS

41. Suppose that the cost of drilling x feet for an oil well is

C = f(x) dollars.

(a) What are the units of f'(x)?

(b) In practical terms, what does f’(x) mean in this
case?

(c) What can you say about the sign of f'(x)?

(d) Estimate the cost of drilling an additional foot, start-
ing at a depth of 300 ft, given that f/(300) = 1000.

42. A paint manufacturing company estimates that it can
sell g = f(p) gallons of paint at a price of p dollars per
gallon.

(a) What are the units of dg/dp?

(b) In practical terms, what does dg/dp mean in this
case?

(c) What can you say about the sign of dg/dp?

(d) Given that dg/dp|,—10 = —100, what can you say
about the effect of increasing the price from $10 per
gallon to $11 per gallon?

43. It is a fact that when a flexible rope is wrapped around
a rough cylinder, a small force of magnitude F at one
end can resist a large force of magnitude F at the other
end. The size of F depends on the angle 6 through
which the rope is wrapped around the cylinder (see the
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accompanying figure). The figure shows the graph of F'

(in pounds) versus 6 (in radians), where F is the mag-

nitude of the force that can be resisted by a force with

magnitude Fy = 10 Ib for a certain rope and cylinder.

(a) Estimate the values of F and dF/d6 when the angle
6 = 10 radians.

(b) It can be shown that the force F satisfies the equa-
tion dF/d® = uF, where the constant y is called
the coefficient of friction. Use the results in part (a)
to estimate the value of u.

700 -
600 |-
500 |-
400 -
300 |-

Force F (Ib)

200 -

I I J
10 12 14

0 |
0 2 4 6 8

Angle 6 (rad)

A Figure Ex-43

44. The accompanying figure shows the velocity versus time
curve for a rocket in outer space where the only signif-
icant force on the rocket is from its engines. It can be
shown that the mass M (¢) (in slugs) of the rocket at time
t seconds satisfies the equation

M([) — L
~ dv/dt

where T is the thrust (in 1b) of the rocket’s engines and
v is the velocity (in ft/s) of the rocket. The thrust of
the first stage of a Sarurn Vrocketis T = 7,680,982 Ib.
Use this value of T and the line segment in the figure to
estimate the mass of the rocket at time ¢t = 100.

20,000
15,000
10,000

5,000

Velocity v (ft/s)

20 40 60 80 100 120 140
Time 7 (s)

< Figure Ex-44

45. According to Newton’s Law of Cooling, the rate of
change of an object’s temperature is proportional to the
difference between the temperature of the object and
that of the surrounding medium. The accompanying
figure shows the graph of the temperature 7" (in degrees
Fahrenheit) versus time ¢ (in minutes) for a cup of cof-
fee, initially with a temperature of 200°F, that is allowed
to cool in a room with a constant temperature of 75°F.
(a) Estimate T and dT/dt when t = 10 min.

(b) Newton’s Law of Cooling can be expressed as
dT
Fri k(T — To)
where k is the constant of proportionality and 7y is
the temperature (assumed constant) of the surround-
ing medium. Use the results in part (a) to estimate
the value of k.

200
150

100

50

Temperature T (°F)

| | | | | J
10 20 30 40 50 60
Time ¢ (min)

< Figure Ex-45

46.

47.

48.

49.

50.

FOCUS ON CONCEPTS

Show that f(x) is continuous but not differentiable at the
indicated point. Sketch the graph of f.

@ flx)=3x x=0

®) f() =V =22 x=2

Show that

2
=5 T

x>1
is continuous and differentiable at x = 1. Sketch the graph

of f.

Show that
X242, x<l1
f(x)_{x—}—Z, x>1
is continuous but not differentiable at x = 1. Sketch the
graph of f.
Show that
_ [xsin(1/x), x#0
f@) = {07 N

is continuous but not differentiable at x = 0. Sketch the
graph of f near x = 0. (See Figure 1.6.6 and the remark
following Example 5 in Section 1.6.)

Show that

_[x?sin(1/x), x#0
fx) = {07 =0

is continuous and differentiable at x = 0. Sketch the graph
of f near x = 0.

51. Suppose that a function f is differentiable at x and that

f'(x0) > 0. Prove that there exists an open interval con-
taining xo such that if x; and x; are any two points in this
interval with x; < xo < x, then f(x;) < f(xg) < f(x2).



52.

53.

Suppose that a function f is differentiable at xy and de-
fine g(x) = f(mx + b), where m and b are constants.
Prove that if x; is a point at which mx; 4+ b = xo, then
g(x) is differentiable at x; and g’'(x;) = mf'(x).
Suppose that a function f is differentiable at x = 0 with
f(0) = f'(0) =0, and let y = mx, m # 0, denote any
line of nonzero slope through the origin.
(a) Prove that there exists an open interval contain-
ing O such that for all nonzero x in this interval

2.3 Introduction to Techniques of Differentiation

of f at the origin is the best linear approximation
to f at that point.

54. Suppose that f is differentiable at xo. Modify the ar-

gument of Exercise 53 to prove that the tangent line
to the graph of f at the point P (xo, f(xo)) provides
the best linear approximation to f at P. [Hint: Sup-
pose that y = f(xg) + m(x — xp) is any line through
P (xo, f(xo)) with slope m # f'(xg). Apply Definition
1.4.1to (5) with x = xo + h and € = 1| f'(xo) — m|.]

| f(x)| < |4mx|. [Hint: Let € = }|m| and apply
Definition 1.4.1 to (5) with xo = 0.]

(b) Conclude from part (a) and the triangle inequality
that there exists an open interval containing 0 such
that | f(x)| < | f(x) — mx]| for all x in this interval.

(c) Explain why the result obtained in part (b) may be
interpreted to mean that the tangent line to the graph

55. Writing Write a paragraph that explains what it means for a
function to be differentiable. Include examples of functions
that are not differentiable as well as examples of functions
that are differentiable.

56. Writing Explain the relationship between continuity and
differentiability.

l/ QUICK CHECK ANSWERS 2.2

AR DIt 1SV Ny S LT -2

h 2/x

4. Theorem 2.2.3: If f is differentiable at xy, then f is continuous at xg.

E INTRODUCTION TO TECHNIQUES OF DIFFERENTIATION

In the last section we defined the derivative of a function f as a limit, and we used that
limit to calculate a few simple derivatives. In this section we will develop some important
theorems that will enable us to calculate derivatives more efficiently.

Il DERIVATIVE OF A CONSTANT

The simplest kind of function is a constant function f(x) = c¢. Since the graph of f is

a horizontal line of slope 0, the tangent line to the graph of f has slope O for every x;
T and hence we can see geometrically that f'(x) = 0 (Figure 2.3.1). We can also see this
} algebraically since
|
> > oy = tim TETW =@ €= mo=o0

h—0 h h—0 h h—0

The tangent line to the graph of Thus, we have established the following result.

f(x) = ¢ has slope 0 for all x.
A Figure 2.3.1 L . L
8 2.3.1 THEOREM The derivative of a constant function is 0; that is, if ¢ is any real
number, then

d
S = ey

» Example 1

d
—I[11 =0,
dx[]
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H DERIVATIVES OF POWER FUNCTIONS

\
|
\
1
X
The tangent line to the graph of

f(x) = x has slope 1 for all x.

A Figure 2.3.2

Verify that Formulas (2), (3), and (4)
are the special cases of (5) in which
n=1,2 and 3.

The binomial formula can be found on
the front endpaper of the text. Replac-
ing y by & in this formula yields the
identity used in the proof of Theorem
2.3.2.

The simplest power functionis f(x) = x. Since the graph of f is aline of slope 1, it follows
from Example 3 of Section 2.2 that f’(x) = 1 for all x (Figure 2.3.2). In other words,

d
E[x] =1 @)

Example 1 of Section 2.2 shows that the power function f(x) = x2 has derivative fl(x) =
2x. From Example 2 in that section one can infer that the power function f(x) = x> has
derivative f'(x) = 3x2. That is,
i[xz] =2x and i[;ﬁ] = 3x? (3-4)
dx dx
These results are special cases of the following more general result.

2.3.2 THEOREM (The Power Rule) If n is a positive integer, then

d n n—1
E[x I=nx (%)

PROOF Let f(x) = x". Thus, from the definition of a derivative and the binomial formula
for expanding the expression (x + /)", we obtain

d . fa+h) = fx) . (x+h)"—x"
E[x =1 _hleO _hleO h
(n

-1
|:xn+nxn—1h+n a )x”_2h2—|—~~~+nxh"_l+h”i|—x”

h—0 h

(n —

1
nx"'h 4+ nz—')x”_2h2 4 nxh" 4B

h—0 h
nn—1)
2!

=nx"'4+0+---+0+4+0

= }}imo |:nx”_1 + X" 2h4 4 uxh" T4 h”_1:|

=nx""! m
» Example 2
d d d
— M =4x, —[°]1=5x4 —[r?]=12" «
dx dx dt

Although our proof of the power rule in Formula (5) applies only to positive integer
powers of x, it is not difficult to show that the same formula holds for all integer powers of
x (Exercise 82). Also, we saw in Example 4 of Section 2.2 that

d 1
5[«/;] = m (6)

which can be expressed as
d

(/2] = 1o _ 1 ana

dx 2 2
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Thus, Formula (5) is valid for n = %, as well. In fact, it can be shown that this formula
holds for any real exponent. We state this more general result for our use now, although we

won’t be prepared to prove it until Chapter 3.

2.3.3 THEOREM (Extended Power Rule) If r is any real number, then

d r r—1
E[X ]=rx @)

In words, to differentiate a power function, decrease the constant exponent by one and
multiply the resulting power function by the original exponent.

» Example 3
d [ ] -1
— | X =X
dx
dl1] d ., I S|
EH-EU 1= =mrr=—n
d ! d . 100 101 100
™ [w—] =gt =0T =
i[ 45y — 4 wm- _ 4 s
dx 5 5
d 3 d. sy _ 1 o 1
— < = — = — = — 4
IR = ] = 2 Y

Il DERIVATIVE OF A CONSTANT TIMES A FUNCTION

2.3.4 THEOREM (Constant Multiple Rule) If [ is differentiable at x and c is any real

Formula (8) can also be expressed in number, then cf is also differentiable at x and

function notation as

d d
(cf) = cf’ E[Cf(x)] = ca[f(x)] (8
T f+h) = cf ()
. cl(x —CcJ (X
d—x[Cf(X)] = I}LH}) Y

i [f(x +h) — f(x)}
=lmc¢c|—F— 2

= h

. f()C + h) B f(x) constant factor can be

= hhino h ﬁovedtthroflg}:a]imitiign.

= C%[f(X)] u
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In words, a constant factor can be moved through a derivative sign.

» Example 4 d d
—[4x8] = 4—[x®] = 4[8x7] = 324
dx dx

d d
E[_XIZ]=(_1)E[‘x12]:_12x11

d rm d _, 72 T
b ke B

Il DERIVATIVES OF SUMS AND DIFFERENCES

2.3.5 THEOREM (Sum and Difference Rules) If f and g are differentiable at x, then so
are f +gand f — g and

Formulas (9) and (10) can also be ex-

ressed as d d d
pressed Zf0) + g00)] = ()] + —[g(x)] )

(f+g) =f+¢g dx dx dx
(f—e' =f-¢ d _d d 10
E[f(x) —g(x)] = E[f(x)] = E[g(X)] (10)

PROOF Formula (9) can be proved as follows:
im [f(x+h)+gx+h)]—[fx)+g)]

d
S +e@l=1

—0 h
— lim [f(x+h)— f)]+[g(x +h) — gx)]
T >0 h
— lim f(x+h)_f(x) + lim g(x+h)_g(x) Thelimitofas.unTis
h—0 h h—0 h the sum of the limits.

_d d
= @1+ —lg()]

Formula (10) can be proved in a similar manner or, alternatively, by writing f(x) — g(x)
as f(x) + (—1)g(x) and then applying Formulas (8) and (9). m

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of
a difference equals the difference of the derivatives.

» Example 5
d 6 -9 d 6 d o 5 -10 5 -10
—R2x°4+x7] = —[2x°]+ —[x7] = 12x° + (—9)x =12x° — 9x
dx dx dx
d [x—2x d
— | —|=—[1-2
dx [ Jx i| dx[ Vxl

d d 1 1
= E[l] - E[zﬁ] =0-2 <ﬁ> = _ﬁ See Formula (6). <



y=x3-3x+4

Y =

A Figure 2.3.3

w -

A Figure 2.3.4
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Although Formulas (9) and (10) are stated for sums and differences of two functions,
they can be extended to any finite number of functions. For example, by grouping and
applying Formula (9) twice we obtain

(f+g+h) =f+g+h'=(f+g +h=f+g+I

As illustrated in the following example, the constant multiple rule together with the ex-
tended versions of the sum and difference rules can be used to differentiate any polynomial.

» Example 6 Find dy/dx if y = 3x% —2x° + 6x + 1.

Solution. dy d
dx dx

d

T dx

=24x7 — 10x* + 6 «

[3x% — 2x° 4+ 6x + 1]

[3x%] — i[2x5] + i[6x] + i[1]
dx dx dx

» Example7 Atwhatpoints, if any, does the graphof y = x* — 3x + 4 have a horizontal
tangent line?

Solution. Horizontal tangent lines have slope zero, so we must find those values of x for
which y’(x) = 0. Differentiating yields

d
y(x)=—[x=3x +4]=3x*-3
dx

Thus, horizontal tangent lines occur at those values of x for which 3x2 —3 =0, that is, if
x = —1orx = 1. The corresponding points on the curve y = x3 — 3x + 4 are (—1, 6) and
(1, 2) (see Figure 2.3.3). «

» Example 8 Find the area of the triangle formed from the coordinate axes and the
tangent line to the curve y = Sx~! — %x at the point (5, 0).

Solution. Since the derivative of y with respect to x is

d 1 d a1 1
"X)= — [5x "= x| = —[5x |- — | =x| = —5x2— =
v dx[x sx} o T [5x] *7s

the slope of the tangent line at the point (5, 0) is y'(5) = —%. Thus, the equation of the
tangent line at this point is

2 2
y—0=—§(x—5) or equivalently y=—§x+2

Since the y-intercept of this line is 2, the right triangle formed from the coordinate axes and
the tangent line has legs of length 5 and 2, so its area is %(5)(2) =5 (Figure 2.3.4). «

HIGHER DERIVATIVES

The derivative f’ of a function f is itself a function and hence may have a derivative
of its own. If f’ is differentiable, then its derivative is denoted by f” and is called the
second derivative of f. As long as we have differentiability, we can continue the process
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of differentiating to obtain third, fourth, fifth, and even higher derivatives of f. These
successive derivatives are denoted by

Floo = = =g O =Y

If y = f(x), then successive derivatives can also be denoted by

y/’ y//’ y///’ y(4)’ y(S)’ .

Other common notations are

e

y_dx_dx s

,,_dzy_ d | d _ d?
Y=o3=7 [E [f(x)]} = ﬁ[f(x)]

, dy d [ d &
Y =aa T 0 [W [f(x)]} = J5l/Wl

These are called, in succession, the first derivative, the second derivative, the third deriva-
tive, and so forth. The number of times that f is differentiated is called the order of the
derivative. A general nth order derivative can be denoted by

d'y .
dxn

dn
dx"

fOx) = —I[f@)] (11)

and the value of a general nth order derivative at a specific point x = x can be denoted by

d'y
dx"

_ iy = &
FO 00 = ()] (12)
X

X=X X=X0

» Example 9 If f(x) = 3x* — 2x3 + x? — 4x + 2, then
fl(x) =12x3 —6x2 +2x — 4
f7(x) =36x2 —12x +2
() = T2x — 12
[P =72
fOw =0

FOE) =0 =5 <

We will discuss the significance of second derivatives and those of higher order in later
sections.

VQU]CK CHECK EXERCISES 2.3  (See page 163 for answers.)

45 45
1. In each part, determine f’(x). © fx)= 5 @ fx)=—
@ f(x) =6 (b) f(x) = /6x . N
©) f(x)=6yx ) f(x)=+6x 3. The slope of the tangent line to the curve y = x~ +4x +7
atx =1is

2. In parts (a)—(d), determine f'(x). ’
(a) f(x) — x3 45 (b) f(x) — xz(x3 + 5) 4. If f(x) = 3.763 — 3.762 +x + 1, then f”(x) [ —
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1-8 Find dy/dx.

1 y=4x7 2. y=-3x"?
3. y=3x8+2x +1 4. y=1a*+7
5.y=m 6. y=+2x+(1/v2)
2
1
7. y=—1(T+2x—09) 8.y=x;_
9-16 Find f'(x).
1 1
9. f)=x"+ = 10. f(x) = /x + —
X X
1. f(x) =3x8 +2/x 12, f(x) =Tx® -5 x
. 1 /8
13. f(x) =X +ﬁ 14. f(x) = \/;

15. f(x) =ax®> +bx>+cx+d (a,b,c,d constant)
1 1

16. f(x) = — <x2 + Zx + c) (a, b, ¢ constant)
a

17-18 Find y'(1).

3/2 2
17. y =5x* =3x + 1 18. y=" i
19-20 Find dx/dt.
241
19. x =12 —¢ 20. x = +
3t

21-24 Find dy/dx|,=;.

2L y=l4x+x2+x3+x*+x°

Lx+x24+x3 4 x* +x° +x8
3

23. y=(1—x)1+x)1+x>)A +xY

24, y = x2 +2x12 4 3x8 + 4x©

22. y =

25-26 Approximate f’(1) by considering the difference quo-
tient f+h)— f(1)

h
for values of 4 near 0, and then find the exact value of f'(1) by
differentiating.

25. fx)=x>—-3x+1 26. f(x) = x—lz

[ 27-28 Use a graphing utility to estimate the value of f'(1) by

zooming in on the graph of f, and then compare your estimate
to the exact value obtained by differentiating.

x2+1 x +2x3?

Jx

27. f(x) = 28. f(x) =

29-32 Find the indicated derivative.

d dcC
29. —[16¢%] 30. —, where C = 27r
dt dr

d
31. V/(r),where V =713 32. d—[zor1 +a]
o

33-36 True—False Determine whether the statement is true or
false. Explain your answer.

33. If f and g are differentiable at x = 2, then

=f'(2) - 8g'(2)

x=2

d 8
L) — 8g()]

34. If f(x) isacubic polynomial, then f'(x) is a quadratic poly-
nomial.

35. If f'(2) = 5, then

=4f'(2)=20

x=2

d d
4 + | =—[4f(x)+8]
x dx

x=2

36. If f(x) = x>(x* — x), then
/" _ i 2 . i 4 _ 3
frx) = 7 [x%] dx[x x]=2x@x}—-1)

37. A spherical balloon is being inflated.
(a) Find a general formula for the instantaneous rate of
change of the volume V with respect to the radius r,
given that V = 373,
(b) Find the rate of change of V with respect to r at the
instant when the radius is r = 5.
6
38. Find - [M
dr| 2—=2
39. Find an equation of the tangent line to the graphof y = f(x)
atx = =3if f(—-3) =2and f'(-3) =5.
40. Find an equation of the tangent line to the graphof y = f(x)
atx =2if f(2) = —2and f'(2) = —1.

] (Ao is constant).

41-42 Find d?y/dx>.

41. (a) y=Tx> —5x%+x (b) y=12x2—2x+3

(© y= Xl d) y = (5x% = 3)(7x* + x)
42. (a) y =4x7 —5x3 +2x (b) y=3x+2

© y= 3"5; 2 @ y= (> —5)2x +3)
43-44 Find y”'.

43. @) y=x"+x (b) y=1/x
(¢) y=ax®+bx +c (a,b,cconstant)

4. (a) y=5x>—4x +7 (b) y=3x"2+4x""+x
(c) y=ax*+bx>+c (a,b,c constant)

45. Find
(@) f"(2), where f(x) =3x>—2
d2
(b) ay , Where y = 6x° — 4x?
dx?|,._,
4

(©) d—[ ]
C dx4 X

x=1
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46. Find
(a) yW(O), where y = 4x4 + 2X3 + 3
) d*y N 6
T4 , wnere = —.
dx*|,_, YT

47. Show that y = x3 4 3x + 1 satisfies y”" + xy” — 2y’ = 0.

48. Show that if x # 0, then y = 1/x satisfies the equation

x3y// +x2y/ —xy= 0.

[ 49-50 Use a graphing utility to make rough estimates of the

locations of all horizontal tangent lines, and then find their exact
locations by differentiating.

249
50 y= T

49. y = %xS - %xz + 2x

FOCUS ON CONCEPTS

51. Find a function y = ax? + bx + ¢ whose graph has an
x-intercept of 1, a y-intercept of —2, and a tangent line
with a slope of —1 at the y-intercept.

52. Find k if the curve y = x? + k is tangent to the line
y = 2x.

53. Find the x-coordinate of the point on the graph of y = x?2
where the tangent line is parallel to the secant line that
cuts the curve at x = —1 and x = 2.

54. Find the x-coordinate of the point on the graph of
y = 4/x where the tangent line is parallel to the secant
line that cuts the curve at x = 1 and x = 4.

55. Find the coordinates of all points on the graph of
y = 1 — x? at which the tangent line passes through the
point (2, 0).

56. Show that any two tangent lines to the parabola y = ax?,
a # 0, intersect at a point that is on the vertical line
halfway between the points of tangency.

57. Suppose that L is the tangent line at x = x to the graph of
the cubic equation y = ax> + bx. Find the x-coordinate of
the point where L intersects the graph a second time.

58. Show that the segment of the tangent line to the graph of
y = 1/x that is cut off by the coordinate axes is bisected by
the point of tangency.

59. Show that the triangle that is formed by any tangent line to
the graph of y =1 /x,x > 0, and the coordinate axes has
an area of 2 square units.

60. Find conditions on a, b, ¢, and d so that the graph of the
polynomial f(x) = ax® + bx> + cx + d has
(a) exactly two horizontal tangents
(b) exactly one horizontal tangent
(c) no horizontal tangents.

61. Newton’s Law of Universal Gravitation states that the mag-
nitude F of the force exerted by a point with mass M on a

point with mass m is

GmM

T2

where G is a constant and r is the distance between the bod-
ies. Assuming that the points are moving, find a formula for
the instantaneous rate of change of F with respect to r.

F =

62. In the temperature range between 0°C and 700°C the re-
sistance R [in ohms (£2)] of a certain platinum resistance
thermometer is given by

R =10+0.04124T — 1.779 x 107°T?
where T is the temperature in degrees Celsius. Where in
the interval from 0°C to 700° C is the resistance of the ther-
mometer most sensitive and least sensitive to temperature
changes? [Hint: Consider the size of dR/dT in the interval
0<T <700.]

M 63-64 Use a graphing utility to make rough estimates of the in-

tervals on which f’(x) > 0, and then find those intervals exactly
by differentiating.

63. f(x)=x— % 64. f(x)=x3>—3x

65-68 You are asked in these exercises to determine whether a
piecewise-defined function f is differentiable at a value x = xy,
where f is defined by different formulas on different sides of
Xo. You may use without proof the following result, which is
a consequence of the Mean-Value Theorem (discussed in Sec-
tion 4.8). Theorem. Let f be continuous at xo and suppose
that lim,_, ,, f'(x) exists. Then f is differentiable at xo, and
f,(X()) = hmx—)Xo f,(x)-
65. Show that ,
x“+x+1, x<1

fx) = {3x, x> 1
is continuous at x = 1. Determine whether f is differen-
tiable at x = 1. If so, find the value of the derivative there.
Sketch the graph of f.

66. Let Flx) = {x —16x, x<9

Vs x>9
Is f continuous at x = 9? Determine whether f is differ-
entiable at x = 9. If so, find the value of the derivative

there.

67. Let x2, x<l
fx) = L/)?, x>1

Determine whether f is differentiable at x = 1. If so, find
the value of the derivative there.

68. Let x3+%, x<%
flx) = 3, :
IR =

Determine whether f is differentiable at x = % If so, find

the value of the derivative there.

69. Find all points where f fails to be differentiable. Justify
your answer.

(@) f(x) =1[3x =2 (b) f(x) = |x* —4]



70.

71.

72.

73.

74.

75.

In each part, compute f/, f”, f, and then state the formula
for £,

(@ fx)=1/x (b) flx)=1/x

[Hint: The expression (—1)" has a value of 1 if n is even
and —1 if n is odd. Use this expression in your answer.]

(a) Prove:
2

d &
Talf@l = e 1f(0]

d2 d2 d2

ﬁ[f(X) +g)]= ﬁ[f(X)] + ﬁ[g(x)]

(b) Do the results in part (a) generalize to nth derivatives?
Justify your answer.

Let f(x) = x% — 2x 4+ 3; find

f'w) = '@
w—2

(a) Find f™(x)if f(x) =x",n=1,2,3,....

(b) Find f™(x)if f(x) = x* and n > k, where k is a pos-
itive integer.

(c) Find f™(x) if

f(x) =ap+aix +ax* + -+ a,x"

(a) Prove: If f”(x) exists for each x in (a, b), then both f
and f’ are continuous on (a, b).

(b) What can be said about the continuity of f and its
derivatives if £ (x) exists for each x in (a, b)?

lim

w—2

Let f(x) = (mx + b)", where m and b are constants and n
is an integer. Use the result of Exercise 52 in Section 2.2 to
prove that f'(x) = nm(mx + b)"~\.

l/ QUICK CHECK ANSWERS 2.3
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76-77 Verity the result of Exercise 75 for f(x).

76.

flx) = (2x 4 3)? 77. f(x) = 3x — 1)

78-81 Use the result of Exercise 75 to compute the derivative
of the given function f(x).

78.

79.

80.

81.
82.

fx) = T_1
3
f& =iy
X
fx) = m
2x% +4x + 3
The purpose of this exercise is to extend the power rule

(Theorem 2.3.2) to any integer exponent. Let f(x) = x”,
where n is any integer. If n > 0, then f'(x) = nx"~! by
Theorem 2.3.2.

(a) Show that the conclusion of Theorem 2.3.2 holds in the

casen = 0.
(b) Suppose that n < 0 and set m = —n so that
f(x) — xn — x7m — L
=x" = =

Use Definition 2.2.1 and Theorem 2.3.2 to show that

N L I L
dx | xm x2m

and conclude that f'(x) = nx""L.

1. (@ 0 (0 V6 (0) 3/V/x (@) v6/Q2y%)

2. (a) 3x2 (b) 5x*+10x (c) %xz (d 1—10x3

m THE PRODUCT AND QUOTIENT RULES

3.6 4. 18x—6

In this section we will develop techniques for differentiating products and quotients of
functions whose derivatives are known.

Il DERIVATIVE OF A PRODUCT
You might be tempted to conjecture that the derivative of a product of two functions is
the product of their derivatives. However, a simple example will show this to be false.

Consider the functions

The product of their derivatives is

f(x)=x and g(x) = x2

flx)g (x) = (1)(2x) =2x
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but their product is h(x) = f(x)g(x) = x3, so the derivative of the product is
W (x) = 3x?

Thus, the derivative of the product is not equal to the product of the derivatives. The correct
relationship, which is credited to Leibniz, is given by the following theorem.

2.4.1 THEOREM (The Product Rule) If f and g are differentiable at x, then so is the
product f - g, and

d d d
Formula (1) can also be expressed as d—[f(x)g(x)] = f(x)—[g(x)] 4+ g(x)—[f(x)] (D)
X dx dx
(f-9=r-¢+g-f

PROOF Whereas the proofs of the derivative rules in the last section were straightfor-
ward applications of the derivative definition, a key step in this proof involves adding and
subtracting the quantity f(x 4 h)g(x) to the numerator in the derivative definition. This

yields
d o S+ g+ h) — fx) - g(x)
T f@g)] = lim ;
— i JE MG+ h) — SO+ g (x) + flx 4+ )g(x) — f)g(x)
T -0 h
— Lm [f(x “n). glx +h) —gx) + () Jx+h) - f(X)]
h—0 h h
. . +h) — . . +h) —
= fm 10 i S i i £

. d , d
[ Jim o) | S lg01+ | Jim g0)| T-1£G0)

d d
= f(x)d—[g(x)] +g(x)—[f(0)]
X dx

[Note: In the last step f(x + h)— f(x) as h— 0 because f is continuous at x by Theo-
rem 2.2.3. Also, g(x) — g(x) as h — O because g(x) does not involve & and hence is treated
as constant for the limit.] m

In words, the derivative of a product of two functions is the first function times the
derivative of the second plus the second function times the derivative of the first.

» Example 1 Find dy/dx if y = (4x* — 1)(7x> + x).

Solution. There are two methods that can be used to find dy/dx. We can either use the
product rule or we can multiply out the factors in y and then differentiate. We will give
both methods.
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Method 1. (Using the Product Rule)

dy _d o 3
I dx[(4x D(7x7 4 x)]

= (4x? —1) [7x +x]+ (7x3 +x)—[4x —1]

= 4x> = DQIx*+ 1) + (7x> + x)(8x) = 140x* — 9x*> — 1

Method 2. (Multiplying First)
y = (@4x? = D(Tx* +x) =28x> —3x% —x
Thus,
dy

d
= d—[28x5 —3x3 —x]=140x* —9x> — 1
X X

which agrees with the result obtained using the product rule. <«

» Example 2 Find ds/dt if s = (1 + 1)/t
Solution. Applying the product rule yields

ds d
o= E[(l +1)/1]

d d
= (1+I)E[~/?]+~/?E[1+t]

1+t 1+ 3¢
+ =
N 24/t

Il DERIVATIVE OF A QUOTIENT
Just as the derivative of a product is not generally the product of the derivatives, so the
derivative of a quotient is not generally the quotient of the derivatives. The correct rela-
tionship is given by the following theorem.

2.4.2 THEOREM (The Quotient Rule) If f and g are both differentiable at x and if
g(x) # 0, then f/g is differentiable at x and

Formula (2) can also be expressed as i [f(x)i| g(x) [f(x)] — f(x)—[g(x)] o

(£) - el 2(0) g

PROOF
fath)  f@)
d [@} i 8GR g0 @R g0) — f) g0 A h)
g |~ w0 h h=0 hog(x) - g(x+h)
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Sometimes it is better to simplify a
function first than to apply the quo-
tient rule immediately. For example, it
is easier to differentiate

x3/2+x

Jx

fx) =
by rewriting it as

fo) =x+x

as opposed to using the quotient rule.

25,25 x [-1, 1]
xScl=1,yScl = 1

x2—1

X+l

A Figure 2.4.1

Adding and subtracting f(x) - g(x) in the numerator yields

d [f(x)} — Lm fx+h) -gx)— fx)-gx) — f(x)-glx +h)+ f(x) - gx)
dx | g(x) h—0 h-g(x) -gx+h)

[g(x) fat h; - f(x)] ~ [f(x) g+ hz - g(x)}
= lim
h—0 g(x)-g(x +h)
. . Ja+h) - f) . g(x+h)—gx)
_ fmye - i PEE S - ) i SR
}}iir})g(x) ~’}iinog(x + h)
. d . d
_ [jimg00] - gtoon - [fim s0] - Fotscon
}}1_)rnog(x) . I}l—%g(x + h)
d d
_ g(X)E[f(X)] - f(x)a[g(X)]
PR
[See the note at the end of the proof of Theorem 2.4.1 for an explanation of the last step.]

In words, the derivative of a quotient of two functions is the denominator times the
derivative of the numerator minus the numerator times the derivative of the denominator,
all divided by the denominator squared.

422 —1

» Example 3 Find y'(x) fory = T3
X

Solution. Applying the quotient rule yields

d 3 2 3 2 d
d_y_ d [x3+2x2_1]:(x+5)a[x +2x° —1]— (x” +2x —1)E[x+5]

dx  dx x+5 (x +5)2
(x+50Cx*+4x) — (3 +2x2 = D)
- (x +5)2
Bx3 4+ 1922 +20x) — (x3 +2x2 — 1)
- (x +5)2
. 2x3 4+ 17x2 +20x + 1 <
(x +5)2
_ 2
» Example 4 Let f(x) = Q
x4 +1

(a) Graph y = f(x), and use your graph to make rough estimates of the locations of all
horizontal tangent lines.

(b) By differentiating, find the exact locations of the horizontal tangent lines.

Solution (a). In Figure 2.4.1 we have shown the graph of the equation y = f(x) in the
window [—2.5,2.5] x [—1, 1]. This graph suggests that horizontal tangent lines occur at
x=0,x~1.5andx ~ —1.5.



Derive the following rule for differenti-

ating a reciprocal:

IRy g
() --=
Use it to find the derivative of

fx) =

x2+1

VQUICK CHECK EXERCISES 2.4
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Solution (b). To find the exact locations of the horizontal tangent lines, we must find the
points where dy/dx = 0. We start by finding dy/dx:

d d
dy d [xz _ 1} - Ot Do = 1 = (6 = D 1
dx dx |x*+1] (x*+1)2

4+ D2x) — (¢ — DY)

The differentiation is complete.

( x4 + 1)2 The rest is simplification.
_ —2x° 4+ 4x3 + 2x _ 2x(x* =222 = 1)
- (x*+1)2 (x4 4+ 1)2

Now we will set dy/dx = 0 and solve for x. We obtain
_2)c()c4 —2x2—1) _
(x4 + 1)2

The solutions of this equation are the values of x for which the numerator is 0, that is,

2x(x* =222 = 1) =0
The first factor yields the solution x = 0. Other solutions can be found by solving the
equation Y22 1=0
This can be treated as a quadratic equation in x? and solved by the quadratic formula. This
yields

24+ 48
x? 2\/_=1:|:x/§

The minus sign yields imaginary values of x, which we ignore since they are not relevant
to the problem. The plus sign yields the solutions

x=4/14+2

In summary, horizontal tangent lines occur at

x=0, x=y14++v2~155 and x=—1++v2~—155

which is consistent with the rough estimates that we obtained graphically in part (a). <

Il SUMMARY OF DIFFERENTIATION RULES
The following table summarizes the differentiation rules that we have encountered thus far.

Table 2.4.1
RULES FOR DIFFERENTIATION
d _ r_pry s ,_ , , 1V_ g
=0 Urer =g (e =fgre S (g)=-5
ey =ef ey =r-g ()= Ly e

(See page 169 for answers.)

d d
L@ Sl fml=— ®) —[ J () }:_
X

d [x2+1
(C)E[ﬂx)]:—

2. Find F’(1) giventhat f(1) = —1, f'(1) =2, g(1) = 3, and
g1 =—1,
(@) F(x)=2f(x)—3g(x) (b) Fx) =[f(x)]
©) Fx)= f(x)gkx) d) F(x) = f(x)/gx)

dx | x24+1
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EXERCISE SET 2.4 [ Graphing Utility

1-4 Compute the derivative of the given function f(x) by (a)
multiplying and then differentiating and (b) using the product
rule. Verify that (a) and (b) yield the same result.

L fO)=E@+DC2x—1) 2. f(x)=Cx* = D(x%+2)
3. f(x) =@+ D —1)
4. f)=Gx+DE>2—x+1

5-20 Find f’(x).
5. f(x)=(3Bx*+6)(2x — })
6. f(x) =2 —x=3x)T+x)
7. fx) =@ +7x2—8)2x 3 +x7%

1o ,

9. f(x)=(x —2)(x>2+2x +4)
10. f(x) = (2 4+x)(x?—x)

3x +4 x—2
. f0 =5 2 o=
x2 2x2 45
13, () = 37— 4. f) = T
2 Dix —1
15. fy = S FDE=D ﬁjﬁ;" )
2 —
16. f(x) = 2V + 1) (ﬁ)

17. f(x) = Qx+1) (1 + %) 247
18. f(x) =x2(x*+2x)(4 —3x)2x° + 1)

19. f(x)=(x"+2x—-3)>  20. f(x) =2+ D*

21-22 Find dy/dx|;—;.

3x 42 —1
21. y=(xJr )(x*5+1) 22. y=(2x7 —x?) (L>
X x+1

[ 23-24 Use a graphing utility to estimate the value of f'(1) by

zooming in on the graph of f, and then compare your estimate
to the exact value obtained by differentiating.

xz—1

X
28 S0 =7 21
25. Find g’(4) given that f(4) = 3 and f'(4) = —5.
(@) g(x) = /xf(x) (b) glx) = @
26. Find ¢/(3) given that f(3) = —2 and f'(3) = 4.

) 2x + 1
(@) g(x) =3x"=5f(x) (b) gx) = ——
Fx)
27. Inparts (a)—(d), F(x) isexpressed in terms of f(x) and g(x).
Find F’'(2) giventhat f(2) = —1, f'(2) = 4, g(2) = 1, and
g'2) = -5.

24. f(x) =

(@ F(x)=5f(x)+2g(x) (b) F(x) = f(x)—3g(x)
©) Fx)= fx)gx) (d) F(x) = f(x)/gx)

28. Find F'(r) given that f(r) = 10, f'(n) = —1, g(w) = =3,
and g'(7) = 2.
(@) F(x) =06f(x) —5g(x) (b) F(x)=x(f(x)+g(x))

J(x)
(© F(x) =2f(x)g(x) @ FO = em

29-34 Find all values of x at which the tangent line to the given
curve satisfies the stated property.

21 241
29. y = a ; horizontal 30. y = i; horizontal
x4+ x—1
241 .
31. y= 1 ; parallel to the line y = x
3
32. y= %; perpendicular to the line y = x
1
33. y = ——; passes through the origin
x+4
2x +5
4. y= %; y-intercept 2

FOCUS ON CONCEPTS

35. (a) What should it mean to say that two curves intersect
at right angles?
(b) Show that the curves y = 1/x and y = 1/(2 — x)
intersect at right angles.
36. Find all values of a such that the curves y = a/(x — 1)
and y = x> — 2x + | intersect at right angles.
37. Find a general formula for F”(x) if F(x) = xf(x) and
f and f' are differentiable at x.
38. Suppose that the function f is differentiable everywhere
and F(x) = xf(x).
(a) Express F”’(x) in terms of x and derivatives of f.
(b) Forn > 2, conjecture a formula for F®™ (x).

39. A manufacturer of athletic footwear finds that the sales of
their ZipStride brand running shoes is a function f(p) of the
selling price p (in dollars) for a pair of shoes. Suppose that
f(120) = 9000 pairs of shoes and f'(120) = —60 pairs of
shoes per dollar. The revenue that the manufacturer will
receive for selling f(p) pairs of shoes at p dollars per pair
is R(p) = p - f(p). Find R’(120). What impact would a
small increase in price have on the manufacturer’s revenue?

40. Solve the problem in Exercise 39 under the assumption that
f(120) = 9000 and f'(120) = —80.

41. Use the quotient rule (Theorem 2.4.2) to derive the for-
mula for the derivative of f(x) = x™", where n is a positive
integer.
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l/ QUICK CHECK ANSWERS 2.4

L (@) x*f'(x) +2xf(x) (b)

O+ D f(x) = 2xf(x) 2xf(x) = (> + D f'(x)

2. (@) 7 (b) =4 (©) 7 (d) 3

(©)

(x241)? Lf(0)?]

m DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Formulas (1) and (2) and the derivation
of Formulas (3) and (4) are only valid if
h and x are in radians. See Exercise 49
for how Formulas (3) and (4) change
when x is measured in degrees.

The main objective of this section is to obtain formulas for the derivatives of the six basic
trigonometric functions. If needed, you will find a review of trigonometric functions in
Appendix B.

We will assume in this section that the variable x in the trigonometric functions sin x, cos x,
tan x, cot x, sec x, and csc x is measured in radians. Also, we will need the limits in Theorem
1.6.5, but restated as follows using / rather than x as the variable:

sin h . 1 —cosh

lim =1 and Ilim =0 (1-2)
h—0 h h—0 h

Let us start with the problem of differentiating f(x) = sin x. Using the definition of the
derivative we obtain

S+ = )

f/x) = lim

h
sin(x + h) — sin x
G h
sin x cos & + cos x sin 4 — sin x
= lim By the addition formula for sine

h—0 h

i . cosh —1 n sin h
= hl_)n’lo S x n COS x 7
. [ (sinh) ) (l—cosh>}
lim | cosx —smx{ ——— Algebraic reorganization
h—0 h h

. . sinh . . . 1 —cosh
= lim cosx - lim —— — lim sinx - lim ——
h—0 h—0 h h—0 h—0 h
= ( lim cos x) () — ( lim sin x) 0) Formulas (1) and (2)
h—0 h—0

— lim cos x = COS x cos x does not involve the variable / and hence
- h—0 - is treated as a constant in the limit computation.

Thus, we have shown that
d .
—[sinx] = cos x 3)
x

In the exercises we will ask you to use the same method to derive the following formula
for the derivative of cos x:

d
E[cos x] = —sinx @)
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» Example 1 Finddy/dx if y = x sinx.

Solution. Using Formula (3) and the product rule we obtain
dy d .
— = —|[xsinx]
dx dx
d [sin x] + si d [x]
= x—[sin inx—
x——[sinx] +sinx——[x

=xcosx +sinx <«

» Example 2 Find dy/dx if y = — " .
1+ cosx

Solution. Using the quotient rule together with Formulas (3) and (4) we obtain

d d
d_y _ (I +cosx) - E[sinx] —sinx - a[l + cos x]

dx (1 + cos x)?2
_ (I'+cosx)(cosx) — (sin x)(— sin x)
- (1 4 cosx)?
_cosx—l—coszx—i—sinzx_ cosx +1 1
N (1 4 cos x)2 " (1+cosx)2  1+cosx

The derivatives of the remaining trigonometric functions are
Since Formulas (3) and (4) are valid

only if x is in radians, the same is true d ) d
for Formulas (5)—(8). Ix [tan x] = sec” x I [sec x] = sec x tan x (5-6)

d d
E[COt x]=— csc? x E[CSC x] = —cscxcotx (7-8)

These can all be obtained using the definition of the derivative, butitis easier to use Formulas
(3) and (4) and apply the quotient rule to the relationships
sin x CcOS X 1 1

tanx = , Cotx = — , Secx = , CSCx = —
COS X sin x COS X sin x

For example,

. d
d d Tsinx COS X I [sinx] — sinx I [cos x]
—[tanx] = — =
dx dx | cosx cos? x
CoSX -cosx — sinx - (—sinx)  cos®x + sin’x 1 )
= 3 = 2 = 2 = SeC™ x
COS* X COS* X COS* X

When finfiing the value of a cfler.ivative > Example 3 Find f// (7‘[/4) if f(x) = secx.
at a specific point x = xo, it is impor- :

tant to substitute x( after the deriva- f’(x ) = secx tan x
tive is obtained. Thus, in Example 3 we

made the substitution x = 77/4 after £ (x)
f” was calculated. What would have :
happened had we incorrectly substi-

tuted x = /4 into f’(x) before cal-

culating f"?

d d
secx - —[tan x] 4+ tan x - —[sec x|
dx dx

secx - SGCZX -+ tan x - sec x tan x

= sec® x + sec x tan® x
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In Example 5, the top of the mass
has its maximum speed when it passes
through its rest position. Why? What is
that maximum speed?
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Thus,
f"(/4) = sec’(/4) + sec(/4) tan® (1/4)

= W23+ (W2)(1)? =3v2 «

» Example 4 On a sunny day, a 50 ft flagpole casts a shadow that changes with the
angle of elevation of the Sun. Let s be the length of the shadow and 6 the angle of elevation
of the Sun (Figure 2.5.1). Find the rate at which the length of the shadow is changing with
respect to & when 6 = 45°. Express your answer in units of feet/degree.

Solution. The variables s and 6 are related by tan 8 = 50/s or, equivalently,

s = 50cotf )
If 6 is measured in radians, then Formula (7) is applicable, which yields
d
B 50csc?0
de

which is the rate of change of shadow length with respect to the elevation angle 6 in units
of feet/radian. When 6 = 45° (or equivalently & = 7/4 radians), we obtain
ds

— = —50csc®(r/4) = —100 feet/radian
do O=m/4
Converting radians (rad) to degrees (deg) yields

ft d 5 ft
100 — . B 2o 175 ft/deg
rad 180 deg 9 deg

Thus, when 6 = 45°, the shadow length is decreasing (because of the minus sign) at an
approximate rate of 1.75 ft/deg increase in the angle of elevation. <«

» Example 5 Asillustrated in Figure 2.5.2, suppose that a spring with an attached mass
M is stretched 3 cm beyond its rest position and released at time t = 0. Assuming that the
position function of the top of the attached mass is

s = —3cost (10)

where s is in centimeters and ¢ is in seconds, find the velocity function and discuss the
motion of the attached mass.

Solution. The velocity function is

d d
v = @ —[—3cost] =3sint
dt dt
Figure 2.5.3 shows the graphs of the position and velocity functions. The position function
tells us that the top of the mass oscillates between a low point of s = —3 and a high point of

s = 3 with one complete oscillation occurring every 27 seconds [the period of (10)]. The
top of the mass is moving up (the positive s-direction) when v is positive, is moving down
when v is negative, and is at a high or low point when v = 0. Thus, for example, the top of
the mass moves up from time ¢ = O to time ¢ = 7, at which time it reaches the high point
s = 3 and then moves down until time ¢ = 27, at which time it reaches the low point of
s = —3. The motion then repeats periodically. <
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VQUICK CHECK EXERCISES 2.5

(See page 174 for answers.)

1. Find dy/dx.
(a) y =sinx (b) y =cosx
(c) y=tanx (d) y =secx
2. Find f'(x) and f'(7/3) if f(x) = sinx cos x.

EXERCISE SET 2.5 [ Graphing Utility

3. Use a derivative to evaluate each limit.
sin (% + h) -1
h

csc(x + h) —cscx
h

@ jim, ®

1-18 Find f'(x).

5
1. f(x) =4cosx +2sinx 2. f(x):—2+sinx
X

3. f(x) = —4x?cosx 4. f(x) =2sin’x
5 —cosx sin x
5. = -0 6, = —
f® 5+ sinx f® x2 4 sinx

7. f(x) =secx —+/2tanx 8. f(x) = (x2+ I)secx

9. f(x) =4cscx —cotx 10. f(x) =cosx —xcscx

11. f(x) =secxtanx 12. f(x) =cscxcotx

13 ) cotx 14 ) secx
. X)) = —""— . X)) = ———
1+ cscx 1+ tanx

15. f(x) = sin® x + cos® x 16. f(x) = sec® x — tan® x

17. f(x) = sin x sec x 18. F(x) = (x24I cotx

1+ xtanx 3 —cosxcscx

19-24 Find d*y/dx>.

19. y = xcosx 20. y =cscx

21. y = xsinx — 3cosx 22. y =x%cosx +4sinx

23. y =sinxcosx 24. y =tanx

25. Find the equation of the line tangent to the graph of tan x at
(a) x=0 (b) x =n/4 (c) x =—m/4.

26. Find the equation of the line tangent to the graph of sin x at
(a) x=0 b) x=m (c) x = /4.

27. (a) Show thaty = x sinx isasolutiontoy” + y = 2cos x.
(b) Show that y = xsinx is a solution of the equation
y® 4+ y”" = —2cosx.

28. (a) Show that y = cosx and y = sin x are solutions of the
equation y” 4+ y = 0.
(b) Show that y = Asinx + Bcosx is a solution of the
equation y” + y = 0 for all constants A and B.
29. Find all values in the interval [—27, 27] at which the graph
of f has a horizontal tangent line.
(a) f(x) =sinx (b) f(x) =x4cosx
(c) f(x)=tanx (d) f(x) =secx

™ 30. (a) Use a graphing utility to make rough estimates of the

values in the interval [0, 27] at which the graph of
y = sinx cos x has a horizontal tangent line.

(b) Find the exact locations of the points where the graph
has a horizontal tangent line.

31. A 10 ft ladder leans against a wall at an angle 6 with the
horizontal, as shown in the accompanying figure. The top
of the ladder is x feet above the ground. If the bottom of
the ladder is pushed toward the wall, find the rate at which
x changes with respect to 6 when 6 = 60°. Express the
answer in units of feet/degree.

10 ft ‘
X

0 \
32. An airplane is flying on a horizontal path at a height of
3800 ft, as shown in the accompanying figure. At what rate

is the distance s between the airplane and the fixed point

P changing with respect to & when 6 = 30°? Express the
answer in units of feet/degree.

< Figure Ex-31

< Figure Ex-32

33. Asearchlight is trained on the side of a tall building. As the
light rotates, the spot it illuminates moves up and down the
side of the building. That is, the distance D between ground
level and the illuminated spot on the side of the building is
a function of the angle 6 formed by the light beam and the
horizontal (see the accompanying figure). If the searchlight
is located 50 m from the building, find the rate at which D
is changing with respect to 6 when 8 = 45°. Express your
answer in units of meters/degree.

< Figure Ex-33



34. An Earth-observing satellite can see only a portion of the
Earth’s surface. The satellite has horizon sensors that can
detect the angle 6 shown in the accompanying figure. Let
r be the radius of the Earth (assumed spherical) and & the
distance of the satellite from the Earth’s surface.

(a) Show that h = r(csc6 — 1).

(b) Usingr = 6378 km, find the rate at which % is changing
with respect to & when 6 = 30°. Express the answer in
units of kilometers/degree.

Source: Adapted from Space Mathematics, NASA, 1985.

0

h Satellite

Earth < Figure Ex-34

35-38 True—False Determine whether the statement is true or
false. Explain your answer.

35. If g(x) = f(x)sinx, then g’(x) = f'(x) cosx.
36. If g(x) = f(x)sinx, then g’(0) = f(0).
37. If f(x)cosx = sinx, then f'(x) = sec’ x.

38. Suppose that g(x) = f(x)secx, where f(0)=8 and
f/(0) = —2. Then

, . f(h)ysech — f(0) . 8(sech—1)
g0 =lim —— = lim ——
h—0 h h—0 h

d
=8. —[secx] =8secO0tan0 =0
dx 420
39-40 Make a conjecture about the derivative by calculating
the first few derivatives and observing the resulting pattern.
d87 leO

39. m [Sin x] 40

41. Let f(x) = cosx. Find all positive integers n for which
™ (x) = sin x.

. W[COSX]

42. Let f(x) =sinx. Find all positive integers n for which
™ (x) = sinx.

FOCUS ON CONCEPTS

43. In each part, determine where f is differentiable.
(a) f(x) =sinx (b) f(x) =cosx
() f(x) =tanx (d) f(x) =cotx
(e) f(x) =secx (f) f(x) =cscx

(& fx)= T coss th) f&x)= ——
+ cosx SIn x COS X
i) f@) = 5
—sinx
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44. (a) Derive Formula (4) using the definition of a deriva-
tive.
(b) Use Formulas (3) and (4) to obtain (7).
(c¢) Use Formula (4) to obtain (6).
(d) Use Formula (3) to obtain (8).

45. Use Formula (1), the alternative form for the definition
of derivative given in Formula (13) of Section 2.2, that
is, _

P = tim L@ =@
w

w—x — X

and the difference identity

. N Ly a+p
s1na—s1nﬂ_251n(T)cos< > >

d
to show that — [sin x] = cos x.
dx

46. Follow the directions of Exercise 45 using the difference

identity
cosa —cos B = —2sin ﬂ sin otp
2 2
d .
to show that —[cos x] = — sin x.
dx

. tanh
47. (a) Show that lim —— =1
h—0 h

(b) Use the result in part (a) to help derive the formula
for the derivative of tan x directly from the defini-
tion of a derivative.

48. Without using any trigonometric identities, find

. tan(x +y) —tany
lim ——=
x—0 X
[Hint: Relate the given limit to the definition of the

derivative of an appropriate function of y.]

49. The derivative formulas for sin x, cos x, tan x, cot x, Sec x,
and csc x were obtained under the assumption that x is mea-
sured in radians. If x is measured in degrees, then

. sinx b4
lim = —
x>0 X 180

(See Exercise 49 of Section 1.6). Use this result to prove
that if x is measured in degrees, then

d . T
(a) E[sm x] = 180 COS X
(b) i[cosx] = - sin x.
dx 180

50. Writing Suppose that f is a function that is differentiable
everywhere. Explain the relationship, if any, between the
periodicity of f and that of f’. That is, if f is periodic,
must f’ also be periodic? If f’ is periodic, must f also be
periodic?
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t/ QUICK CHECK ANSWERS 2.5

1. (a) cosx (b) —sinx (c) sec’x (d) secxtanx 2. f'(x) = cos’x —sinzx,f/(yr/3) = —%

d
3. (a) E[sinx]
x=n/2

m THE CHAIN RULE

d
=0 (b) a[cscx] = —cscxcotx

Mike Brinson/Getty Images

The cost of a car trip is a combination of
[uel efficiency and the cost of gasoline.

dy ool du

1
&du dx_4l
H

[ |

dx 4
Rates of change multiply:
&y _dy du
dx du dx
A Figure 2.6.1

The name “chain rule” is appropriate
because the desired derivative is ob-
tained by a two-link “chain” of simpler
derivatives.

In this section we will derive a formula that expresses the derivative of a composition
fog interms of the derivatives of f and g. This formula will enable us to differentiate
complicated functions using known derivatives of simpler functions.

DERIVATIVES OF COMPOSITIONS

Suppose you are traveling to school in your car, which gets 20 miles per gallon of gasoline.
The number of miles you can travel in your car without refueling is a function of the number
of gallons of gas you have in the gas tank. In symbols, if y is the number of miles you can
travel and u is the number of gallons of gas you have initially, then y is a function of u, or
y = f(u). As you continue your travels, you note that your local service station is selling
gasoline for $4 per gallon. The number of gallons of gas you have initially is a function
of the amount of money you spend for that gas. If x is the number of dollars you spend
on gas, then u = g(x). Now 20 miles per gallon is the rate at which your mileage changes
with respect to the amount of gasoline you use, so

d
) = d_y = 20 miles per gallon
u

Similarly, since gasoline costs $4 per gallon, each dollar you spend will give you 1/4 of a

gallon of gas, and / du 1
g'(x) = — = - gallons per dollar
dx 4

Notice that the number of miles you can travel is also a function of the number of dollars
you spend on gasoline. This fact is expressible as the composition of functions

y=f) = f(gx))

You might be interested in how many miles you can travel per dollar, which is dy/dx.
Intuition suggests that rates of change multiply in this case (see Figure 2.6.1), so
dy dy du 20miles 1 gallons 20 miles

=—.—= . = = 5 miles per dollar
dx du dx 1 gallon 4 dollars 4 dollars

The following theorem, the proof of which is given in Appendix D, formalizes the
preceding ideas.

2.6.1 THEOREM (The Chain Rule) If g is differentiable at x and f is differentiable at
g(x), then the composition f o g is differentiable at x. Moreover, if

y=f(gk) and u=g(x)

then' y = f(u) and
dy dy du

— L 1
dx du dx M



2.6 The Chain Rule 175

» Example 1 Find dy/dx if y = cos(x?).
Formula (1) is easy to remember be-
cause the left side is exactly what re-

. 3 B . .
sults fwe “cancel” the du's on the right Solution. Letu = x° and express y as y = cos u. Applying Formula (1) yields

side. This “canceling” device provides a
good way of deducing the correct form d_y — d_y . d_u
of the chain rule when different vari- dx du dx
ables are used. For example, if w is a
function of x and x is a function of ¢ d d 3
: . = —[cosu] - —[x7]

then the chain rule takes the form du X

dw dw dx . 2

aw _av 4t = (—sinu) - 3x

dt dx dt ( ) ( )

= (—sin(x*)) - 3x?) = —3x%sin(x?) «

» Example 2 Find dw/dt if w = tanx and x = 4> +1¢.
Solution. In this case the chain rule computations take the form
dw dw dx
dt — dx dt

d[t ] d[4t3+t]
= — [tanx] - —
dx dt

= (sec’x) - (1262 + 1)

= [sec’(r® + )] (126> + 1) = (121> + D) sec’ (41> +1) «

Il AN ALTERNATIVE VERSION OF THE CHAIN RULE
Formula (1) for the chain rule can be unwieldy in some problems because it involves so
many variables. As you become more comfortable with the chain rule, you may want to
dispense with writing out the dependent variables by expressing (1) in the form

Confirm that (2) is an alternative ver- i[f(g(x))] =(fog)x) = f(gx))g'(x) 2)
sion of (1) by letting y = f(g(x)) and dx
u = g(x).

A convenient way to remember this formula is to call f the “outside function” and g the
“inside function” in the composition f(g(x)) and then express (2) in words as:

The derivative of f(g(x)) is the derivative of the outside function evaluated at the inside
function times the derivative of the inside function.

d
d—[f(g(x))] = f'(gx))-g'(x)
X ———

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function
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» Example 3 (Example I revisited) Find b/ (x) if h(x) = cos(x?).

Solution. We can think of / as a composition f(g(x)) in which g(x) = x? is the inside
function and f(x) = cos x is the outside function. Thus, Formula (2) yields

W (x) = f'(g(x))-g'(x)
Derivative of the outside

function evaluated at the
inside function

Derivative of the
inside function

= f(xY) - 322
= —sin(x?) - 3x2 = —3x%sin(x?)

which agrees with the result obtained in Example 1. «

» Example 4

d 2 d 2 2 2
—[tan" x] = —[(tanx)“] = (2tan x) - (sec” x) = 2tan x sec” x
dx dx —_———— ———
Derivative of the outside Derivative of the

function evaluated at the

L . inside function
inside function

i [ x2 4+ 1] = ; .2y = _x SeeFormula(6) | ¢
dx 2 x2+1 x2+1 of Section 2.3.

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

B GENERALIZED DERIVATIVE FORMULAS
There is a useful third variation of the chain rule that strikes a middle ground between
Formulas (1) and (2). If we let u = g(x) in (2), then we can rewrite that formula as

d o du 3
Tl = 3)

This result, called the generalized derivative formula for f, provides a way of using the
derivative of f(x) to produce the derivative of f(u), where u is a function of x. Table 2.6.1
gives some examples of this formula.

Table 2.6.1
GENERALIZED DERIVATIVE FORMULAS
(%C[u’] =ru! %
d%[sin u] =cosu% ‘%C[cos u] =—sinu%
déx [tan u] = sec?u % déx [cot u] = —csc?u %

d - du d - du
b [sec u] = sec u tan u e I [csc u] csc u cot u e
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» Example 5 Find
@ Lneo] ® Lrmeten] © L [\/x3+cscx]
dx dx dx
(d) %[xz—x+2]3/4 (e) %[(1+x5 cotx) %]

Solution (a). Taking u = 2x in the generalized derivative formula for sin u yields

d . d . du d
—[sin(2x)] = —[sinu] = cosu— = cos2x - —|[2x] = cos2x - 2 = 2cos 2x
dx dx

Solution (b). Taking u = x* + 1 in the generalized derivative formula for tan u yields

d [tan( 2y D] d [tan u] = sec’ du
— X = — ul = u—
dx dx dx

d

=sec’(x>+1)- d—[x2 + 1] =sec?(x>+1) - 2x
X

= 2xsec’(x®>+ 1)

Solution (¢). Taking u = x> + csc x in the generalized derivative formula for \/u yields

d d 1 d 1 d
— [\/x3 +cscx] = d—[ﬁ] -4 —[x3 + csex]
X

dx Zﬁazza/x3+cscx.dx
1 (3x? tx) 3x% — cscx cot x
=——————— . (3x"—cscxcotx) = ————
24/x3 +cscx 2/x3 4+ cscx
Solution (d). Takingu = x2 — x + 2inthe generalized derivative formula for «®/* yields

d d 3, .du
-« _ 2 3/4 _ & 3/4y 2 —1/4%8
dx [ =2 +2] dx [u™"] 4u dx

3 d
=@ —x+ )7 x4 ]

3
- Z(xz —x+2)ax -1

Solution (e). Taking u = 1+ x°cotx in the generalized derivative formula for 18
yields

d
14 Scotn) ] = L8 = g, 9%
(14 x> cotx)”®] dx[u ] o

i |
5 9 d 5
=—-8(1+x’cotx)”” - —[1+ x”cotx]
dx
= —8(1 +x"cotx)™? - [x*(—csc® x) + 5x* cot x|

= (8x7 csc? x — 40x* cot x)(1 + x> cotx)™° «

Sometimes you will have to make adjustments in notation or apply the chain rule more
than once to calculate a derivative.

» Example 6 Find

d d
@ dx [sin( 1 +cosx )] (b) d—l; if u = sec/wt (w constant)
X
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TECHNOLOGY MASTERY

If you have a CAS, use it to perform the
differentiation in (4).

Solution (a). Taking u = /1 + cosx in the generalized derivative formula for sin u
yields

d d d
— [sin(vl + cosx )] = —[sinu] = cos u—u
dx d

dx X

d
=cos(+/1 +cosx) - Ir [vl +Cosx]
X

— cos ( 1 ¥ cos x) X ;Ve us]edfthe ffnezl]lmfl (]ienvanve
2 /1 + cosx ormulafor \/u withu = 1 + cos x.
sin x cos(+/1 + cos x)
24/1 4+ cos x

Solution (b).

d d d . —
_M — E[SGC /a)t] = sec /a)t tan /wta[ﬁ] We used the generalized derivative

dt formula for sec u with u = /wt.
/ / w We used the generalized derivative
= sec Vol tan v ot N formula for \/u with u = wt. “

DIFFERENTIATING USING COMPUTER ALGEBRA SYSTEMS

Even with the chain rule and other differentiation rules, some derivative computations can
be tedious to perform. For complicated derivatives, engineers and scientists often use
computer algebra systems such as Mathematica, Maple, or Sage. For example, although
we have all the mathematical tools to compute

d |:(x2 + l)losin3(ﬁ):| @

dx V1+cscx

by hand, the computation is sufficiently involved that it may be more efficient (and less
error-prone) to use a computer algebra system.

VQUICK CHECK EXERCISES 2.6 (See page 181 for answers.)

1. The chain rule states that the derivative of the composition 3. Find dy/dx.
of two functions is the derivative of the ____ function (@ y=@2+50 (b) y=+1+6x
evaluated at the — function times the derivative of 4. Find dy/dx.
the ____ function. () y = sin(3x + 2) (b) y = (x2 tanx)4
2. If y is a differentiable function of u, and u is a differentiable 5. Suppose that £(2) =3, f'(2) =4, g(3) = 6, and
function of x, then ¢'(3) = —5. Evaluate
dy (a) h'(2), where h(x) = g(f(x))
dx (b) kK'(3), where k(x) = f(%g(x)).

EXERCISE SET 2.6 [ Graphing Utility CAS

1. Given that

3. Let f(x) = x> and g(x) = 2x — 3.

f(0)=2,g0)=0 and g'(0)=3 (a) Find (fog)(x) and (fog) (x).

find (f0g)'(0).
2. Given that

(b) Find (go f)(x) and (go f)'(x).

4. Let f(x) = 5/x and g(x) = 4 + cos x.

9 =5g2=9 and g'(2)=-3 (a) Find (fog)(x) and (fog) (x).

find (f02)'(2).

(b) Find (go f)(x) and (go f)'(x).
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5. Given the following table of values, find the indicated
derivatives in parts (a) and (b).

2.6 The Chain Rule

41-42 Use a CAS to find dy/dx.

41. y = [xsin2x + tan*(x")]°

7 —x)/3x2+5
42. y = tan* (2+(x)x+>

x3 +sinx
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x | f® ]| W | s | £&
5 | -2 51 7
S| 3 | -1 |12 ] 4

derivatives in parts (a) and (b).

(@) F'(3), where F(x) = f(g(x))
(b) G'(3), where G(x) = g(f(x))

6. Given the following table of values, find the indicated

x | f@) | f®) | gk | &)
-1 | 2 3 2 | -3
0 4 1 | -5

(@) F'(=1), where F(x) = f(g(x))
(b) G'(=1), where G(x) = g(f(x))

7-26 Find f'(x).

7. f(x) = (&3 4+ 2x)% 8.
-2
9. f(x) = <x3 — Z) 10.
X
n fo)=— 2 1

(Bx2—=2x+1)3

13. f(x) = V4 +3x 14.

15. f(x) = sin (%) 16.
X

17. f(x) =4cos’ x 18.

19. f(x) = cos*(3./x) 20.

21. f(x) = 2sec?(x”) 22.

23. f(x) = +/cos(5x) 24.
25. f(x) =[x +csc(x® +3)] 73
26. f(x) = [x* —sec(dx® —2)17*

27-40 Find dy/dx.

fx) =GBx*+2x —1)°

1
IO =Ty
f(x) =+/x3=2x+5
fo =5 (=)
J(x) = tan /x

fx)=4x+5 sin x
fx) = tan*(x?)

—cosd [ X
f(x) = cos (x—l—l)

f(x) = V3x — sin(4x)

27. y = x3sin’(5x) 28. y = /x tan®(/x)
sin x
29, y=x° 1 30 y=———
y =¥ sec(1/2) YT SecBr+ 1)
31. y = cos(cosx) 32. y = sin(tan 3x)
. 1 4 csc(x?)
— ol _
33. y = COS (SIH 2)C) 34. y = m

35 y = (5x+8) (1—x)° 36.

x—5\°
37. y= 38.
2x + 1

_ (2x+3)°
T (@x2—1)8

39. y 40.

y = (x2+x)sin®x

1+x2 17
yz(l—ﬂ)

y = [1+sin’ (x*)]"2

43-50 Find an equation for the tangent line to the graph at the

specified value of x.

43. y =xcos3x, x =7

44. y =sin(l + x3), x = -3

45. y = sec’ (g—x), x:—ﬂ

13
46.y:(x—7),x:2
x

48. y =3cot*x, x :%

x
50. y=——, x=0
Y V1= x?

51-54 Find d*y/dx>.

51. y = x cos(5x) — sin’ x

1+x
1—x

53. y=

2
47. y =tan(4x?), x = /7

49. y=x>/5-x%, x =1

52. y = sin(3x2)

1
54. y = xtan <7>
X

55-58 Find the indicated derivative.

d
55. y = cot’ (7w — 0); find 2.

do

au +b\° dxr

56. 1 = ; find —
(cu+d) " du

d
57. —[acos’mw+b sin® Tw]
do

d
58. x = csc? (g - y); find —x.

(a, b, ¢, d constants).

(a, b constants)

dy
[~ 59. (a) Use a graphing utility to obtain the graph of the function

f(x) = x4 — x2.

(b) Use the graph in part (a) to make a rough sketch of the
graph of f.

(¢) Find f'(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f’.

(d) Find the equation of the tangent line to the graph of f
at x = 1, and graph f and the tangent line together.

[~ 60. (a) Use a graphing utility to obtain the graph of the function

f(x) = sin x? cos x over the interval [—/2, 7/2].

(b) Use the graph in part (a) to make a rough sketch of the
graph of f’ over the interval.

(c) Find f'(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f’ over
the interval.

(d) Find the equation of the tangent line to the graph of f at
x =1, and graph f and the tangent line together over
the interval.



180 Chapter 2 / The Derivative

61-64 True-False Determine whether the statement is true or
false. Explain your answer.

61.

62.
63.
64.
65.

66.

FOCUS ON CONCEPTS

d
If y = f(x), then E[[y] =/ fx).

Ify = f(u) and u = g(x), thendy/dx = f'(x) - g'(x).
If y = cos[g(x)], then dy/dx = — sin[g’(x)].
If y = sin®(3x3), then dy/dx = 27x%sin’(3x?) cos(3x?).
If an object suspended from a spring is displaced vertically
from its equilibrium position by a small amount and re-
leased, and if the air resistance and the mass of the spring
are ignored, then the resulting oscillation of the object is
called simple harmonic motion. Under appropriate condi-
tions the displacement y from equilibrium in terms of time
t is given by y = Acoswt
where A is the initial displacement at time t = 0, and w is
a constant that depends on the mass of the object and the
stiffness of the spring (see the accompanying figure). The
constant | A| is called the amplitude of the motion and w the
angular frequency.
(a) Show that
d’y 2
ar =YY
(b) Theperiod T is the time required to make one complete
oscillation. Show that T = 27/ w.
(c) The frequency f of the vibration is the number of os-
cillations per unit time. Find f in terms of the period T'.
(d) Find the amplitude, period, and frequency of an
object that is executing simple harmonic motion given
by y = 0.6 cos 15¢, where ¢ is in seconds and y is in
centimeters.

y

0 27/w

y = A cos wt

A Figure Ex-65

Find the value of the constant A so that y = A sin 3¢ satisfies
the equation 2y

W+2y:4sin3t

67. Use the graph of the function f in the accompanying

figure to evaluate

o [ 7]

dx

x=—1

68. Using the function f in Exercise 67, evaluate

-3 -2 -1 0 1 2 <Figure Ex-67

4 r@sinn)
dx x=1/6

69.

70.

The accompanying figure shows the graph of atmospheric

pressure p (Ib/in?) versus the altitude 4 (mi) above sea level.

(a) From the graph and the tangent line at # = 2 shown on
the graph, estimate the values of p and dp/dh at an
altitude of 2 mi.

(b) If the altitude of a space vehicle is increasing at the
rate of 0.3 mi/s at the instant when it is 2 mi above sea
level, how fast is the pressure changing with time at this
instant?

15

(=}
FrTTTTTTTT T

W

Pressure P (Ib/in?)

A R I
123 4567

S
(=]

Altitude i (mi) < Figure Ex-69

The force F (in pounds) acting at an angle 6 with the hor-
izontal that is needed to drag a crate weighing W pounds
along a horizontal surface at a constant velocity is given by

- MW
" cosf + pusinf

where u is a constant called the coefficient of sliding fric-

tion between the crate and the surface (see the accompany-

ing figure). Suppose that the crate weighs 150 1b and that

u=0.3.

(a) FinddF/d® when6 = 30°. Express the answer in units
of pounds/degree.

(b) Find dF/dt when 6 = 30° if 6 is decreasing at the rate
of 0.5°/s at this instant.

I

< Figure Ex-70
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71. Recall that 76. Giventhat f'(x) = +/3x +4and g(x) = x> — 1, find F'(x)
e = { I, x>0 if F(x) = f(g(x).
dx -1, x<0 77. Given that f'(x) = —— and g(x) = 3x — 1, find
Use this result and the chain rule to find Lo x2+1
d F'(x) if F(x) = f(g(x)).
——(|sinx[) . . d ) )
dx 78. Find f'(x2) if —[f(x®)] = x%.
for nonzero x in the interval (—, 7). dx
72. Use the derivative formula for sin x and the identity 79. Find di[ fO1if di[ f(Bx)] = 6.
. T X X
COS X = s (5 - x) 80. Recall that a function f is even if f(—x) = f(x) and odd

if f(—x) = — f(x), for all x in the domain of f. Assuming
that f is differentiable, prove:

to obtain the derivative formula for cos x.

73. Let 1 (a) f’isoddif f is even
Fooy=1* sin PR #0 (b) f'isevenif f isodd.
0, x=0 81. Draw some pictures to illustrate the results in Exercise 80,
(a) Show that f is continuous at x = 0. and write a paragraph that gives an informal explanation of
(b) Use Definition 2.2.1 to show that £'(0) does not exist. why the results are true.
(¢) Find f’'(x) for x # 0. 82. Lety = filu),u = fL(v),v= fz3(w),andw = fy(x). Ex-
(d) Determine whether lim0 f(x) exists. press dy/dx in terms of dy/du, dw/dx, du/dv, and dv/dw.
74. Let 83. Find a formula for
1 a4
oo — x%sin—, x#0 P [f(g(h(x)))]
0 ¥ =0 84. Writing The “co” in “cosine” comes from “complemen-

tary,” since the cosine of an angle is the sine of the comple-

(a) Show that f is continuous at x = 0. .
mentary angle, and vice versa:

(b) Use Definition 2.2.1 to find f7(0). = =
(c) Find f’(x) for x # 0. cosx = sin (5 — x) and sinx = cos (5 — x)

d) Show that f” is not continuous at x = 0. . .
@ ! Suppose that we define a function g to be a cofunction of a

function f if
x)=7r (z —x) for all x
s =713

Thus, cosine and sine are cofunctions of each other, as are

75. Given the following table of values, find the indicated de-
rivatives in parts (a) and (b).

x| f& | f'

2 1 7 cotangent and tangent, and also cosecant and secant. If g is

[ 8] 5 -3 the cofunction of f, state a formula that relates g’ and the

cofunction of f’. Discuss how this relationship is exhibited

(a) g'(2), where g(x) = [f(x)]? by the derivatives of the cosine, cotangent, and cosecant
(b) h'(2), where h(x) = f(x?) functions.

t/ QUICK CHECK ANSWERS 2.6

1. outside: inside; inside 2. 2. 9 3 (@) 1062 +5)° - 26 = 206 (2 +5)° (b) —— 6 .
. outsiae,; insiae, inside « — + — . (a X X = X (X -0 =
du dx 21+ 6x 1+ 6x
1 1 20
4. (a) 3cos(3x +2) (b) 4(x?tanx)*(2x tanx + x%sec’x) 5. (a) g'(f(2)f'(2) = =20 (b) f/<§g(3)> . gg/(s) =-3
CHAPTER 2 REVIEW EXERCISES [ Graphing utility  [€] cas
1. Explain the difference between average and instantaneous (a) Find the average rate of change of y with respect to x

rates of change, and discuss how they are calculated. over the interval [3, 4].
(b) Find the instantaneous rate of change of y with respect
tox atx = 3. (cont.)

2. In parts (a)—(d), use the function y = %xz.



182 Chapter 2 / The Derivative

4.

5.

~ 6.

10.

11.

(c) Find the instantaneous rate of change of y with respect
to x at a general x-value.

(d) Sketch the graph of y = %xz together with the secant
line whose slope is given by the result in part (a), and
indicate graphically the slope of the tangent line that
corresponds to the result in part (b).

. Complete each part for the function f(x) = x% + 1.

(a) Find the slope of the tangent line to the graph of f at a
general x-value.

(b) Find the slope of the tangent line to the graph of f at
x=2.

A car is traveling on a straight road that is 120 mi long. For

the first 100 mi the car travels at an average velocity of 50

mi/h. Show that no matter how fast the car travels for the

final 20 mi it cannot bring the average velocity up to 60

mi/h for the entire trip.

At time ¢+ = 0 a car moves into the passing lane to pass a
slow-moving truck. The average velocity of the car from
t=1tot=14+his

3(h+ 1)*° 4+580h —3
10k

Vave =

Estimate the instantaneous velocity of the car at r =1,
where time is in seconds and distance is in feet.

A skydiver jumps from an airplane. Suppose that the dis-
tance she falls during the first # seconds before her parachute
opens is s(¢) = 976((0.835)" — 1) + 176¢, where s is in
feet. Graph s versus ¢ for 0 < ¢ < 20, and use your graph to
estimate the instantaneous velocity at t = 15.

. A particle moves on a line away from its initial position

so that after ¢ hours it is s = 3¢> 4 ¢ miles from its initial

position.

(a) Findthe average velocity of the particle over the interval
[1, 3].

(b) Find the instantaneous velocity at t = 1.

. State the definition of a derivative, and give two interpreta-

tions of it.

. Use the definition of a derivative to find dy/dx, and check

your answer by calculating the derivative using appropriate
derivative formulas.

@ y=+v9—4 ) y=
x+1
xz_l’ xfl
Suppose that f(x) = {k(x -1, x>1.

For what values of k is f

(a) continuous? (b) differentiable?

The accompanying figure shows the graph of y = f’(x) for

an unspecified function f.

(a) For what values of x does the curve y = f(x) have a
horizontal tangent line?

(b) Over what intervals does the curve y = f(x) have tan-
gent lines with positive slope?

12.

13.

(c) Over what intervals does the curve y = f(x) have tan-
gent lines with negative slope?
(d) Given that g(x) = f(x)sinx, find g”(0).

< Figure Ex-11

Sketch the graph of a function f for which f(0) =1,
f'(0)=0, f'(x) > 0if x <0,and f'(x) <0ifx > 0.
According to the U.S. Bureau of the Census, the estimated
and projected midyear world population, N, in billions for
the years 1950, 1975, 2000, 2025, and 2050 was 2.555,
4.088, 6.080, 7.841, and 9.104, respectively. Although the
increase in population is not a continuous function of the
time ¢, we can apply the ideas in this section if we are will-
ing to approximate the graph of N versus ¢ by a continuous
curve, as shown in the accompanying figure.

(a) Use the tangent line at ¢+ = 2000 shown in the figure to
approximate the value of dN/dt there. Interpret your
result as a rate of change.

(b) The instantaneous growth rate is defined as

dN/dt
N

Use your answer to part (a) to approximate the instanta-
neous growth rate at the start of the year 2000. Express
the result as a percentage and include the proper units.

Ju—
o
1

World population N (billions)

S = N W kA LA 0O
T

I | | I |
1950 1975 2000 2025 2050

Time ¢ (years)

< Figure Ex-13

. Use a graphing utility to graph the function

f) =t —x—1]—x

and estimate the values of x where the derivative of this
function does not exist.



15-18 (a) Use a CAS to find f’(x) via Definition 2.2.1; (b)
check the result by finding the derivative by hand; (c) use the
CAS to find f"(x).

15. f(x) = xsinx 16. f(x) = /x +cos’x
22 —x+5 tan x

7. f=——— 8. /() =7

19. The amount of water in a tank ¢ minutes after it has started
to drain is given by W = 100(t — 15)? gal.
(a) At what rate is the water running out at the end of 5
min?
(b) What is the average rate at which the water flows out
during the first 5 min?

20. Use the formula V = I3 for the volume of a cube of side [
to find
(a) the average rate at which the volume of a cube changes
with [ as [ increases from/ =2tol =4
(b) the instantaneous rate at which the volume of a cube
changes with / when/ = 5.

M 21-22 Zoom in on the graph of f on an interval containing
x = xo until the graph looks like a straight line. Estimate the
slope of this line and then check your answer by finding the exact
value of f’(xp).

21. (@) f(x)=x>—1, xo=1.8
2
) f(x) = ——, xp=3.5
x—2
22. () f(x)=x>—x241, xg=23

X
b =———, xo=-05
) f) = 57 %
23. Suppose that a function f is differentiable at x = 1 and
lim fa+m -5
h—0 h

Find f(1) and f'(1).
24. Suppose that a function f is differentiable at x = 2 and
X f(x) —24
x—2

lim
x—2

Find £(2) and £'(2).

25. Find the equations of all lines through the origin that are
tangent to the curve y = x> — 9x2 — 16x.

=28

26. Find all values of x for which the tangent line to the curve
y = 2x3 — x? is perpendicular to the line x + 4y = 10.

27. Let f(x) = x2. Show that for any distinct values of a and
b, the slope of the tangent line to y = f(x) atx = %(a +b)
is equal to the slope of the secant line through the points
(a,a*) and (b, b*). Draw a picture to illustrate this result.

Chapter 2 Review Exercises 183

28. In each part, evaluate the expression given that f(1) =1,
g(1)=-2, f/(1) =3,and g'(1) = —1.

d d
@ ——[f)g00)] (b) — [f (x)]
X

1 dx | g(x)
d d

© = [Vio] @ —=[f(D)g'(D)]
X dx

x= x=1

x=1

29-32 Find f/(x).
29. (a) f(x) =x%—3x +5x7°

(b) f(x) = Qx+D"'Gx* =7
30. (a) f(x) =sinx +2cos’x

(b) f(x) = (1 +secx)(x?> — tan x)
31. (a) f(x) =~Bx+1(x —1)2

x4+ 1Y
(b) f(x)=< = )

1

2x +sin’ x

c2x

32. (@) f(x) = cot (CS—) (b) f(x) =

x345

33-34 Find the values of x at which the curve y = f(x) has a

horizontal tangent line.

(x =3)*

x2 4 2x

35. Find all lines that are simultaneously tangent to the graph
of y = x>+ 1 and to the graph of y = —x% — 1.

33, ) = Qx+D(x =25 34 f(x) =

36. (a) Let n denote an even positive integer. Generalize the
result of Exercise 35 by finding all lines that are simul-
taneously tangent to the graph of y = x" +n — 1 and
to the graphof y = —x" —n + 1.

(b) Let n denote an odd positive integer. Are there any
lines that are simultaneously tangent to the graph of
y=x"+n — landtothe graphof y = —x" —n + 1?
Explain.

37. Find all values of x for which the line that is tangent to

y = 3x — tan x is parallel to the line y — x = 2.

i~ 38.

Approximate the values of x at which the tangent line to the

graph of y = x* — sin x is horizontal.

39. Suppose that f(x) = M sinx 4+ N cos x for some constants
M and N. If f(rr/4) = 3 and f'(7r/4) = 1, find an equation
for the tangent line to y = f(x) at x = 37/4.

40. Suppose that f(x) = M tanx + N sec x for some constants
M and N. If f(7r/4) = 2and f'(r/4) = 0, find an equation
for the tangent line to y = f(x) atx = 0.

41. Suppose that f'(x) = 2x - f(x) and f(2) = 5.

(a) Find g'(7/3) if g(x) = f(secx).

(b) Find #'(2) if h(x) = [f(x)/(x — D]*.
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1. Suppose that f is a function with the properties (i) f is differ-

entiable everywhere, (ii) f(x + y) = f(x) f(y) for all values

of x and y, (iii) f(0) # 0, and (iv) f/(0) = 1.

(a) Show that f(0) = 1. [Hint: Consider f(0+ 0).]

(b) Show that f(x) > O for all values of x. [Hint: First show
that f(x) # O for any x by considering f(x — x).]

(c) Use the definition of derivative (Definition 2.2.1) to show
that f'(x) = f(x) for all values of x.

. Suppose that f and g are functions each of which has the

properties (i)—(iv) in Exercise 1.

(a) Show that y = f(2x) satisfies the equation y’ = 2y in
two ways: using property (ii), and by directly applying
the chain rule (Theorem 2.6.1).

(b) If k is any constant, show that y = f(kx) satisfies the
equation y’ = ky.

(c) Find a value of k such that y = f(x)g(x) satisfies the
equation y' = ky.

(d) If h = f/g, find h'(x). Make a conjecture about the
relationship between f and g.

. (a) Apply the product rule (Theorem 2.4.1) twice to show
that if f, g, and h are differentiable functions, then
f - g - h is differentiable and

(f-gh=f-gh+tf-g ht+tf-gh
(b) Suppose that f, g, h, and k are differentiable functions.
Derive a formula for (f - g-h - k).

(c) Based on the result in part (a), make a conjecture about
a formula differentiating a product of n functions. Prove
your formula using induction.

. (a) Apply the quotient rule (Theorem 2.4.2) twice to show

that if f, g, and h are differentiable functions, then
(f/g)/h is differentiable where it is defined and

o h—f-g - h—ef.-o.- W
(g =L 821 gfh2 ik

(b) Derive the derivative formula of part (a) by first simplify-
ing (f/g)/h and then applying the quotient and product
rules.

(c) Apply the quotient rule (Theorem 2.4.2) twice to derive
a formula for [ f/(g/h)].

(d) Derive the derivative formula of part (c) by first simplify-
ing f/(g/h) and then applying the quotient and product
rules.

5. Assume that h(x) = f(x)/g(x) is differentiable. Derive the

quotient rule formula for 4’ (x) (Theorem 2.4.2) in two ways:

(a) Write h(x) = f(x) - [g(x)]~" and use the product and
chain rules (Theorems 2.4.1 and 2.6.1) to differentiate /.

(b) Write f(x) = h(x) - g(x) and use the product rule to de-
rive a formula for A’ (x).

J QEXPANDING THE CALCULUS HORIZON

To learn how derivatives can be used in the field of robotics, see the module entitled Robotics at:

www.wiley.com/college/anton


http://www.wiley.com/college/anton

Craig Lovell/Corbis Images

The growth and decline of animal
populations and natural resources
can be modeled using basic
functions studied in calculus.

TOPICS IN
DIFFERENTIATION

We begin this chapter by extending the process of differentiation to functions that are either
difficult or impossible to differentiate directly. We will discuss a combination of direct and
indirect methods of differentiation that will allow us to develop a number of new derivative
formulas that include the derivatives of logarithmic, exponential, and inverse trigonometric
functions. Later in the chapter, we will consider some applications of the derivative. These will
include ways in which different rates of change can be related as well as the use of linear
functions to approximate nonlinear functions. Finally, we will discuss L'Hopital’s rule, a
powerful tool for evaluating limits.

m IMPLICIT DIFFERENTIATION

Up to now we have been concerned with differentiating functions that are given by
equations of the form y = f(x). In this section we will consider methods for differen-
tiating functions for which it is inconvenient or impossible to express them in this form.

FUNCTIONS DEFINED EXPLICITLY AND IMPLICITLY

An equation of the form y = f(x) is said to define y explicitly as a function of x because
the variable y appears alone on one side of the equation and does not appear at all on the
other side. However, sometimes functions are defined by equations in which y is not alone
on one side; for example, the equation

yx+y+l=x (1
is not of the form y = f(x), but it still defines y as a function of x since it can be rewritten
as a1

r= x+1
Thus, we say that (1) defines y implicitly as a function of x, the function being
x—1
X) =
f) x+1
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A Figure 3.1.1

y
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\
Ly=—x

A Figure 3.1.2 The graph of x = y?
does not pass the vertical line test, but

the graphs of y = /x and y = —/x do.

An equation in x and y can implicitly define more than one function of x. This can occur
when the graph of the equation fails the vertical line test, so it is not the graph of a function
of x. For example, if we solve the equation of the circle

x4y =1 )

for y in terms of x, we obtain y = 4+/1 — x2, so we have found two functions that are
defined implicitly by (2), namely,

fik) =v1—=x2 and fo(x) = -1 —x2 3)

The graphs of these functions are the upper and lower semicircles of the circle x> + y? = 1
(Figure 3.1.1). This leads us to the following definition.

3.1.1 peFINITION We will say that a given equation in x and y defines the function f
implicitly if the graph of y = f(x) coincides with a portion of the graph of the equation.

» Example 1 The graph of x = y? is not the graph of a function of x, since it does not
pass the vertical line test (Figure 3.1.2). However, if we solve this equation for y in terms of
x, we obtain the equations y = /x and y = —./x, whose graphs pass the vertical line test
and are portions of the graph of x = y? (Figure 3.1.2). Thus, the equation x = y? implicitly

defines the functions
fik)=+x and fo(x) = —/x «

Although it was a trivial matter in the last example to solve the equation x = y? for y
in terms of x, it is difficult or impossible to do this for some equations. For example, the
equation x3 + y3 _ 3)Cy (4)
can be solved for y in terms of x, but the resulting formulas are too complicated to be
practical. Other equations, such as sin(xy) = y, cannot be solved for y by any elementary
method. Thus, even though an equation may define one or more functions of x, it may not
be possible or practical to find explicit formulas for those functions.

Fortunately, CAS programs, such as Mathematica and Maple, have “implicit plotting”
capabilities that can graph equations such as (4). The graph of this equation, which is called
the Folium of Descartes, is shown in Figure 3.1.3a. Parts (b) and (c¢) of the figure show
the graphs (in blue) of two functions that are defined implicitly by (4).

A Figure 3.1.3
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B IMPLICIT DIFFERENTIATION
In general, it is not necessary to solve an equation for y in terms of x in order to differentiate
the functions defined implicitly by the equation. To illustrate this, let us consider the simple

equation
xy =1 (®)]
One way to find dy/dx is to rewrite this equation as
1
y=1 ©)
X
from which it follows that dy 1
= ™
X X

Another way to obtain this derivative is to differentiate both sides of (5) before solving for
y in terms of x, treating y as a (temporarily unspecified) differentiable function of x. With
this approach we obtain d d
= =n

I [xy] I (11

d[]+ d[]—o
xdxy ydxx_

dy

— 4y =
xdx Y
y __y
dx X

If we now substitute (6) into the last expression, we obtain

dy 1
dx  x2
which agrees with Equation (7). This method of obtaining derivatives is called implicit

differentiation.

» Example 2 Use implicit differentiation to find dy/dx if 5y* + sin y = x.

d d
S-[5y? Fsiny] = ——[x’]

sd[2]+d[' 1=2
—_ — [ SIn = X
dxy dx Y

because y is a function of x.

d d ai a5 U
5 2y _y + (COS y) _y —2x The chain rule was used here
dx dx

dy dy
10y— — =2
ydx + (cos y) . X

René Descartes (1596-1650) Descartes, a French aristo-  a sword in his belt and a plumed hat. He lived in leisure, seldom
crat, was the son of a government official. He graduated  arose before 11 A.M., and dabbled in the study of human physiology,
from the University of Poitiers with alaw degree at age 20.  philosophy, glaciers, meteors, and rainbows. He eventually moved
After a brief probe into the pleasures of Paris he became to Holland, where he published his Discourse on the Method, and
a military engineer, first for the Dutch Prince of Nassau finally to Sweden where he died while serving as tutor to Queen
and then for the German Duke of Bavaria. It was dur-  Christina. Descartes is regarded as a genius of the first magnitude.
ing his service as a soldier that Descartes began to pursue mathemat-  In addition to major contributions in mathematics and philosophy
ics seriously and develop his analytic geometry. After the wars, he  he is considered, along with William Harvey, to be a founder of
returned to Paris where he stalked the city as an eccentric, wearing  modern physiology.
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A Figure 3.14

Solving for dy/dx we obtain dy 2x

B 8
dx 10y 4cosy ®)

Note that this formula involves both x and y. In order to obtain a formula for dy/dx that
involves x alone, we would have to solve the original equation for y in terms of x and then
substitute in (8). However, it is impossible to do this, so we are forced to leave the formula
for dy/dx in terms of x and y. <«

» Example 3 Use implicit differentiation to find d’y/dx? if 4x> — 2y?> = 9.

Solution. Differentiating both sides of 4x> — 2y? = 9 with respect to x yields

dy
8x —4y— =0
* ydx
from which we obtain
dy 2x ©)
dx y
Differentiating both sides of (9) yields
d? 2) — (2x)(dy/d
&y _ ()@ — @0)(dy/dx) 10,

dx2 )2
Substituting (9) into (10) and simplifying using the original equation, we obtain
d’y 2y —2x(2x/y)  2y* —4x? 9

dx2 y2 y3 - y3

In Examples 2 and 3, the resulting formulas for dy/dx involved both x and y. Although
it is usually more desirable to have the formula for dy/dx expressed in terms of x alone,
having the formula in terms of x and y is not an impediment to finding slopes and equations
of tangent lines provided the x- and y-coordinates of the point of tangency are known. This
is illustrated in the following example.

» Example 4 Find the slopes of the tangent lines to the curve y> — x + 1 = 0 at the
points (2, —1) and (2, 1).

Solution. We could proceed by solving the equation for y in terms of x, and then evalu-
ating the derivative of y = +/x — 1 at (2, 1) and the derivative of y = —v/x — l at (2, —1)
(Figure 3.1.4). However, implicit differentiation is more efficient since it can be used for
the slopes of both tangent lines. Differentiating implicitly yields

d d
SN I |
dx[y x+1] dx[]

d 5

- - = = =

dx[)’] 7 [X]+d [1] 7 [0]
dy

2y— —1=0

ydx

dy 1

dx 2y

At (2, —1) wehave y = —1, and at (2, 1) we have y = 1, so the slopes of the tangent lines
to the curve at those points are

dy 1 and dy| 1
dx|=, 2 dx = 2

y=—1

|



Formula (11) cannot be evaluated at
(0, 0) and hence provides no informa-
tion about the nature of the Folium of
Descartes at the origin. Based on the
graphs in Figure 3.1.3, what can you say
about the differentiability of the implic-
itly defined functions graphed in blue in
parts (b) and (c) of the figure?

A Figure 3.1.5

A Figure 3.1.6

3.1 Implicit Differentiation 189

» Example 5

(a) Use implicit differentiation to find dy/dx for the Folium of Descartes x* + y* = 3xy.
(b) Find an equation for the tangent line to the Folium of Descartes at the point (% %)

(c) At what point(s) in the first quadrant is the tangent line to the Folium of Descartes
horizontal?

Solution (a). Differentiating implicitly yields

d 3 d
dx[x + 7] dx[xy]
dy_ d

3x—y + 3y
X

3x% + 3y?
Y d

an

Solution (b). Atthe point (2, 2), we have x = 2 and y = 2, so from (11) the slope 7
of the tangent line at this point is

dy| (/-6

dx =2 (3/22—(3/2)

Man =

Thus, the equation of the tangent line at the point (% %) is

y—%:—l(x—%) or x+y=3

which is consistent with Figure 3.1.5.

Solution (c). The tangent line is horizontal at the points where dy/dx = 0, and from
(11) this occurs only where y — x> = 0 or

y=x’ (12)
Substituting this expression for y in the equation x* + y* = 3xy for the curve yields
x4 (x?)? = 3x3
x0—2x3=0
Xx3=-2)=0
whose solutions are x = 0 and x = 2!/3. From (12), the solutions x = 0 and x = 2173 yield

the points (0, 0) and (2173, 22/3), respectively. Of these two, only (273, 22/3) s in the first
quadrant. Substituting x = 2'/3, y = 2%/3 into (11) yields

dy B 0 _0
dx i;g T 04/3 _ 923

We conclude that (2!/3,22/3) ~ (1.26, 1.59) is the only point on the Folium of Descartes
in the first quadrant at which the tangent line is horizontal (Figure 3.1.6). <«
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Il DIFFERENTIABILITY OF FUNCTIONS DEFINED IMPLICITLY
When differentiating implicitly, it is assumed that y represents a differentiable function of
x. If this is not so, then the resulting calculations may be nonsense. For example, if we

differentiate the equation

we obtain

X 4+y2+1=0 (13)
d d
2x+2y£=0 or é:—;

However, this derivative is meaningless because there are no real values of x and y that
satisfy (13) (why?); and hence (13) does not define any real functions implicitly.

The nonsensical conclusion of these computations conveys the importance of knowing
whether an equation in x and y that is to be differentiated implicitly actually defines some
differentiable function of x implicitly. Unfortunately, this can be a difficult problem, so we
will leave the discussion of such matters for more advanced courses in analysis.

t/ QUICK CHECK EXERCISES 3.1

(See page 192 for answers.)

1. The equation xy + 2y = 1 defines implicitly the function
y=—.
2. Use implicit differentiation to find dy/dx for x> — y3 = xy.

EXERCISE SET 3.1 CAS

3. The slope of the tangent line to the graphof x + y + xy =3
at (1,1)is — .

4. Use implicit differentiation to find d>y/dx? for sin y = x.

1-2

(a) Find dy/dx by differentiating implicitly.

(b) Solve the equation for y as a function of x, and find dy/dx
from that equation.

(c) Confirm that the two results are consistent by expressing the
derivative in part (a) as a function of x alone.

L x+xy—2x3=2 2. /y—sinx =2

3-12 Find dy/dx by implicit differentiation.
3. 24+ 2 =100 4. 23+ 93 =3xy?
5. x2y+3xy  —x=3 6. x3y2 —5x2y +x =1

1 1 x+y
7. —+—=1 8. x2=
NEEVGY x—y
9. sin(x?y?) = x 10. cos(xy?) =y
xy? 4
11. tan®(xy? +y) = x 12. ——=1+y
1+secy

13-18 Find d’y/dx? by implicit differentiation.

13. 2x2 -3y =4 4. P +y3=1
15. 3y’ —4=0 16. xy +y> =2
17. y +siny = x 18. xcosy =y

19-20 Find the slope of the tangent line to the curve at the
given points in two ways: first by solving for y in terms of x
and differentiating and then by implicit differentiation.

19. x2+y2 =1; (1/2,/3/2), (1/2, —=/3/2)

20. y> —x+1=0; (10,3), (10, =3)
21-24 True-False Determine whether the statement is true or
false. Explain your answer.

21. If an equation in x and y defines a function y = f(x) im-
plicitly, then the graph of the equation and the graph of f
are identical.

22. The function

V1 —x2 O<x<l1
fx) =
—V1-x2 —-1<x<0

is defined implicitly by the equation x2 + y* = 1.
23. The function |x| is not defined implicitly by the equation
(x+y)x—y) =0

24. If y is defined implicitly as a function of x by the equation
x>+ y? =1, thendy/dx = —x/7y.

25-28 Use implicit differentiation to find the slope of the tan-
gent line to the curve at the specified point, and check that your
answer is consistent with the accompanying graph on the next

page.
25. x4+ y* =16; (1, V15) [Lamé’s special quartic)

26. y3 + yx*+x*—3y>=0; (0,3) [trisectrix]

27. 2(x* + y»)? =25(x* — y?); (3,1) [lemniscate]

28. x23 4 y¥3 = 4; (—1,34/3) [four-cusped hypocycloid|



A Figure Ex-27

FOCUS ON CONCEPTS

29. In the accompanying figure, it appears that the ellipse
x2 4 xy 4+ y> = 3 has horizontal tangent lines at the

A Figure Ex-28

points of intersection of the ellipse and the line y = —2x.
Use implicit differentiation to explain why this is the
case.
¥
y=-2x 3r

< Figure Ex-29

30. (a) A student claims that the ellipse x> — xy + y> =1
has a horizontal tangent line at the point (1, 1).
Without doing any computations, explain why the
student’s claim must be incorrect.

(b) Find all points on the ellipse x> — xy + y> =1 at
which the tangent line is horizontal.

31. (a) Use the implicit plotting capability of a CAS to graph

the equation y* 4 y> = x(x — ).

(b) Use implicit differentiation to help explain why the
graph in part (a) has no horizontal tangent lines.

(c) Solve the equation y* + y? = x(x — 1) for x in terms
of y and explain why the graph in part (a) consists of
two parabolas.

32. Use implicit differentiation to find all points on the graph of
y* 4+ y2 = x(x — 1) at which the tangent line is vertical.
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33-34 These exercises deal with the rotated ellipse C whose

equation is x> — xy + y> = 4.

33. Show that the line y = x intersects C at two points P and
Q and that the tangent lines to C at P and Q are parallel.

34. Prove thatif P(a, b) is a point on C, then so is Q(—a, —b)
and that the tangent lines to C through P and through Q are
parallel.

35. Find the values of @ and b for the curve x2y + ay? = b if
the point (1, 1) is on its graph and the tangent line at (1, 1)
has the equation 4x 4+ 3y = 7.

36. At what point(s) is the tangent line to the curve y* = 2x?
perpendicular to the line x + 2y — 2 = 0?

37-38 Two curves are said to be orthogonal if their tangent
lines are perpendicular at each point of intersection, and two
families of curves are said to be orthogonal trajectories of one
another if each member of one family is orthogonal to each
member of the other family. This terminology is used in these
exercises.

37. The accompanying figure shows some typical members of
the families of circles x2 4+ (y — ¢)? = ¢? (black curves)
and (x — k)2 4+ y? = k2 (gray curves). Show that these fam-
ilies are orthogonal trajectories of one another. [Hint: For
the tangent lines to be perpendicular at a point of inter-
section, the slopes of those tangent lines must be negative
reciprocals of one another.]

38. The accompanying figure shows some typical members
of the families of hyperbolas xy = ¢ (black curves) and
x? — y? =k (gray curves), where ¢ # 0 and k # 0. Use
the hint in Exercise 37 to show that these families are or-
thogonal trajectories of one another.
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A Figure Ex-37 A Figure Ex-38

[c] 39. (a) Use the implicit plotting capability of a CAS to graph

the curve C whose equation is x> — 2xy + y3 = 0.

(b) Use the graph in part (a) to estimate the x-coordinates
of a point in the first quadrant that is on C and at which
the tangent line to C is parallel to the x-axis.

(c) Find the exact value of the x-coordinate in part (b).

[c] 40. (a) Use the implicit plotting capability of a CAS to graph

the curve C whose equation is x> — 2xy + y3 = 0.

(b) Use the graph to guess the coordinates of a point in the
first quadrant that is on C and at which the tangent line
to C is parallel to the line y = —x. (cont.)
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41.

42.

(c) Use implicit differentiation to verify your conjecture in
part (b).

Prove that for every nonzero rational number r, the tangent
line to the graph of x” 4- y” = 2 at the point (1, 1) has slope
—1.

Find equations for two lines through the origin that are tan-
gent to the ellipse 2x2 — 4x + y> + 1 = 0.

VQUICK CHECK ANSWERS 3.1

43.

4.

Writing Write a paragraph that compares the concept of
an explicit definition of a function with that of an implicit
definition of a function.

Writing A student asks: “Suppose implicit differentiation
yields an undefined expression at a point. Does this mean
that dy/dx is undefined at that point?” Using the equation
x? —2xy + y*> = 0 as a basis for your discussion, write a
paragraph that answers the student’s question.

1.

x+2

1 2dl_2x—y

_ d’y
Cdx T x4 3y? dx?

= sec? ytany

m DERIVATIVES OF LOGARITHMIC FUNCTIONS

In this section we will obtain derivative formulas for logarithmic functions, and we will
explain why the natural logarithm function is preferred over logarithms with other bases

in calculus.

Il DERIVATIVES OF LOGARITHMIC FUNCTIONS
We will establish that f(x) = Inx is differentiable for x > 0 by applying the derivative
definitionto f(x). Toevaluate the resulting limit, we will need the fact that In x is continuous
for x > 0 (Theorem 1.6.3), and we will need the limit

lim (1 + ' =e (1)

This limit can be obtained from limits (7) and (8) of Section 1.3 by making the substitution
v = 1/x and using the fact that v — 0T as x — 4o and v — 0~ as x — —oo. This produces
two equal one-sided limits that together imply (1) (see Exercise 64 of Section 1.3).

—[Inx] = lim
X h—0

= lim — In
h—0h

o1
= lim — In

h—0

— l : 1/v
= — lim In(1 + v)
X v—>0

1
= —1In
X

= —Ine

= | = =

In(x +h) —Inx

h
x+h The quotient property of
x logarithms in Theorem 0.5.2

(+3)

1
lim — In(1 4+ v)
v—>0 VX

1 1
— lim — In(1 +v)
X v—>00v

[timar+0]

Let v = h/x and note that
v— 0 if and only if 7 — 0.

x is fixed in this limit computation, so 1/x
can be moved through the limit sign.

The power property of
logarithms in Theorem 0.5.2

In x is continuous on (0, +o) so we can
move the limit through the function symbol.

Since lne = 1



Note that, among all possible bases,
the base b = ¢ produces the simplest
formula for the derivative of log,, x.
This is one of the reasons why the natu-
ral logarithm function is preferred over
other logarithms in calculus.

y = Inx with tangent lines

A Figure 3.2.1
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Thus,

i[lnx]:l, x>0 2)
x

dx

A derivative formula for the general logarithmic function log, x can be obtained from
(2) by using Formula (6) of Section 0.5 to write

d N | d [Inx 1 d (I x]
—_— = — | —— = —— —|In
dx OB T e | T b
It follows from this that
d 1
E[IOgb x] = “Inb’ x>0 3)

» Example 1

(a) Figure 3.2.1 shows the graph of y = In x and its tangent lines at the points x = % 1,3,
and 5. Find the slopes of those tangent lines.

(b) Does the graph of y = In x have any horizontal tangent lines? Use the derivative of
In x to justify your answer.

Solution (a).

are 1/x =2, 1, %,

From (2), the slopes of the tangent lines at the points x = %, 1,3, and 5
and é, respectively, which is consistent with Figure 3.2.1.

Solution (b). It does not appear from the graph of y = In x that there are any horizontal
tangent lines. This is confirmed by the fact that dy/dx = 1/x is not equal to zero for any
real value of x. «

If u is a differentiable function of x, and if u(x) > 0, then applying the chain rule to (2)
and (3) produces the following generalized derivative formulas:

d 1 d d 1 d
L nuy ==& e (4-5)
dx u dx dx

d
» Example 2 Find d—[ln(x2 + D]
X
Solution. Using (4) with u = x> + 1 we obtain
_ 2x
a2+

d 1

d 5 _
E[ln(x + D] = 1

x24+1

When possible, the properties of logarithms in Theorem 0.5.2 should be used to convert
products, quotients, and exponents into sums, differences, and constant multiples before
differentiating a function involving logarithms.

» Example 3

d [, (¥sinx 41 nx + InGsinx) — - In(1 4+ x)
J— = — X mx)— — X
dx 1+ x dx 2

2  cosx 1

T sinx 2(1 +x)

2
= — 4 cotx — <
x+ * 24+ 2x
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Figure 3.2.2 shows the graph of f(x) = In|x|. This function is important because it
“extends” the domain of the natural logarithm function in the sense that the values of In |x|
and In x are the same for x > 0, but In |x| is defined for all nonzero values of x, and In x is
only defined for positive values of x.

V/

y=1In|x|

» Figure 3.2.2

The derivative of In |x| for x # O can be obtained by considering the cases x > 0 and
x < 0 separately:

Case x > 0. In this case |x| = x, so

1
“n = Znxl= -
dx[n|xl] dx[nx] T

Case x < 0. In this case |x| = —x, so it follows from (4) that
d [In |x|] d [In(—x)] : [—x] :
—|[In = —|In(— [ ———— —_ —
dx * dx * X X * X

Since the same formula results in both cases, we have shown that

d 1 .
—[n|x]]=—- ifx#0 (6)
dx x

» Example 4 From (6) and the chain rule,

d . COS X
- - —[sinx] = — =cotx <«
sinx dx sin x

< lin | sinx|]
—1In | SIn =
dx *

B LOGARITHMIC DIFFERENTIATION
We now consider a technique called logarithmic differentiation that is useful for differen-
tiating functions that are composed of products, quotients, and powers.

» Example 5 The derivative of
x2YTx — 14
(14 x2)*

is messy to calculate directly. However, if we first take the natural logarithm of both sides
and then use its properties, we can write

Iny =2Inx + L In(7x — 14) — 4In(1 + x?)

y= ™

Differentiating both sides with respect to x yields

1dy_2+ 7/3 8x
ydx x  Ix—14 1+x2




REMARK

In the next section we will discuss dif-
ferentiating functions that have expo-
nents which are not constant.
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Thus, on solving for dy/dx and using (7) we obtain

dy x2JTx —14[2 1 8x
dx  (A+x2* [x 3x—-6 1+x2

Since In y is only defined for y > 0, the computations in Example 5 are only valid for x > 2 (verify).
However, because the derivative of In y is the same as the derivative of In |y|, and because In |y| is
defined for y < 0 as well as y > 0, it follows that the formula obtained for dy/dx is valid for x < 2 as
well as x > 2. In general, whenever a derivative dy/dx is obtained by logarithmic differentiation, the
resulting derivative formula will be valid for all values of x for which y # 0. It may be valid at those
points as well, but it is not guaranteed.

DERIVATIVES OF REAL POWERS OF x
We know from Theorem 2.3.2 and Exercise 82 in Section 2.3 that the differentiation formula

d r r—1
I [x']=rx ®)
holds for constant integer values of r. We will now use logarithmic differentiation to show
that this formula holds if 7 is any real number (rational or irrational). In our computations
we will assume that x” is a differentiable function and that the familiar laws of exponents
hold for real exponents.

Let y = x", where r is a real number. The derivative dy/dx can be obtained by loga-
rithmic differentiation as follows:

In|y|=1In|x"| =rln|x]|

d[lnl 1= d[ In |x|]
dx Y _dxr x

ldy r
ydx x
d
—yziyzixr:rxr71
dx x X
v QUICK CHECK EXERCISES 3.2  (See page 196 for answers.)
1. The equation of the tangent line to the graph of y = Inx at 3. Use logarithmic differentiation to find the derivative of
x =éetis Nt
2. Find dy/dx. fx) = il
(@) y=1In3x (b) y=1Inx *T
(¢) y =log(1/]x]) 4 1m0 h _
h—0 h
EXERCISE SET 3.2
1-26 Find dy/dx. 9. y=Inx? 10. y = (Inx)?
1. y=1In5x 2.y=ln§ 11. y = +/Inx 12. y =1In/x
— _ 3
3.y:1n|1+x| 4.y:1n(2+ﬁ) 13.y—xlnx 14.y_x In x
5. y=Injx2— 1 6. y=1In|x3 —7x2 = 3| 15. y = x*log, (3 — 2x) 16. y = x[log,(x* — 2x)]°
X 14+x x? log x
7. y=In|{——= 8. y=In 17. y= —— 18. y= ——
Y (1+x2) Y ‘l—x Y 1+ logx Y 1+ logx
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19. y = In(lnx)
21. y = In(tan x)
23. y = cos(Inx)
25. y = log(sin2 X)

20. y = In(In(In x))
22. y = In(cos x)

24. y = sinz(ln X)

26. y = log(1 — sin®x)

27-30 Use the method of Example 3 to help perform the indi-
cated differentiation.

27. i[1n((x — D324+ D]
dx
28. %[ln((coszx)\/ 1+ x9)]

29. i |:1n
dx

x—1
x+1
31-34 True-False Determine whether the statement is true or
false. Explain your answer.

COos x :| 10 d i
—_— . — | In
V4 —3x2 dx

31. The slope of the tangent line to the graph of y =1Inx at
x = a approaches infinity as a — 0.

32. If lim, 4 f'(x) =0, then the graph of y = f(x) has a
horizontal asymptote.

33. The derivative of In |x| is an odd function.
34. We have
2

d 2 d _2
E((lnx) )= E(ﬂlnx)) =7

35-38 Find dy/dx using logarithmic differentiation.

—1
35. y=xv1+x2 36.y:5x+1
x
o @2 —8)13/x3 +1 38y — sin x cos x tan® x
YT T 7t s "V Jx
39. Find
d d
(a) E[lo&c e] (b) E[logx 2].
40. Find d
(a) E[log(l/x) e] (b) E[log(]nx) el.

41-44 Find the equation of the tangent line to the graph of
y = f(x)at x = xg.
41. f(x)=1Inx; xo=e"!

43. f(x) =In(—x); xo = —e

42. f(x) =logx; xo =10
44. f(x) =Inlx|; xo = -2

l/ QUICK CHECK ANSWERS 3.2

FOCUS ON CONCEPTS

45. (a) Find the equation of a line through the origin that is
tangent to the graph of y = In x.
(b) Explain why the y-intercept of a tangent line to
the curve y = Inx must be 1 unit less than the
y-coordinate of the point of tangency.

46. Use logarithmic differentiation to verify the product and
quotient rules. Explain what properties of In x are im-
portant for this verification.

47. Find a formula for the area A (w) of the triangle bounded by
the tangent line to the graph of y = Inx at P(w, In w), the
horizontal line through P, and the y-axis.

48. Find a formula for the area A(w) of the triangle bounded
by the tangent line to the graph of y = Inx? at P(w, In w?),
the horizontal line through P, and the y-axis.

49. Verifythaty = In(x + e) satisfiesdy/dx = e™”,withy = 1
when x = 0.

50. Verify that y = —In(e? — x) satisfies dy/dx = e”, with
y =—2whenx =0.

51. Findafunction f suchthaty = f(x) satisfiesdy/dx = e™,
with y = 0 when x = 0.

52. Find a function f such that y = f(x) satisfies dy/dx = e”,
with y = —1In2 when x = 0.

53-55 Find the limit by interpreting the expression as an ap-
propriate derivative.

In(1+3 In(1 -5
53. (a) lim In(1 + 3x) (b) lim In(l —5x)
x—=0 X x—0 X
In(e? + Ax) —2 1
54, (1) lim MO TADZ2 g, v
Ax—0 Ax w—1w—1
1 1+m)V2—1
55. (a) lim 295 (b) lim LMW1
x—0 h—0 h
56. Modify the derivation of Equation (2) to give another proof
of Equation (3).

57. Writing Review the derivation of the formula
d (nx] 1
—[nx] = —
dx X

and then write a paragraph that discusses all the ingredients
(theorems, limit properties, etc.) that are needed for this
derivation.

58. Writing Write a paragraph that explains how logarithmic
differentiation can replace a difficult differentiation compu-
tation with a simpler computation.

d 1 d 1 d 1 v/ 1 1 1
Ly=241 2 @22 Y= oL __ 3. Y24 - 4.1
e’ dx x dx  2x dx xIn 10 =12+ 3(x—1)
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E DERIVATIVES OF EXPONENTIAL AND INVERSE TRIGONOMETRIC FUNCTIONS

See Section 0.4 for a review of one-to-

one functions and inverse functions.

y

N 7/
N/

/
S 2. D

Slope = 1/f"(2)

— r-1
S =/ (x)/ y=x
7/

7
1,2) 7 Slope = "(2)
~ /

AN y =/

s 1 2 3
/
s

A Figure 3.3.1

/

A Figure 3.3.2 The graph of an
increasing function (blue) or a
decreasing function (purple) is cut at
most once by any horizontal line.

In this section we will show how the derivative of a one-to-one function can be used to
obtain the derivative of its inverse function. This will provide the tools we need to obtain
derivative formulas for exponential functions from the derivative formulas for logarithmic
functions and to obtain derivative formulas for inverse trigonometric functions from the
derivative formulas for trigonometric functions.

Our first goal in this section is to obtain a formula relating the derivative of the inverse
function f~! to the derivative of the function f.

» Example T Suppose that f is a one-to-one differentiable function such that f(2) = 1
and f'(2) = %. Then the tangent line to y = f(x) at the point (2, 1) has equation

y—l=23x-2)

The tangent line to y = f~'(x) at the point (1, 2) is the reflection about the line y = x
of the tangent line to y = f(x) at the point (2, 1) (Figure 3.3.1), and its equation can be
obtained by interchanging x and y:
x=1=2(y=-2) or y—2=3%x-1)
Notice that the slope of the tangent line to y = f~!(x) at x = 1 is the reciprocal of the
slope of the tangent line to y = f(x) at x = 2. That is,
. < (1)

@ 3

Since 2 = f~'(1) for the function f in Example 1, it follows that f'(2) = f'(f~'(1)).
Thus, Formula (1) can also be expressed as

FHm =

71/1 —
AR F )

In general, if f is a differentiable and one-to-one function, then

Y= 2)

1
1)

provided f'(f~'(x)) # 0.
Formula (2) can be confirmed using implicit differentiation. The equation y = f~'(x)
is equivalent to x = f(y). Differentiating with respect to x we obtain

d d dy
l = — = — = 4 [
I [x] I LfWNI= O I
so that dy 1 1
dx ') f@)
Alsofromx = f(y) wehavedx/dy = f'(y), which gives the following alternative version
of Formula (2):

dy 1
dx — dx/dy

3)

INCREASING OR DECREASING FUNCTIONS ARE ONE-TO-ONE
If the graph of a function f is always increasing or always decreasing over the domain of
[, then a horizontal line will cut the graph of f in at most one point (Figure 3.3.2), so f
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In general, once it is established that
f~1is differentiable, one has the op-
tion of calculating the derivative of f~!
using Formula (2) or (3), or by differen-
tiating implicitly, as in Example 2.

must have an inverse function (see Section 0.4). We will prove in the next chapter that f is
increasing on any interval on which f’(x) > 0 (since the graph has positive slope) and that
f is decreasing on any interval on which f’(x) < O (since the graph has negative slope).
These intuitive observations, together with Formula (2), suggest the following theorem,
which we state without formal proof.

3.3.1 THEOREM Suppose that the domain of a function f is an open interval on
which f'(x) > 0 or onwhich f'(x) < 0. Then f is one-to-one, f~'(x) is differentiable
at all values of x in the range of f, and the derivative of f ~'(x) is given by Formula (2).

» Example 2 Consider the function f(x) = x5 + x + 1.

(a) Show that f is one-to-one on the interval (—oo, 40).
(b) Find a formula for the derivative of £~

(¢) Compute (£~1Y(1).

Solution (a). Since

flx)=5x*+1>0

for all real values of x, it follows from Theorem 3.3.1 that f is one-to-one on the interval
(—o0, +00).

Solution (b). Lety = f~'(x). Differentiating x = f(y) = y°> + y + 1 implicitly with
respect to x yields

2 4
dx  5y*+1 @)

We cannot solve x = y° + y + 1 for y in terms of x, so we leave the expression for dy/dx

in Equation (4) in terms of y.

Solution (c¢). From Equation (4),

d
dx

1

71/1: - -
) . 5y4+1‘x_1

Thus, we need to know the value of y = f~!(x) at x = 1, which we can obtain by solving
the equation f(y) = 1 for y. This equation is y°> + y 4+ 1 = 1, which, by inspection, is
satisfied by y = 0. Thus,

=1 «
y=0

FHa =

S5yt +1

DERIVATIVES OF EXPONENTIAL FUNCTIONS
Our next objective is to show that the general exponential function b* (b > 0,b # 1) is
differentiable everywhere and to find its derivative. To do this, we will use the fact that



How does the derivation of Formula (5)
change if 0 < b < 1?7

In Section 0.5 we stated that b = e is
the only base for which the slope of the
tangent line to the curve y = b* at any
point P on the curve is the y-coordin-
ate at P (see page 54). Verify this state-
ment.
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b* is the inverse of the function f(x) = log, x. We will assume that b > 1. With this
assumption we have Inb > 0, so

d 1
f'(x) = —[log,x] = —— > 0 forall x in the interval (0, +)
dx xInb

It now follows from Theorem 3.3.1 that f~!(x) = b* is differentiable for all x in the range
of f(x) =log, x. But we know from Table 0.5.3 that the range of log;, x is (—o0, +©), so
we have established that b* is differentiable everywhere.

To obtain a derivative formula for b* we rewrite y = b* as

x =log,y

and differentiate implicitly using Formula (5) of Section 3.2 to obtain
1 dy
" ylnb dx

Solving for dy/dx and replacing y by b* we have

d
& o yInb=0"Inb
dx

Thus, we have shown that "
—[b*1=b"Inb (@)
dx

In the special case where b = e we have In e = 1, so that (5) becomes
d
1ok = o 6
T [e']=e (6)
Moreover, if u is a differentiable function of x, then it follows from (5) and (6) that

d du d du
—[b*]=b"Inb-— and —[e“]=¢" - —
dx

7_
dx dx dx (7-8)

It is important to distinguish between
differentiating an exponential function
b* (variable exponent and constant
base) and a power function x? (vari-
able base and constant exponent). For
example, compare the derivative

d
E[xz] =2x

to the derivative of 2* in Example 3.

» Example 3 The following computations use Formulas (7) and (8).

d [2']=2"In2
J— — n
dx

d

E[e—zx] = d—[—Zx] = 2¢

d - 3

d—[exz] =" d—[x3] = 3x2e"

% r,cosxq __ ,cosx i (G cos x

p [e"F ] =e 7 [cosx] = —(sinx)e <
X X

Functions of the form f(x) = u" in which u# and v are nonconstant functions of x are
neither exponential functions nor power functions. Functions of this form can be differen-
tiated using logarithmic differentiation.

- d '
» Example 4 Use logarithmic differentiation to find d—[()c2 + .
X

Setting y = (x? 4 1) we have
Iny = In[(x> + 1)*"*] = (sinx) In(x> + 1)

Solution.
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Observe that sin~! x is only differen-

tiable on the interval (—1, 1), even
though its domain is [—1, 1]. This is
because the graph of y = sinx has
horizontal tangent lines at the points
(/2,1) and (—m/2,—1), so the
graph of y = sin™! x has vertical tan-
gent lines at x = £1.

sin”' x
1—-x2
cos(sin™! x) = V1 —x2
A Figure 3.3.3

Differentiating both sides with respect to x yields

ldy d
;ﬁ = E[(sinx)ln(xz—i— D]

= (sin x) (2x) 4+ (cosx) In(x% + 1)

x24+1
Thus,

dy  [2xsinx
dx ” x2+1

+ (cos x) In(x? + 1)]

. 2x sin x

2 sin x
= +1
(x ) [ x24+1

+ (cos x) In(x? + 1)] <

DERIVATIVES OF THE INVERSE TRIGONOMETRIC FUNCTIONS
To obtain formulas for the derivatives of the inverse trigonometric functions, we will need
to use some of the identities given in Formulas (11) to (17) of Section 0.4. Rather than
memorize those identities, we recommend that you review the “triangle technique” that we
used to obtain them.

To begin, consider the function sin ! x. If we let f(x) = sinx (—7/2 < x < 7/2), then
it follows from Formula (2) that f~!(x) = sin~'x will be differentiable at any point x
where cos(sin~! x) # 0. This is equivalent to the condition

. b1 . i
sin —— and sin —
X # 2 X # >

so it follows that sin~! x is differentiable on the interval (—1, 1).

A derivative formula for sin~' x on (—1, 1) can be obtained by using Formula (2) or
(3) or by differentiating implicitly. We will use the latter method. Rewriting the equation
y =sin"' x as x = sin y and differentiating implicitly with respect to x, we obtain

d[]— d[S'n]
dxx T dx ny
y
1= Rt
cosy I
dy 1 1

dx cosy  cos(sin”!x)

At this point we have succeeded in obtaining the derivative; however, this derivative formula
can be simplified using the identity indicated in Figure 3.3.3. This yields

dy 1

dx — V1 —x?

Thus, we have shown that

d . _, 1
—[sin” x] = ——
dx [ ] V1= x2
More generally, if u is a differentiable function of x, then the chain rule produces the
following generalized version of this formula:
[sin™'u] = L du
dx V1 —u2dx
The method used to derive this formula can be used to obtain generalized derivative formulas
for the remaining inverse trigonometric functions. The following is a complete list of these

(—1<x<1

(—l<u<l
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formulas, each of which is valid on the natural domain of the function that multiplies

du/dx.
[sin=" ] 1 du d (cos—! u] 1 du (9-10)
—[sin” u] = ——— —[cos =——— —
dx V1 —u2dx dx " V1 —u2dx
1 du 1 du
—[tan~'u] = — —[eotu]= ———— 11-12
dx [tan™"u] 1+u?dx dx [cot™"u] 1+udx ( )
The appearance of |«| in (13) and (14) d _1 1 du d _1 1 du
g oyl f ! —[sec” U] = ——— —ese” U]l = ————— (13-14)
will be explained in Exercise 58 il lu |\/142——1 dx dx |M|«/m dx
» Example 5 Find dy/dx if
(@ y=sin"'(%)  (b) y=sec ' (e")
Solution (a). From (9)
d 1 3x2
@ _ - (3x%) = o
dx 1 — (x3)2 /1 — x0
Solution (b). From (13)
dy 1 . 1
— = ——(") = —— «
dx ex /(ex)Z -1 /eZX -1
VQUlCK CHECK EXERCISES 3.3  (See page 203 for answers.)
1. Suppose that a one-to-one function f has tangent line 3. Evaluate the derivative.
— : —1y/
y = 5x + 3 at the point .(1, 8). léval.uate (f ).(8). @) i[ex] (b) i[7x]
2. In each case, from the given derivative, determine whether dx dx
the function f is invertible. d x d 3
- 1 d —
@ f(x)=x2+1 b) f/(x)=x%—1 (©) gyleoste” + 1] @ e
(¢) f'(x) =sinx @ f'(x)= g 4+ tanlx 4. Let f(x) = X'+ Use f'(x) to verify that f is one-to-one.
EXERCISE SET 3.3 I Graphing Utility
5-6 Determine whether the function f is one-to-one by exam-

ining the si f f'(x).
1 Let f(x) = x° +x* £ x. ining the sign of f”(x)

(a) Show that f is one-to-one and confirm that f(1) = 3. o,
(b) Find (f~1Y(3). 5. () flx)=x>+8x+1

95 443
2. Let f(x) = x3 + 2¢*. (b) fx)=2x +?c +3x+2
(a) Show that f is one-to-one and confirm that f(0) = 2. ©) flx) = 231‘ ;" sin.x
(b) Find (f')'(2). @ £ = (1)
6. () f(x)=x>+3x>—8
(b) f(x) =x"+8x"+2x — 1

3-4 Find (f~'")(x) using Formula (2), and check your answer

X
by differentiating £~ directly. © f& =17

3. f(x) =2/(x+3) 4. fx)=mmRx+1) (d) f(x)=log,x, 0<b<l1
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7-10 Find the derivative of f~!' by using Formula (3), and
check your result by differentiating implicitly.

7. fx)=5x>+x—-17 8. f(x)=1/x?, x>0

9. f(x) =2x>+x3+1

10. f(x) = 5x —sin2 il il
. X)=5x —sm2x, ——<x<-—
4 4

FOCUS ON CONCEPTS

11. Figure 0.4.8 is a “proof by picture” that the reflection of
apoint P(a, b) about the line y = x is the point Q (b, a).
Establish this result rigorously by completing each part.
(a) Prove thatif P is not on the line y = x, then P and

Q are distinct, and the line @ is perpendicular to
the line y = x.

(b) Prove thatif P is noton the line y = x, the midpoint
of segment PQ is on the line y = x.

(c) Carefully explain what it means geometrically to
reflect P about the line y = x.

(d) Use the results of parts (a)—(c) to prove that Q is the
reflection of P about the line y = x.

12. Prove that the reflection about the line y = x of a line
with slope m, m # 0, is a line with slope 1/m. [Hint:
Apply the result of the previous exercise to a pair of
points on the line of slope m and to a corresponding
pair of points on the reflection of this line about the line
y=uxl]

13. Suppose that f and g are increasing functions. De-
termine which of the functions f(x) + g(x), f(x)g(x),
and f(g(x)) must also be increasing.

14. Suppose that f and g are one-to-one functions. De-
termine which of the functions f(x) 4+ g(x), f(x)g(x),
and f(g(x)) must also be one-to-one.

15-26 Find dy/dx.

15. y = e’ 16. y = e,5x2
17. y = x3e* 18. y =e'/*
X _ =X

19 y=2"°_ 20. y = sin(e")

e +e*
21. y = rtanx 2. y=2"°

In x

23, y =l 24. y = exp(v/1+5x3)
25. y =In(1 —xe™) 26. y = In(cos e*)

27-30 Find f’(x) by Formula (7) and then by logarithmic dif-
ferentiation.

27. f(x) =2°
29. f(x) = ntinx

28. f(x)=37*
30. f(x) — n,xtanx

31-35 Find dy/dx using the method of logarithmic differenti-
ation.

31. y = (x3 = 2x)ln* 32, y = xsin¥

33. y = (Inx)@n~ 34, y = (x243)nx
35. y = (Inx)™*

36. (a) Explain why Formula (5) cannot be used to find
(d/dx)[x*].
(b) Find this derivative by logarithmic differentiation.

37-52 Find dy/dx.

1
37. y =sin"'(3x) 38. y =cos™! (%)
39. y =sin~'(1/x) 40. y = cos~!(cos x)
41. y =tan~!'(x?) 42. y =sec ' (x)
1

43. y = (tanx)~! H“ y=—

tan™ " x
45. y =¢* sec™ ! x 46. y = ln(cos_l x)

47. y=sin'x +cos'x 48, y =x2(sin"' x)3
49. y =sec 'x+csclx 50, y =cscl(e¥)
51. y = cot™!({/x) 52. y =+/cot Tx

53-56 True-False Determine whether the statement is true or
false. Explain your answer.
53. If a function y = f(x) satisfies dy/dx = y, then y = e*.

54. If y = f(x) is a function such that dy/dx is a rational func-
tion, then f(x) is also a rational function.

d
55. —(lo = —
dx( g IxD) xInb
56. We can conclude from the derivatives of sin™! x and cos™! x
that sin~! x + cos™! x is constant.
57. (a) Use Formula (2) to prove that

d[ t'x] 1
—|CO X = —
dx x=

(b) Use part (a) above, part (a) of Exercise 48 in Section
0.4, and the chain rule to show that

d [cot~" x] 1
—[cot™ x] = ———
dx 1+ x2
for —o0 < x < 0.
(c) Conclude from part (b) that

d ) 1 du

—[cot™ U]l =———5—

dx 1+u?dx

for —o < u < +oo.

58. (a) Use part (c) of Exercise 48 in Section 0.4 and the chain
rule to show that

d 1
E[CSC 'x]= —m
for 1 < |x]|.
(b) Conclude from part (a) that
—[escul = —;d—u
dx lulvu? —1dx
for 1 < |ul. (cont.)
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(c) Use Equation (11) in Section 0.4 and parts (b) and (c) of

Exercise 48 in that section to show that if |x| > 1 then,
sec™! x 4+ csc™! x = /2. Conclude from part (a) that

d 1 1
E[sec x] = W
(d) Conclude from part (c) that
—[secu] = 1 du
dx |V — 1 dx

59-60 Find dy/dx by implicit differentiation.
59. 34+ xtan"ly = ¢
61. (a) Show that f(x) = x> — 3x2 4 2x is not one-to-one on
(=00, +0).
(b) Find the largest value of k such that f is one-to-one on
the interval (—k, k).
62. (a) Show that the function f(x) = x* — 2x is not one-to-
one on (—oo, +0o0).
(b) Find the smallest value of k such that f is one-to-one
on the interval [k, +o0).
63. Let f(x) =x*4+x3+1,0<x<2.
(a) Show that f is one-to-one.
(b) Let g(x) = f~!(x) and define F(x) = f(2g(x)). Find
an equation for the tangent line to y = F(x) at x = 3.

60. sin~'(xy) = cos™!(x — y)

4 — 2
64. Let f(r) = SPE=) )
X

(a) Show that f is one-to-one.
(b) Let g(x) = f~'(x) and define F(x) = f([g(x)]").
Find F’ ().
65. Show that for any constants A and k, the function y = Akt
satisfies the equation dy/dt = ky.
66. Show that for any constants A and B, the function
y = Ae2x +Be*4x
satisfies the equation
y//+2y/_8y=0

67. Show that
(a) y = xe™" satisfies the equation xy’ = (1 — x)y
(b) y = xe /2 satisfies the equation xy’ = (1 — x2)y.

VQUICK CHECK ANSWERS 3.3

68. Show that the rate of change of y = 100e~%2* with respect
to x is proportional to y.

69. Show that
60 dy y
= ——— satisfies — = (1 - —)
M a U T k)
for some constants » and K, and determine the values of
these constants.

4 70. Suppose that the population of oxygen-dependent bacteria

in a pond is modeled by the equation
60
54 Te™!
where P(¢) is the population (in billions) ¢ days after an
initial observation at time ¢ = 0.
(a) Use a graphing utility to graph the function P (¢).
(b) In words, explain what happens to the population over
time. Check your conclusion by finding lim, _, . P(¢).
(c) Inwords, what happens to the rate of population growth
over time? Check your conclusion by graphing P’(z).

P(t) =

71-76 Find the limit by interpreting the expression as an ap-
propriate derivative.

3x 2y
71. fim & ! 72, fim PO~ 1
x—=0 X x—0 X
h -1 _
73, fim 22— ! 74, fim 2 (AW — /4
>0 h h—0 h
2
9[sin_1 (?—i—Ax)] —?
75. lim
Ax—0 Ax
—1 _
76. lim > W T
w—2 w—2

77. Writing Let G denote the graph of an invertible function f
and consider G as a fixed set of points in the plane. Suppose
we relabel the coordinate axes so that the x-axis becomes
the y-axis and vice versa. Carefully explain why now the
same set of points G becomes the graph of f~! (with the
coordinate axes in a nonstandard position). Use this result
to explain Formula (2).

78. Writing Suppose that f has an inverse function. Carefully
explain the connection between Formula (2) and implicit
differentiation of the equation x = f(y).

1. % 2. (a) yes (b) no (c) no (d) yes
4. f'(x) = errE (Bx%2+1) > Oforall x

3. (@) ¢ (b) 7¥In7 (c) —e*sin(e* + 1) (d) 3e¥2



204 Chapter 3 / Topics in Differentiation

m RELATED RATES

» Figure 3.4.1

In this section we will study related rates problems. In such problems one tries to find the
rate at which some quantity is changing by relating the quantity to other quantities whose
rates of change are known.

DIFFERENTIATING EQUATIONS TO RELATE RATES

Figure 3.4.1 shows a liquid draining through a conical filter. As the liquid drains, its
volume V, height 4, and radius r are functions of the elapsed time ¢, and at each instant
these variables are related by the equation

T
V = —r?h
3
If we were interested in finding the rate of change of the volume V with respect to the time
t, we could begin by differentiating both sides of this equation with respect to ¢ to obtain

dav dh d dh d
A rP— +h ) =2 r2—+2rh—r
dt 3 dt dt 3 dt dt

Thus, to find dV /dt at a specific time ¢ from this equation we would need to have values
for r, h, dh/dt, and dr/dt at that time. This is called a related rates problem because the
goal is to find an unknown rate of change by relating it to other variables whose values and
whose rates of change at time # are known or can be found in some way. Let us begin with
a simple example.

-

!
|

» Example 1 Suppose that x and y are differentiable functions of ¢ and are related by
the equation y = x3. Find dy/dt attime t = 1 if x =2 and dx/dt = 4 at time t = 1.

Solution. Using the chain rule to differentiate both sides of the equation y = x> with
respect to ¢ yields

dy d 4 ,dx

— = —[x"] =3x"—

dt dt dt

Thus, the value of dy/dt at time t = 1 is

dy
dt

:3(2)221 =12-4=48 «

t=1

t=1



Arni Katz/Phototake

Oil spill from a ruptured tanker.

0il
spill

=

A Figure 3.4.2

WARNING

We have italicized the word “After” in
Step 5 because it is a common error
to substitute numerical values before
performing the differentiation. For in-
stance, in Example 2 had we substi-
tuted the known value of r = 60 in (1)
before differentiating, we would have
obtained dA/dt =0, which is obvi-
ously incorrect.
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» Example2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern
whose radius increases at a constant rate of 2 ft/s. How fast s the area of the spill increasing
when the radius of the spill is 60 ft?

Solution. Let

t = number of seconds elapsed from the time of the spill
r = radius of the spill in feet after # seconds
A = area of the spill in square feet after 7 seconds

(Figure 3.4.2). We know the rate at which the radius is increasing, and we want to find the
rate at which the area is increasing at the instant when r = 60; that is, we want to find

dA

d
— given that T ofss
dt |,_eo dt

This suggests that we look for an equation relating A and r that we can differentiate with
respect to ¢ to produce a relationship between dA/dt and dr/dt. But A is the area of a

circle of radius r, so
A = mr? (1)

Differentiating both sides of (1) with respect to ¢ yields

dA dr
— = 2nr— 2)
dt dt

Thus, when » = 60 the area of the spill is increasing at the rate of

dA ) )
| =2n(60)(2) = 240w /s ~ T54 105 <
r=60

With some minor variations, the method used in Example 2 can be used to solve a variety
of related rates problems. We can break the method down into five steps.

A Strategy for Solving Related Rates Problems

Step 1. Assign letters to all quantities that vary with time and any others that seem
relevant to the problem. Give a definition for each letter.

Step 2. Identify the rates of change that are known and the rate of change that is to be
found. Interpret each rate as a derivative.

Step 3. Find an equation that relates the variables whose rates of change were identified
in Step 2. To do this, it will often be helpful to draw an appropriately labeled
figure that illustrates the relationship.

Step 4. Differentiate both sides of the equation obtained in Step 3 with respect to time
to produce a relationship between the known rates of change and the unknown
rate of change.

Step 5. After completing Step 4, substitute all known values for the rates of change and
the variables, and then solve for the unknown rate of change.



206 Chapter 3 / Topics in Differentiation

2nd

ﬁg/

3rd 1st

90 ft

Home
A Figure 3.4.3

The quantity
dx
dt |0

is negative because x is decreasing
with respect to 7.

Home

A Figure 3.4.4

Elevation
angle

l«——3000 ft —|
Camera Launching
pad

A Figure 3.4.5

» Example 3 A baseball diamond is a square whose sides are 90 ft long (Figure 3.4.3).
Suppose that a player running from second base to third base has a speed of 30 ft/s at the
instant when he is 20 ft from third base. At what rate is the player’s distance from home
plate changing at that instant?

Solution. We are given a constant speed with which the player is approaching third base,
and we want to find the rate of change of the distance between the player and home plate at
a particular instant. Thus, let

t = number of seconds since the player left second base
x = distance in feet from the player to third base
y = distance in feet from the player to home plate

(Figure 3.4.4). Thus, we want to find
d d
td given that ad = -301t/s
dt |,y dr |,y

As suggested by Figure 3.4.4, an equation relating the variables x and y can be obtained
using the Theorem of Pythagoras:

x2 490% = y? (3)

Differentiating both sides of this equation with respect to ¢ yields

d d
2x—x = 2y—y
dt dt
from which we obtain
dy xdx
— = 4)
dt ydt

When x = 20, it follows from (3) that

¥y = /202 4+ 90% = /8500 = 10v/85

so that (4) yields

dy 20 60
= = ——(-30) = ———— ~ —6.51 ft/s
dt |, 10485 V85

The negative sign in the answer tells us that y is decreasing, which makes sense physically
from Figure 3.4.4. <«

» Example 4 InFigure 3.4.5 we have shown a camera mounted at a point 3000 ft from
the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is
4000 ft above the launching pad, how fast must the camera elevation angle change at that
instant to keep the camera aimed at the rocket?

Solution. Let

t = number of seconds elapsed from the time of launch
¢ = camera elevation angle in radians after ¢ seconds
h = height of the rocket in feet after 7 seconds

(Figure 3.4.6). At each instant the rate at which the camera elevation angle must change
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is d¢/dt, and the rate at which the rocket is rising is dh/dt. We want to find
d¢

d
given that — = 880 ft/s
dt | =400 T | ph=4000
From Figure 3.4.6 we see that h
t = — 5
9 = 3000 ©)
Differentiating both sides of (5) with respect to ¢ yields
d¢ 1 dh
20V - 6
(PG = 3000 ar ©
When A = 4000, it follows that
5000 5
(se¢ #)\,ao00 = 3500 = 3
(see Figure 3.4.7), so that from (6)
5\’ d 1
S\ 4o - .880 = 22
3/ dt 3000 75
h=4000
deo 22 9 66
- =—.—=——~0.11rad/s # 6.05d <
dr |0 75 25 625 rad/s ce/s

» Example 5 Suppose that liquid is to be cleared of sediment by allowing it to drain
through a conical filter that is 16 cm high and has a radius of 4 cm at the top (Figure 3.4.8).
Suppose also that the liquid is forced out of the cone at a constant rate of 2 cm?/min.

(a) Do you think that the depth of the liquid will decrease at a constant rate? Give a verbal
argument that justifies your conclusion.

(b) Find a formula that expresses the rate at which the depth of the liquid is changing in
terms of the depth, and use that formula to determine whether your conclusion in part
(a) is correct.

(c) At what rate is the depth of the liquid changing at the instant when the liquid in the
cone is 8 cm deep?

Solution (a). For the volume of liquid to decrease by a fixed amount, it requires a greater
decrease in depth when the cone is close to empty than when it is almost full (Figure 3.4.9).
This suggests that for the volume to decrease at a constant rate, the depth must decrease at
an increasing rate.

Solution (b). Let

t = time elapsed from the initial observation (min)
V = volume of liquid in the cone at time ¢ (cm?)

y = depth of the liquid in the cone at time 7 (cm)

r = radius of the liquid surface at time ¢ (cm)

(Figure 3.4.8). At each instant the rate at which the volume of liquid is changing is dV /dt,
and the rate at which the depth is changing is dy/dt. We want to express dy/dt in terms of
y given that dV /dt has a constant value of dV /dt = —2. (We must use a minus sign here
because V decreases as t increases.)

From the formula for the volume of a cone, the volume V, the radius r, and the depth y

are related by V= %7”2 y N
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If we differentiate both sides of (7) with respect to ¢, the right side will involve the quantity
dr/dt. Since we have no direct information about dr/dt, it is desirable to eliminate r from
(7) before differentiating. This can be done using similar triangles. From Figure 3.4.8 we

see that r 4 1
—=— o r=-y
y 16 4
Substituting this expression in (7) gives
T
V= 8
137 ®)
Differentiating both sides of (8) with respect to r we obtain
av b4 dy
L 34222
dr 48 < Y dt)
or
d 16 dv 16 32
—y=—2—=—2(—2)=——2 9
dt  mwy? dt Ty Ty

which expresses dy/dt in terms of y. The minus sign tells us that y is decreasing with time,
and ‘ dy| 32

dt|  my?

tells us how fast y is decreasing. From this formula we see that |dy/dt| increases as y de-
creases, which confirms our conjecture in part (a) that the depth of the liquid decreases more
quickly as the liquid drains through the filter.

Solution (c). The rate at which the depth is changing when the depth is 8 cm can be
obtained from (9) with y = 8:

dy
dt y=8

32 1 .
= — =—— ~ —0.16 cm/min <
(82) 2

(See page 211 for answers.)

L IfA =x2and dx — 3. find dA top of the ladder. If the foot of the ladder is dragged away
dt ’ dt |10 from the wall, find an equation that relates rates of change
dA d of x and y with respect to time.

2. IfA=x2and = =3 find | . P
dt dt{,—1o o N

3. A 10-foot ladder stands on a horizontal floor and leans 4. Suppose that a block of ice in the shape of a right circular

against a vertical wall. Use x to denote the distance along
the floor from the wall to the foot of the ladder, and use y
to denote the distance along the wall from the floor to the

cylinder melts so that it retains its cylindrical shape. Find
an equation that relates the rates of change of the volume
(V), height (k), and radius (r) of the block of ice.

EXERCISE SET 3.4

1-4 Both x and y denote functions of ¢ that are related by the 2.
given equation. Use this equation and the given derivative in-
formation to find the specified derivative.

1. Equation: y = 3x + 5.

(a) Given that dx/dt = 2, find dy/dt when x = 1.
(b) Given that dy/dt = —1, find dx/dt when x = 0.

Equation: x +4y = 3.
(a) Given that dx/dt =1, find dy/dt when x = 2.
(b) Given that dy/dt = 4, find dx/dt when x = 3.
3. Equation: 4x% +9y? = 1.
(a) Given that dx/dt = 3, find dy/dt when
_ (1 1
o) = (525 5%5):

(cont.)



(b) Given thatdy/dt = 8, find dx/dt when
(X, y) = (%a _g)
4. Equation: x2 4 y? = 2x + 4y.
(a) Given that dx/dt = -5, find dy/dt when
(x,y)=(,1).
(b) Given that dy/dt = 6, find dx/dt when
(6, 3) =1 ++2,24+3).

FOCUS ON CONCEPTS

5. Let A be the area of a square whose sides have length

x, and assume that x varies with the time ¢.

(a) Draw a picture of the square with the labels A and
x placed appropriately.

(b) Write an equation that relates A and x.

(c) Use the equation in part (b) to find an equation that
relates dA/dt and dx/dt.

(d) At a certain instant the sides are 3 ft long and in-
creasing at a rate of 2 ft/min. How fast is the area
increasing at that instant?

6. In parts (a)—(d), let A be the area of a circle of radius r,

and assume that r increases with the time ¢.

(a) Draw a picture of the circle with the labels A and r
placed appropriately.

(b) Write an equation that relates A and r.

(c) Use the equation in part (b) to find an equation that
relates dA/dt and dr/dt.

(d) Ata certain instant the radius is 5 cm and increasing
at the rate of 2 cm/s. How fast is the area increasing
at that instant?

7. Let V be the volume of a cylinder having height / and
radius r, and assume that 4 and r vary with time.

(a) How are dV/dt, dh/dt, and dr/dt related?

(b) Ata certain instant, the height is 6 in and increasing
at 1 in/s, while the radius is 10 in and decreasing
at 1 in/s. How fast is the volume changing at that
instant? Is the volume increasing or decreasing at
that instant?

8. Let [ be the length of a diagonal of a rectangle whose
sides have lengths x and y, and assume that x and y vary
with time.

(a) How are dl/dt, dx/dt, and dy/dt related?

(b) If x increases at a constant rate of % ft/s and y de-
creases at a constant rate of % ft/s, how fast is the
size of the diagonal changing when x = 3 ft and
y =4 ft? Is the diagonal increasing or decreasing
at that instant?

9. Let 6 (in radians) be an acute angle in a right triangle,
and let x and y, respectively, be the lengths of the sides
adjacent to and opposite 8. Suppose also that x and y
vary with time.

(a) How are d6/dt, dx/dt, and dy/dt related?
(b) At acertain instant, x = 2 units and is increasing at
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1 unit/s, while y = 2 units and is decreasing at %
unit/s. How fast is 6 changing at that instant? Is @
increasing or decreasing at that instant?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Suppose that z = x>y?, where both x and y are changing
with time. At a certain instant when x = 1 and y = 2, x is
decreasing at the rate of 2 units/s, and y is increasing at the
rate of 3 units/s. How fast is z changing at this instant? Is
z increasing or decreasing?

The minute hand of a certain clock is 4 in long. Starting
from the moment when the hand is pointing straight up,
how fast is the area of the sector that is swept out by the
hand increasing at any instant during the next revolution of
the hand?

A stone dropped into a still pond sends out a circular ripple
whose radius increases at a constant rate of 3 ft/s. How
rapidly is the area enclosed by the ripple increasing at the
end of 10 s?

Oil spilled from a ruptured tanker spreads in a circle whose
area increases at a constant rate of 6 mi>/h. How fast is the
radius of the spill increasing when the area is 9 mi2?

A spherical balloon is inflated so that its volume is increas-
ing at the rate of 3 ft*/min. How fast is the diameter of the
balloon increasing when the radius is 1 ft?

A spherical balloon is to be deflated so that its radius
decreases at a constant rate of 15 cm/min. At what rate
must air be removed when the radius is 9 cm?

A 17 ft ladder is leaning against a wall. If the bottom of the
ladder is pulled along the ground away from the wall at a
constant rate of 5 ft/s, how fast will the top of the ladder be
moving down the wall when it is 8 ft above the ground?

A 13 ft ladder is leaning against a wall. If the top of the
ladder slips down the wall at a rate of 2 ft/s, how fast will
the foot be moving away from the wall when the top is 5 ft
above the ground?

A 10 ft plank is leaning against a wall. If at a certain instant
the bottom of the plank is 2 ft from the wall and is being
pushed toward the wall at the rate of 6 in/s, how fast is the
acute angle that the plank makes with the ground increasing?

A softball diamond is a square whose sides are 60 ft long.
Suppose that a player running from first to second base has a
speed of 25 ft/s at the instant when she is 10 ft from second
base. At what rate is the player’s distance from home plate
changing at that instant?

A rocket, rising vertically, is tracked by a radar station that
is on the ground 5 mi from the launchpad. How fast is the
rocket rising when it is 4 mi high and its distance from the
radar station is increasing at a rate of 2000 mi/h?

For the camera and rocket shown in Figure 3.4.5, at what rate
is the camera-to-rocket distance changing when the rocket
is 4000 ft up and rising vertically at 880 ft/s?
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22,

23.

24,

25.

26.

27.

For the camera and rocket shown in Figure 3.4.5, at what
rate is the rocket rising when the elevation angle is /4
radians and increasing at a rate of 0.2 rad/s?

A satellite is in an elliptical orbit around the Earth. Its
distance r (in miles) from the center of the Earth is given by
_ 4995
" T 1+ 0.12c0s0

where 6 is the angle measured from the point on the orbit

nearest the Earth’s surface (see the accompanying figure).

(a) Find the altitude of the satellite at perigee (the point
nearest the surface of the Earth) and at apogee (the point
farthest from the surface of the Earth). Use 3960 mi as
the radius of the Earth.

(b) At the instant when 6 is 120°, the angle 6 is increasing
at the rate of 2.7°/min. Find the altitude of the satel-
lite and the rate at which the altitude is changing at this
instant. Express the rate in units of mi/min.

Apogee Perigee

< Figure Ex-23

An aircraft is flying horizontally at a constant height of

4000 ft above a fixed observation point (see the accom-

panying figure). At a certain instant the angle of eleva-

tion 6 is 30° and decreasing, and the speed of the aircraft

is 300 mi/h.

(a) How fast is 6 decreasing at this instant? Express the
result in units of deg/s.

(b) How fast is the distance between the aircraft and the
observation point changing at this instant? Express the
result in units of ft/s. Use 1 mi = 5280 ft.

7
- 4000 ft

//
& -
A conical water tank with vertex down has a radius of
10 ft at the top and is 24 ft high. If water flows into the

tank at a rate of 20 ft*/min, how fast is the depth of the
water increasing when the water is 16 ft deep?

< Figure Ex-24

Grain pouring from a chute at the rate of 8 ft*/min forms a
conical pile whose height is always twice its radius. How
fast is the height of the pile increasing at the instant when
the pile is 6 ft high?

Sand pouring from a chute forms a conical pile whose height
is always equal to the diameter. If the height increases at a

28.

29.

30.

31.

32.

33.

34.

constant rate of 5 ft/min, at what rate is sand pouring from
the chute when the pile is 10 ft high?

Wheat is poured through a chute at the rate of 10 ft*/min
and falls in a conical pile whose bottom radius is always half
the altitude. How fast will the circumference of the base be
increasing when the pile is 8 ft high?

An aircraft is climbing at a 30° angle to the horizontal. How
fast is the aircraft gaining altitude if its speed is 500 mi/h?

A boat is pulled into a dock by means of a rope attached to
a pulley on the dock (see the accompanying figure). The
rope is attached to the bow of the boat at a point 10 ft below
the pulley. If the rope is pulled through the pulley at a rate
of 20 ft/min, at what rate will the boat be approaching the
dock when 125 ft of rope is out?

Pulley
Boat

Dock < Figure Ex-30

For the boat in Exercise 30, how fast must the rope be pulled
if we want the boat to approach the dock at arate of 12 ft/min
at the instant when 125 ft of rope is out?

A man 6 ft tall is walking at the rate of 3 ft/s toward a
streetlight 18 ft high (see the accompanying figure).

(a) At what rate is his shadow length changing?

(b) How fast is the tip of his shadow moving?

< Figure Ex-32

A beacon that makes one revolution every 10 s is located
on a ship anchored 4 kilometers from a straight shoreline.
How fast is the beam moving along the shoreline when it
makes an angle of 45° with the shore?

An aircraft is flying at a constant altitude with a constant
speed of 600 mi/h. An antiaircraft missile is fired on a
straight line perpendicular to the flight path of the aircraft
so that it will hit the aircraft at a point P (see the accom-
panying figure). At the instant the aircraft is 2 mi from the
impact point P the missile is 4 mi from P and flying at 1200
mi/h. At that instant, how rapidly is the distance between
missile and aircraft decreasing?

}

< Figure Ex-34



35.

36.

37.

38.

39.

40.

41.

Solve Exercise 34 under the assumption that the angle
between the flight paths is 120° instead of the assumption
that the paths are perpendicular. [Hint: Use the law of
cosines.]

A police helicopter is flying due north at 100 mi/h and at a
constant altitude of % mi. Below, a car is traveling west on
ahighway at 75 mi/h. Atthe moment the helicopter crosses
over the highway the car is 2 mi east of the helicopter.

(a) How fast is the distance between the car and helicopter
changing at the moment the helicopter crosses the high-
way?

(b) Isthe distance between the car and helicopter increasing
or decreasing at that moment?

A particle is moving along the curve whose equation is
3
Xy 8

1+y? 5
Assume that the x—coordinafe is increasing at the rate of 6
units/s when the particle is at the point (1, 2).
(a) At what rate is the y-coordinate of the point changing
at that instant?
(b) Is the particle rising or falling at that instant?

A point P is moving along the curve whose equation is
y = +/x3+17. When P is at (2, 5), y is increasing at the
rate of 2 units/s. How fast is x changing?

A point P is moving along the line whose equation is
y = 2x. How fast is the distance between P and the point
(3, 0) changing at the instant when P is at (3, 6) if x is
decreasing at the rate of 2 units/s at that instant?

A point P is moving along the curve whose equation is

y = 4/x. Suppose that x is increasing at the rate of 4 units/s

when x = 3.

(a) How fast is the distance between P and the point (2, 0)
changing at this instant?

(b) How fast is the angle of inclination of the line segment
from P to (2, 0) changing at this instant?

A particle is moving along the curve y = x/(x% 4 1). Find
all values of x at which the rate of change of x with respect
to time is three times that of y. [Assume that dx/dt is never
zero.]

‘/QUICK CHECK ANSWERS 3.4

42,

43.

4.

45.

46.

47.
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A particle is moving along the curve 16x? + 9y? = 144,
Find all points (x, y) at which the rates of change of x and
y with respect to time are equal. [Assume that dx/dt and
dy/dt are never both zero at the same point.]

The thin lens equation in physics is

where s is the object distance from the lens, § is the image
distance from the lens, and f is the focal length of the lens.
Suppose that a certain lens has a focal length of 6 cm and
that an object is moving toward the lens at the rate of 2 cm/s.
How fast is the image distance changing at the instant when
the object is 10 cm from the lens? Is the image moving
away from the lens or toward the lens?

Water is stored in a cone-shaped reservoir (vertex down).
Assuming the water evaporates at a rate proportional to the
surface area exposed to the air, show that the depth of the
water will decrease at a constant rate that does not depend
on the dimensions of the reservoir.

A meteor enters the Earth’s atmosphere and burns up at a
rate that, at each instant, is proportional to its surface area.
Assuming that the meteor is always spherical, show that the
radius decreases at a constant rate.

On a certain clock the minute hand is 4 in long and the hour
hand is 3 in long. How fast is the distance between the tips
of the hands changing at 9 o’clock?

Coffee is poured at a uniform rate of 20 cm?/s into a cup
whose inside is shaped like a truncated cone (see the accom-
panying figure). If the upper and lower radii of the cup are
4 cm and 2 cm and the height of the cup is 6 cm, how fast
will the coffee level be rising when the coffee is halfway
up? [Hint: Extend the cup downward to form a cone.]

< Figure Ex-47

dx dy dv dr
3. x— — =0 4.
xdt +ydt dt dt

dh
— =2nrh— + nrz—[
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m LOCAL LINEAR APPROXIMATION; DIFFERENTIALS
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In this section we will show how derivatives can be used to approximate nonlinear
functions by linear functions. Also, up to now we have been interpreting dy/dx as a single
entity representing the derivative. In this section we will define the quantities dx and dy
themselves, thereby allowing us to interpret dy/dx as an actual ratio.

Recall from Section 2.2 that if a function f is differentiable at x,, then a sufficiently mag-
nified portion of the graph of f centered at the point P (xo, f(xo)) takes on the appearance
of a straight line segment. Figure 3.5.1 illustrates this at several points on the graph of
y= x2 + 1. For this reason, a function that is differentiable at x, is sometimes said to be
locally linear at x.

The line that best approximates the graph of f in the vicinity of P(xo, f(x¢)) is the
tangent line to the graph of f at x(, given by the equation

y = f(x0) + f'(x0)(x — x0)

[see Formula (3) of Section 2.2]. Thus, for values of x near x, we can approximate values
of f(x) by
f(&x) &~ f(xo) + f'(x0)(x — xo) (1

This is called the local linear approximation of f at x,. This formula can also be expressed
in terms of the increment Ax = x — xg as

fxo+ Ax) = f(xo) + f'(xo) Ax ©))

» Example 1

(a) Find the local linear approximation of f(x) = 4/x at xo = 1.

(b) Use the local linear approximation obtained in part (a) to approximate /1.1, and com-
pare your approximation to the result produced directly by a calculating utility.

Solution (a). Since f'(x) = 1/(24/%), it follows from (1) that the local linear approxi-
mation of /X at a point xg is
1
2/x0

Thus, the local linear approximation at xo = 1 is

Vixl+ix-1) 3)

Vx & xo+

(x — x0)

The graphs of y = /x and the local linear approximation y = 1 + %(x — 1) are shown in
Figure 3.5.2.

Solution (b). Applying (3) with x = 1.1 yields
VIa~1+3(1.1-1)=105
Since the tangentline y = 1 + %(x — 1) in Figure 3.5.2 lies above the graph of f(x) = \/x,

we would expect this approximation to be slightly too large. This expectation is confirmed
by the calculator approximation +/1.1 ~ 1.04881. <«
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Examples 1 and 2 illustrate important
ideas and are not meant to suggest that
you should use local linear approxima-
tions for computations that your cal-
culating utility can perform. The main
application of local linear approxima-
tion is in modeling problems where it
is useful to replace complicated func-
tions by simpler ones.

y=x
l -
=sinx
0.5 y
| | | | | |
-1.5 -1 =05 05 1 15
0.5
1k
A Figure 3.5.3
A E

\ 0.015 /
0.01

| 0.005 - |
| | X
[ ! [

-05 -03 -0.1 | 0.1 0.3 0.5
E(x) = |sinx — x|

A Figure 3.5.4

» Example 2

(a) Find the local linear approximation of f(x) = sinx at xo = 0.

(b) Use the local linear approximation obtained in part (a) to approximate sin2°, and
compare your approximation to the result produced directly by your calculating device.

Solution (a). Since f'(x) = cos x, it follows from (1) that the local linear approximation
of sin x at a point x is sinx A sin xo + (cos xo) (X — xo)
Thus, the local linear approximation at xo = 0 is

sin x &~ sin 0 + (cos 0)(x — 0)

which simplifies to sinx A x 4)

Solution (b). The variable x in (4) is in radian measure, so we must first convert 2° to
radians before we can apply this approximation. Since

20 =2 (l) — X 0.0349066 radian
180/ = 90

it follows from (4) that sin 2° ~ 0.0349066. Comparing the two graphs in Figure 3.5.3, we
would expect this approximation to be slightly larger than the exact value. The calculator
approximation sin 2° &~ 0.0348995 shows that this is indeed the case. <«

ERROR IN LOCAL LINEAR APPROXIMATIONS

As a general rule, the accuracy of the local linear approximation to f(x) at xo will deteriorate
as x gets progressively farther from x(. To illustrate this for the approximation sin x ~ x
in Example 2, let us graph the function

E(x) = |sinx — x|

which is the absolute value of the error in the approximation (Figure 3.5.4).

In Figure 3.5.4, the graph shows how the absolute error in the local linear approximation
of sin x increases as x moves progressively farther from 0 in either the positive or negative
direction. The graph also tells us that for values of x between the two vertical lines, the
absolute error does not exceed 0.01. Thus, for example, we could use the local linear
approximation sinx ~ x for all values of x in the interval —0.35 < x < 0.35 (radians)
with confidence that the approximation is within £0.01 of the exact value.

DIFFERENTIALS
Newton and Leibniz each used a different notation when they published their discoveries of
calculus, thereby creating a notational divide between Britain and the European continent
that lasted for more than 50 years. The Leibniz notation dy/dx eventually prevailed because
it suggests correct formulas in a natural way, the chain rule

dy dy du

dx du dx
being a good example.

Up to now we have interpreted dy/dx as a single entity representing the derivative of

y with respect to x; the symbols “dy” and “dx,” which are called differentials, have had
no meanings attached to them. Our next goal is to define these symbols in such a way that
dy/dx can be treated as an actual ratio. To do this, assume that f is differentiable at a point
X, define dx to be an independent variable that can have any real value, and define dy by

the formula
dy = f'(x)dx (5
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If dx # 0, then we can divide both sides of (5) by dx to obtain

dy 6
E—f(x) (6)

Thus, we have achieved our goal of defining dy and dx so their ratio is f'(x). Formula (5)
is said to express (6) in differential form.

To interpret (5) geometrically, note that f'(x) is the slope of the tangent line to the graph
of f at x. The differentials dy and dx can be viewed as a corresponding rise and run of
this tangent line (Figure 3.5.5).

» Example 3 Express the derivative with respect to x of y = x? in differential form,
and discuss the relationship between dy and dx at x = 1.

Solution. The derivative of y with respect to x is dy/dx = 2x, which can be expressed
in differential form as

dy =2xdx
When x = 1 this becomes dy = 2dx

This tells us that if we travel along the tangent line to the curve y = x? at x = 1, then a
change of dx units in x produces a change of 2 dx units in y. Thus, for example, a run of
dx = 2 units produces a rise of dy = 4 units along the tangent line (Figure 3.5.6). <«

Itis important to understand the distinction between the increment Ay and the differential
dy. To see the difference, let us assign the independent variables dx and Ax the same value,
sodx = Ax. Then Ay represents the change in y that occurs when we start at x and travel
along the curve y = f(x) until we have moved Ax (= dx) units in the x-direction, while
dy represents the change in y that occurs if we start at x and travel along the tangent line
until we have moved dx (= Ax) units in the x-direction (Figure 3.5.7).

/’}' Ax = dx x » Example 4 Lety = ./x. Find dy and Ay at x = 4 with dx = Ax = 3. Then make
X X+ Ax a sketch of y = /x, showing dy and Ay in the picture.
(x+dx)
A Figure 3.5.7 Solution. With f(x) = \/x we obtain
. Ay = f(x + Ax) — f(x) = Vx + Ax — J/x =T — /4~ 0.65
. If y = \/x, then
_ d 1 1 1 3
dy =075 a _ dy= ——dx=——03)==-=0.75
y=nx ‘ ***‘Ay:065¢ dx  2Jx’ 04y 2% * zﬂ() 4 '
i i Figure 3.5.8 shows the curve y = ./x together with dy and Ay. <«
T R Ly
4 7 LOCAL LINEAR APPROXIMATION FROM THE DIFFERENTIAL POINT OF VIEW
A Figure 3.5.8 Although Ay and dy are generally different, the differential dy will nonetheless be a good

approximation of Ay provided dx = Ax is close to 0. To see this, recall from Section 2.2
that Ay

/ — i
Feo = Jmax

It follows that if Ax is close to 0, then we will have f'(x) ~ Ay/Ax or, equivalently,
Ay ~ f'(x)Ax

If we agree to let dx = Ax, then we can rewrite this as

Ay ~ f'(x)dx =dy @)
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Real-world measurements inevitably
have small errors.

Note that measurement error is pos-
itive if the measured value is greater
than the exact value and is negative if
it is less than the exact value. The sign
of the propagated error conveys similar
information.

Explain why an error estimate of at
most :I:% inch is reasonable for a ruler
that is calibrated in sixteenths of an
inch.
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In words, this states that for values of dx near zero the differential dy closely approximates
the increment Ay (Figure 3.5.7). But this is to be expected since the graph of the tangent
line at x is the local linear approximation of the graph of f.

ERROR PROPAGATION

In real-world applications, small errors in measured quantities will invariably occur. These
measurement errors are of importance in scientific research—all scientific measurements
come with measurement errors included. For example, your height might be measured as
170 £ 0.5 cm, meaning that your exact height lies somewhere between 169.5 and 170.5 cm.
Researchers often must use these inexactly measured quantities to compute other quantities,
thereby propagating the errors from the measured quantities to the computed quantities.
This phenomenon is called error propagation. Researchers must be able to estimate errors
in the computed quantities. Our goal is to show how to estimate these errors using local
linear approximation and differentials. For this purpose, suppose

X 1is the exact value of the quantity being measured

yo = f(xp) is the exact value of the quantity being computed
x is the measured value of x,

y = f(x) is the computed value of y

We define dx (= Ax) = x — xg to be the measurement error of x

Ay = f(x) — f(xo) to be the propagated error of y
It follows from (7) with x( replacing x that the propagated error Ay can be approximated
b /
g Ay~ dy = f'(x) dx ®)

Unfortunately, there is a practical difficulty in applying this formula since the value of x is
unknown. (Keep in mind that only the measured value x is known to the researcher.) This
being the case, it is standard practice in research to use the measured value x in place of x
in (8) and use the approximation

Ay~dy = f'(x)dx C))

for the propagated error.

» Example 5 Suppose that the side of a square is measured with a ruler to be 10 inches
with a measurement error of at most :i:é in. Estimate the error in the computed area of the
square.

Solution. Let x denote the exact length of a side and y the exact area so that y = x2. It
follows from (9) with f(x) = x? that if dx is the measurement error, then the propagated
error Ay can be approximated as

Ay~ dy =2xdx
Substituting the measured value x = 10 into this equation yields
dy =20dx (10)

But to say that the measurement error is at most :l:;—2 means that

Multiplying these inequalities through by 20 and applying (10) yields
20 (—é) <dy <20 (ﬁ) or equivalently —% <dy < g

Thus, the propagated error in the area is estimated to be within :I:% in’. <
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If the true value of a quantity is ¢ and a measurement or calculation produces an error Agq,
then Aq/q is called the relative error in the measurement or calculation; when expressed
as a percentage, Ag/q is called the percentage error. As a practical matter, the true value
q is usually unknown, so that the measured or calculated value of ¢ is used instead; and the
relative error is approximated by dgq/q.

» Example 6 The radiusof asphere is measured with a percentage error within +0.04%.
Estimate the percentage error in the calculated volume of the sphere.

Solution. The volume V of a sphere is V = %nr3, o)

dv
= 4mr?

Formula (11) tells us that, as a rule dr
of thumb, the percentage error in the

. from which it follows that dV = 4772 dr. Thus, the relative error in V is approximately
computed volume of a sphere is ap-

proximately 3 times the percentage er- dv  Anrtdr dr
ror in the measured value of its radius. v = 4.3 = T (11
As a rule of thumb, how is the percent- 3

age error in the computed area of a We are given that the relative error in the measured value of r is £0.04%, which means that
square related to the percentage error

in the measured value of a side? —0.0004 < d_r < 0.0004
,
Multiplying these inequalities through by 3 and applying (11) yields
dv dv
3(—0.0004) < v < 3(0.0004) orequivalently —0.0012 < 72 < 0.0012

Thus, we estimate the percentage error in the calculated value of V to be within £0.12%.
<

I MORE NOTATION; DIFFERENTIAL FORMULAS
The symbol df is another common notation for the differential of a function y = f(x).
For example, if f(x) = sinx, then we can write df = cosx dx. We can also view the
symbol “d” as an operator that acts on a function to produce the corresponding differential.
For example, d[x*] = 2xdx, d[sinx] = cosx dx, and so on. All of the general rules of
differentiation then have corresponding differential versions:

DERIVATIVE FORMULA DIFFERENTIAL FORMULA

d _ _

aTx[c] =0 dlc]=0

d _df _

aTx[cf]_cE dlcfl=cdf

d _df | dg _

ajx[f"'g]—a""dfx df+gl=df +dg

d _ dg df _

d}[fg]—fa”a dlfgl=fdg +gdf
df _de

g[i]:gdx dx d[i]:gdf—fdg

dx| g g% 8 g

For example,
d[x?sinx] = (x2cosx + 2x sin x) dx

= x%(cosx dx) + (2x dx) sin x
= x2d[sin x] + (sin x) d[x?]

illustrates the differential version of the product rule.
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(See page 219 for answers.)

1. The local linear approximation of f at x( uses the
line to the graph of y = f(x) at x = xo to approximate val-
ues of for values of x near

2. Find an equation for the local linear approximation to
y=5—x>atxy=2.

3. Let y =5 — x%. Find dy and Ay at x = 2 with
dx = Ax =0.1.

EXERCISE SET 3.5 I Graphing Utility

4. The intensity of light from a light source is a function
I = f(x) of the distance x from the light source. Suppose
that a small gemstone is measured to be 10 m from a light
source, £(10) = 0.2 W/m?, and £'(10) = —0.04 W/m’. If
the distance x = 10 m was obtained with a measurement
error within £0.05 m, estimate the percentage error in the
calculated intensity of the light on the gemstone.

1. (a) Use Formula (1) to obtain the local linear approxima-
tion of x> at xo = 1.
(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of Ax.
(c) Use the result obtained in part (a) to approximate
(1.02)3, and confirm that the formula obtained in part
(b) produces the same result.

2. (a) Use Formula (1) to obtain the local linear approxima-
tion of 1/x at xy = 2.
(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of Ax.
(c) Use the result obtained in part (a) to approximate
1/2.05, and confirm that the formula obtained in part
(b) produces the same result.

FOCUS ON CONCEPTS

3. (a) Find the local linear approximation of the function
f(x) = +/1+ xatxy = 0, and use it to approximate

V0.9 and /1.1.
(b) Graph f and its tangent line at x( together, and use
the graphs to illustrate the relationship between the
exact values and the approximations of +/0.9 and

V1L

4. Astudentclaims that whenever a local linear approxima-
tion is used to approximate the square root of a number,
the approximation is too large.

(a) Write a few sentences that make the student’s claim
precise, and justify this claim geometrically.

(b) Verify the student’s claim algebraically using ap-
proximation (1).

5-10 Confirm that the stated formula is the local linear approx-
imation at xo = 0.

1 1
5. 1+x)P~14+15x 6. ~ 1+ —x
( ) T 3
1
7. tanx &~ x 8. —~1—x
1+x
9. ¢*~1+4+x 10. In(1 +x) =~ x

11-16 Confirm that the stated formula is the local linear ap-
proximation of f at xo = 1, where Ax = x — 1.

11. f(x) =x* (1+Ax)* ~ 1 +4Ax

12. f(x)=x; JT+Ax~ 1+ JAx
1 11

; X - — —Ax

24+x 3+Ax 3 9

14. f(x) = @G +x)% 5+ Ax)® ~ 125+ 75Ax
1

15. tan~'x; tan"'(1 + Ax) &~ % + EAX

1 1 1
16. sin~' (f); sin”! (= 4+ zAx | & il + —Ax
2 272 6" /3

13. f(x) =

[ 17-20 Confirm that the formula is the local linear approxima-

tion at xo = 0, and use a graphing utility to estimate an interval
of x-values on which the error is at most £0.1.

1 1 1 1
17. Vx+3~V/3+ ——x 18. A=+ —x
23 9—x 3 54
1
19. tan2x ~ 2x 200 — ~ 1 —10x
(14 2x)5

21. (a) Use the local linear approximation of sinx at xo = 0
obtained in Example 2 to approximate sin 1°, and com-
pare the approximation to the result produced directly
by your calculating device.

(b) How would you choose xq to approximate sin 44°?
(c) Approximate sin 44°; compare the approximation to the
result produced directly by your calculating device.

22. (a) Use the local linear approximation of tan x at xo = 0 to
approximate tan 2°, and compare the approximation to
the result produced directly by your calculating device.

(b) How would you choose xy to approximate tan 61°?
(c) Approximate tan 61°; compare the approximation to the
result produced directly by your calculating device.

23-31 Use an appropriate local linear approximation to es-
timate the value of the given quantity.

23. (3.02)* 24. (1.97) 25. V65
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26. V24 27. V/80.9 28. v/36.03
29. sin0.1 30. tan0.2 31. cos31°
32. In(1.01) 33. tan~1(0.99)

FOCUS ON CONCEPTS

34. The approximation (1 4+ x)* &~ 1 +kx is commonly

used by engineers for quick calculations.

(a) Derive this result, and use it to make a rough esti-
mate of (1.001)%.

(b) Compare your estimate to that produced directly by
your calculating device.

(c) If k is a positive integer, how is the approxima-
tion (1 4+ x)* & 1 + kx related to the expansion of
(14 x)k using the binomial theorem?

35. Use the approximation (1 + x)* ~ 1 4 kx, along with
some mental arithmetic to show that «3/ 8.24 ~ 2.02 and
4.08%2 ~ 8.24.

36. Referring to the accompanying figure, suppose that the
angle of elevation of the top of the building, as measured
from a point 500 ft from its base, is found to be 6 = 6°.
Use an appropriate local linear approximation, along
with some mental arithmetic to show that the building
is about 52 ft high.

; 500 ft 1 < Figure Ex-36

37. (a) Let y = x%. Find dy and Ay at x = 2 with
dx = Ax = 1.
(b) Sketch the graph of y = x2, showing dy and Ay in
the picture.
38. (a) Let y = x3. Find dy and Ay at x = 1 with
dx =Ax =1.
(b) Sketch the graph of y = x3, showing dy and Ay in
the picture.

39-42 Find formulas for dy and Ay.
39. y =x° 40. y =8x — 4
41, y=x>—2x+1 42. y =sinx

43-46 Find the differential dy.

43. (a) y = 4x> — Tx? (b) y =xcosx
4. (a) y=1/x (b) y =5tanx
45. (a) y=x/1—x b)) y=>0+x)7"
4. @) y= 5 b y= 170

x> —1 2 —

47-50 True-False Determine whether the statement is true or
false. Explain your answer.

47. A differential dy is defined to be a very small change in y.

48.

49.

50.

51

The error in approximation (2) is the same as the error in
approximation (7).

Alocal linear approximation to a function can never be iden-
tically equal to the function.

A local linear approximation to a nonconstant function can
never be constant.

=54 Use the differential dy to approximate Ay when x

changes as indicated.

51
52

. y=4/3x —2; fromx =2tox =2.03
. y=+/x2+38; fromx =1tox =0.97

53. y= sz-i-l; fromx =2tox =1.96
54. y =x4/8x +1; fromx =3tox =3.05

5S.

56.

57.

58.

59.

60.

61.

The side of a square is measured to be 10 ft, with a possible

error of £0.1 ft.

(a) Use differentials to estimate the error in the calculated
area.

(b) Estimate the percentage errors in the side and the area.

The side of a cube is measured to be 25 cm, with a possible

error of £1 cm.

(a) Use differentials to estimate the error in the calculated
volume.

(b) Estimate the percentage errors in the side and volume.

The hypotenuse of a right triangle is known to be 10 in

exactly, and one of the acute angles is measured to be 30°,

with a possible error of £1°.

(a) Use differentials to estimate the errors in the sides
opposite and adjacent to the measured angle.

(b) Estimate the percentage errors in the sides.

One side of a right triangle is known to be 25 cm exactly.

The angle opposite to this side is measured to be 60°, with

a possible error of +0.5°.

(a) Use differentials to estimate the errors in the adjacent
side and the hypotenuse.

(b) Estimate the percentage errors in the adjacent side and
hypotenuse.

The electrical resistance R of a certain wire is given by
R = k/r?, where k is a constant and r is the radius of the
wire. Assuming that the radius » has a possible error of
+5%, use differentials to estimate the percentage error in
R. (Assume £ is exact.)

A 12-foot ladder leaning against a wall makes an angle 60
with the floor. If the top of the ladder is & feet up the wall,
express h in terms of 6 and then use dh to estimate the
change in 4 if 6 changes from 60° to 59°.

The area of a right triangle with a hypotenuse of H is calcu-
lated using the formula A = in sin 20, where 6 is one of
the acute angles. Use differentials to approximate the error
in calculating A if H = 4 cm (exactly) and 6 is measured
to be 30°, with a possible error of +15’.
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62. The side of a square is measured with a possible percentage 69. If the temperature T of a metal rod of length L is changed by
error of +1%. Use differentials to estimate the percentage an amount AT, then the length will change by the amount
error in the area. AL = aLAT, where « is called the coefficient of linear

63. The side of a cube is measured with a possible percentage expansion. For moderate changes in temperature o is taken
error of £2%. Use differentials to estimate the percentage as constant.
error in the volume. (a) Suppose that a rod 40 cm long at 20°C is found to be

40.006 cm long when the temperature is raised to 30°C.

64. The volume of a sphere is to be computed from a measured
value of its radius. Estimate the maximum permissible per-
centage error in the measurement if the percentage error in
the volume must be kept within £3%. (V = 37r3 is the
volume of a sphere of radius r.)

Find o.

(b) If an aluminum pole is 180 cm long at 15°C, how long
is the pole if the temperature is raised to 40°C? [Take
a=23x1073/°C]

70. If the temperature T of a solid or liquid of volume V is
changed by an amount AT, then the volume will change by
the amount AV = BVAT, where 8 is called the coefficient
of volume expansion. For moderate changes in temperature
B is taken as constant. Suppose that a tank truck loads 4000

65. The area of a circle is to be computed from a measured
value of its diameter. Estimate the maximum permissible
percentage error in the measurement if the percentage error
in the area must be kept within 4-1%.

66. A steel cube With l—ir}ch sides .is coated with 0.01 inch of gallons of ethyl alcohol at a temperature of 35°C and deliv-
copper. Use differentials to estimate the volume of copper ers its load sometime later at a temperature of 15°C. Using
in the coating. [Hint: Let AV be the change in the volume B =7.5x 107*/°C for ethyl alcohol, find the number of
of the cube.] gallons delivered.

67. A metal rod 15 cm long an.d 5.cm in .diamete.r is to be cov- 71. Writing Explain why the local linear approximation of a
ered (except for the ends) with insulation thatis 0.1 cm thick. function value is equivalent to the use of a differential to
Use differentials to estimate the volume of insulation. [Hint: approximate a change in the function.

Let AV be the change in volume of the rod.] 72. Writing The local linear approximation

68. The time required for one complete oscillation of a pendu-

. . . . sinx & x
lum is called its period. If L is the length of the pendu- )
lum and the oscillation is small, then the period is given by is known as the small angle approximation and has both
P =2n/L/g, where g is the constant acceleration due to practical and theoretical applications. Do some research on
gravity. Use differentials to show that the percentage error some of these E}Pplicflﬁofls’ and write a short report on the
in P is approximately half the percentage error in L. results of your investigations.

t/ QUICK CHECK ANSWERS 3.5

1. tangent; f(x):xo 2. y=1+(—4)(x —2) ory=—4x+9 3. dy=—04, Ay =—041 4. within +1%

m LHOPITAL'S RULE; INDETERMINATE FORMS

In this section we will discuss a general method for using derivatives to find limits. This
method will enable us to establish limits with certainty that earlier in the text we were only
able to conjecture using numerical or graphical evidence. The method that we will
discuss in this section is an extremely powerful tool that is used internally by many
computer programs to calculate limits of various types.

Il INDETERMINATE FORMS OF TYPE 0/0
Recall that a limit of the form i fx)
im

x—a g(x)
in which f(x) —0 and g(x)— 0 as x — a is called an indeterminate form of type 0/0.
Some examples encountered earlier in the text are

21 i 1—
T2 dim o1 im0

x—>1 x — x—=0 X x—0 X

ey
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WARNING

Note that in L'Hépital's rule the nu-
merator and denominator are differen-
tiated individually. This is not the same
as differentiating f(x)/g(x).

The first limit was obtained algebraically by factoring the numerator and canceling the
common factor of x — 1, and the second two limits were obtained using geometric methods.
However, there are many indeterminate forms for which neither algebraic nor geometric
methods will produce the limit, so we need to develop a more general method.

To motivate such a method, suppose that (1) is an indeterminate form of type 0/0 in
which f’" and g’ are continuous at x = a and g’(a) # 0. Since f and g can be closely
approximated by their local linear approximations near a, it is reasonable to expect that

o S0 @ S @k —a)
im = lim -

v—ag(x) x—agla)+g(a)x —a)
Since we are assuming that f’ and g’ are continuous at x = a, we have

@)

lim f'(x) = f'(a) and lim g'(x) = ¢g'(a)

and since the differentiability of f and g at x = a implies the continuity of f and g at
X = a, we have

fl@) = lim f(x) =0 and g(a) = lim g(x) =0
Thus, we can rewrite (2) as

@ f@e - @) )
im — = lim ———— = lim = lim
y—ag(x) x—oagia)(x —a) x—agia) x—agl(x)
This result, called L’Hdpital’s rule, converts the given indeterminate form into a limit
involving derivatives that is often easier to evaluate.

Although we motivated (3) by assuming that f and g have continuous derivatives at
x = a and that g’(a) # 0, the result is true under less stringent conditions and is also valid
for one-sided limits and limits at +o0 and —o. The proof of the following precise statement
of L’Hbpital’s rule is omitted.

3

3.6.1 THEOREM (L’Hépital’s Rule for Form 0/0) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) =0 and lim g(x) =0

If lim [f/(x)/ g (x)] exists, or if this limit is +oo or —o, then

Jfx . fx)

lim —— = lim -
x—a g(_x) x—a g (x)

Moreover; this statement is also true in the case of a limitas x —a~,x —a*, x — —w

or as x — oo,

’

In the examples that follow we will apply L’Hopital’s rule using the following three-step
process:

Applying L’Hopital’s Rule
Step 1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.
Step 2. Differentiate f and g separately.

Step 3. Find the limit of f'(x)/g’(x). If this limit is finite, 4+o0, or —oo, then it is equal
to the limit of f(x)/g(x).



The limit in Example 1 can be inter-
preted as the limit form of a certain
derivative. Use that derivative to evalu-
ate the limit.

WARNING

Applying LHopital's rule to limits that
are not indeterminate forms can pro-
duce incorrect results. For example, the
computation

d
—[x + 6]

lim x+g = lim 4
x—0x + x—0 Lx+2

dx

!

= lim — =1
x—01

is not valid, since the limit is not an
indeterminate form. The correct result

Guillaume Francois Antoine de L’Hopital (1661-1704)
French mathematician. L’Hopital, born to parents of the
French high nobility, held the title of Marquis de Sainte-
Mesme Comte d’Autrement. He showed mathematical
talent quite early and at age 15 solved a difficult prob-
lem about cycloids posed by Pascal. As a young man
he served briefly as a cavalry officer, but resigned because of near-
sightedness. In his own time he gained fame as the author of the
first textbook ever published on differential calculus, L’Analyse des
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» Example 1 Find the limit

. x2—4
lim
x—>2 x —2

using L"Hopital’s rule, and check the result by factoring.

Solution. The numerator and denominator have a limit of 0, so the limit is an indetermi-
nate form of type 0/0. Applying L'Hopital’s rule yields

d ,
2_ 4y —[x" —4] )
lim A lim d;; = lim Tx —4
xX—>2 X — X —> —[x—2] X —
dx

This agrees with the computation

o ox*—4 o x=2)(x+2)
lim = lim ——
x—=2 x—2 x—2 x =2

= lim(x+2) =4 <

» Example 2 In each part confirm that the limit is an indeterminate form of type 0/0,
and evaluate it using L"Hdpital’s rule.

2. 1 —si *
@ lim 2% B lim — () 1im &
x—7n/2 COSX xr—>0 x3
@ 1 tan x © 1 1 —cosx @ 1 x 43
1im (] m —:r——- m —F—F
—0- X x—0 x2 X — 4o Sin(l/x)

Solution (a). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’'Hopital’s rule yields

d .
I sin2x ——[sin2x] _ 2cos2x
x1—1>nO X B xl—1>n() d B x1—>InO 1 o
a[x]

Observe that this result agrees with that obtained by substitution in Example 4(b) of Sec-
tion 1.6.

Solution (b). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’ Hopital’s rule yields

d .
1 —sinx I _x[l — sinx] . —COSX 0 0
— = lim &&—— = lim - = — =
x—m/2 COSX x—7/2 < [cosx] x—m/2 —SIinXx —1
dx

Infiniment Petits pour I’Intelligence des Lignes Courbes (1696).
L’Hopital’s rule appeared for the first time in that book. Actually,
L’Hopital’s rule and most of the material in the calculus text were due
to John Bernoulli, who was L’Hopital’s teacher. L"Hopital dropped
his plans for a book on integral calculus when Leibniz informed
him that he intended to write such a text. L’Hopital was apparently
generous and personable, and his many contacts with major mathe-
maticians provided the vehicle for disseminating major discoveries
in calculus throughout Europe.
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Solution (¢). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’ Hopital’s rule yields

—d [e* —1]
X e — X
lim — lim 4 = lim —— = 4o
x—0 X3 x—0 d 3 x—0 3x2
—[x7]
dx

Solution (d). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L' Hopital’s rule yields

tan x . sec? x

lim 3
x—>0" X x—>0- 2x

= —0

Solution (e). The numerator and denominator have a limit of 0, so the limit is an inde-

terminate form of type 0/0. Applying L’'Hopital’s rule yields
1 —cosx . sinx

lim = lim
x—0 x2 x—0 2x

Since the new limit is another indeterminate form of type 0/0, we apply L’ Hopital’s rule

again: .1 —cosx . sinx . CcOoSX 1
lim ————— = lim = lim = —
2 x—0 Zx x—>0 2 2

x—0 X

Solution (f). The numerator and denominator have a limit of 0, so the limit is an
indeterminate form of type 0/0. Applying L Hopital’s rule yields
—4/3 4_-7/3 4. -1/3
x 43 —3x . 3x 0

e sin(1/x)  xote (—1/x2) cos(1/x) e cos(1/x) 1

Bl INDETERMINATE FORMS OF TYPE « /o
When we want to indicate that the limit (or a one-sided limit) of a function is +oc or —oo
without being specific about the sign, we will say that the limit is . For example,

lim+ f(x) =« means lim+ f(x) =4 or lim+ flx) = —o
linJ: f(x) = means linl f(x) =4 or lirgl_ f(x) = —

lim f(x) = means lim+ f(x) =+ and lim f(x) = £oo

X—a

The limit of a ratio, f(x)/g(x), in which the numerator has limit c and the denominator
has limit o is called an indeterminate form of type «/w. The following version of
L’Hopital’s rule, which we state without proof, can often be used to evaluate limits of this

type.

3.6.2 THEOREM (L’Hépital’s Rule for Form « /=) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) =w and lim g(x) =

X—a

If im [ f/(x)/ g’ (x)] exists, or if this limit is 4o or —co, then

f&) L f(x)

lim — = lim
x—a g(x) x—a g’(x)

Moreover, this statement is also true in the case of a limitas x —a~, x —a™, x — —oo,
or as x — +w.
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» Example 3 1In each part confirm that the limit is an indeterminate form of type oo/c0
and apply L’Hopital’s rule.

In x

(@ lim =~  (b) lim

x—>tw et x— 0t CSC X

Solution (a). The numerator and denominator both have a limit of 4o, so we have an
indeterminate form of type oo/c. Applying L’Hopital’s rule yields

. X .
Iim —= lim — =0
x— +0w eX x— 4o eX

Solution (b). The numerator has a limit of —oo and the denominator has a limit of oo,
so we have an indeterminate form of type o/c. Applying L’Hopital’s rule yields
In x . 1/x

im = lm ——
x—0t CSC X x—0t —Ccscx cotx

“

This last limit is again an indeterminate form of type o/c. Moreover, any additional
applications of L’Hdopital’s rule will yield powers of 1/x in the numerator and expressions
involving csc x and cot x in the denominator; thus, repeated application of L'Hopital’s rule
simply produces new indeterminate forms. We must try something else. The last limit in
(4) can be rewritten as

. sin x . osinx |
lim (— tanx) =— lim — - lim tanx = —(1)(0) =0
x—0t X x—0t X x—0t
Thus,
. Inx
lim =0 «
x— 0+ CSC X

ANALYZING THE GROWTH OF EXPONENTIAL FUNCTIONS USING L'HOPITAL'S RULE
If n is any positive integer, then x”" — +o as x — +o0. Such integer powers of x are some-
times used as “measuring sticks” to describe how rapidly other functions grow. For example,
we know that ¢* — 4o as x — 4o and that the growth of e* is very rapid (Table 0.5.5);
however, the growth of x” is also rapid when n is a high power, so it is reasonable to ask
whether high powers of x grow more or less rapidly than e*. One way to investigate this is
to examine the behavior of the ratio x"/e* as x — +o. For example, Figure 3.6.1a shows
the graph of y = x°/e*. This graph suggests that x°/e* — 0 as x — +o, and this implies
that the growth of the function e* is sufficiently rapid that its values eventually overtake
those of x° and force the ratio toward zero. Stated informally, “e* eventually grows more
rapidly than x3.” The same conclusion could have been reached by putting ¢* on top and
examining the behavior of e*/x> as x — 4o (Figure 3.6.1b). In this case the values of e*
eventually overtake those of x> and force the ratio toward 0. More generally, we can use
L’Hopital’s rule to show that e* eventually grows more rapidly than any positive integer
power of x, that is,

i = T e L — (5-6)

Both limits are indeterminate forms of type oo/co that can be evaluated using L’ Hopital’s
rule. For example, to establish (5), we will need to apply L’Hopital’s rule n times. For this
purpose, observe that successive differentiations of x” reduce the exponent by 1 each time,
thus producing a constant for the nth derivative. For example, the successive derivatives
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WARNING

It is tempting to argue that an inde-
terminate form of type 0 - o has value
0 since “zero times anything is zero!
However, this is fallacious since 0 - « is
not a product of numbers, but rather
a statement about limits. For exam-
ple, here are two indeterminate forms
of type O - o whose limits are not zero:

1
lim <x~7>= lim 1=1
x—0 X x—>0

1 1
li — )=l —
g (ﬁ x> xi%%(ﬁ)

= 400

of x* are 3x2, 6x, and 6. In general, the nth derivative of x” is n(n — 1)(n —2) --- 1 = n!
(verify).” Thus, applying L’Hopital’s rule n times to (5) yields
n !
lim — = lim — =0

x— +ow eX x— +oo ¥

Limit (6) can be established similarly.

Il INDETERMINATE FORMS OF TYPE 0 -

Thus far we have discussed indeterminate forms of type 0/0 and /. However, these are
not the only possibilities; in general, the limit of an expression that has one of the forms
S x
w0 s, ORI f0) =g, f(x) +8()
is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting
influences on the limit of the entire expression. For example, the limit

lim xInx
x— 0t

is an indeterminate form of type 0 -  because the limit of the first factor is 0, the limit of
the second factor is —oo, and these two limits exert conflicting influences on the product.
On the other hand, the limit lirﬂ [Vx(l — xz)]

X —> +ox©

is not an indeterminate form because the first factor has a limit of 4o, the second factor has
a limit of —oo, and these influences work together to produce a limit of —oc for the product.

Indeterminate forms of type O - « can sometimes be evaluated by rewriting the product
as a ratio, and then applying L’Hopital’s rule for indeterminate forms of type 0/0 or oo/ co.

» Example 4 Evaluate

(a) lim xInx (b) lim (1 — tanx)sec2x
x—0* x—n/4
Solution (a). The factor x has a limit of 0 and the factor In x has a limit of —oo, so the
stated problem is an indeterminate form of type O - co. There are two possible approaches:
we can rewrite the limit as

Inx .
or lim ———
x—>0t 1/1Inx
the first being an indeterminate form of type o/ and the second an indeterminate form of
type 0/0. However, the first form is the preferred initial choice because the derivative of

1/x is less complicated than the derivative of 1/ Inx. That choice yields

m —
x—0* l/x

. . Inx . 1/x
Iim xInx = lim — = Iim —— =
x—0t x—0F l/x x—0t —]/x2 x—0t

Solution (b). The stated problem is an indeterminate form of type 0 - .o. We will convert
it to an indeterminate form of type 0/0:

. 1 —tanx . 1 —tanx
lim (1 —tanx)sec2x = lim —— = lim ———
x— /4 x—n/4 1/sec2x  x—n/4 COS2X
. —sectx -2
= lim ————=—=1 «
x— /4 —2sin 2x -2

“Recall that for n > 1 the expression n!, read n-factorial, denotes the product of the first n positive integers.
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B INDETERMINATE FORMS OF TYPE « — «
A limit problem that leads to one of the expressions

(+0) = (), (=) — (=),
(+20) + (=), (=) + (+)

is called an indeterminate form of type « — . Such limits are indeterminate because
the two terms exert conflicting influences on the expression: one pushes it in the positive
direction and the other pushes it in the negative direction. However, limit problems that
lead to one of the expressions

(+o0) + (),  (+2) = (=),
(=) + (=), (=) — (+=)

are not indeterminate, since the two terms work together (those on the top produce a limit
of +o0 and those on the bottom produce a limit of —c).

Indeterminate forms of type o — oo can sometimes be evaluated by combining the terms
and manipulating the result to produce an indeterminate form of type 0/0 or oo/c.

- . - 1 1
» Example 5 Evaluate lim (— - )

x—0t \ X sin x

Solution. Both terms have a limit of +oo, so the stated problem is an indeterminate form
of type oo — . Combining the two terms yields

. 1 1 . sinx —x
Iim | — — — = lim ——
x—0t \x sinx x—0t xsinx

which is an indeterminate form of type 0/0. Applying L’'Hopital’s rule twice yields

. sinx —x . cosx — 1
Im ——=lm ———
x—0t xsInx x—0t SInXx 4+ x COS X

—sinx

. 0
lim - =-=0 «
x—0+ COSX +cosx —xsinx 2

B INDETERMINATE FORMS OF TYPE 0°, ', 1*
Limits of the form lim f(x)5®

can give rise to indeterminate forms of the types 0°, «°, and 1*. (The interpretations of
these symbols should be clear.) For example, the limit

lim (1 + x)x

whose value we know to be ¢ [see Formula (1) of Section 3.2] is an indeterminate form of
type 1”. It is indeterminate because the expressions 1 + x and 1/x exert two conflicting
influences: the first approaches 1, which drives the expression toward 1, and the second
approaches +oo, which drives the expression toward +cc.

Indeterminate forms of types 0°, *, and 1 can sometimes be evaluated by first intro-
ducing a dependent variable Y= Flx)s®

and then computing the limit of In y. Since

Iny = In[ f(x)$™] = g(x) - In[ f(x)]

the limit of In y will be an indeterminate form of type O - « (verify), which can be evaluated
by methods we have already studied. Once the limit of In y is known, it is a straightforward
matter to determine the limit of y = f(x)¢™), as we will illustrate in the next example.
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» Example 6 Find lim (1 + sinx)'/*.

Solution. As discussed above, we begin by introducing a dependent variable
y = (1+sinx)"*
and taking the natural logarithm of both sides:
1 In(1 + si
Iny =In(1 + sinx)l/x = —In(l +ssinx) = w
X X

Thus, . _ In(1 +sinx)
limlny = lim ———
x—0 x—0 X

which is an indeterminate form of type 0/0, so by L’Hopital’s rule

1

) ~In(1 +sinx) . (cosx)/(1 + sinx)
limIny = lim —————— = lim =
x—=0 x—0 X x—0 1

Since we have shown that In y— 1 as x — 0, the continuity of the exponential function
implies that ¥ — ¢! as x — 0, and this implies that y — ¢ as x — 0. Thus,

lim (1 + sinx)/* =e¢ <«

VQUlCK CHECK EXERCISES 3.6  (See page 228 for answers.)

1. In each part, does L’Hopital’s rule apply to the given limit? 2. Evaluate each of the limits in Quick Check Exercise 1.
2x =2 COSs X x
lim ————— b) i ot : e
(a) Jm x23x+ xl_ 5 (b) o 3. Using L’Hopital’s rule, xliIEx S002 =
e —
c) lim
( ) x—0 tanx

EXERCISE SET 3.6 I Graphing utility  [€] cas

tan 0 te'
1-2 Evaluate the given limit without using L’ Hopital’s rule, and 9. 911rno 5 10. lin}) o
then check that your answer is correct using L’Hopital’s rule. ” mhiTe
X -4 26 -5 1. lim 12, lim o8
i TS i : — — : — 2
1. (a) }Ln12x2+2x—8 (b) xlinlm3x+7 x—>nt X — 1 x—=>0t X
3x
sin x x2 -1 B. 1 In x e
i ; . lim — 14. lim —-
2. (a) )}1_1)110 tan x (b) )}1_)ml x3 -1 xX—>+4w X X — +o xz
1 cotx 16. i 1 —Inx
3-6 True-False Determine whether the statement is true or 5. o Tnx -, el/x
false. Explain your answer. . - 100 , In(sin x)
. . . lim . lim ——
3. L’Hopital’s rule does not apply to E N x—>+4o ¥ x—0+ In(tan x)
-1 —1
. . px) . sinT 2x . x—tan"'x
4. For any polynomial p(x), Xl_l)nlw e 0. 19. gl_r)no » 20. )}1_r)n0 — Q0
In x)" . —x .
5. If n is chosen sufficiently large, then linl (Inx) = o0, 21. xl_l)rgxxe 22, xlimr (x — ) tan %x
X —> +% X
6. lim+ (sinx )Ux =0 23. lim xsin T 24. lim tanxInx
x=0 X — o0 X x— 0+t
7-45 Find the limits. 25. lin}z, sec 3x cos Sx 26. xli_r)nn(x — ) cotx
71 ef —1 8. i sin 2x A N ”
im . lim i _ i =3
x—0 sinx x—0 sin 5x 27. xlinlw(l 3/%) 28. )}Lm()(l +2x)



29. lim (' +x) 30. lim (1 +a/x)"
31. lim (2 — x)@0l07/2)] 32. lim [cos(2/x)]"
x—1 X —> 4w
1 3
33. lim (cscx — 1/x) 34, lim (= — 2%
x—0 x—0 xz x2
1 1
35. lim (WVx24+x—x) 36. lim (7 — )
X — 4o x—>0\ X eX — 1
37. lim [x —In(x>+ 1] 38 lim [Inx — In(1 4 x)]
X — 4o X — oo
39. lim x¥"* 40. lim (¥ — 1)*
x—0t x—0*
1 X
41. lim [——] 42. lim x'*
x—0* Inx X — 4o
43. lim (Inx)"* 44. lim (—Inx)"
X — 4o x— 0t
45. lim (tanx)™?~*
x— /2~
46. Show that for any positive integer n
. Inx . x"
(@ lim — =0 (b) lim = o0,

x—>+owo xN x—+4» lnx

FOCUS ON CONCEPTS

47. (a) Find the error in the following calculation:

X=Xt -1 o 3x2—2x+1
Iim —mFm =1lm ———
x—1 x3—x2 x—1 3x2—2x
. 6x—2
= lim =1
x—>16x —2

(b) Find the correct limit.

48. (a) Find the error in the following calculation:

6x — 12 3x2-12x+12
_ fjm X 12 =0

e3x2—121+12
Iim ——
x—2 x4 — 16 x—>2 4-)C3

(b) Find the correct limit.

] 49-52 Make a conjecture about the limit by graphing the func-

tion involved with a graphing utility; then check your conjecture
using L"Hopital’s rule.

In(l
49, lim 00 50. lim x*
X —> +ow X x— 0t
. . 3/Inx 4tan x
51. lim (sinx) 52. im —
x—0F x—@/2)- 1 +secx

[ 53-56 Make a conjecture about the equations of horizontal

asymptotes, if any, by graphing the equation with a graphing
utility; then check your answer using L'Hopital’s rule.
53. y=Inx —¢€* 54. y =x —In(1 4 2¢%)

x+1\"
55. y = (Inx)'* 56. y =
y=(nx) y <x+2)

57. Limits of the type

0/c0, /0,
+oo — (=),

0%, oo, oot (40),
—o0 4 (=), —— (+%)
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are not indeterminate forms. Find the following limits by

inspection.
3
. X . X
@ 0% s © I, =
(¢) lim (cosx)®* (d) lim (Inx)cotx
x— (n/2)~ x— 0t

(e) lim <1 —lnx) (f) lim (x +x°)
x—>0t \ X X —> —®

58. There is a myth that circulates among beginning calculus
students which states that all indeterminate forms of types
09, %, and 1 have value 1 because “anything to the zero
power is 17 and “1 to any power is 1.” The fallacy is that
0%, o, and 1% are not powers of numbers, but rather de-
scriptions of limits. The following examples, which were
suggested by Prof. Jack Staib of Drexel University, show
that such indeterminate forms can have any positive real
value:

. (Ina)/(1+lnx)y __
(a) xlgr&[x l=a

(form 0%)

(b) lim [x@/AH D] — 4 (form )
(©) lim[(x + HWO] =4 (form 17).
X —>
Verify these results.
59-62 Verify that L'Hopital’s rule is of no help in finding the
limit; then find the limit, if it exists, by some other method.

59. lim M 60. lim w
x— oo X x—+» 3x 4 sinx

6L lim x(2 + sin2x) 62 lim x(2 + sinx)
X+ x+1 x—>+o  xZ41

63. The accompanying schematic diagram represents an electri-
cal circuit consisting of an electromotive force that produces
a voltage V, a resistor with resistance R, and an inductor
with inductance L. It is shown in electrical circuit theory
that if the voltage is first applied at time ¢ = 0, then the
current / flowing through the circuit at time 7 is given by

\%
I =_(1— —Rt/L
R( e )

What is the effect on the current at a fixed time ¢ if the
resistance approaches 0 (i.e., R — 07)?

000 < Figure Ex-63

64. (a) Show that lim/ (/2 —x)tanx = 1.
2

X —> T,

(b) Show that

1
li —t =0
3, (7= o)

(c) It follows from part (b) that the approximation
1
/2 —x

tan x ~
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should be good for values of x near /2. Use a calcula-
tor to find tan x and 1/ (/2 — x) for x = 1.57; compare
the results.

[c] 65. (a) Usea CAS to show that if k is a positive constant, then

lim x(&Y* —1) =Ink

X —> 400
(b) Confirm this result using L’Hopital’s rule. [Hint: Ex-
press the limit in terms of 7 = 1/x.]
(c) If n is a positive integer, then it follows from part (a)
with x = n that the approximation

n(Vk — 1)~ Ink

should be good when # is large. Use this result and the
square root key on a calculator to approximate the val-
ues of In 0.3 and In 2 with n = 1024, then compare the
values obtained with values of the logarithms generated
directly from the calculator. [Hint: The nth roots for
which n is a power of 2 can be obtained as successive
square roots. ]

66. Find all values of k and / such that

k 4+ coslx
mo——>"=

li 5

x—0 X

=4

FOCUS ON CONCEPTS

67. Let f(x) = xZsin(1/x).
(a) Are the limits lim, _, g+ f(x) and lim, _, o- f(x) in-
determinate forms?
(b) Use agraphing utility to generate the graph of f, and
use the graph to make conjectures about the limits
in part (a).

‘/QUICK CHECK ANSWERS 3.6

(c) Use the Squeezing Theorem (1.6.4) to confirm that
your conjectures in part (b) are correct.

68. (a) Explain why L’Hopital’s rule does not apply to the
problem _ x?sin(1/x)
lim ————=
x—0 S x
(b) Find the limit.

69. Find lim “500/%)

- if it exists.
x—0t sSin x

70. Suppose that functions f and g are differentiable at x = a
and that f(a) = g(a) = 0. If g’(a) # 0, show that

fim 9 _ f "(a)
im — =
x—agx)  g'(a)
without using L’Hopital’s rule. [Hint: Divide the numer-
ator and denominator of f(x)/g(x) by x — a and use the
definitions for f’(a) and g’(a).]
71. Writing Were we to use L’Hopital’s rule to evaluate either
. I\
lim o or lim (1 + 7>
X

x—=0 X xX— +®

we could be accused of circular reasoning. Explain why.

72. Writing Exercise 58 shows that the indeterminate forms 0°
and oo” can assume any positive real value. However, it is
often the case that these indeterminate forms have value 1.
Read the article “Indeterminate Forms of Exponential Type”
by John Baxley and Elmer Hayashi in the June—July 1978
issue of The American Mathematical Monthly, and write a
short report on why this is the case.

1. (a) yes (b) no (c) yes

CHAPTER 3 REVIEW EXERCISES X Graphing Utility

2. (a) % (b) does notexist (¢c) 2 3. Hox

1-2 (a) Find dy/dx by differentiating implicitly. (b) Solve the
equation for y as a function of x, and find dy/dx from that equa-
tion. (c) Confirm that the two results are consistent by expressing
the derivative in part (a) as a function of x alone.

L x34+xy—2x=1 2. xy=x—Yy

3-6 Find dy/dx by implicit differentiation.

1 1
3. —4+-—-=1 4. x3 — 33 =6xy
y X
coty
5. = 6, 2 = ——
sec(xy) =y X T+ ooy

7-8 Find d?y/dx? by implicit differentiation.
7. 3x* —4y? =7 8. 2xy —y>=3

9. Use implicit differentiation to find the slope of the tan-
gent line to the curve y = x tan(mry/2),x > 0,y > O (the
quadratrix of Hippias) at the point (3, 1) .

10. At what point(s) is the tangent line to the curve y? = 2x>
perpendicular to the line 4x — 3y + 1 = 0?

11. Prove that if P and Q are two distinct points on the rotated
ellipse x> + xy + y?> = 4 such that P, Q, and the origin are
collinear, then the tangent lines to the ellipse at P and Q are
parallel.

12. Find the coordinates of the point in the first quadrant at
which the tangent line to the curve x> — xy +y3 =0 is
parallel to the x-axis.

13. Find the coordinates of the point in the first quadrant at
which the tangent line to the curve x* — xy + y3 =0 is
parallel to the y-axis.



14. Use implicit differentiation to show that the equation of the
tangent line to the curve y?> = kx at (xg, yo) is

Yoy = 3k (x + xo)

15-16 Find dy/dx by first using algebraic properties of the nat-
ural logarithm function.

5 v ((x+1)(x+2)2> 16 v (VAT
cy=a (x +3)3(x +4)* sy = sin x sec x

17-34 Find dy/dx.
17. y =1n2x

19. y=JInx +1

18. y = (Inx)?
20. y=In(Jx+1)

141
21. y = log(Inx) 2. y= 08X
1 —logx
23, y = In(x*2/T+ 5 4. y=In (*/f:os;)
X
5 1 X 2x
25, y = M0+ 26. y=In <7+ cte )
1 —e3
27. y = 2xeV™ 28 y= 24
1+ be™*
1 .
29. y = —tan"' 2x 30, y =2sin ¥
T

2. y=1+x)"
34. y = +/cos~ 1 x2

31, y =x©)
33. y=sec'2x + 1)

35-36 Find dy/dx using logarithmic differentiation.

3 2 _
_r 36. y=J7%
X2+ 1 x2+1

35. y=

[ 37. (a) Make a conjecture about the shape of the graph of

y = %x — In x, and draw a rough sketch.

(b) Check your conjecture by graphing the equation over
the interval 0 < x < 5 with a graphing utility.

(c) Show that the slopes of the tangent lines to the curve at
x = 1 and x = e have opposite signs.

(d) What does part (c) imply about the existence of a hori-
zontal tangent line to the curve? Explain.

(e) Find the exact x-coordinates of all horizontal tangent
lines to the curve.

38. Recall from Section 0.5 that the loudness 8 of a sound in
decibels (dB) is given by 8 = 10log(1/Iy), where I is the
intensity of the sound in watts per square meter (W/m?) and
Iy is a constant that is approximately the intensity of a sound
at the threshold of human hearing. Find the rate of change
of B with respect to [ at the point where
(a) 1/1p =10 (b) 1/Iy =100 (c) 1/Iy = 1000.

39. A particle is moving along the curve y = x Inx. Find all
values of x at which the rate of change of y with respect to
time is three times that of x. [Assume that dx/dt is never
zero.|

40.

41.

42.

43.

44,

45.
46.
47.

48.

49.

50.

M s1.

52.
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Find the equation of the tangent line to the graph of
y=In(5—-x*atx =2.

Find the value of b so that the line y = x is tangent to the
graph of y = log,, x. Confirm your result by graphing both
y =x and y = log,, x in the same coordinate system.

In each part, find the value of k for which the graphs of
y = f(x) and y =Inx share a common tangent line at
their point of intersection. Confirm your result by graphing
y = f(x) and y = In x in the same coordinate system.

@ f(x)=+x+k (b) f(x) =k/x

If f and g are inverse functions and f is differentiable on
its domain, must g be differentiable on its domain? Give a
reasonable informal argument to support your answer.

In each part, find (f~')'(x) using Formula (2) of Section
3.3, and check your answer by differentiating f~! directly.
(@ fx)=3/(x+1) (b) f(x) =+/e¥

Find a point on the graph of y = ¢3* at which the tangent
line passes through the origin.

Show that the rate of change of y = 5000e'?7* is propor-
tional to y.

Show that the rate of change of y = 32*57* is proportional
to y.

The equilibrium constant k of a balanced chemical reaction
changes with the absolute temperature 7 according to the

law
T — Tt
k = koexp <_u>
27T

where kg, ¢, and Ty are constants. Find the rate of change
of k with respect to T'.

Show that the function y = e%* sin bx satisfies
y//_zay/+ (a2+b2)y =0

for any real constants a and b.
Show that the function y = tan~! x satisfies

y" = —2sin ycos’ y
Suppose that the population of deer on an island is modeled
by the equation

95
PO=550m
where P(t) is the number of deer + weeks after an initial
observation at time ¢t = 0.
(a) Use a graphing utility to graph the function P(z).
(b) In words, explain what happens to the population over
time. Check your conclusion by finding lim, _, ;.. P(¢).
(c) Inwords, what happens to the rate of population growth
over time? Check your conclusion by graphing P’(¢).

In each part, find each limit by interpreting the expression

as an appropriate derivative.
1+h)7™—1
a+m*—1 ®) lim ——————
h x—>e(x —e)lnx

11
(a) lim o
h—0
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53. Suppose that lim f(x) = o and lim g(x) = . In each
of the four possible cases, state whether lim[ f(x) — g(x)]
is an indeterminate form, and give a reasonable informal
argument to support your answer.

54. (a) Under what conditions will a limit of the form
lim [ £(x)/g(x)]

be an indeterminate form?

(b) Iflim,_ , g(x) = 0, mustlim, _, ,[ f(x)/g(x)] be anin-
determinate form? Give some examples to support your
answer.

55-58 Evaluate the given limit.

. . 5 . Inx
55. lim (e* —x7) 56. lim 7
x—+w x—>1Y x*—1
x%e* a* —1
57. lim A 58. lim . a>0
x—0sin“ 3x x—>0 X

59. An oil slick on a lake is surrounded by a floating circular
containment boom. As the boom is pulled in, the circular
containment area shrinks. If the boom is pulled in at the rate
of 5 m/min, at what rate is the containment area shrinking
when the containment area has a diameter of 100 m?

60. The hypotenuse of a right triangle is growing at a constant
rate of a centimeters per second and one leg is decreasing
at a constant rate of b centimeters per second. How fast is
the acute angle between the hypotenuse and the other leg
changing at the instant when both legs are 1 cm?

In these exercises we explore an application of exponential func-
tions to radioactive decay, and we consider another approach to
computing the derivative of the natural exponential function.

1. Consider a simple model of radioactive decay. We assume
that given any quantity of a radioactive element, the frac-
tion of the quantity that decays over a period of time will be
a constant that depends on only the particular element and
the length of the time period. We choose a time parameter
—oo < t < +wandlet A = A(t) denote the amount of the el-
ement remaining at time 7. We also choose units of measure
such that the initial amount of the element is A(0) = 1, and
we let b = A(1) denote the amount at time ¢t = 1. Prove that
the function A(¢) has the following properties.

(a) A(—t) = ﬁ [Hint: Fort > 0, you can interpret A(?)
as the fraction of any given amount that remains after a
time period of length 7.]

61.

62.

63.

In each part, use the given information to find Ax, Ay,
and dy.

(a) y =1/(x — 1); x decreases from 2 to 1.5.

(b) y = tanx; x increases from —7/4 to 0.

(¢) y =+/25 — x2; x increases from 0 to 3.

Use an appropriate local linear approximation to estimate
the value of cot 46°, and compare your answer to the value
obtained with a calculating device.

The base of the Great Pyramid at Giza is a square that is 230

m on each side.

(a) Asillustrated in the accompanying figure, suppose that
an archaeologist standing at the center of a side mea-
sures the angle of elevation of the apex to be ¢ = 51°
with an error of £0.5°. What can the archaeologist
reasonably say about the height of the pyramid?

(b) Use differentials to estimate the allowable error in the
elevation angle that will ensure that the error in calcu-
lating the height is at most 5 m.

/'\
/\ ' ’f‘p«\
230 m \/ \A/

A Figure Ex-63

(b) A(s +1t) = A(s) - A(t) [Hint: First consider positive s
and ¢. For the other cases use the property in part (a).]
(c) If n is any nonzero integer, then

1
A (7) = @A) =p'"
n
(d) If m and n are integers with n #~ 0, then
ﬂ — m/n p— m/n
A(n> = (A" = b

(e) Assuming that A(z) is a continuous function of ¢, then
A(t) = b'. [Hint: Prove that if two continuous func-
tions agree on the set of rational numbers, then they are
equal.]

(f) If we replace the assumption that A(0) = 1 by the con-
dition A(0) = A, prove that A = Ayb'.



2. Refer to Figure 1.3.4.
(a) Make the substitution # = 1/x and conclude that

A+ <e<A =" forh >0
and

A=h)"Y"<e <A +n)"" forh <0

Chapter 3 Making Connections 231

(b) Use the inequalities in part (a) and the Squeezing Theo-
rem to prove that

e — 1

lim =1
h—>0 h

(c) Explain why the limit in part (b) confirms Figure 0.5.4.
(d) Use the limit in part (b) to prove that

d(x) *
— (") =e
dx
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Calculus is essential for the In the last chapter we introduced the definite integral as the limit of Riemann sums in the
computations required to land an context of finding areas. However, Riemann sums and definite integrals have applications that
astronaut on the moon. extend far beyond the area problem. In this chapter we will show how Riemann sums and

definite integrals arise in such problems as finding the volume and surface area of a solid,
finding the length of a plane curve, calculating the work done by a force, finding the center of
gravity of a planar region, finding the pressure and force exerted by a fluid on a submerged
object, and finding properties of suspended cables.

Although these problems are diverse, the required calculations can all be approached by
the same procedure that we used to find areas—breaking the required calculation into “small
parts,” making an approximation for each part, adding the approximations from the parts to
produce a Riemann sum that approximates the entire quantity to be calculated, and then
taking the limit of the Riemann sums to produce an exact result.

m AREA BETWEEN TWO CURVES

In the last chapter we showed how to find the area between a curve y = f(x) and an
interval on the x-axis. Here we will show how to find the area between two curves.

l A REVIEW OF RIEMANN SUMS
Before we consider the problem of finding the area between two curves it will be helpful to
y y=f(x)  review the basic principle that underlies the calculation of area as a definite integral. Recall
that if f is continuous and nonnegative on [a, b], then the definite integral for the area A
under y = f(x) over the interval [a, b] is obtained in four steps (Figure 6.1.1):

¢ Divide the interval [a, b] into n subintervals, and use those subintervals to divide the

f& . . .
! region under the curve y = f(x) into n strips.
i * Assuming that the width of the kth strip is Axy, approximate the area of that strip by
a xf b the area f(x;) Ax; of a rectangle of width Ax; and height f(x;), where x} is a point
A Figure 6.1.1 in the kth subinterval.

* Add the approximate areas of the strips to approximate the entire area A by the
Riemann sum: n
AR O Ax
k=1
413
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n

> fe) Axg
k=1

]

/a ") dx

Effect of the limit process
on the Riemann sum

A Figure 6.1.2

e Take the limit of the Riemann sums as the number of subintervals increases and all
their widths approach zero. This causes the error in the approximations to approach
zero and produces the following definite integral for the exact area A:

max Ax; — 0

n b
A= lim Zf(x;j)Axk =f f(x)dx
k=1 a

Figure 6.1.2 illustrates the effect that the limit process has on the various parts of the
Riemann sum:

¢ The quantity x; in the Riemann sum becomes the variable x in the definite integral.
e The interval width Ax; in the Riemann sum becomes the dx in the definite integral.

e Theinterval [a, b], whichis the union of the subintervals with widths Ax;, Ax,, ...,
Ax,, does not appear explicitly in the Riemann sum but is represented by the upper
and lower limits of integration in the definite integral.

B AREA BETWEEN y = f(x) AND y = g(x)

We will now consider the following extension of the area problem.

6.1.1 FIRST AREA PROBLEM Suppose that f and g are continuous functions on an

interval [a, b] and f(x)>gx) for a<x<b

[This means that the curve y = f(x) lies above the curve y = g(x) and that the two can
touch but not cross.] Find the area A of the region bounded above by y = f(x), below
by y = g(x), and on the sides by the lines x = a and x = b (Figure 6.1.3a).

i
ﬂ o JeD-std

a\/[) i

» Figure 6.1.3 (@)

To solve this problem we divide the interval [a, b] into n subintervals, which has the
effect of subdividing the region into n strips (Figure 6.1.3b). If we assume that the width of
the kth strip is Axy, then the area of the strip can be approximated by the area of a rectangle
of width Ax; and height f(x}) — g(x;), where x; is a point in the kth subinterval. Adding
these approximations yields the following Riemann sum that approximates the area A:

AR Y 1@ — D] A

k=1

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the following definite integral for the area A between the curves:

max Ax; — 0

n b
A= lim S - spian = [ 1) - g0l
k=1 a
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What does the integral in (1) represent
if the graphs of f and g cross each
other over the interval [a, b]? How
would you find the area between the
curves in this case?
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In summary, we have the following result.

6.1.2 AREA FORMULA If f and g are continuous functions on the interval [a, b],
and if f(x) > g(x) for all x in [a, b], then the area of the region bounded above by
y = f(x), below by y = g(x), on the left by the line x = a, and on the right by the line
x =bis

b
A=/ [f(x) — g(x)]dx 6]

» Example 1 Find the area of the region bounded above by y = x + 6, bounded below
by y = x2, and bounded on the sides by the lines x = 0 and x = 2.

Solution. The region and a cross section are shown in Figure 6.1.4. The cross section
extends from g(x) = x? on the bottom to f(x) = x + 6 on the top. If the cross section is
moved through the region, then its leftmost position will be x = 0 and its rightmost position
will be x = 2. Thus, from (1)

2 x? x32 34 34
A= 6)—xldx=|=+4+6x——=—| == —-0="= «
/O[(x—i-) x“ldx [2+x 3:|0 3 3

It is possible that the upper and lower boundaries of a region may intersect at one or
both endpoints, in which case the sides of the region will be points, rather than vertical
line segments (Figure 6.1.5). When that occurs you will have to determine the points of
intersection to obtain the limits of integration.

y=fx) y=fx)
\ ‘ ! _ \
\ y=g() | \ y =8
\ L ¥ \ |
| a b | a b
The left-hand boundary Both side boundaries
reduces to a point. reduce to points.

P Figure 6.1.5

» Example 2 Find the area of the region that is enclosed between the curves y = x>

andy = x + 6.

Solution. A sketch of the region (Figure 6.1.6) shows that the lower boundary is y = x?
and the upper boundary is y = x + 6. At the endpoints of the region, the upper and lower
boundaries have the same y-coordinates; thus, to find the endpoints we equate

y=x> and y=x+6 2
This yields

x>=x46 or x>’—x—6=0 or (x+2)(x—3)=0

from which we obtain

x=-2 and x =3

Although the y-coordinates of the endpoints are not essential to our solution, they may be
obtained from (2) by substituting x = —2 and x = 3 in either equation. This yields y = 4
and y = 9, so the upper and lower boundaries intersect at (—2, 4) and (3, 9).
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From (1) with f(x) = x 4+ 6, g(x) = x>,a = —2, and b = 3, we obtain the area

2

3 X
A:/ [(x +6) —x*]dx = |:—+6x—
-2

2

x3

3

L.

27
)

(

2\ 125
—— | = — <«
3) 6

In the case where f and g are nonnegative on the interval [a, b], the formula

b b b
A=f [f(X)—g(X)]dx=/ f(X)dx—/ g(x)dx

states that the area A between the curves can be obtained by subtracting the area under
y = g(x) from the area under y = f(x) (Figure 6.1.7).

y y=/) y=J) y y=/)
\ \ \
| | |
} y=g) | «x } Y=g | x } V=g() | x
a b a b a b
Area between fand g Area below f Area below g

A Figure 6.1.7

A Figure 6.1.8

Itis not necessary to make an extremely
accurate sketch in Step 1; the only pur-
pose of the sketch is to determine
which curve is the upper boundary and
which is the lower boundary.

» Example 3 Figure 6.1.8 shows velocity versus time curves for two race cars that move
along a straight track, starting from rest at the same time. Give a physical interpretation of
the area A between the curves over the interval 0 <t < T.

Solution. From (1)

T T T
A=/ [vz(t)—vl(t)]dtz/ vz(t)dt—/ vy (1) dt
0 0 0

Since v; and v, are nonnegative functions on [0, T'], it follows from Formula (4) of Section
5.7 that the integral of v; over [0, T] is the distance traveled by car 1 during the time interval
0 <t < T, and the integral of v, over [0, T] is the distance traveled by car 2 during the
same time interval. Since v (¢) < v,(¢) on [0, T], car 2 travels farther than car 1 does over
the time interval 0 < ¢t < T, and the area A represents the distance by which car 2 is ahead
of car 1 attime 7. <«

Some regions may require careful thought to determine the integrand and limits of
integration in (1). Here is a systematic procedure that you can follow to set up this formula.

Finding the Limits of Integration for the Area Between Two Curves

Step 1. Sketch the region and then draw a vertical line segment through the region at
an arbitrary point x on the x-axis, connecting the top and bottom boundaries
(Figure 6.1.9a).

Step 2. The y-coordinate of the top endpoint of the line segment sketched in Step 1
will be f(x), the bottom one g(x), and the length of the line segment will be

f(x) — g(x). This is the integrand in (1).

Step 3. To determine the limits of integration, imagine moving the line segment left and
then right. The leftmost position at which the line segment intersects the region

is x = a and the rightmost is x = b (Figures 6.1.95 and 6.1.9¢).
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y S y y
‘ g(‘)c) }
S | | : .
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A Figure 6.1.9
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A Figure 6.1.10

There is a useful way of thinking about this procedure:

If you view the vertical line segment as the “cross section” of the region at the point x,
then Formula (1) states that the area between the curves is obtained by integrating the
length of the cross section over the interval [a, b].

It is possible for the upper or lower boundary of a region to consist of two or more
different curves, in which case it will be convenient to subdivide the region into smaller
pieces in order to apply Formula (1). This is illustrated in the next example.

» Example 4 Find the area of the region enclosed by x = y?> and y = x — 2.

Solution. To determine the appropriate boundaries of the region, we need to know where
the curves x = y?and y = x — 2intersect. In Example 2 we found intersections by equating
the expressions for y. Here it is easier to rewrite the latter equation as x = y + 2 and equate
the expressions for x, namely,

2

x=y and x=y+2 &)

This yields
Y=y+2 or y¥>—y—-2=0 or (y+D(y—-2=0
from which we obtain y = —1, y = 2. Substituting these values in either equation in (3)
we see that the corresponding x-values are x = 1 and x = 4, respectively, so the points of
intersection are (1, —1) and (4, 2) (Figure 6.1.10a).
To apply Formula (1), the equations of the boundaries must be written so that y is
expressed explicitly as a function of x. The upper boundary can be written as y = /x

(rewrite x = y? as y = #/x and choose the + for the upper portion of the curve). The
lower boundary consists of two parts:

yz—ﬁ for 0<x<1 and

(Figure 6.1.100). Because of this change in the formula for the lower boundary, it is
necessary to divide the region into two parts and find the area of each part separately.
From (1) with f(x) = \/x, g(x) = —/x,a =0, and b = 1, we obtain

1 1 2 5,1 4 4
A1=/[ﬁ—(—ﬁ)]dx=2/ ﬁm:z[-ﬁ”} =-—0=-
0 0 3 0o 3 3

From (1) with f(x) = \/x, g(x) =x —2,a = 1, and b = 4, we obtain

4 4
Azzf[f—(x—2>1dx=/(ﬁ—x+2)dx
1 1

2 4, 1, to16 2 1 19
=[x 42| == -848)—(Z—-+2)==
[3x P Ml T 3727 6

y=x-2 for 1<x<4
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Thus, the area of the entire region is

= <

19 9
6 2

4
A:A1+A2=§+

Il REVERSING THE ROLES OF x AND y
Sometimes it is much easier to find the area of a region by integrating with respect to y
rather than x. We will now show how this can be done.

6.1.3 SECOND AREA PROBLEM Suppose that w and v are continuous functions of y
on an interval [c, d] and that

w(y) >v(y) for c<y=<d

[This means that the curve x = w(y) lies to the right of the curve x = v(y) and that
the two can touch but not cross.] Find the area A of the region bounded on the left by
x = v(y), onthe right by x = w(y), and above and below by the linesy =dand y = ¢
(Figure 6.1.11).

A Figure 6.1.11

Proceeding as in the derivation of (1), but with the roles of x and y reversed, leads to
the following analog of 6.1.2.

6.1.4 AREA FORMULA If w and v are continuous functions and if w(y) > v(y) for
all y in [c, d], then the area of the region bounded on the left by x = v(y), on the right
by x = w(y), below by y = ¢, and above by y = d is

d
A= / [w(y) — v()]dy 4)

The guiding principle in applying this formula is the same as with (1): The integrand
in (4) can be viewed as the length of the horizontal cross section at an arbitrary point y on
the y-axis, in which case Formula (4) states that the area can be obtained by integrating the
length of the horizontal cross section over the interval [c, d] on the y-axis (Figure 6.1.12).

> In Example 4, we split the region into two parts to facilitate integrating with respect to
x. In the next example we will see that splitting this region can be avoided if we integrate
A Figure 6.1.12 with respect to y.

w(y)

» Example 5 Find the area of the region enclosed by x = y*> and y = x — 2, integrating
with respect to y.

Solution.  Asindicated in Figure 6.1.10 the left boundary is x = y?, the right boundary is
The'ch01ce|be(tj\{veen dFormlI,|1|as t(1]) and y = x — 2, and the region extends over the interval —1 < y < 2. However, to apply (4) the
(4) s usually dictated by the shape of equations for the boundaries must be written so that x is expressed explicitly as a function

the region and which formula requires k
the Iegast et off st quw_ of y. Thus, we rewrite y = x — 2 as x = y + 2. It now follows from (4) that

ever, sometimes one might choose the 2 P 392 9
formula that requires more splitting A= [(y+2) — y2] dy = y_ +2y — y_ = _
because it is easier to evaluate the re- 1 2 3 -1 2

sulting integrals. . . . .
which agrees with the result obtained in Example 4. <«
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6.1 Area Between Two Curves 419

(See page 421 for answers.)

1. Anintegral expression for the area of the region between the
curves y = 20 — 3x2 and y = ¢* and bounded on the sides
byx =0andx =2is

2. An integral expression for the area of the parallelogram
bounded by y =2x+8,y=2x —3,x = —1,and x =5
is_ . The value of this integral is

3. (a) The points of intersection for the circle x> + y> = 4 and
the line y = x + 2 are and

EXERCISE SET 6.1 [ Graphing utility  [€] cas

(b) Expressed as a definite integral with respect to x,
gives the area of the region inside the circle
x% + y?> = 4 and above the line y = x + 2.
(c) Expressed as a definite integral with respect to y,
gives the area of the region described in
part (b).

4. The area of the region enclosed by the curves y = x2 and

y=Ixis_______.

1-4 Find the area of the shaded region.

1. Yoo y=xt+1 2.

o x=1/y?

5-6 Find the area of the shaded region by (a) integrating with
respect to x and (b) integrating with respect to y.

5. Y 6. 4V

7-18 Sketch the region enclosed by the curves and find its area.
T.y=x2 y=Jx, x=1 x=1

8. y=x’—4x, y=0, x=0, x=2

9. y=cos2x, y=0, x =n/4, x =n/2

10. y =sec’x, y=2, x =—n/4, x =7/4

1. x =siny, x =0, y=n/4, y =3n/4

12. 2=y, x=y—2

13. y=¢", y=¢€>*, x=0, x =1n2

4. x=1/y, x=0, y=1, y=e

1

16. y= ——, y=2
y T—. y

2
15, y=——, y=
Y=ETra Y |x]

17. y=2+4|x— 1|, y=—1x+7
18. y=x, y=4x, y=—x+2

[ 19-26 Use a graphing utility, where helpful, to find the area of

the region enclosed by the curves.

19. y=x>—4x24+3x, y=0

20. y =x° —2x%, y=2x>—3x

21. y =sinx, y=cosx, x =0, x =27
2. y=x>—4x, y=0
24. x =y> —4y> 4+ 3y, x=y>—y

23.x=y3—y, x=0

25. y = xexz, y = 2|x|
1

y=—7)
xy/1 = (Inx)2

27-30 True-False Determine whether the statement is true or
false. Explain your answer. [In each exercise, assume that f
and g are distinct continuous functions on [a, b] and that A de-
notes the area of the region bounded by the graphs of y = f(x),
y=gx),x =a,andx = b.]

26.

X

27. If f and g differ by a positive constantc,then A = c(b — a).

28. If b
/ [f(x) —g(x)]dx = -3

then A = 3.
29, If b
f [f(x) —gx)]dx =0

then the graphs of y = f(x) and y = g(x) cross at least
once on [a, b].

30. If

b
A= f LF(r) — g(0]dx
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M 31.

M 32.
[c] 33.
[c] 34.

35.
36.

37.

38.

then the graphs of y = f(x) and y = g(x) don’t cross on
[a, b].

Estimate the value of k£ (0 < k < 1) so that the region en-
closedby y = 1/4/1 —x2,y = x,x =0, and x = k has an
area of 1 square unit.

Estimate the area of the region in the first quadrant enclosed

by y = sin2x and y = sin" x.

Use a CAS to find the area enclosed by y =3 — 2x and

y = x% 4+ 2x% — 3x* + x2.

Use a CAS to find the exact area enclosed by the curves

y=x>—2x>—3xand y = x3.

Find a horizontal line y = k that divides the area between

y = x% and y = 9 into two equal parts.

Find a vertical line x = k that divides the area enclosed by

x =,/y, x =2, and y = 0 into two equal parts.

(a) Find the area of the region enclosed by the parabola
y = 2x — x? and the x-axis.

(b) Find the value of m so that the line y = mx divides the
region in part (a) into two regions of equal area.

Find the area between the curve y = sin x and the line seg-
ment joining the points (0, 0) and (57/6, 1/2) on the curve.

39-43 Use Newton’s Method (Section 4.7), where needed, to

approximate the x-coordinates of the intersections of the curves

to atleast four decimal places, and then use those approximations

to approximate the area of the region.

39. The region that lies below the curve y = sinx and above
the line y = 0.2x, where x > 0.

40. The region enclosed by the graphs of y = x% and y = cos x.

41. The region enclosed by the graphs of y = (Inx)/x and
y=x-—2.

42. The region enclosed by the graphs of y =3 —2cosx and
y =2/(1 + x?).

43. The region enclosed by the graphs of y = x> —1 and
y =2sinx.

44. Referring to the accompanying figure, use a CAS to esti-

mate the value of k so that the areas of the shaded regions
are equal.

Source: This exercise is based on Problem A1 that was posed in the Fifty-Fourth
Annual William Lowell Putnam Mathematical Competition.

n:\ < Figure Ex-44

FOCUS ON CONCEPTS

45. Two racers in adjacent lanes move with velocity func-
tions vy (t) m/s and v,(t) m/s, respectively. Suppose
that the racers are even at time ¢ = 60 s. Interpret the

value of the integral

60

[v2(r) —vi()]dr
0

in this context.

46. The accompanying figure shows acceleration versus
time curves for two cars that move along a straight track,
accelerating from rest at the starting line. What does the
area A between the curves over the interval 0 <t < T
represent? Justify your answer.

Car 2

Car 1

[
|
|
| T < Figure Ex-46
47. Suppose that f and g are integrable on [a, b], but neither
f(x) > g(x) nor g(x) > f(x) holds for all x in [a, b]
[i.e.,thecurvesy = f(x)and y = g(x) areintertwined].
(a) What is the geometric significance of the integral

b
f LF(r) — g(0)]dx?

(b) What is the geometric significance of the integral

b
/ /() — g(0)] dx?

48. Let A(n) be the area in the first quadrant enclosed by
the curves y = /x and y = x.
(a) By considering how the graph of y = {/x changes
as n increases, make a conjecture about the limit of
A(n) as n— +oo.
(b) Confirm your conjecture by calculating the limit.

49. Find the area of the region enclosed between the curve
xV2 4 y1/2 = 41/2 and the coordinate axes.

50. Show that the area of the ellipse in the accompanying figure
is wab. [Hint: Use a formula from geometry.]

Y

™
%

a

<A Figure Ex-50

51. Writing Suppose that f and g are continuous on [a, b]
but that the graphs of y = f(x) and y = g(x) cross sev-
eral times. Describe a step-by-step procedure for determin-
ing the area bounded by the graphs of y = f(x), y = g(x),
x =a,and x = b.
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52. Writing Suppose that R and S are two regions in the xy- line segments of equal length. Give an informal argument
plane that lie between a pair of lines L; and L, that are that the area of R is equal to the area of S. (Make reasonable
parallel to the y-axis. Assume that each line between L, assumptions about the boundaries of R and S.)

and L, that is parallel to the y-axis intersects R and S in

‘/QUICK CHECK ANSWERS 6.1

2 5 0
1. / [(20 — 3x%) — e*]dx 2. / [2x +8) — (2x —3)]dx; 66 3. (a)(—2,0); (0,2) (b) / [V4—x2—(x+2)]dx
0 -1 -2

2
© /0 (=2 +Va—y7ldy 4

12

m VOLUMES BY SLICING: DISKS AND WASHERS

In the last section we showed that the area of a plane region bounded by two curves can
be obtained by integrating the length of a general cross section over an appropriate
interval. In this section we will see that the same basic principle can be used to find
volumes of certain three-dimensional solids.

VOLUMES BY SLICING

Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of a rectangle, add the
approximations to form a Riemann sum, and take the limit of the Riemann sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the
volume of each slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

S=A-4- 4

Sphere cut into Right pyramid cut Right circular cone cut Right circular cone cut
horizontal slabs into horizontal slabs into horizontal slabs into vertical slabs

A Figure 6.2.1

__— Cross
sectioﬁ/
V7 7

In a thin slab, the cross sections
do not vary much in size and shape.

A Figure 6.2.2

What makes this method work is the fact that a thin slab has a cross section that does not
vary much in size or shape, which, as we will see, makes its volume easy to approximate
(Figure 6.2.2). Moreover, the thinner the slab, the less variation in its cross sections and
the better the approximation. Thus, once we approximate the volumes of the slabs, we can
set up a Riemann sum whose limit is the volume of the entire solid. We will give the details
shortly, but first we need to discuss how to find the volume of a solid whose cross sections
do not vary in size and shape (i.e., are congruent).

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are
circular regions of radius . The volume V of a right circular cylinder of radius » and height
h can be expressed in terms of the height and the area of a cross section as

V = 7r?h = [area of a cross section] x [height] €))]
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This is a special case of a more general volume formula that applies to solids called right
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or axis that is perpendicular to the region (Figure 6.2.3).

Some Right Cylinders

—
-
—

Translated disk Translated annulus Translated triangle

Translated square

A Figure 6.2.3

Area A If a right cylinder is generated by translating a region of area A through a distance 4,
/ then £ is called the height (or sometimes the width) of the cylinder, and the volume V' of

( the cylinder is defined to be
( V = A - h = [area of a cross section] x [height] 2)

h \
Volume = A- 7 (Figure 6.2.4). Note that this is consistent with Formula (1) for the volume of a right circular
cylinder.

A Figure 6.2.4 We now have all of the tools required to solve the following problem.

6.2.1 PRrROBLEM Let S be a solid that extends along the x-axis and is bounded on the

Cross section d
left and right, respectively, by the planes that are perpendicular to the x-axis at x = a and
x = b (Figure 6.2.5). Find the volume V of the solid, assuming that its cross-sectional

area A(x) is known at each x in the interval [a, b].

a X b
To solve this problem we begin by dividing the interval [a, b] into n subintervals, thereby
A Figure 6.2.5 dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that
the width of the kth subinterval is Axy, then the volume of the kth slab can be approximated
by the volume A (x}) Ax; of aright cylinder of width (height) Ax; and cross-sectional area

A(xf), where x{ is a point in the kth subinterval (see the right part of Figure 6.2.6).

Cross section area = A(x)

The
Cross
section
here
has

area 5,
A(XF).

» Figure 6.2.6

Adding these approximations yields the following Riemann sum that approximates the

volume V: n
VA AR Ax
k=1



It is understood in our calculations of
volume that the units of volume are the
cubed units of length [e.g., cubicinches
(in’) or cubic meters (m3)].

y-axis
B(0, h)I

Ye
X-axis
o c(3a0)
(a)
B _
h-y
h
1
ES
y
1
o 5a C
(®)
A Figure 6.2.7
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Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

n b
V= mlgr:%k;fx(kaxk = / A(x)dx

In summary, we have the following result.

6.2.2 VOLUME FORMULA Let S be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = @ and x = b. If, for each x in [a, b], the cross-sectional area
of S perpendicular to the x-axis is A(x), then the volume of the solid is

b
V=f A(x)dx 3)

provided A(x) is integrable.

There is a similar result for cross sections perpendicular to the y-axis.

6.2.3 VOLUME FORMULA Let S be a solid bounded by two parallel planes perpen-
dicular to the y-axisat y = ¢ and y = d. If, for each y in [c, d], the cross-sectional area
of § perpendicular to the y-axis is A(y), then the volume of the solid is

d
V=/ A(y)dy 4

provided A(y) is integrable.

In words, these formulas state:

The volume of a solid can be obtained by integrating the cross-sectional area from one
end of the solid to the other.

» Example 1 Derive the formula for the volume of a right pyramid whose altitude is &
and whose base is a square with sides of length a.

Solution. As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system
in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

At any y in the interval [0, 2] on the y-axis, the cross section perpendicular to the y-
axis is a square. If s denotes the length of a side of this square, then by similar triangles
(Figure 6.2.7b) %s -y 4

— or s§= Z(h —-y)

— =
za ]’l

Thus, the area A(y) of the cross section at y is

2
A(y)=s? = Z—z(h —y)
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and by (4) the volume is

h ha2 5 a2 h 5
/0 »dy /O h2( y) dy hZ/o( y)dy
G DU PPN L P VY B

= — _—— _— = — —_ = —d

7l R R ol R 3

That is, the volume is % of the area of the base times the altitude. <«

Il SOLIDS OF REVOLUTION
Asolid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Some Familiar Solids of Revolution

/\ I
0 0 0 0
¥ V) V)

Axis of revolution \/‘

=9 9m

Hollowed right
Right circular cylinder Solid sphere Solid cone circular cylinder

» Figure 6.2.8 (a) (b) (© (d)

B VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS
We will be interested in the following general problem.

6.2.4 PROBLEM Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
lines x = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

y Ay
R
[\x e X

» Figure 6.2.9 (a) )




A Figure 6.2.10

=r

A Figure 6.2.11

y

A Figure 6.2.12

(a)

(b)

J(x)
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We can solve this problem by slicing. For this purpose, observe that the cross section
of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius f(x)
(Figure 6.2.9D). The area of this region is

A(x) = alf(0))?

Thus, from (3) the volume of the solid is

b
V= / 7l f(x)1* dx o)

Because the cross sections are disk shaped, the application of this formula is called the
method of disks.

» Example 2 Find the volume of the solid that is obtained when the region under the
curve y = 4/x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

Solution. From (5), the volume is

b 4 24
15
V:/ Jr[f(x)]zdxzf mcdx:ni] =8n—§=—n <
a 1 1

» Example 3 Derive the formula for the volume of a sphere of radius r.

Solution. Asindicated in Figure 6.2.11, a sphere of radius r can be generated by revolving
the upper semicircular disk enclosed between the x-axis and

2y =2

about the x-axis. Since the upper half of this circle is the graph of y = f(x) = +/r% — x2,
it follows from (5) that the volume of the sphere is

b r )C3 r 4
V= f alf)Pdx = / a7’ —=x>dx =7 |:r2x - ?] = 5nr3 <

VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS

Not all solids of revolution have solid interiors; some have holes or channels that create
interior surfaces, as in Figure 6.2.84d. So we will also be interested in problems of the
following type.

6.2.5 PROBLEM Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) > g(x) for all x in the interval [a, b]. Let R be the region that is bounded
above by y = f(x), below by y = g(x), and on the sides by the lines x =a and x = b
(Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving
the region R about the x-axis (Figure 6.2.12b).

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is the annular or “washer-shaped”
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region with inner radius g(x) and outer radius f(x) (Figure 6.2.12b); its area is

A@x) = 2l f()1* — 7lg()]* = n([ £ — [g(x)])

Thus, from (3) the volume of the solid is

b
V= / ([ f()] — [g(x)]P) dx ©6)

Because the cross sections are washer shaped, the application of this formula is called the
method of washers.

» Example 4 Find the volume of the solid generated when the region between the graphs
of the equations f(x) = % + x2and g(x) = x over the interval [0, 2] is revolved about the
X-axis.

Solution. First sketch the region (Figure 6.2.13a); then imagine revolving it about the
x-axis (Figure 6.2.13b). From (6) the volume is

2

b
1% =/ ([ f())? = [g0)]?) dx =/ m([3 +x2]? —x?) dx

a 0
[2 1 4 X xs2 697
= tl-+x")dx=n|-+—| =— «
0 4 4 51 10
y h)
5,
4
3
2
1

Unequal scales on axes

Region defined The resulting
by fand g solid of revolution
> Figure 6.2.13 (a) )

Il VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
The methods of disks and washers have analogs for regions that are revolved about the y-
axis (Figures 6.2.14 and 6.2.15). Using the method of slicing and Formula (4), you should
be able to deduce the following formulas for the volumes of the solids in the figures.

d d
V= / lu()1* dy V= / r((wP — I’ dy (7-8)

Disks ‘Washers



x=u(y)
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x=w(y)

(@)

A Figure 6.2.14

Disks

> Figure 6.2.16

(b) (@)

Washers

A Figure 6.2.15

» Example 5 Find the volume of the solid generated when the region enclosed by
y = 4/x, y = 2, and x = 0 is revolved about the y-axis.

Solution. First sketch the region and the solid (Figure 6.2.16). The cross sections taken

perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite y = /x
as x = y2. Thus, from (7) with u(y) = y?, the volume is

d 2
V= f mlu(y)lPdy = f mytdy =
c 0

NS}
38
—

Ve y= \/; y
ECESY |
\ 3 1 y

0 0 fe—x—|

OTHER AXES OF REVOLUTION

It is possible to use the method of disks and the method of washers to find the volume of a
solid of revolution whose axis of revolution is a line other than one of the coordinate axes.
Instead of developing a new formula for each situation, we will appeal to Formulas (3) and
(4) and integrate an appropriate cross-sectional area to find the volume.

» Example 6 Find the volume of the solid generated when the region under the curve
y = x? over the interval [0, 2] is rotated about the line y = —1.

Solution. First sketch the region and the axis of revolution; then imagine revolving the
region about the axis (Figure 6.2.17). At each x in the interval 0 < x < 2, the cross section
of the solid perpendicular to the axis y = —1 is a washer with outer radius x> + 1 and inner
radius 1. Since the area of this washer is

A@x) = w([(x2 + 112 — 17) = n(x* + 2x%)
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it follows by (3) that the volume of the solid is

2 2 15 2, 176
V= f A(x)dx = [ T (x4 + 2x2) dx =m |:—x5 + —x3] -7
0 0

5 3] 15
y
41
R
xZ -
W ;
0 X 2
y=-1 A
v
> Figure 6.2.17
VQUICK CHECK EXERCISES 6.2  (See page 431 for answers.)

1. A solid S extends along the x-axis from x =1 to x = 3. (a) For x between and the cross-
For x between 1 and 3, the cross-sectional area of S per- sectional area of S perpendicular to the x-axis at x is
pendicular to the x-axis is 3x2. An integral expression for A(x) =
the volume of Sis . The value of this integral is (b) Anintegral expression for the volume of § is
—_— 4. Asolid S is generated by revolving the region enclosed by

2. Assolid S is generated by revolving the region between the the line y = x + 1 and the curve y = x? 4 1 about the y-
x-axis and the curve y = +/sinx (0 < x < m) about the x- axis.
axis. (a) For y between and the cross-
(a) For x between 0 and 7, the cross-sectional area of S sectional area of S perpendicular to the y-axis at y is

perpendicular to the x-axisatx is A(x) = — . A(y) =
(b) An integral expression for the volumeof Sis . (b) An integral expression for the volume of S is

(c) The value of the integral in part (b) is

3. Asolid S is generated by revolving the region enclosed by
the line y = 2x + 1 and the curve y = x% + 1 about the
X-axis.

EXERCISE SET 6.2  [€] cas

1-8 Find the volume of the solid that results when the shaded 3. 4. _}D
region is revolved about the indicated axis. ?7
1.
: y= 1
2




BN
SIE]
S>

9. Find the volume of the solid whose base is the region
bounded between the curve y = x? and the x-axis from
x = 0 to x = 2 and whose cross sections taken perpendic-
ular to the x-axis are squares.
10. Find the volume of the solid whose base is the region
bounded between the curve y = sec x and the x-axis from
x = m/4 to x = /3 and whose cross sections taken per-
pendicular to the x-axis are squares.

11-18 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the x-axis.

1. y=+25—x2, y=3
12. y=9—x%, y=0 13. x =)y, x=y/4
14. y =sinx, y =cosx, x =0, x =n/4

[Hint: Use the identity cos 2x = cos? x — sin” x.]
15. y=¢€", y=0, x=0, x =1n3
16. y=e, y=0, x=0, x=1

_ 1

T are

e3x

YT Tre
19. Find the volume of the solid whose base is the region
bounded between the curve y = x3 and the y-axis from
y = 0to y = 1 and whose cross sections taken perpendic-
ular to the y-axis are squares.

17. x=-2,x=2,y=0

18. x=0,x=1, y=0

20. Find the volume of the solid whose base is the region en-
closed between the curve x = 1 — y% and the y-axis and
whose cross sections taken perpendicular to the y-axis are
squares.

21-26 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the y-axis.

21. x =cscy, y=mn/4, y=3n/4, x =0

22. y=x% x=1?
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23. x=y%, x=y+2
24. x=1—-y2 x=24+y?, y=—1, y=1
25. y=Inx, x=0, y=0, y=1

1 —x2

26. y = 2

(x>0), x=0, y=0, y=2

27-30 True-False Determine whether the statement is true or
false. Explain your answer. [In these exercises, assume that a
solid S of volume V is bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b and that for each x in
[a, b], A(x) denotes the cross-sectional area of S perpendicular
to the x-axis.]

27. If each cross section of S perpendicular to the x-axis is a
square, then S is a rectangular parallelepiped (i.e., is box
shaped).

28. If each cross section of S is a disk or a washer, then S is a
solid of revolution.

29. If x is in centimeters (cm), then A(x) must be a quadratic
function of x, since units of A(x) will be square centimeters
(cm?).

30. The average value of A(x) on the interval [a, b] is given by
V/(b - a).

31. Find the volume of the solid that results when the region
above the x-axis and below the ellipse

2 2
X y
;—i—ﬁ:l (a>0,b>0)
is revolved about the x-axis.

32. Let V be the volume of the solid that results when the region
enclosedbyy = 1/x,y =0,x =2,andx = b (0 < b < 2)
is revolved about the x-axis. Find the value of b for which
V=3.

33. Find the volume of the solid generated when the region

enclosedby y = +/x + 1, y = +/2x, and y = O is revolved
about the x-axis. [Hint: Split the solid into two parts.]

34. Find the volume of the solid generated when the region
enclosed by y = /x, y =6 —x, and y =0 is revolved
about the x-axis. [Hint: Split the solid into two parts.]

FOCUS ON CONCEPTS

35. Suppose that f is a continuous function on [a, b], and
let R be the region between the curve y = f(x) and
the line y = k from x = a to x = b. Using the method
of disks, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
y = k. State and explain additional assumptions, if any,
that you need about f for your formula.

36. Suppose that v and w are continuous functions on [c, d],
and let R be the region between the curves x = v(y) and
x =w(y) from y = c to y = d. Using the method of
washers, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
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37.

38.

x = k. State and explain additional assumptions, if any,
that you need about v and w for your formula.

Consider the solid generated by revolving the shaded

region in Exercise 1 about the line y = 2.

(a) Make a conjecture as to which is larger: the volume
of this solid or the volume of the solid in Exercise
1. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 1.

Consider the solid generated by revolving the shaded

region in Exercise 4 about the line x = 2.5.

(a) Make a conjecture as to which is larger: the volume
of this solid or the volume of the solid in Exercise
4. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 4.

39.

40.

41.

42.

43.

4.

45.

46.

47.

48.

Find the volume of the solid that results when the region
enclosed by y = \/x, y =0, and x = 9 is revolved about
the line x = 9.

Find the volume of the solid that results when the region in
Exercise 39 is revolved about the line y = 3.

Find the volume of the solid that results when the region
enclosed by x = y% and x = y is revolved about the line
y=-—1.

Find the volume of the solid that results when the region in
Exercise 41 is revolved about the line x = —1.

Find the volume of the solid that results when the region
enclosed by y = x2 and y = x> is revolved about the line
x =1

Find the volume of the solid that results when the region in
Exercise 43 is revolved about the line y = —1.

A nose cone for a space reentry vehicle is designed so that
a cross section, taken x ft from the tip and perpendicular to
the axis of symmetry, is a circle of radius %xz ft. Find the
volume of the nose cone given that its length is 20 ft.

A certain solid is 1 ft high, and a horizontal cross section
taken x ft above the bottom of the solid is an annulus of
inner radius x? ft and outer radius /x ft. Find the volume
of the solid.

Find the volume of the solid whose base is the region
bounded between the curves y = x and y = x2, and whose
cross sections perpendicular to the x-axis are squares.

The base of a certain solid is the region enclosed by y = /x,
y =0, and x = 4. Every cross section perpendicular to the
x-axis is a semicircle with its diameter across the base. Find
the volume of the solid.

49. In parts (a)—(c) find the volume of the solid whose base is
enclosed by the circle x2 + y? = 1 and whose cross sections
taken perpendicular to the x-axis are

(a) semicircles (b) squares
(c) equilateral triangles.
(@) (b) (©)
~ -~ - ~ ~

50. As shown in the accompanying figure, a cathedral dome is
designed with three semicircular supports of radius 7 so that
each horizontal cross section is a regular hexagon. Show
that the volume of the dome is r3+/3.

< Figure Ex-50

[c] 51-54 Use a CAS to estimate the volume of the solid that re-
sults when the region enclosed by the curves is revolved about
the stated axis.

51.
52. y = % sin x cos
53.
54.
55.

y=sin®x, y=2x/m, x =0, x = 7/2; x-axis
3x, y=4x% x=0, x =n/4; x-axis
y=e' x=1, y=1; y-axis

y =x+vtan"'x, y =x; x-axis

The accompanying figure shows a spherical cap of radius
p and height & cut from a sphere of radius r. Show that the
volume V of the spherical cap can be expressed as

(@) V = mh*(3r — h) (b) V = tmh(3p® + h?).

h

< Figure Ex-55

56. If fluid enters a hemispherical bowl with a radius of 10 ft at
a rate of % ft3/min, how fast will the fluid be rising when

the depth is 5 ft? [Hint: See Exercise 55.]

The accompanying figure (on the next page) shows the di-

mensions of a small lightbulb at 10 equally spaced points.

(a) Use formulas from geometry to make a rough estimate
of the volume enclosed by the glass portion of the bulb.

57.

(cont.)



58.

59.

60.

61.

(b) Use the average of left and right endpoint approxima-
tions to approximate the volume.

A Figure Ex-57

Use the result in Exercise 55 to find the volume of the solid
that remains when a hole of radius r/2 is drilled through the
center of a sphere of radius r, and then check your answer
by integrating.

As shown in the accompanying figure, a cocktail glass with
a bowl shaped like a hemisphere of diameter 8 cm contains
a cherry with a diameter of 2 cm. If the glass is filled to
a depth of 7 cm, what is the volume of liquid it contains?
[Hint: First consider the case where the cherry is partially
submerged, then the case where it is totally submerged.]

< Figure Ex-59

Find the volume of the torus that results when the region en-
closed by the circle of radius r with center at (k, 0), & > r,
is revolved about the y-axis. [Hint: Use an appropriate
formula from plane geometry to help evaluate the definite
integral.]

A wedge is cut from a right circular cylinder of radius r by
two planes, one perpendicular to the axis of the cylinder and
the other making an angle 6 with the first. Find the volume
of the wedge by slicing perpendicular to the y-axis as shown
in the accompanying figure.

VQUICK CHECK ANSWERS 6.2

62.

63.

64.

65.

66.
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N
>

N

Find the volume of the wedge described in Exercise 61 by
slicing perpendicular to the x-axis.

< Figure Ex-61

Two right circular cylinders of radius r have axes that inter-
sect at right angles. Find the volume of the solid common to
the two cylinders. [Hint: One-eighth of the solid is sketched
in the accompanying figure.]

In 1635 Bonaventura Cavalieri, a student of Galileo, stated
the following result, called Cavalieri’s principle: If two
solids have the same height, and if the areas of their cross
sections taken parallel to and at equal distances from their
bases are always equal, then the solids have the same vol-
ume. Use this result to find the volume of the oblique cylin-
der in the accompanying figure. (See Exercise 52 of Section
6.1 for a planar version of Cavalieri’s principle.)

rdl
ST s

A Figure Ex-63 A Figure Ex-64

Writing Use the results of this section to derive Cavalieri’s
principle (Exercise 64).

Writing Write a short paragraph that explains how For-
mulas (4)—(8) may all be viewed as consequences of For-
mula (3).

3 b4
1. / 3x%dx; 26 2. (a) wsinx (b) / mwsinxdx (¢) 2w
1 0

3. (@) 0; 2; 7[Qx + 1?2 — (x2 4+ 1)?] = a[—x* + 2x% + 4x]

2 2
(b) / Alex' £ 2% 4 dxldx 4. (@) 15 2 7l(y — 1) — (v — D2 = 7[—y2 + 3y — 2] (b) / =y + 3y — 21dy
0 1
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H VOLUMES BY CYLINDRICAL SHELLS

rlf—‘rz—'—’ —

A Figure 6.3.2

The methods for computing volumes that have been discussed so far depend on our ability
to compute the cross-sectional area of the solid and to integrate that area across the solid.
In this section we will develop another method for finding volumes that may be applicable
when the cross-sectional area cannot be found or the integration is too difficult.

Il CYLINDRICAL SHELLS
In this section we will be interested in the following problem.

6.3.1 PRrROBLEM Let f be continuous and nonnegative on [a, b] (0 < a < b), and let
R be the region that is bounded above by y = f(x), below by the x-axis, and on the
sides by the lines x = @ and x = b. Find the volume V of the solid of revolution S that
is generated by revolving the region R about the y-axis (Figure 6.3.1).

y y
y=f(x) <‘—> N

» Figure 6.3.1 |

Sometimes problems of the above type can be solved by the method of disks or washers
perpendicular to the y-axis, but when that method is not applicable or the resulting integral
is difficult, the method of cylindrical shells, which we will discuss here, will often work.

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
ure 6.3.2). The volume V of a cylindrical shell with inner radius r|, outer radius r,, and
height & can be written as

V' = [area of cross section] - [height]
= (J'rr22 — m’f)h
=n(ry +r1)(r2 —r)h
=2m-[3(ri+r)] h-(ra—ry)

But %(rl + r;) is the average radius of the shell and r, — r is its thickness, so
V = 27 - [average radius] - [height] - [thickness] (1)

We will now show how this formula can be used to solve Problem 6.3.1. The underlying
idea is to divide the interval [a, b] into n subintervals, thereby subdividing the region R into
n strips, Ry, Ry, ..., R, (Figure 6.3.3a). When the region R is revolved about the y-axis,
these strips generate “tube-like” solids Si, S», ..., S, that are nested one inside the other
and together comprise the entire solid S (Figure 6.3.3b). Thus, the volume V of the solid
can be obtained by adding together the volumes of the tubes; that is,

V=VE)+V(S)+-+ V(S
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y AY

g

Y =

I
> Figure 6.3.3 (a) (b)

As arule, the tubes will have curved upper surfaces, so there will be no simple formulas
for their volumes. However, if the strips are thin, then we can approximate each strip by a
rectangle (Figure 6.3.4a). These rectangles, when revolved about the y-axis, will produce
cylindrical shells whose volumes closely approximate the volumes of the tubes generated
by the original strips (Figure 6.3.4b). We will show that by adding the volumes of the
cylindrical shells we can obtain a Riemann sum that approximates the volume V, and by
taking the limit of the Riemann sums we can obtain an integral for the exact volume V.

™~

Ry Sk
X X
—_—
X1 Xk
Rectangle‘approximating Cylindrical shell generated
the k™ strip by the rectangle
» Figure 6.3.4 (a) (b)

To implement this idea, suppose that the kth strip extends from x;_; to x; and that the

width of this strip is AXp = Xp — Xp_y

If we let x; be the midpoint of the interval [x;_;, x¢], and if we construct a rectangle of
height f(x}) over the interval, then revolving this rectangle about the y-axis produces a
cylindrical shell of average radius x;, height f(x;"), and thickness Ax; (Figure 6.3.5). From
(1), the volume V, of this cylindrical shell is

Vie = 2mx ] f(x) Axg

Adding the volumes of the n cylindrical shells yields the following Riemann sum that
approximates the volume V:

VA Z 2mx f(x)) Axy
k=1
Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

n b
V= lim ZZﬂx,ff(x,f)Axk :/ 2nxf(x)dx
k=1

max Axy — 0 a

In summary, we have the following result.
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Cutaway view of the solid

(®)

A Figure 6.3.6

> Figure 6.3.7

6.3.2 VOLUME BY CYLINDRICAL SHELLS ABOUT THE y-AXIS Let f be continuous
and nonnegative on [a, b] (0 < a < b), and let R be the region that is bounded above by
y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Then the
volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

b
V:f 2nxf(x)dx 2)

» Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between y = /x, x = 1, x = 4, and the x-axis is revolved about the
y-axis.

Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the
y-axis (Figure 6.3.6b). Since f(x) = 4/x,a = 1, and b = 4, Formula (2) yields
1247

4 4 2 M
V= 2nxJxdx =2n | x*dx=|2n-2x| = Z[32-1]= —= <«
1 1 5 1 5 5

VARIATIONS OF THE METHOD OF CYLINDRICAL SHELLS

The method of cylindrical shells is applicable in a variety of situations that do not fit the
conditions required by Formula (2). For example, the region may be enclosed between two
curves, or the axis of revolution may be some line other than the y-axis. However, rather
than develop a separate formula for every possible situation, we will give a general way of
thinking about the method of cylindrical shells that can be adapted to each new situation as
it arises.

For this purpose, we will need to reexamine the integrand in Formula (2): At each x
in the interval [a, b], the vertical line segment from the x-axis to the curve y = f(x) can
be viewed as the cross section of the region R at x (Figure 6.3.7a). When the region R is
revolved about the y-axis, the cross section at x sweeps out the surface of a right circular
cylinder of height f(x) and radius x (Figure 6.3.7b). The area of this surface is

2nxf(x)

(Figure 6.3.7¢), which is the integrand in (2). Thus, Formula (2) can be viewed informally
in the following way.

6.3.3 AN INFORMAL VIEWPOINT ABOUT CYLINDRICAL SHELLS The volume V of
a solid of revolution that is generated by revolving a region R about an axis can be
obtained by integrating the area of the surface generated by an arbitrary cross section
of R taken parallel to the axis of revolution.

&> 27x
y=f(x) K_\

) J)

(@) (D) (©)
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The following examples illustrate how to apply this result in situations where Formula
(2) is not applicable.

» Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and y = x? is revolved about the
y-axis (Figure 6.3.8a).

Solution. Asillustrated in part (b) of Figure 6.3.8, at each x in [0, 1] the cross section of
R parallel to the y-axis generates a cylindrical surface of height x — x? and radius x. Since
the area of this surface is

2rx(x — x?%)

the volume of the solid is

1 I
V= / 2nx(x —x¥)dx = 2n/ (x? = x¥)dx
0 0

3 471 1 1
=2 oL =27|=-— - =E<
3 4, 3 4] 6

y y
(1,1 (1,1
ZI> Zl>
y=x y=x
X
R & R
y= x? x—x2 { y= x?
2L
X X
| | |
1 X 1
This solid looks like a bowl
with a cone-shaped interior.
(@) ®)
A Figure 6.3.8

Note that the volume found in Example
3 agrees with the volume of the same
solid found by the method of washers
in Example 6 of Section 6.2. Confirm
that the volume in Example 2 found
by the method of cylindrical shells can
also be obtained by the method of
washers.

» Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under y = x? over the interval [0, 2] is revolved about the line y = —1.

Solution. First draw the axis of revolution; then imagine revolving the region about the
axis (Figure 6.3.9a). As illustrated in Figure 6.3.9b, at each y in the interval 0 < y < 4, the
cross section of R parallel to the x-axis generates a cylindrical surface of height 2 — ,/y
and radius y + 1. Since the area of this surface is

2r(y + D2 =y

it follows that the volume of the solid is
4 4
/ 2r(y + D2 — /y)dy = an Qy — y¥2 42 -y gy
0 0

2 2 Y 1767
=2n|:y2—§y5/2+2y—§y3/2] S
0
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y y
4L 4L
y=x? y=x2
R R
N
. 4 | .
0 2 of Wy 12 byt /
no LR
v v \
s
2-4y
(@) ()
» Figure 6.3.9

VQUICK CHECK EXERCISES 6.3

(See page 438 for answers.)

1. Let R be the region between the x-axis and the curve
y=1+ /xforl <x <4

(a) For x between 1 and 4, the area of the cylindrical sur-
face generated by revolving the vertical cross section
of R at x about the y-axisis .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
y-axis is

2. Let R be the region described in Quick Check Exercise 1.

(a) For x between 1 and 4, the area of the cylindrical sur-

EXERCISE SET 6.3 CAS

face generated by revolving the vertical cross section
of R at x about the line x =5 is .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
line x =5is

3. Asolid S is generated by revolving the region enclosed by
the curves x = (y — 2)% and x = 4 about the x-axis. Using
cylindrical shells, an integral expression for the volume of
Sis— .

1-4 Use cylindrical shells to find the volume of the solid gen-
erated when the shaded region is revolved about the indicated
axis.

=

5-12 Use cylindrical shells to find the volume of the solid gen-
erated when the region enclosed by the given curves is revolved
about the y-axis.

5.y=x3, x=1,y=0

y=4% x=4,x=9, y=0
y=1/x, y=0, x=1, x=3
y=cos(x?), x=0, x=1/m, y=0
y=2x—1, y=-2x4+3, x=2
10 y=2x—x2, y=0

° ® A

11. y = x=0,x=1, y=0

x2+1°
12. y:e"z, x=1, x =+/3, y=20
13-16 Use cylindrical shells to find the volume of the solid gen-

erated when the region enclosed by the given curves is revolved
about the x-axis.



13. y2=x, y=1, x =0
14. x =2y, y=2, y=3, x=0

15. y=x2, x=1, y=0 16. xy=4, x+y=5
17-20 True-False Determine whether the statement is true or
false. Explain your answer.

17. The volume of a cylindrical shell is equal to the product of
the thickness of the shell with the surface area of a cylinder
whose height is that of the shell and whose radius is equal
to the average of the inner and outer radii of the shell.

18. The method of cylindrical shells is a special case of the
method of integration of cross-sectional area that was dis-
cussed in Section 6.2.

19. In the method of cylindrical shells, integration is over an in-
terval on a coordinate axis that is perpendicular to the axis
of revolution of the solid.

20. The Riemann sum approximation

VvV~ Z 2mx} f () Axy (where xXp = Lﬁ)
k=1

for the volume of a solid of revolution is exact when f is a
constant function.

21. Use a CAS to find the volume of the solid generated when
the region enclosed by y =e¢*and y=0for 1l <x <2is
revolved about the y-axis.

22. Use a CAS to find the volume of the solid generated when
the region enclosed by y =cosx,y =0, and x = 0 for
0 < x < 7/2 is revolved about the y-axis.

23. Consider the region to the right of the y-axis, to the left of
the vertical line x = k (0 < k < ), and between the curve
y = sinx and the x-axis. Use a CAS to estimate the value
of k so that the solid generated by revolving the region about
the y-axis has a volume of 8 cubic units.

FOCUS ON CONCEPTS

24. Let Ry and R; be regions of the form shown in the ac-
companying figure. Use cylindrical shells to find a for-
mula for the volume of the solid that results when
(a) region R; is revolved about the y-axis
(b) region R; is revolved about the x-axis.

y y
y=f(x) d———
x=f(y

A Figure Ex-24
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25. (a) Use cylindrical shells to find the volume of the solid
that is generated when the region under the curve

y=x>=3x242x

over [0, 1] is revolved about the y-axis.

(b) For this problem, is the method of cylindrical shells
easier or harder than the method of slicing discussed
in the last section? Explain.

26. Let f be continuous and nonnegative on [a, b], and let
R be the region that is enclosed by y = f(x)and y =0
for a < x < b. Using the method of cylindrical shells,
derive with explanation a formula for the volume of the
solid generated by revolving R about the line x = k,
where k < a.

27-28 Using the method of cylindrical shells, set up but do not

evaluate an integral for the volume of the solid generated when

the region R is revolved about (a) the line x = 1 and (b) the line

y=-—1.

27. R is the region bounded by the graphs of y = x, y = 0, and
x =1

28. R is the region in the first quadrant bounded by the graphs
ofy=+1—-x2,y=0,and x = 0.

29. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = 1/x3,
x =1, x =2, y =0is revolved about the line x = —1.

30. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = x3,

y =1, x = 0 is revolved about the line y = 1.

31. Use cylindrical shells to find the volume of the cone gen-
erated when the triangle with vertices (0, 0), (0, r), (&, 0),
where r > 0 and & > 0, is revolved about the x-axis.

32. The region enclosed between the curve y? = kx and the line
X = %k is revolved about the line x = %k. Use cylindrical
shells to find the volume of the resulting solid. (Assume
k>0)

33. As shown in the accompanying figure, a cylindrical hole is
drilled all the way through the center of a sphere. Show
that the volume of the remaining solid depends only on the
length L of the hole, not on the size of the sphere.

_
~ =~

)

34. Use cylindrical shells to find the volume of the torus ob-
tained by revolving the circle x> + y?> = a? about the line

N
~_ -

< Figure Ex-33
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35.

36.

x = b, where b > a > 0. [Hint: It may help in the integra-
tion to think of an integral as an area.]

Let V, and V, be the volumes of the solids that result when
the region enclosed by y = 1/x, y =0, x = %, andx = b
(b > 1) is revolved about the x-axis and y-axis, respec-
tively. Is there a value of b for which V, = V,?

(a) Find the volume V of the solid generated when the
region bounded by y = 1/(1 +x*),y =0,x =1, and
x = b (b > 1) is revolved about the y-axis.

37. Writing Faced with the problem of computing the volume

of a solid of revolution, how would you go about deciding
whether to use the method of disks/washers or the method
of cylindrical shells?

38. Writing With both the method of disks/washers and with

the method of cylindrical shells, we integrate an “area” to
get the volume of a solid of revolution. However, these two
approaches differ in very significant ways. Write a brief
paragraph that discusses these differences.

(b) Find lim V.
b— 4o

l/ QUICK CHECK ANSWERS 6.3

4 4
1. (a) 27x(1 + /x) (b) / 2nx(1+/x)dx 2. (a) 27(5 — x)(1 + /%) (b) / 27(5 — x)(1 + +/x) dx
1 1

4
3. f 2ry[4 — (v —2)*1dy
0

m LENGTH OF A PLANE CURVE

y=fx)

a b

A Figure 6.4.1

Intuitively, you might think of the arc
length of a curve as the number ob-
tained by aligning a piece of string
with the curve and then measuring the
length of the string after it is straight-
ened out.

In this section we will use the tools of calculus to study the problem of finding the length of
a plane curve.

ARC LENGTH

Our first objective is to define what we mean by the length (also called the arc length) of
a plane curve y = f(x) over an interval [a, b] (Figure 6.4.1). Once that is done we will be
able to focus on the problem of computing arc lengths. To avoid some complications that
would otherwise occur, we will impose the requirement that f” be continuous on [a, b], in
which case we will say that y = f(x) is a smooth curve on [a, b] or that f is a smooth
Junction on [a, b]. Thus, we will be concerned with the following problem.

6.4.1 ARC LENGTH PROBLEM Suppose that y = f(x) is a smooth curve on the in-
terval [a, b]. Define and find a formula for the arc length L of the curve y = f(x) over
the interval [a, b].

To define the arc length of a curve we start by breaking the curve into small segments.
Then we approximate the curve segments by line segments and add the lengths of the line
segments to form a Riemann sum. Figure 6.4.2 illustrates how such line segments tend to
become better and better approximations to a curve as the number of segments increases.
As the number of segments increases, the corresponding Riemann sums approach a definite
integral whose value we will take to be the arc length L of the curve.

To implement our idea for solving Problem 6.4.1, divide the interval [a, b] into n subin-
tervals by inserting points xi, x», ..., x,—; between a = xo and b = x,,. As shown in
Figure 6.4.3a, let Py, Py, ..., P, be the points on the curve with x-coordinates a = xy,



Explain why the approximation in (2)
cannot be greater than L.
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e

Shorter line segments provide a better
approximation to the curve.

> Figure 6.4.2
X
> Figure 6.4.3 ()
X1, X2, ..., Xy—1, b = x,, and join these points with straight line segments. These line seg-

ments form a polygonal path that we can regard as an approximation to the curve y = f(x).
As indicated in Figure 6.4.3b, the length L, of the kth line segment in the polygonal path is

Ly = v(Ax)? + (Ay)? = V(Ax0)? + [f(x) — [l )P ey

If we now add the lengths of these line segments, we obtain the following approximation
to the length L of the curve

LY L= Y V(Ax)> + [f(x0) — )P )
k=1

k=1

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x; between x;_; and x; such that

fOa) — fO-p)

X — Xk—1

= f'(x0) or  flx) — flxx—1) = f/(x)Axg

and hence we can rewrite (2) as

L~ Y@ + LGP = 3 1+ LGP Ax
k=1 k=1

Thus, taking the limit as n increases and the widths of all the subintervals approach zero
yields the following integral that defines the arc length L:

n h
L= max‘ii‘;o; L+ LGP Axe = f JT+ L0 dx

In summary, we have the following definition.
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(1, 1)

A Figure 6.4.4

6.4.2 pEFINITION If y = f(x) is a smooth curve on the interval [a, b], then the arc
length L of this curve over [a, b] is defined as

b
L= / NI 3)

This result provides both a definition and a formula for computing arc lengths. Where
convenient, (3) can also be expressed as

b b 2
L=/ \/1+[f/(x)]2dx=/ \/H‘(%) dx @

Moreover, for a curve expressed in the form x = g(y), where g’ is continuous on [c, d],
the arc length L from y = ¢ to y = d can be expressed as

d d d 2
L=/ \/1+[g/(y)]2dy=/ \/1+(£> dy )

» Example 1 Find the arc length of the curve y = 32 from (1, 1) to (2, 24/2) (Figure
6.4.4) in two ways: (a) using Formula (4) and (b) using Formula (5).

Solution (a). dy 3
— = —x

dx 2

and since the curve extends from x = 1 to x = 2, it follows from (4) that

2 > 2
L:/l \/1+(%x'/2) dx:/1 ,/1+%xdx

To evaluate this integral we make the u-substitution

1/2

u=1+23x, du=2dx

and then change the x-limits of integration (x = 1, x = 2) to the corresponding u-limits

(=u=2):

22/4 3/2 3/2
L f/22/4u1/2 du = £u3/2i| — ﬁ (Q) _ (E)
9 13/4 27 13/4 27 4 4
_ 22v/22-13V13

~ 2.09
27

Solution (b). To apply Formula (5) we must first rewrite the equation y = x°/2 so that x
is expressed as a function of y. This yields x = y*/3 and

dx 2 i

dy 3’

Since the curve extends fromy = 1toy = Zﬁ, it follows from (5) that

272 1 22
1 1
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To evaluate this integral we make the u-substitution
u= 9y2/3 +4, du= 6y’1/3 dy

and change the y-limits of integration (y = 1, y = 24/2) to the corresponding u-limits
(u = 13, u = 22). This gives

The arc from the point (1, 1) to the

point (2, 2+/2) in Figure 6.4.4 is nearly 1 22 1 22 1 22422 — 13413
a straight line, so the arc length should L=— Ml/z du = —M3/2i| = —[(22)3/2 - (13)3/2] = K55
be only slightly larger than the straight- 18 Ji3 27 o 27 27

line distance between these points.

The answer in part (b) agrees with that in part (a); however, the integration in part (b) is
Show that this is so.

more tedious. In problems where there is a choice between using (4) or (5), it is often the
case that one of the formulas leads to a simpler integral than the other. <«

B FINDING ARC LENGTH BY NUMERICAL METHODS
In the next chapter we will develop some techniques of integration that will enable us to find
exact values of more integrals encountered in arc length calculations; however, generally
speaking, most such integrals are impossible to evaluate in terms of elementary functions.
In these cases one usually approximates the integral using a numerical method such as the
midpoint rule discussed in Section 5.4.

TECHNOLOGY MASTERY
» Example 2 From (4), the arc length of y = sinx from x = 0 to x = 7 is given by the

If your calculating utility has a numeri- integral

s
cal integration capability, use it to con- L= / 1+ (cosx)?dx
firm that the arc length L in Example 2 0
is approximately L ~ 3.8202. This integral cannot be evaluated in terms of elementary functions; however, using a calcu-
lating utility with a numerical integration capability yields the approximation L ~ 3.8202.
<

v QUICK CHECK EXERCISES 6.4  (See page 443 for answers.)

1. Afunction f is smoothon [a, b]if f'is—_____on[a, b]. 4. Let L bethelengthofthe curve y = In x from (1, 0) to (e, 1).
2. If a function f is smooth on [a, b], then the length of the @ I;tizgratmg with respect to ., an integral expression for

curve y = f(x) over [, b] is (b) Integrating with respect to y, an integral expression for
3. The distance between points (1,0) and (e, 1)is — . Lis

EXERCISE SET 6.4 CAS

1. Use the Theorem of Pythagoras to find the length of the line
segment y = 2x from (1, 2) to (2, 4), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

x = %(y2+2)3/2fromy:Otoy:l
y=x*fromx=1tox =8
y = (x%4+8)/(16x?) fromx =2tox =3

2. Use the Theorem of Pythagoras to find the length of the line
segment y = 5x from (0, 0) and (1, 5), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

24xy = y*+48fromy =2toy =4

® XA e

x:%y4+‘]—ty_2fromy:1toy:4

9-12 True-False Determine whether the statement is true or
3-8 Find the exact arc length of the curve over the interval. false. Explain your answer.

3. y=3x"2 -1 fromx =0tox = 1 9. The graph of y = +/1 — x2 is a smooth curve on [—1, 1].
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10. The approximation

L~ V(Bx)? + [fw) — fu-nP
k=1
for arc length is not expressed in the form of a Riemann
sum.

11. The approximation

L~ kz Y1+ L GOP Ax
=1

for arc length is exact when f is a linear function of x.

12. In our definition of the arc length for the graph of y = f(x),
we need f'(x) to be a continuous function in order for f to

satisfy the hypotheses of the Mean-Value Theorem (4.8.2).

13-14 Express the exact arc length of the curve over the given

interval as an integral that has been simplified to eliminate the
radical, and then evaluate the integral using a CAS.

13. y =In(secx) fromx = 0tox = 7/4

14. y = In(sinx) fromx = /4 tox = /2

FOCUS ON CONCEPTS

15. Consider the curve y = x2/3.
(a) Sketch the portion of the curve between x = —1 and
x =8.

(b) Explain why Formula (4) cannot be used to find the
arc length of the curve sketched in part (a).
(c) Find the arc length of the curve sketched in part (a).

16. The curve segment y = x” from x = 1 to x = 2 may
also be expressed as the graph of x = ,/y from y =1
to y = 4. Setup two integrals that give the arc length of
this curve segment, one by integrating with respect to x,
and the other by integrating with respect to y. Demon-
strate a substitution that verifies that these two integrals

are equal.

17. Consider the curve segments y = x> from x = 1 to

1
2
x=2andy = /x fromx =} tox =4.

(a) Graph the two curve segments and use your graphs
to explain why the lengths of these two curve seg-
ments should be equal.

(b) Setup integrals that give the arc lengths of the curve
segments by integrating with respect to x. Demon-
strate a substitution that verifies that these two inte-
grals are equal.

(c) Setup integrals that give the arc lengths of the curve
segments by integrating with respect to y.

(d) Approximate the arc length of each curve segment
using Formula (2) with n = 10 equal subintervals.

(e) Which of the two approximations in part (d) is more
accurate? Explain.

(f) Use the midpoint approximation with n = 10 sub-
intervals to approximate each arc length integral in
part (b).

18.

19.

20.

21.

(g) Use a calculating utility with numerical integration
capabilities to approximate the arc length integrals
in part (b) to four decimal places.

Follow the directions of Exercise 17 for the curve seg-
ments y = x%3 fromx =103 tox = 1 and y = x¥/8
fromx =103 tox = 1.

Follow the directions of Exercise 17 for the curve seg-
ment y = tanx from x =0 to x = /3 and for the
curve segment y = tan~' x fromx =0tox = V3.

Let y = f(x) be a smooth curve on the closed interval
[a, b]. Prove that if m and M are nonnegative numbers
such that m < |f’(x)| < M for all x in [a, b], then the
arclength L of y = f(x) overthe interval [a, b] satisfies
the inequalities

b-aW1+m2<L<®B-a)1+M

Use the result of Exercise 20 to show that the arc length
L of y = sec x over the interval 0 < x < /3 satisfies
T T
—<L<—=+13
37 73

22.

23.

A basketball player makes a successful shot from the free
throw line. Suppose that the path of the ball from the mo-
ment of release to the moment it enters the hoop is described
by
y=215+2.09x —041x>, 0<x <46

where x is the horizontal distance (in meters) from the point
of release, and y is the vertical distance (in meters) above
the floor. Use a CAS or a scientific calculator with a numer-
ical integration capability to approximate the distance the
ball travels from the moment it is released to the moment it
enters the hoop. Round your answer to two decimal places.

Find a positive value of k (to two decimal places) such that
the curve y = k sin x has an arc length of L = 5 units over
the interval from x = 0 to x = m. [Hint: Find an integral
for the arc length L in terms of k, and then use a CAS
or a scientific calculator with a numerical integration ca-
pability to find integer values of k at which the values of
L — 5 have opposite signs. Complete the solution by using
the Intermediate-Value Theorem (1.5.7) to approximate the
value of k to two decimal places.]

24. As shown in the accompanying figure on the next page, a

horizontal beam with dimensions 2 in x 6 in x 16 ftis fixed

at both ends and is subjected to a uniformly distributed load

of 120 Ib/ft. As a result of the load, the centerline of the

beam undergoes a deflection that is described by
y=—1.67 x 107 8(x* —2Lx> + L%x?)

(0 < x <192), where L = 192 in is the length of the un-

loaded beam, x is the horizontal distance along the beam

measured in inches from the left end, and y is the deflection

of the centerline in inches.

(a) Graph y versus x for 0 < x < 192.

(b) Find the maximum deflection of the centerline.

(cont.)



(c) Use a CAS or a calculator with a numerical integra-
tion capability to find the length of the centerline of
the loaded beam. Round your answer to two decimal

places.
y
|
x=0 x =192 < Figure Ex-24

[c] 25. A golfer makes a successful chip shot to the green. Suppose

that the path of the ball from the moment it is struck to the
moment it hits the green is described by

y = 12.54x — 0.41x>

where x is the horizontal distance (in yards) from the point
where the ball is struck, and y is the vertical distance (in
yards) above the fairway. Use a CAS or a calculating utility
with a numerical integration capability to find the distance
the ball travels from the moment it is struck to the moment it
hits the green. Assume that the fairway and green are at the
same level and round your answer to two decimal places.

26-34 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix I.

[c] 26. Assume that no segment of the curve

x=x@), y=y@), (a<t<b)

is traced more than once as ¢ increases from a to b. Divide
the interval [a, b] into n subintervals by inserting points
t,t,...,1,_1 between a =ty and b =1,. Let L denote
the arc length of the curve. Give an informal argument for
the approximation

L~ Ix) — ()P + [y(t) — y(tn)P
k=1
If dx/dt and dy/dt are continuous functions fora <t < b,
then it can be shown that as max A, — 0, this sum con-
verges to

I/ QUICK CHECK ANSWERS 6.4
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27-32 Use the arc length formula from Exercise 26 to find the
arc length of the curve.

27.
28.
29.
30.
31.
32.
[c] 33.

34.

35.

36.

x=1 y=1* (0<r=<1)

x=0+0% y=(0+1)° (O0<r<l1)
x =cos2t, y=sin2t (0<t<m/2)
x =cost+tsint, y=sint —tcost (0<t<mn)
x=e'cost, y=e'sint (0<t<mn/2)

x =é'(sint +cost), y=-e'(cost —sint) (1 <t <4)
(a) Show that the total arc length of the ellipse
O<t<2m

x =2cost, y=sint

is given by

/2
4[ V1 +3sin?rdt
0

(b) Use a CAS or a scientific calculator with a numerical
integration capability to approximate the arc length in
part (a). Round your answer to two decimal places.

(c) Suppose that the parametric equations in part (a) de-
scribe the path of a particle moving in the xy-plane,
where ¢ is time in seconds and x and y are in centimeters.
Use a CAS or a scientific calculator with a numerical
integration capability to approximate the distance trav-
eled by the particle from# = 1.5 s tot = 4.8 s. Round
your answer to two decimal places.

Show that the total arc length of the ellipse x = a cost,
y=>bsint,0 <t <2mxfora > b > 0is given by

/2
4a/ 1 — k2 cos?tdt
0

where k = v/a? — b?/a.

Writing In our discussion of Arc Length Problem 6.4.1, we
derived the approximation

k=1

Discuss the geometric meaning of this approximation. (Be
sure to address the appearance of the derivative f'.)

Writing Give examples in which Formula (4) for arc length
cannot be applied directly, and describe how you would go
about finding the arc length of the curve in each case. (Dis-
cuss both the use of alternative formulas and the use of
numerical methods.)

b e 1
1. continuous 2. / VI+H[f/(x0)Pdx 3. (e—1D2+1 4. (a) / V14 (1/x)2dx (b) / V1+edy
a 1 0
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m AREA OF A SURFACE OF REVOLUTION

In this section we will consider the problem of finding the area of a surface that is
generated by revolving a plane curve about a line.

Il SURFACE AREA
A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right

circular cylinder can be generated by revolving a line segment about an axis that is parallel
to it (Figure 6.5.1).

Some Surfaces of Revolution

Nl p o P
v v v
— — CH_ = - —T

» Figure 6.5.1

In this section we will be concerned with the following problem.

6.5.1 SURFACE AREA PROBLEM Suppose that f is a smooth, nonnegative function
on [a, b] and that a surface of revolution is generated by revolving the portion of the
curve y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what

\y } is meant by the area S of the surface, and find a formula for computing it.
|
\
|

To motivate an appropriate definition for the area S of a surface of revolution, we will
decompose the surface into small sections whose areas can be approximated by elementary
formulas, add the approximations of the areas of the sections to form a Riemann sum that
/\ approximates S, and then take the limit of the Riemann sums to obtain an integral for the

\

exact value of S.
‘ ‘ To implement this idea, divide the interval [a, b] into n subintervals by inserting points x1,
— }—°—0— X2, ..., X,—1 betweena = xp and b = x,. Asillustrated in Figure 6.5.3q, the corresponding
= \‘ | points on the graph of f define a polygonal path that approximates the curve y = f(x) over
‘ / the interval [a, b]. As illustrated in Figure 6.5.3b, when this polygonal path is revolved
about the x-axis, it generates a surface consisting of n parts, each of which is a portion of

A Figure 6.5.2 a right circular cone called a frustum (from the Latin meaning “bit” or “piece”). Thus, the
area of each part of the approximating surface can be obtained from the formula
S =na@r +nr)l (1)

for the lateral area S of a frustum of slant height / and base radii r; and r, (Figure 6.5.4).
As suggested by Figure 6.5.5, the kth frustum has radii f(xx—;) and f(x;) and height Ax;.
Its slant height is the length L; of the kth line segment in the polygonal path, which from
Formula (1) of Section 6.4 is

Ly = vV (Ax)? + [f(xx) — flu_)]?
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—TIn—

A Figure 6.5.3
—> Axk -«
f(xk—l) S (xk)
| B
Xe-1 | Xk
Ly
A Figure 6.5.5

C— el

(a) (b) Frustum
A Figure 6.5.4

This makes the lateral area S; of the kth frustum

S = 7l f 1) + FEDIV (Ax)2 4+ [f ) — Fou—)T?

If we add these areas, we obtain the following approximation to the area S of the entire
surface:

S~ Y Al fo) + FOV (Ax)? + [f ) — fOa—)P? )

k=1

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x; between x;_; and x; such that

SGa) — flxk=1)

X — Xk—1

= /() or flx) — flu—1) = f'(x)Axy

and hence we can rewrite (2) as

S~ Yl fuen) + FOOIV (Ax)? + [f ()P (Axe)?

k=1

=Y 7l f 1) + FEOWV 1+ L)) Ax 3)
k=1

However, this is not yet a Riemann sum because it involves the variables x;_; and x;.
To eliminate these variables from the expression, observe that the average value of the
numbers f(x;—;) and f(x;) lies between these numbers, so the continuity of f and the
Intermediate-Value Theorem (1.5.7) imply that there is a point x* between x;_; and x;

h th
such that %[f(xk_l) + fO)] = f)

Thus, (2) can be expressed as

S~ Y 2w f( 1+ LA Ax
k=1

Although this expression is close to a Riemann sum in form, it is not a true Riemann sum
because it involves two variables x; and x;*, rather than x; alone. However, it is proved in
advanced calculus courses that this has no effect on the limit because of the continuity of
f. Thus, we can assume that x;* = x; when taking the limit, and this suggests that S can
be defined as

n b
S:maxlii}:ao;hf QDT+ L GOP A = f 27 FOVT+ L) dx

In summary, we have the following definition.
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6.5.2 peFINITION If f is a smooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve
y = f(x) between x = a and x = b about the x-axis is defined as

b
S = / 2 f(x)v/ 1+ [f/(x)]?dx

This result provides both a definition and a formula for computing surface areas. Where
convenient, this formula can also be expressed as

b b dy 2
S:/ 27[f(x)\/1+[f’(x)]2dx:/ 2y 1+<E> dx 4)

Moreover, if g is nonnegative and x = g(y) is a smooth curve on the interval [c, d], then the
area of the surface that is generated by revolving the portion of a curve x = g(y) between
y = c and y = d about the y-axis can be expressed as

d d d 2
S = / 20g()V1+ g (NP dy = / 2nx,/1+(£) dy ©)

» Example 1 Find the area of the surface that is generated by revolving the portion of
the curve y = x3 between x = 0 and x = 1 about the x-axis.

1, D
Solution. First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
Since y = x3, we have dy/dx = 3x2, and hence from (4) the surface area S is

X ! dy :
41_%. S:/OZny H(E) dx

1
= | 273V1 + 3x2)2dx

0
1 /
— 3 4N1/2
A Figure 6.5.6 = 27[/0 x7(1+9x™) "~ dx
10
y =2_” ul? du u=1+9x*
36 J4 du = 36x3 dx

) 2 10
_ _u3/2] = 2 10¥2 — 1)~ 3.56 <
2.4 363 27

u=1

» Example 2 Find the area of the surface that is generated by revolving the portion of
the curve y = x? between x = 1 and x = 2 about the y-axis.

‘ ‘ x  Solution. First sketch the curve; then imagine revolving it about the y-axis (Figure 6.5.7).
| 1 2 Because the curve is revolved about the y-axis we will apply Formula (5). Toward this end,
A Figure 6.5.7 we rewrite y = x> as x = /¥ and observe that the y-values corresponding to x = 1 and
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x=2arey =1andy =4. Since x = ./y, we have dx/dy = 1/(2,/y ), and hence from

(5) the surface area S is

VQUICK CHECK EXERCISES 6.5

/ 2nx‘/1+ dy

[is H(zﬁ) i

4
n/ Véay +1dy
1

17
1/2 u=4y+1
/5 u du du =4dy
2 17
S =207 - 5% ~ 3085 «
3 )T 6

(See page 449 for answers.)

1. If f is a smooth, nonnegative function on [a, b], then the
surface area S of the surface of revolution generated by re-
volving the portion of the curve y = f (x) between x = a
and x = b about the x-axis is

2. The lateral area of the frustum with slant height +/10 and
baseradiir; = 1and r, = 2 is

EXERCISE SET 6.5  [€] cas

3. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the x-axis is

4. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the y-axis is

1-4 Find the area of the surface generated by revolving the
given curve about the x-axis.

1. y=7x, 0<x <1
2. y=4/x, 1<x<4
.y=V4—x2 —1<x<l1
4. x=3Yy, 1<y<8

5-8 Find the area of the surface generated by revolving the
given curve about the y-axis.

S.x=9y+4+1,0<y<2
6.x=y3,05y§1
7.x=,9—)2, 2<y<2
8. x=2/T—y, -1<y<0

[c] 9-12 Use a CAS to find the exact area of the surface generated

by revolving the curve about the stated axis.
— 1.3/2 . :
9. y=x—3x"% 1 <x <3 x-axis

10. y = %x3 + ix", 1 <x <?2; x-axis

11 8xy? =2y%+1, 1 <y <2; y-axis
12. x = /16—y, 0 <y <15; y-axis

[c] 13-16 Use a CAS or a calculating utility with a numerical in-

tegration capability to approximate the area of the surface gen-
erated by revolving the curve about the stated axis. Round your
answer to two decimal places.

13. y =sinx, 0 < x < m; x-axis

14. x =tany, 0 <y < 7/4; y-axis
15. y = €7,
16. y = ¢,

0<x <1; x-axis

1 <y <e; y-axis

17-20 True-False Determine whether the statement is true or
false. Explain your answer.

17. The lateral surface area S of a right circular cone with height
h and base radius r is S = r~/r? + h2.

18. The lateral surface area of a frustum of slant height / and
base radii r; and r; is equal to the lateral surface area of
a right circular cylinder of height / and radius equal to the
average of r; and r,.
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19. The approximation

S~ 2 f 1+ LGP Axe
k=1

for surface area is exact if f is a positive-valued constant
function.

20. The expression

D 2w f G+ L (O Axi
k=1

is not a true Riemann sum for

b
/ 2nf(x)v1+[f' (0] dx

a

21-22 Approximate the area of the surface using Formula (2)
with n = 20 subintervals of equal width. Round your answer to
two decimal places.

21. The surface of Exercise 13.
22. The surface of Exercise 16.

FOCUS ON CONCEPTS

23. Assume that y = f(x) is a smooth curve on the inter-
val [a, b] and assume that f(x) > Ofora < x < b. De-
rive a formula for the surface area generated when the
curve y = f(x), a < x < b, is revolved about the line
y = —k (k> 0).

24. Would it be circular reasoning to use Definition 6.5.2
to find the surface area of a frustum of a right circular
cone? Explain your answer.

25. Show that the area of the surface of a sphere of radius r is
4mr?. [Hint: Revolve the semicircle y = /72 — x2 about
the x-axis.]

26. The accompanying figure shows a spherical cap of height
h cut from a sphere of radius r. Show that the surface area
S of the cap is § = 2nrh. [Hint: Revolve an appropriate
portion of the circle x> 4+ y? = r? about the y-axis.]

|
\7

< Figure Ex-26

27. The portion of a sphere that is cut by two parallel planes is
called azone. Use the result of Exercise 26 to show that the
surface area of a zone depends on the radius of the sphere
and the distance between the planes, but not on the location
of the zone.

28. Let y = f(x) be a smooth curve on the interval [a, b] and
assume that f(x) > Ofora < x < b. By the Extreme-Value

Theorem (4.4.2), the function f has a maximum value K and
a minimum value k on [a, b]. Prove: If L is the arc length
of the curve y = f(x) between x = a and x = b, and if S
is the area of the surface that is generated by revolving this
curve about the x-axis, then

2nkL < S < 27KL

29. Use the results of Exercise 28 above and Exercise 21 in
Section 6.4 to show that the area S of the surface generated
by revolving the curve y = secx, 0 < x < 7/3, about the
x-axis satisfies

2 2
3 3

30. Let y = f(x) be a smooth curve on [a, b] and assume that
f(x) = 0fora < x < b. Let A be the area under the curve
y = f(x)between x = a and x = b, and let S be the area of
the surface obtained when this section of curve is revolved
about the x-axis.

(a) Prove that27A < S.
(b) For what functions f is 2mrA = S?

31-37 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix L.

31-32 For these exercises, divide the interval [a, b] into n
subintervals by inserting points f, f, . .., f,_1 between a = 1,
and b = t,,, and assume that x’(7) and y’(¢) are continuous func-
tions and that no segment of the curve

x=x(), y=y@) (a<t<b)

is traced more than once.

31. Let S be the area of the surface generated by revolving the
curvex = x(t),y = y(t) (a <t < b) about the x-axis. Ex-
plain how S can be approximated by

S~ (ly(tr) + vl
k=1
X/ Ix(t) — x (- + [y (1) — y(e-1)1?)
Using results from advanced calculus, it can be shown that
as max At — 0, this sum converges to

b
5= / sy W OP + Y OPdr (A

32. Let S be the area of the surface generated by revolving the
curvex = x(t),y = y(t) (a <t < b) about the y-axis. Ex-
plain how S can be approximated by

S~ Y (alxter) + x (1))
k=1
x /[x(t) — x(- )P + Dy (0) — y(t—D?)
Using results from advanced calculus, it can be shown that
as max At — 0, this sum converges to

b
s:/ 2rx (VX' (O + [y (O dt (B)



33-
33.

[c] 34.

35.

36.

37 Use Formulas (A) and (B) from Exercises 31 and 32.

Find the area of the surface generated by revolving the para-
metric curve x = t2, y =2t (0 <t < 4) about the x-axis.
Use a CAS to find the area of the surface generated by re-
volving the parametric curve

x =cos’t, y=>35sint O0<t<mn/2)
about the x-axis.
Find the area of the surface generated by revolving the para-
metric curve x = ¢, y = 2¢> (0 < t < 1) about the y-axis.
Find the area of the surface generated by revolving the para-
metric curve x = cos? ¢, y= sin’ ¢ (0 <t < m/2) about the
y-axis.

VQUICK CHECK ANSWERS 6.5
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37. By revolving the semicircle

X =rcost, y=rsint O<t=<m

about the x-axis, show that the surface area of a sphere of
radius r is 4mr2.

38. Writing Compare the derivation of Definition 6.5.2 with

that of Definition 6.4.2. Discuss the geometric features that
result in similarities in the two definitions.

39. Writing Discuss what goes wrong if we replace the frus-

tums of right circular cones by right circular cylinders in
the derivation of Definition 6.5.2.

b 6 6 2
1. / 2 OO+ Lf'0Pdx 2. 3107 3. f Q) (g),/lg—odx:/ Ngronxdx 4. f Q1) (3y)V/10dy
a 3 3 1

m WORK

In this section we will use the integration tools developed in the preceding chapter to
study some of the basic principles of “work,” which is one of the fundamental concepts in
physics and engineering.

THE ROLE OF WORK IN PHYSICS AND ENGINEERING

In this section we will be concerned with two related concepts, work and energy. To put
these ideas in a familiar setting, when you push a stalled car for a certain distance you
are performing work, and the effect of your work is to make the car move. The energy of
motion caused by the work is called the kinetic energy of the car. The exact connection
between work and kinetic energy is governed by a principle of physics called the work—
energy relationship. Although we will touch on this idea in this section, a detailed study of
the relationship between work and energy will be left for courses in physics and engineering.
Our primary goal here will be to explain the role of integration in the study of work.

WORK DONE BY A CONSTANT FORCE APPLIED IN THE DIRECTION OF MOTION
When a stalled car is pushed, the speed that the car attains depends on the force F with
which it is pushed and the distance d over which that force is applied (Figure 6.6.1). Force
and distance appear in the following definition of work.

| d |

» Figure 6.6.1 i




450 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

If you push against an immovable ob-
ject, such as a brick wall, you may tire
yourself out, but you will not perform
any work. Why?

Vasili Alexeev shown lifting a record-
breaking 562 b in the 1976 Olympics. In
eight successive years he won Olympic
gold medals, captured six world champ-
ionships, and broke 80 world records.

In 1999 he was honored in Greece as the
best sportsman of the 20th Century.

6.6.1 pEFINITION If a constant force of magnitude F is applied in the direction of
motion of an object, and if that object moves a distance d, then we define the work W
performed by the force on the object to be

W=F-d ey

Common units for measuring force are newtons (N) in the International System of Units
(SI), dynes (dyn) in the centimeter-gram-second (CGS) system, and pounds (Ib) in the British
Engineering (BE) system. One newton is the force required to give a mass of 1 kg an acceler-
ation of 1 m/s?, one dyne is the force required to give a mass of 1 gan acceleration of 1 cm/s?,
and one pound of force is the force required to give a mass of 1 slug an acceleration of 1 ft/s.

It follows from Definition 6.6.1 that work has units of force times distance. The most
common units of work are newton-meters (N-m), dyne-centimeters (dyn-cm), and foot-
pounds (ft-Ib). As indicated in Table 6.6.1, one newton-meter is also called a joule (J), and
one dyne-centimeter is also called an erg. One foot-pound is approximately 1.36 J.

Table 6.6.1
SYSTEM FORCE X DISTANCE = WORK
SI newton (N) meter (m) joule (J)
CGS dyne (dyn) centimeter (cm) erg
BE pound (Ib) foot (ft) foot-pound (ft-1b)
CONVERSION FACTORS:
IN=10° dyn=0.2251b 1Ib=445N
17 =107 erg = 0.738 ft-1b 1 ftlb=1.36T = 1.36 x 107 erg

» Example 1 An object moves 5 ft along a line while subjected to a constant force of
100 Ib in its direction of motion. The work done is

W =F-d=100-5=500 ft-lb

An object moves 25 m along a line while subjected to a constant force of 4 N in its direction
of motion. The work done is

W=F-d=4-25=100N-m=100J <«

» Example 2 In the 1976 Olympics, Vasili Alexeev astounded the world by lifting a
record-breaking 562 1b from the floor to above his head (about 2 m). Equally astounding
was the feat of strongman Paul Anderson, who in 1957 braced himself on the floor and used
his back to lift 6270 1b of lead and automobile parts a distance of 1 cm. Who did more
work?

Solution. To lift an object one must apply sufficient force to overcome the gravitational
force that the Earth exerts on that object. The force that the Earth exerts on an object is that
object’s weight; thus, in performing their feats, Alexeev applied a force of 562 1b over a
distance of 2 m and Anderson applied a force of 6270 Ib over a distance of 1 cm. Pounds are
units in the BE system, meters are units in SI, and centimeters are units in the CGS system.
We will need to decide on the measurement system we want to use and be consistent. Let
us agree to use SI and express the work of the two men in joules. Using the conversion
factor in Table 6.6.1 we obtain

5621b ~ 5621b x 4.45N/lb ~ 2500 N
62701b ~ 62701b x 4.45N/Ib ~ 27,900 N
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Using these values and the fact that 1 cm = 0.01 m we obtain

Alexeev’s work = (2500 N) x (2 m) = 5000 J
Anderson’s work = (27,900 N) x (0.01 m) =2791]

Therefore, even though Anderson’s lift required a tremendous upward force, it was applied
over such a short distance that Alexeev did more work. <

WORK DONE BY A VARIABLE FORCE APPLIED IN THE DIRECTION OF MOTION
Many important problems are concerned with finding the work done by a variable force
that is applied in the direction of motion. For example, Figure 6.6.2a shows a spring in its
natural state (neither compressed nor stretched). If we want to pull the block horizontally
(Figure 6.6.2b), then we would have to apply more and more force to the block to overcome
the increasing force of the stretching spring. Thus, our next objective is to define what is
meant by the work performed by a variable force and to find a formula for computing it.
This will require calculus.

6.6.2 PROBLEM Suppose that an object moves in the positive direction along a co-
ordinate line while subjected to a variable force F (x) that is applied in the direction of
motion. Define what is meant by the work W performed by the force on the object as
the object moves from x = a to x = b, and find a formula for computing the work.

The basic idea for solving this problem is to break up the interval [a, b] into subintervals
that are sufficiently small that the force does not vary much on each subinterval. This will
allow us to treat the force as constant on each subinterval and to approximate the work
on each subinterval using Formula (1). By adding the approximations to the work on the
subintervals, we will obtain a Riemann sum that approximates the work W over the entire
interval, and by taking the limit of the Riemann sums we will obtain an integral for W.

To implement this idea, divide the interval [a, b] into n subintervals by inserting points
X1, X2, ..., X,—1 between a = xo and b = x,,. We can use Formula (1) to approximate the
work W done in the kth subinterval by choosing any point x;* in this interval and regarding
the force to have a constant value F(x;) throughout the interval. Since the width of the kth
subinterval is x; — xx_; = Axy, this yields the approximation

Wi ~ F(x,’f)Axk

Adding these approximations yields the following Riemann sum that approximates the work
W done over the entire interval:

WA > F () Axy
k=1

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

max Ax; — 0

n b
W= lim ZF(x,j)Axk=/ F(x)dx
k=1 a

In summary, we have the following result.
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6.6.3 DEFINITION Suppose that an object moves in the positive direction along a
coordinate line over the interval [a, b] while subjected to a variable force F(x) that is
applied in the direction of motion. Then we define the work W performed by the force
on the object to be

b
W:/ F(x)dx 2)

Hooke’s law [Robert Hooke (1635-1703), English physicist] states that under appropri-
ate conditions a spring that is stretched x units beyond its natural length pulls back with a

force F(x) = kx

where k is a constant (called the spring constant or spring stiffness). The value of k depends
on such factors as the thickness of the spring and the material used in its composition. Since
k = F(x)/x, the constant k has units of force per unit length.

» Example 3 A spring exerts a force of 5 N when stretched 1 m beyond its natural
length.

(a) Find the spring constant k.
(b) How much work is required to stretch the spring 1.8 m beyond its natural length?

Solution (a). From Hooke’s law,
F(x) =kx

From the data, F(x) = SN whenx = 1 m,s05 = k - 1. Thus, the spring constantis k = 5
newtons per meter (N/m). This means that the force F(x) required to stretch the spring x

meters 18 F(x) = 5x 3)

Solution (b). Place the spring along a coordinate line as shown in Figure 6.6.3. We want
to find the work W required to stretch the spring over the interval from x = 0to x = 1.8.
From (2) and (3) the work W required is

1.8

b 1.8 5x2
W:/ F(x)dx:/ 5xdx=—i| =8.1] «
a 0 2 0

» Example4 Anastronaut’s weight (or more precisely, Earth weight) is the force exerted
on the astronaut by the Earth’s gravity. As the astronaut moves upward into space, the
gravitational pull of the Earth decreases, and hence so does his or her weight. If the Earth
is assumed to be a sphere of radius 4000 mi, then it can be shown using physics that an
astronaut who weighs 150 1b on Earth will have a weight of

2,400,000,000

. Ib, x> 4000
X

w(x) =

at a distance of x mi from the Earth’s center (Exercise 25). Use this formula to determine
the work in foot-pounds required to lift the astronaut to a point that is 800 mi above the
surface of the Earth (Figure 6.6.4).

Solution. Since the Earth has a radius of 4000 mi, the astronaut is lifted from a point
that is 4000 mi from the Earth’s center to a point that is 4800 mi from the Earth’s center. Thus,
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from (2), the work W required to lift the astronaut is

4800 5 400,000,000
W = o dx
A

2
000 X

3 2,400,000,000}4800

X 4000

—500,000 + 600,000

= 100,000 mile-pounds

= (100,000 mi-Ib) x (5280 ft/mi)
=5.28 x 108 ft-1b «

B CALCULATING WORK FROM BASIC PRINCIPLES
Some problems cannot be solved by mechanically substituting into formulas, and one must
return to basic principles to obtain solutions. This is illustrated in the next example.

» Example 5 Figure 6.6.5a shows a conical container of radius 10 ft and height 30 ft.
Suppose that this container is filled with water to a depth of 15 ft. How much work is
required to pump all of the water out through a hole in the top of the container?

Solution. Our strategy will be to divide the water into thin layers, approximate the work
required to move each layer to the top of the container, add the approximations for the
layers to obtain a Riemann sum that approximates the total work, and then take the limit of
the Riemann sums to produce an integral for the total work.

To implement this idea, introduce an x-axis as shown in Figure 6.6.5a, and divide the
water into n layers with Ax; denoting the thickness of the kth layer. This division induces a
partition of the interval [15, 30] into n subintervals. Although the upper and lower surfaces
of the kth layer are at different distances from the top, the difference will be small if the
layer is thin, and we can reasonably assume that the entire layer is concentrated at a single
point x;° (Figure 6.6.5a). Thus, the work W, required to move the kth layer to the top of
the container is approximately W, ~ Fx! @)
where Fy is the force required to lift the kth layer. But the force required to lift the kth layer
is the force needed to overcome gravity, and this is the same as the weight of the layer. If
the layer is very thin, we can approximate the volume of the kth layer with the volume of
a cylinder of height Ax; and radius ry, where (by similar triangles)

Tk 10 1

X303
or, equivalently, r, = x,f/ 3 (Figure 6.6.5b). Therefore, the volume of the kth layer of water

is approximately a2 A = 7(x*/3)? _ T2
 Axp = w(x;/3)" Axy = §(xk) Axg

Since the weight density of water is 62.4 1b/ft?, it follows that

62.4m

Fp~ (x})* Axy

Thus, from (4)

62.4 62.4
W, ~ ( 5 n(x,’:)zAxk) xX; = 5 ]T(x,f)3Axk
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The work performed by the skater's stick
in a brief interval of time produces the
blinding speed of the hockey puck.

and hence the work W required to move all n layers has the approximation

“ " 62.47
W=> W~y 5 ()3 Axg
k=1 k=1

To find the exact value of the work we take the limit as max Ax; — 0. This yields

n

62.4 30624
W= lm T[(x,f)3Axk=/ 97Tx3dx

max Ax; — 0 9 15

k=1
62.47 (x*\ 71
il (x—)] = 1,316,2507 ~ 4,135,000 ft-1b <
9 \4/];

30 — xf
L o

10

» Figure 6.6.5 (@) )

THE WORK-ENERGY RELATIONSHIP
When you see an object in motion, you can be certain that somehow work has been expended
to create that motion. For example, when you drop a stone from a building, the stone gathers
speed because the force of the Earth’s gravity is performing work on it, and when a hockey
player strikes a puck with a hockey stick, the work performed on the puck during the brief
period of contact with the stick creates the enormous speed of the puck across the ice.
However, experience shows that the speed obtained by an object depends not only on the
amount of work done, but also on the mass of the object. For example, the work required
to throw a 5 oz baseball 50 mi/h would accelerate a 10 Ib bowling ball to less than 9 mi/h.
Using the method of substitution for definite integrals, we will derive a simple equation
that relates the work done on an object to the object’s mass and velocity. Furthermore,
this equation will allow us to motivate an appropriate definition for the “energy of motion”
of an object. As in Definition 6.6.3, we will assume that an object moves in the positive
direction along a coordinate line over the interval [a, b] while subjected to a force F(x)
that is applied in the direction of motion. We let m denote the mass of the object, and we let
x =x(),v=v() =x'(t), and a = a(t) = v/'(t) denote the respective position, velocity,
and acceleration of the object at time . We will need the following important result from
physics that relates the force acting on an object with the mass and acceleration of the object.

6.6.4 NEWTON’S SECOND LAW OF MOTION If an object with mass m is subjected to
a force F, then the object undergoes an acceleration a that satisfies the equation

F = ma 5

It follows from Newton’s Second Law of Motion that

F(x(t)) = ma(t) = mv'(t)
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Assume that

x(tp) =a and x(t) =b
with

v(tp) =v; and v(t) = vy

the initial and final velocities of the object, respectively. Then

b x(tr)
W:[ F(x)dx:/ F(x)dx
a x(to)

a1
:/ Fx(@)x'(t)dt By Theorem 5.9.1 with x = x(¢), dx = x'(t) dt
Iy

:/]mv/(t)v(t)dt:/Imv(t)v'(t)dt

fo fo

v(tr)
= / mv dv By Theorem 5.9.1 with v = v(z), dv = v/ (¢) dt
v(tp)

vy

— ' L2V 1,2 1.2

_/ mvdv = 5my by = My = amy;

v;

We see from the equation
d W= %mvfc - %mvl2 6)

that the work done on the object is equal to the change in the quantity %mv2 from its initial
value to its final value. We will refer to Equation (6) as the work—energy relationship. If
we define the “energy of motion” or kinetic energy of our object to be given by

K = imp? (7

then Equation (6) tells us that the work done on an object is equal to the change in the
object’s kinetic energy. Loosely speaking, we may think of work done on an object as
being “transformed” into kinetic energy of the object. The units of kinetic energy are the
same as the units of work. For example, in SI kinetic energy is measured in joules (J).

» Example 6 A space probe of massm = 5.00 x 10* kg travels in deep space subjected
only to the force of its own engine. Starting at a time when the speed of the probe is
v = 1.10 x 10* m/s, the engine is fired continuously over a distance of 2.50 x 10°® m with
a constant force of 4.00 x 10° N in the direction of motion. What is the final speed of the
probe?

Solution. Since the force applied by the engine is constant and in the direction of motion,
the work W expended by the engine on the probe is
W = force x distance = (4.00 x 10° N) x (2.50 x 10° m) = 1.00 x 10" 7J

From (6), the final kinetic energy K = %mvfc of the probe can be expressed in terms of
the work W and the initial kinetic energy K; = %mvl2 as

Ki=W+K,;
Thus, from the known mass and initial speed we have

Ky = (1.00 x 10" J) 4+ 1(5.00 x 10* kg)(1.10 x 10* m/s)> = 4.025 x 10'*J

The final kinetic energy is Ky = %mv?, so the final speed of the probe is

2K, [2(4.025 x 1012) )
o _ ~ 127 x 10 <
v m 5.00 x 10° x 10" m/s
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VQUICK CHECK EXERCISES 6.6

(See page 458 for answers.)

1. If a constant force of 5 1b moves an object 10 ft, then the
work done by the force on the object is

2. A newton-meter is also called a
centimeter is also called an

A dyne-

3. Suppose that an object moves in the positive direction along
a coordinate line over the interval [a, b]. The work per-

EXERCISE SET 6.6

formed on the object by a variable force F (x) applied in the
direction of motion is W =

4. Aforce F(x) = 10 — 2x N applied in the positive x-direc-
tion moves an object 3 m from x =2 to x = 5. The work
done by the force on the object is

FOCUS ON CONCEPTS

1. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves from x = Otox = 3.

Force F (Ib)

S = N W A

0 1 2
Position x (ft)

(98]

< Figure Ex-1

2. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves fromx = Otox = 5.

50
40
30 -
20 -
10 -

Force F (N)

0() 1 2 3 4 5
Position x (m) < Figure Ex-2

3. For the variable force F'(x) in Exercise 2, consider the
distance d for which the work done by the force on the
particle when the particle moves from x =0 to x =d
is half of the work done when the particle moves from
x = 0tox = 5. By inspecting the graph of F, is d more
or less than 2.5? Explain, and then find the exact value
of d.

4. Suppose that a variable force F(x) is applied in the pos-
itive x-direction so that an object moves from x = a to
x = b. Relate the work done by the force on the object
and the average value of F over [a, b], and illustrate this
relationship graphically.

5. A constant force of 10 1b in the positive x-direction is
applied to a particle whose velocity versus time curve is
shown in the accompanying figure. Find the work done
by the force on the particle from time r = 0tot = 5.

@ 5
2 4
» 3
2 2
31
2o
0O 1 2 3 4 5
Time 7 (s) < Figure Ex-5

6. A spring exerts a force of 6 N when it is stretched from its
natural length of 4 m to a length of 4% m. Find the work
required to stretch the spring from its natural length to a
length of 6 m.

7. A spring exerts a force of 100 N when it is stretched 0.2 m
beyond its natural length. How much work is required to
stretch the spring 0.8 m beyond its natural length?

8. A spring whose natural length is 15 cm exerts a force of
45 N when stretched to a length of 20 cm.
(a) Find the spring constant (in newtons/meter).
(b) Find the work that is done in stretching the spring 3 cm
beyond its natural length.
(c) Findthe work done in stretching the spring from alength
of 20 cm to a length of 25 cm.

9. Assume that 10 ft-1b of work is required to stretch a spring
1 ft beyond its natural length. What is the spring constant?

10-13 True-False Determine whether the statement is true or
false. Explain your answer.

10. In order to support the weight of a parked automobile, the
surface of a driveway must do work against the force of
gravity on the vehicle.

11. Aforce of 10 Ib in the direction of motion of an object that
moves 5 ftin 2 s does six times the work of a force of 101b in
the direction of motion of an object that moves 5 ftin 12 s.

12. It follows from Hooke’s law that in order to double the dis-
tance a spring is stretched beyond its natural length, four
times as much work is required.

13. In the International System of Units, work and kinetic en-
ergy have the same units.



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

A cylindrical tank of radius 5 ft and height 9 ft is two-thirds
filled with water. Find the work required to pump all the
water over the upper rim.

Solve Exercise 14 assuming that the tank is half-filled with
water.

A cone-shaped water reservoir is 20 ft in diameter across
the top and 15 ft deep. If the reservoir is filled to a depth of
10 ft, how much work is required to pump all the water to
the top of the reservoir?

The vat shown in the accompanying figure contains water
to a depth of 2 m. Find the work required to pump all the
water to the top of the vat. [Use 9810 N/m? as the weight
density of water.]

The cylindrical tank shown in the accompanying figure is
filled with a liquid weighing 50 1b/ft>. Find the work re-
quired to pump all the liquid to a level 1 ft above the top of
the tank.

10 ft

6m

w7
i

N :

A Figure Ex-17

/K4m
3

4ftL

A Figure Ex-18

A swimming pool is built in the shape of a rectangular par-

allelepiped 10 ft deep, 15 ft wide, and 20 ft long.

(a) Ifthe poolis filled to 1 ft below the top, how much work
is required to pump all the water into a drain at the top
edge of the pool?

(b) A one-horsepower motor can do 550 ft-1b of work per
second. What size motor is required to empty the pool
in 1 hour?

How much work is required to fill the swimming pool in
Exercise 19 to 1 ft below the top if the water is pumped in
through an opening located at the bottom of the pool?

A 100 ft length of steel chain weighing 15 Ib/ft is dangling
from a pulley. How much work is required to wind the chain
onto the pulley?

A 3 1b bucket containing 20 Ib of water is hanging at the
end of a 20 ft rope that weighs 4 oz/ft. The other end of the
rope is attached to a pulley. How much work is required to
wind the length of rope onto the pulley, assuming that the
rope is wound onto the pulley at a rate of 2 ft/s and that as
the bucket is being lifted, water leaks from the bucket at a
rate of 0.5 1b/s?

A rocket weighing 3 tons is filled with 40 tons of liquid fuel.
In the initial part of the flight, fuel is burned off at a constant
rate of 2 tons per 1000 ft of vertical height. How much work
in foot-tons (ft-ton) is done lifting the rocket 3000 ft?

24.

25.

26.

27.

28.

29.
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It follows from Coulomb’s law in physics that two like elec-
trostatic charges repel each other with a force inversely
proportional to the square of the distance between them.
Suppose that two charges A and B repel with a force of k
newtons when they are positioned at points A(—a, 0) and
B(a, 0), where a is measured in meters. Find the work W
required to move charge A along the x-axis to the origin if
charge B remains stationary.

It is a law of physics that the gravitational force exerted by
the Earth on an object above the Earth’s surface varies in-
versely as the square of its distance from the Earth’s center.
Thus, an object’s weight w(x) is related to its distance x
from the Earth’s center by a formula of the form

w(x) = e
where k is a constant of proportionality that depends on the
mass of the object.

(a) Use this fact and the assumption that the Earth is a
sphere of radius 4000 mi to obtain the formula for w(x)
in Example 4.

(b) Find a formula for the weight w(x) of a satellite that is
x mi from the Earth’s surface if its weight on Earth is
6000 1b.

(c) How much work is required to lift the satellite from the
surface of the Earth to an orbital position that is 1000
mi high?

(a) The formula w(x) = k/x? in Exercise 25 is applicable
to all celestial bodies. Assuming that the Moon is a
sphere of radius 1080 mi, find the force that the Moon
exerts on an astronaut who is x mi from the surface of
the Moon if her weight on the Moon’s surface is 20 Ib.

(b) How much work is required to lift the astronaut to a
point that is 10.8 mi above the Moon’s surface?

The world’s first commercial high-speed magnetic levitation
(MAGLEV) train, a 30 km double-track project connecting
Shanghai, China, to Pudong International Airport, began
full revenue service in 2003. Suppose that a MAGLEV
train has a mass m = 4.00 x 10° kg and that starting at a
time when the train has a speed of 20 m/s the engine applies
aforce of 6.40 x 10° N in the direction of motion over a dis-
tance of 3.00 x 10° m. Use the work—energy relationship
(6) to find the final speed of the train.

Assume that a Mars probe of mass m = 2.00 x 10° kg is
subjected only to the force of its own engine. Starting at a
time when the speed of the probe is v = 1.00 x 10*m/s, the
engine is fired continuously over a distance of 1.50 x 10° m
with a constant force of 2.00 x 10° N in the direction of mo-
tion. Use the work—energy relationship (6) to find the final
speed of the probe.

On August 10, 1972 a meteorite with an estimated mass
of 4 x 10° kg and an estimated speed of 15 km/s skipped
across the atmosphere above the western United States and
Canada but fortunately did not hit the Earth.

(cont.)
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(a) Assuming that the meteorite had hit the Earth with a Describe these categories in your own words and discuss
speed of 15 km/s, what would have been its change in the methods used to solve each type. Give examples to
kinetic energy in joules (J)?

(b) Express the energy as a multiple of the explosive energy
of 1 megaton of TNT, which is 4.2 x 103 J.

illustrate that these categories are not mutually exclusive.

31. Writing How might you recognize that a problem can be
solved by means of the work—energy relationship? That is,

(c) The energy associated with the Hiroshima atomic bomb what sort of “givens” and “unknowns” would suggest such
was 13 kilotons of TNT. To how many such bombs a solution? Discuss two or three examples.

would the meteorite impact have been equivalent?

30. Writing After reading Examples 35, a student classifies
work problems as either “pushing/pulling” or “pumping.”

I/ QUICK CHECK ANSWERS 6.6

b
1. 50 ft-lb 2. joule; erg 3. / F(x)dx 4.9]

a

W8 MOMENTS, CENTERS OF GRAVITY, AND CENTROIDS

The thickness of a
lamina is negligible.

A Figure 6.7.1

The units in Equation (1) are consistent
since mass = (mass/area) x area.

0, D

0,0
A Figure 6.7.2

(1,0

Suppose that a rigid physical body is acted on by a constant gravitational field. Because
the body is composed of many particles, each of which is affected by gravity, the action of
the gravitational field on the body consists of a large number of forces distributed over the
entire body. However, it is a fact of physics that these individual forces can be replaced by
a single force acting at a point called the center of gravity of the body. In this section we
will show how integrals can be used to locate centers of gravity.

DENSITY AND MASS OF A LAMINA

Let us consider an idealized flat object that is thin enough to be viewed as a two-dimensional
plane region (Figure 6.7.1). Such an object is called a lamina. A lamina is called homo-
geneous if its composition is uniform throughout and inhomogeneous otherwise. We will
consider homogeneous laminas in this section. Inhomogeneous laminas will be discussed
in Chapter 14. The density of a homogeneous lamina is defined to be its mass per unit area.
Thus, the density § of a homogeneous lamina of mass M and area A is givenby § = M/A.
Notice that the mass M of a homogeneous lamina can be expressed as

M =3A ()
> Example 1 A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has density
& = 3. Find its total mass.

Solution. Referring to (1) and Figure 6.7.2, the mass M of the lamina is

1 3
M=8A:3-§=§(unitofmass) <

CENTER OF GRAVITY OF A LAMINA

Assume that the acceleration due to the force of gravity is constant and acts downward, and
suppose that a lamina occupies a region R in a horizontal xy-plane. It can be shown that
there exists a unique point (x, y) (which may or may not belong to R) such that the effect
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of gravity on the lamina is “equivalent” to that of a single force acting at the point (x, y).
This point is called the center of gravity of the lamina, and if it is in R, then the lamina will
balance horizontally on the point of a support placed at (x, y). For example, the center of
gravity of a homogeneous disk is at the center of the disk, and the center of gravity of a
homogeneous rectangular region is at the center of the rectangle. For an irregularly shaped
homogeneous lamina, locating the center of gravity requires calculus.

6.7.1 PROBLEM Let f be a positive continuous function on the interval [a, b]. Sup-
pose that a homogeneous lamina with constant density § occupies a region R in a
horizontal xy-plane bounded by the graphs of y = f(x),y = 0,x = a,and x = b. Find
the coordinates (x, y) of the center of gravity of the lamina.

To motivate the solution, consider what happens if we try to balance the lamina on a
knife-edge parallel to the x-axis. Suppose the lamina in Figure 6.7.3 is placed on a knife-
edge along a line y = ¢ that does not pass through the center of gravity. Because the lamina
behaves as if its entire mass is concentrated at the center of gravity (x, y), the lamina will be
rotationally unstable and the force of gravity will cause a rotation about y = ¢. Similarly,
the lamina will undergo a rotation if placed on a knife-edge along y = d. However, if the
knife-edge runs along the line y = y through the center of gravity, the lamina will be in
perfect balance. Similarly, the lamina will be in perfect balance on a knife-edge along the
line x = x through the center of gravity. This suggests that the center of gravity of a lamina
can be determined as the intersection of two lines of balance, one parallel to the x-axis and
the other parallel to the y-axis. In order to find these lines of balance, we will need some
preliminary results about rotations.

Force of gravity acting on the
center of gravity of the lamina

> Figure 6.7.3

Children on a seesaw learn by experience that a lighter child can balance a heavier one
by sitting farther from the fulcrum or pivot point. This is because the tendency for an object
to produce rotation is proportional not only to its mass but also to the distance between the
object and the fulcrum. To make this more precise, consider an x-axis, which we view as
a weightless beam. If a mass m is located on the axis at x, then the tendency for that mass
to produce a rotation of the beam about a point a on the axis is measured by the following
quantity, called the moment of m about x = a:

momentof m | m(x — a)
about a -
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. A

a‘i

X
X — a—»‘
Positive moment

about a
(clockwise rotation)

A

L‘“

X
‘<—x—a

Negative moment
about a
(counterclockwise rotation)

A Figure 6.7.4
c y
a ; 7 x=a
m / Ji/_a
X ——e—r
—/y=c N5, )
y=c
A Figure 6.7.6

(b)

A Figure 6.7.7

The number x — a is called the lever arm. Depending on whether the mass is to the right or
left of a, the lever arm is either the distance between x and a or the negative of this distance
(Figure 6.7.4). Positive lever arms result in positive moments and clockwise rotations, and
negative lever arms result in negative moments and counterclockwise rotations.

Suppose that masses m, m», ..., m, are located at xy, x,, ..., X, on a coordinate axis
and a fulcrum is positioned at the point a (Figure 6.7.5). Depending on whether the sum of
the moments about a,

n
D mil —a) =my(xy — a) + my(xy —a)+ -+ my(x, — a)
k=1
is positive, negative, or zero, a weightless beam along the axis will rotate clockwise about a,
rotate counterclockwise about a, or balance perfectly. In the last case, the system of masses
is said to be in equilibrium.

P P A .
a
» Figure 6.7.5 Fulcrum

The preceding ideas can be extended to masses distributed in two-dimensional space. If
we imagine the xy-plane to be a weightless sheet supporting a mass m located at a point
(x, y), then the tendency for the mass to produce a rotation of the sheet about the line
x = ais m(x — a), called the moment of m about x = a, and the tendency for the mass to
produce a rotation about the line y = ¢ is m(y — c), called the moment of m abouty = ¢
(Figure 6.7.6). In summary,

moment of m moment of m
about the =m(x —a) and about the =m(y —c) (2-3)
linex =a liney =c¢

If a number of masses are distributed throughout the xy-plane, then the plane (viewed as
a weightless sheet) will balance on a knife-edge along the line x = a if the sum of the
moments about the line is zero. Similarly, the plane will balance on a knife-edge along the
line y = c if the sum of the moments about that line is zero.

We are now ready to solve Problem 6.7.1. The basic idea for solving this problem is to
divide the lamina into strips whose areas may be approximated by the areas of rectangles.
These area approximations, along with Formulas (2) and (3), will allow us to create a
Riemann sum that approximates the moment of the lamina about a horizontal or vertical
line. By taking the limit of Riemann sums we will then obtain an integral for the moment
of a lamina about a horizontal or vertical line. We observe that since the lamina balances
on the lines x = x and y = y, the moment of the lamina about those lines should be zero.
This observation will enable us to calculate x and y.

To implement this idea, we divide the interval [a, b] into n subintervals by inserting
the points xy, x3, ..., X,—1 between a = xo and b = x,. This has the effect of dividing the
lamina R into n strips Ry, Ry, ..., R, (Figure 6.7.7a). Suppose that the kth strip extends
from x;_; to x; and that the width of this strip is

Axp = Xp — Xp—1

We will let x; be the midpoint of the kth subinterval and we will approximate Ry by a
rectangle of width Ax; and height f(x;). From (1), the mass AM; of this rectangle is
AM; = §f(x})Axk, and we will assume that the rectangle behaves as if its entire mass
is concentrated at its center (x, y)) = (x}, % f(x;)) (Figure 6.7.7b). It then follows from
(2) and (3) that the moments of R about the lines x = X and y = y may be approximated
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by (x; — X)AM; and (y; — y) AM, respectively. Adding these approximations yields the
following Riemann sums that approximate the moment of the entire lamina about the lines
x=xandy=1y:

n n

S - DAM =Y (o — D)8f () Ax

k=1 k=1
(@D N
;m y)AMk_;< 5 y)aﬂkaxk

Taking the limits as n increases and the widths of all the rectangles approach zero yields
the definite integrals

b b
/(x—)?)(Sf(x)dx and / <@—y)3f(x)dx

that represent the moments of the lamina about the lines x = x and y = y. Since the lamina
balances on those lines, the moments of the lamina about those lines should be zero:

b b
/(x—)f)éf(x)dx:/ (%—y)Sf(x)dx=0

Since x and y are constant, these equations can be rewritten as
b b
/ Sxf(x)dx = )E/ Sf(x)dx
a a

b b
1
[ sscrerar=s [ sreas
from which we obtain the following formulas for the center of gravity of the lamina:

Center of Gravity (x, y) of a Lamina
b1
/; 55 (f(x))2 dx (4-5)

b
/ of(x)dx

b
/ oxf(x)dx

]E:—, )_):

b
/ 6f(x)dx

Observe that in both formulas the denominator is the mass M of the lamina. The numerator
in the formula for X is denoted by M, and is called the first moment of the lamina about the
y-axis; the numerator of the formula for y is denoted by M, and is called the first moment
of the lamina about the x-axis. Thus, we can write (4) and (5) as

Alternative Formulas for Center of Gravity (x, y) of a Lamina

. M, 1 b (©)
i=—2=—— | Ssxf(x)dx

M mass of R J,
L p— /bla(ﬂ ) d ™
y_M_rnassofR a 2 * *

» Example 2 Find the center of gravity of the triangular lamina with vertices (0, 0),
(0, 1), and (1, 0) and density § = 3.

Solution. The lamina is shown in Figure 6.7.2. In Example 1 we found the mass of the

lamina to be 3
M - 5
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Since the density factor has canceled,
we may interpret the centroid as a
geometric property of the region, and
distinguish it from the center of gravity,

which is a physical property of an ide-

alized object that occupies the region.

A Figure 6.7.8

The moment of the lamina about the y-axis is

1 1
M, = f oxf(x)dx = f 3x(—x + 1) dx
0 0

: 3 ! 3001

and the moment about the x-axis is

1 1 ) 13 )
M, :/ =5(f(x)) dx:/ —(—x + D)“dx
0 2 0o 2

1 1
3, 3(1 4 ) 3/1 1
-/0 2(x x + 1)dx 2(3x X +x)]0 2(3) 7

From (6) and (7),
My, 1/2 1

=2

M- 32°3 YTMT3273

so the center of gravity is (%, %). <

In the case of a homogeneous lamina, the center of gravity of a lamina occupying the
region R is called the centroid of the region R. Since the lamina is homogeneous, § is
constant. The factor § in (4) and (5) may thus be moved through the integral signs and
canceled, and (4) and (5) can be expressed as

Centroid of a Region R
b
/ xf(x)dx b
= ~ areaof R / xf(x)dx ®
/ f(x)dx ¢
b1
| 3tz ax '
= a 1 2
a b ~ areaof R / E(f(x)) dx ©)
/ f(x)dx ¢

» Example 3 Find the centroid of the semicircular region in Figure 6.7.8.

Solution. By symmetry, X = 0 since the y-axis is obviously a line of balance. To find y,
first note that the equation of the semicircle is y = f(x) = +v/a? — x2. From (9),

_ 1 “1 2, Lo,
y——/ 3 () dx = /2(a ) dx

areaof R J_, %rraz —a

I |
- 8-
[\S} [\S]
1 _—
e ~N IS
S8} ><M
| |
W= W =
S =
© w
S—"
I '—'l 2
/?\Q

Q

(98]

+

|

Q

(98]
N—
[

so the centroid is (0, 4a/3m). <
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A Figure 6.7.9
y
11+
10 y=x+6
9+ \ (3,9
8,
’7,
6
5,
2.49¢" 4k y=x?
3,
2,
1,
X
| | | | | | |
—3-2-1 1 2 3 4

A Figure 6.7.10
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B OTHER TYPES OF REGIONS

The strategy used to find the center of gravity of the region in Problem 6.7.1 can be used to
find the center of gravity of regions that are not of that form.

Consider a homogeneous lamina that occupies the region R between two continuous
functions f(x) and g(x) over the interval [a, b], where f(x) > g(x) fora < x < b. Tofind
the center of gravity of this lamina we can subdivide it into 7 strips using lines parallel to the
y-axis. If x; is the midpoint of the kth strip, the strip can be approximated by a rectangle of
width Ax; and height f(x;) — g(x}). We assume that the entire mass of the kth rectangle
is concentrated at its center (x;, y;) = (x, %(f(x,’f) + g(x}))) (Figure 6.7.9). Continuing
the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

b
/ x(f(x) —g(x))dx

b
. /b(f( )~ g(x)d ) afeaofR/a *(fx) — gty dx (10)
x) —gx))dx
’
/ 5 (FP = [g(0F) dx ,
_ ), 2 | | 2 2
o - areaofR/; 5([f(x)] —[g®)]?) dx (11)

b
/ (f(x) — g(x)) dx

Note that the density of the lamina does not appear in Equations (10) and (11). This
reflects the fact that the centroid is a geometric property of R.

» Example 4 Find the centroid of the region R enclosed between the curves y = x? and

y=x+46.

Solution. To begin, we note that the two curves intersect when x = —2 and x = 3 and
that x 4+ 6 > x? over that interval (Figure 6.7.10). The area of R is
3

125
/ [(x +6) —x*]dx = —
i 6
From (10) and (11),
1 3 5
X = —— 6) —x“1d
* area of R /72x[(x+ ) —x7]dx
6 (1 1 A\T
=— (=23 +3x% — —x*
125 \3 4 2
6 125 1
125 12 2
and

1 1 2 2.2
/ 5((x+6) — (x9))dx

=
Il

areaof R J_,
-0 31(2+12 +36—x"d
= 125 _22x X X X

6 1(1 , 1\
=—  —|[=x+6x>+36x — -x°
125 2<3x+x+ X Sx )]2
6 250
=— .= =4

125 3

so the centroid of R is (%, 4). «
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fy D) = (300D ¥)

y

x=w(y)

A Figure 6.7.11

A Figure 6.7.12

Suppose that w is a continuous function of y on an interval [c, d] with w(y) > 0 for
¢ <y <d. Consider a lamina that occupies a region R bounded above by y = d, below by
y = ¢, on the left by the y-axis, and on the right by x = w(y) (Figure 6.7.11). To find the
center of gravity of this lamina, we note that the roles of x and y in Problem 6.7.1 have been
reversed. We now imagine the lamina to be subdivided into n strips using lines parallel
to the x-axis. We let y; be the midpoint of the kth subinterval and approximate the strip
by a rectangle of width Ay, and height w(y;). We assume that the entire mass of the kth
rectangle is concentrated at its center (x;, y;) = (%w(y,j‘), vi) (Figure 6.7.11). Continuing
the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

d 1 )
[ worar

a d
g 2 = f L w2 dy (12)
areaof R J. 2
/ w(y) dy
dC
/yw(y)dy d
y== /yw(y)dy (13)

d ~ areaof R
/ w(y)dy

Once again, the absence of the density in Equations (12) and (13) reflects the geometric
nature of the centroid.

» Example 5 Find the centroid of the region R enclosed between the curves y = /x,
y =1, y = 2, and the y-axis (Figure 6.7.12).

Solution. Note that x = w(y) = y? and that the area of R is

[T
]y )’—3

1 21 L, 31 417 3 31 93
- — dy==-.—y| =2.- =22
areaofR/l 2(y) Y77 y:|

1 2 31,17 3 15 45
- dy=2=.-y*| =2. ===
areaofR/]y(y) Y77 4yl 74 28

so the centroid of R is (93/70, 45/28) ~ (1.329, 1.607). <

From (12) and (13),

=1
Il

=1
I

THEOREM OF PAPPUS

The following theorem, due to the Greek mathematician Pappus, gives an important rela-
tionship between the centroid of a plane region R and the volume of the solid generated
when the region is revolved about a line.

6.7.2 THEOREM (Theorem of Pappus) If R is a bounded plane region and L is a line
that lies in the plane of R such that R is entirely on one side of L, then the volume of
the solid formed by revolving R about L is given by

volume = (area of R) - (dzstance traveled)

by the centroid
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PROOF We prove this theorem in the special case where L is the y-axis, the region R
is in the first quadrant, and the region R is of the form given in Problem 6.7.1. (A more
general proof will be outlined in the Exercises of Section 14.8.) In this case, the volume
V of the solid formed by revolving R about L can be found by the method of cylindrical
shells (Section 6.3) to be

b
\% :271/ xf(x)dx

Thus, it follows from (8) that V = 2rilarea of R]

This completes the proof since 2mx is the distance traveled by the centroid when R is
revolved about the y-axis. ®

» Example 6 Use Pappus’ Theorem to find the volume V of the torus generated by
revolving a circular region of radius b about a line at a distance a (greater than b) from the
center of the circle (Figure 6.7.13).

Solution. By symmetry, the centroid of a circular region is its center. Thus, the distance
traveled by the centroid is 2a. Since the area of a circle of radius b is b2, it follows from
Pappus’ Theorem that the volume of the torus is

V = 2na)(nb?®) = 21%ab® <

The centroid travels
a distance 27ma.

A Figure 6.7.13

I/ QUICK CHECK EXERCISES 6.7

(See page 467 for answers.)

1. The total mass of a homogeneous lamina of area A and
density § is

2. Ahomogeneous lamina of mass M and density § occupies a
region in the xy-plane bounded by the graphs of y = f(x),
y =0,x = a,and x = b, where f is anonnegative continu-
ous function defined on an interval [a, b]. The x-coordinate
of the center of gravity of the lamina is M, /M, where M, is
calledthe _ and is given by the integral

EXERCISE SET 6.7  [€] cas

3. Let R be the region between the graphs of y = x? and
y=2—xfor0<x <1. The area of R is % and the cen-
troid of R is

4. If the region R in Quick Check Exercise 3 is used to gen-
erate a solid G by rotating R about a horizontal line 6 units

above its centroid, then the volume of G is

FOCUS ON CONCEPTS

1. Masses m; = 5, mp = 10, and m3 = 20 are positioned
on a weightless beam as shown in the accompanying
figure.

(a) Suppose that the fulcrum is positioned at x = 5.
Without computing the sum of moments about 5,
determine whether the sum is positive, zero, or neg-
ative. Explain.

Pappus of Alexandria (4th century A.n.) Greek mathematician.
Pappus lived during the early Christian era when mathematical ac-
tivity was in a period of decline. His main contributions to math-
ematics appeared in a series of eight books called The Collection
(written about 340 A.D.). This work, which survives only partially,
contained some original results but was devoted mostly to state-

(b) Where should the fulcrum be placed so that the beam
is in equilibrium?

n ny my
/[ 5\ /10 \ / 20\
A
1 1 1 1
0 5 X 10

A Figure Ex-1

ments, refinements, and proofs of results by earlier mathematicians.
Pappus’ Theorem, stated without proof in Book VII of The Collec-
tion, was probably known and proved in earlier times. This result
is sometimes called Guldin’s Theorem in recognition of the Swiss
mathematician, Paul Guldin (1577-1643), who rediscovered it in-
dependently.
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2. Massesm| = 10,m, = 3, ms = 4, and m are positioned
on a weightless beam, with the fulcrum positioned at
point 4, as shown in the accompanying figure.

(a) Suppose that m = 14. Without computing the sum
of the moments about 4, determine whether the sum
is positive, zero, or negative. Explain.

(b) For what value of m is the beam in equilibrium?

m; m, my m
/ 10 \ [ 3\ [ 4\ [ 7\
A
I I I 1 I
0 2 3 4 6

A Figure Ex-2

3-6 Find the centroid of the region by inspection and con-
firm your answer by integrating.
3. Y

y

1D

X

¥
N

5. Y 6.

1

L
NP,

7-20 Find the centroid of the region.

7. Y 8. Y
y=x
y=x*
X X
1 1
9 Y 10. hY
y=2-x%
y= 1-x2
y=x

X X

11. The triangle with vertices (0, 0), (2, 0), and (0, 1).

12. The triangle with vertices (0, 0), (1, 1), and (2, 0).
13. The region bounded by the graphs of y = x> and x + y = 6.

14. The region bounded on the left by the y-axis, on the right
by the line x = 2, below by the parabola y = x2, and above
by the line y = x + 6.

15. The region bounded by the graphs of y = x?and y = x + 2.

16. The region bounded by the graphs of y = x2 and y = 1.

17. The region bounded by the graphs of y = 4/x and y = x.

18. The region bounded by the graphs of x = 1/y, x =0,
y=1,and y = 2.

19. The region bounded by the graphs of y = x, x = 1/y?, and
y=2.

20. The region bounded by the graphsof xy = 4andx + y = 5.

FOCUS ON CONCEPTS

21. Use symmetry considerations to argue that the centroid
of an isosceles triangle lies on the median to the base of
the triangle.

22. Use symmetry considerations to argue that the centroid
of an ellipse lies at the intersection of the major and
minor axes of the ellipse.

23-26 Find the mass and center of gravity of the lamina with
density §.

23. A lamina bounded by the x-axis, the line x = 1, and the
curve y = 4/x; 8 = 2.

24. Alamina bounded by the graph of x = y* and the linex = 1;
8§ =15.

25. A lamina bounded by the graph of y = |x| and the line
y=1,6§=3.

26. A lamina bounded by the x-axis and the graph of the equa-
tion y = 1—x%68=3.

[€] 27-30 Use a CAS to find the mass and center of gravity of the

lamina with density §.

27. Alamina bounded by y =sinx, y =0, x =0, and x = 7;
5 =4.

28. A lamina bounded by y =¢*, y =0, x =0, and x = 1;
§=1/(e —1).

29. A lamina bounded by the graph of y = In x, the x-axis, and
thelinex =2;6 = 1.

30. A lamina bounded by the graphs of y = cosx, y =sinx,
x=0,andx =7/4;6 =1+ V2.

31-34 True-False Determine whether the statement is true or
false. Explain your answer. [In Exercise 34, assume that the
(rotated) square lies in the xy-plane to the right of the y-axis.]



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The centroid of a rectangle is the intersection of the diago-
nals of the rectangle.

The centroid of a rhombus is the intersection of the diago-
nals of the rhombus.

The centroid of an equilateral triangle is the intersection of
the medians of the triangle.

By rotating a square about its center, it is possible to change
the volume of the solid of revolution generated by revolving
the square about the y-axis.

Find the centroid of the triangle with vertices (0, 0), (a, b),
and (a, —b).

Prove that the centroid of a triangle is the point of inter-
section of the three medians of the triangle. [Hint: Choose
coordinates so that the vertices of the triangle are located at
(0, —a), (0, a), and (b, ¢).]

Find the centroid of the isosceles trapezoid with vertices
(_as 0)’ (as 0)’ (_bs 0)9 and (b» C)'

Prove that the centroid of a parallelogram is the point of
intersection of the diagonals of the parallelogram. [Hint:

Choose coordinates so that the vertices of the parallelogram
are located at (0, 0), (0, a), (b, ¢), and (b, a + ¢).]

Use the Theorem of Pappus and the fact that the volume of a
sphere of radius a is V = %mﬁ to show that the centroid of
the lamina that is bounded by the x-axis and the semicircle
y = +/a? — x2 is (0, 4a/(3m)). (This problem was solved
directly in Example 3.)

Use the Theorem of Pappus and the result of Exercise 39
to find the volume of the solid generated when the region

I/ QUICK CHECK ANSWERS 6.7

41.

42,

43.

44,

45.
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bounded by the x-axis and the semicircle y = ~/a? — x? is
revolved about
(a) theliney = —a (b) theline y = x —a.
Use the Theorem of Pappus and the fact that the area of an
ellipse with semiaxes a and b is wab to find the volume of

the elliptical torus generated by revolving the ellipse
x —k 2 2

G

a b?

about the y-axis. Assume that k > a.

=1

Use the Theorem of Pappus to find the volume of the solid
that is generated when the region enclosed by y = x2 and
y = 8 — x? is revolved about the x-axis.

Use the Theorem of Pappus to find the centroid of the trian-
gular region with vertices (0, 0), (a, 0), and (0, b), where
a > 0and b > 0. [Hint: Revolve the region about the x-
axis to obtain y and about the y-axis to obtain x.]

Writing Suppose thataregion R in the plane is decomposed
into two regions R; and R, whose areas are A; and A,,
respectively, and whose centroids are (x;, ¥;) and (X3, ¥2),
respectively. Investigate the problem of expressing the cen-
troid of R in terms of Ay, A, (X1, 1), and (X7, ). Write a
short report on your investigations, supporting your reason-
ing with plausible arguments. Can you extend your results
to decompositions of R into more than two regions?

Writing How might you recognize that a problem can be
solved by means of the Theorem of Pappus? That is, what
sort of “givens” and “unknowns” would suggest such a so-
lution? Discuss two or three examples.

b
1. §A 2. first moment about the y-axis; / Sxf(x)dx 3. <

5 ®
14° 35

) 4. 14r

m FLUID PRESSURE AND FORCE

In this section we will use the integration tools developed in the preceding chapter to
study the pressures and forces exerted by fluids on submerged objects.

B WHAT IS A FLUID?

A fluid is a substance that flows to conform to the boundaries of any container in which it
is placed. Fluids include liguids, such as water, oil, and mercury, as well as gases, such
as helium, oxygen, and air. The study of fluids falls into two categories: fluid statics (the
study of fluids at rest) and fluid dynamics (the study of fluids in motion). In this section
we will be concerned only with fluid statics; toward the end of this text we will investigate

problems in fluid dynamics.
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Il THE CONCEPT OF PRESSURE

The effect that a force has on an object depends on how that force is spread over the surface
of the object. For example, when you walk on soft snow with boots, the weight of your
body crushes the snow and you sink into it. However, if you put on a pair of snowshoes to
spread the weight of your body over a greater surface area, then the weight of your body
has less of a crushing effect on the snow. The concept that accounts for both the magnitude
of a force and the area over which it is applied is called pressure.

6.8.1 peFINITION If a force of magnitude F is applied to a surface of area A, then
we define the pressure P exerted by the force on the surface to be

P—F 1
== (M

Jupiter Images Corp.

Snowshoes prevent the woman from
sinking by spreading her weight over a
large area to reduce her pressure on the
SHOW.

It follows from this definition that pressure has units of force per unit area. The most
common units of pressure are newtons per square meter (N/m?) in SI and pounds per
square inch (Ib/in?) or pounds per square foot (Ib/ft?) in the BE system. As indicated in
Table 6.8.1, one newton per square meter is called a pascal (Pa). A pressure of 1 Pa is
quite small (1 Pa = 1.45 x 10~*1b/in?), so in countries using SI, tire pressure gauges are
usually calibrated in kilopascals (kPa), which is 1000 pascals.

Table 6.8.1
UNITS OF FORCE AND PRESSURE
SYSTEM FORCE + AREA =  PRESSURE
SI newton (N) square meter (m?) pascal (Pa)
BE pound (Ib) square foot (ft2) 1b/ft?
BE pound (Ib) square inch (in2) 1b/in? (psi)

CONVERSION FACTORS:

1 Pa=1.45x 107*1b/in® = 2.09 x 1072 1b/ft?
1 1b/in ~ 6.89 x 103 Pa 1 1b/ft?> ~ 47.9 Pa

Blaise Pascal (1623-1662) French mathematician and
scientist. Pascal’s mother died when he was three years
old and his father, a highly educated magistrate, person-
ally provided the boy’s early education. Although Pascal
showed an inclination for science and mathematics, his fa-
ther refused to tutor him in those subjects until he mastered

until his death he was in frequent pain. However, his creativity was
unimpaired.

Pascal’s contributions to physics include the discovery that air
pressure decreases with altitude and the principle of fluid pressure
that bears his name. However, the originality of his work is ques-
tioned by some historians. Pascal made major contributions to a

Latin and Greek. Pascal’s sister and primary biographer claimed
that he independently discovered the first thirty-two propositions
of Euclid without ever reading a book on geometry. (However, it
is generally agreed that the story is apocryphal.) Nevertheless, the
precocious Pascal published a highly respected essay on conic sec-
tions by the time he was sixteen years old. Descartes, who read the
essay, thought it so brilliant that he could not believe that it was
written by such a young man. By age 18 his health began to fail and

branch of mathematics called “projective geometry,” and he helped
to develop probability theory through a series of letters with Fermat.

In 1646, Pascal’s health problems resulted in a deep emotional
crisis that led him to become increasingly concerned with religious
matters. Although born a Catholic, he converted to a religious doc-
trine called Jansenism and spent most of his final years writing on
religion and philosophy.



Fluid forces always act perpendicular
to the surface of a submerged object.

A Figure 6.8.1

Table 6.8.2

WEIGHT DENSITIES

SI N/m3
Machine oil 4708
Gasoline 6602
Fresh water 9810
Seawater 10,045
Mercury 133,416
BE SYSTEM 1b/ft3
Machine oil 30.0
Gasoline 42.0
Fresh water 62.4
Seawater 64.0
Mercury 849.0

All densities are affected by variations
in temperature and pressure. Weight
densities are also affected by variations

in g.

A Figure 6.8.2
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In this section we will be interested in pressures and forces on objects submerged in
fluids. Pressures themselves have no directional characteristics, but the forces that they
create always act perpendicular to the face of the submerged object. Thus, in Figure 6.8.1
the water pressure creates horizontal forces on the sides of the tank, vertical forces on the
bottom of the tank, and forces that vary in direction, so as to be perpendicular to the different
parts of the swimmer’s body.

» Example 1 Referring to Figure 6.8.1, suppose that the back of the swimmer’s hand has
a surface area of 8.4 x 1073 m? and that the pressure acting on itis 5.1 x 10* Pa (a realistic
value near the bottom of a deep diving pool). Find the force that acts on the swimmer’s hand.

Solution. From (1), the force F is
F=PA=(.1x10"N/m)84x 10°m*) ~43 x 10*N

This is quite a large force (nearly 100 Ib in the BE system). <«

FLUID DENSITY
Scuba divers know that the pressure and forces on their bodies increase with the depth they
dive. This is caused by the weight of the water and air above—the deeper the diver goes,
the greater the weight above and so the greater the pressure and force exerted on the diver.
To calculate pressures and forces on submerged objects, we need to know something
about the characteristics of the fluids in which they are submerged. For simplicity, we
will assume that the fluids under consideration are homogeneous, by which we mean that
any two samples of the fluid with the same volume have the same mass. It follows from
this assumption that the mass per unit volume is a constant § that depends on the physical
characteristics of the fluid but not on the size or location of the sample; we call

5= 2)

m
1%
the mass density of the fluid. Sometimes it is more convenient to work with weight per unit
volume than with mass per unit volume. Thus, we define the weight density p of a fluid to be

== 3)
Py

where w is the weight of a fluid sample of volume V. Thus, if the weight density of a fluid
is known, then the weight w of a fluid sample of volume V can be computed from the for-
mula w = pV. Table 6.8.2 shows some typical weight densities.

FLUID PRESSURE

To calculate fluid pressures and forces we will need to make use of an experimental ob-
servation. Suppose that a flat surface of area A is submerged in a homogeneous fluid of
weight density p such that the entire surface lies between depths /2 and h,, where h; < h;
(Figure 6.8.2). Experiments show that on both sides of the surface, the fluid exerts a force
that is perpendicular to the surface and whose magnitude F satisfies the inequalities

phA < F < phyA 4)
Thus, it follows from (1) that the pressure P = F/A on a given side of the surface satisfies

the inequalities
phy < P < phy )
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The fluid force is the fluid
pressure times the area.

A Figure 6.8.3

a=x————= x;
R T
I
] B A— ro—
K-t [
b=x, b
(b)
e NP
A
&
b+
[ iy —
(©)
A Figure 6.8.4

Note that it is now a straightforward matter to calculate fluid force and pressure on a flat
surface that is submerged horizontally at depth h, for then i = h; = h; and inequalities (4)
and (5) become the equalities F = phA ©)

and
P =ph @)

» Example 2 Find the fluid pressure and force on the top of a flat circular plate of radius
2 m that is submerged horizontally in water at a depth of 6 m (Figure 6.8.3).

Solution. Since the weight density of water is p = 9810 N/ m’, it follows from (7) that
the fluid pressure is P = ph = (9810)(6) = 58.860 Pa
and it follows from (6) that the fluid force is

F = phA = ph(r?) = (9810)(6)(47) = 235,440 ~ 739,700 N <

FLUID FORCE ON A VERTICAL SURFACE

It was easy to calculate the fluid force on the horizontal plate in Example 2 because each
point on the plate was at the same depth. The problem of finding the fluid force on a vertical
surface is more complicated because the depth, and hence the pressure, is not constant over
the surface. To find the fluid force on a vertical surface we will need calculus.

6.8.2 PROBLEM Suppose that a flat surface is immersed vertically in a fluid of weight
density p and that the submerged portion of the surface extends from x =a tox = b
along an x-axis whose positive direction is down (Figure 6.8.4a). For a <x < b,
suppose that w(x) is the width of the surface and that 4 (x) is the depth of the point x.
Define what is meant by the fluid force F on the surface, and find a formula for comput-
ng it.

The basic idea for solving this problem is to divide the surface into horizontal strips
whose areas may be approximated by areas of rectangles. These area approximations,
along with inequalities (4), will allow us to create a Riemann sum that approximates the
total force on the surface. By taking a limit of Riemann sums we will then obtain an integral
for F.

To implement this idea, we divide the interval [a, b] into n subintervals by inserting the
points xi, x2, ..., x,—| between a = xo and b = x,. This has the effect of dividing the
surface into n strips of area Ay, k = 1,2, ..., n (Figure 6.8.4D). It follows from (4) that
the force Fj on the kth strip satisfies the inequalities

ph(xi-1)Ar < Fi < ph(xp) A
or, equivalently,
Fy
h(x—1) < —— < h(xp)
P Ak
Since the depth function A (x) increases linearly, there must exist a point x; between x;_

and x; such that Fy
h(xf) = —
PAk

or, equivalently,
Fi = ph(x;)Ax



A Figure 6.8.5

A Figure 6.8.6
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We now approximate the area A, of the kth strip of the surface by the area of a rectangle
of width w(x}) and height Ax; = xx — x;—1 (Figure 6.8.4¢c). It follows that F; may be

approximated as
PP Fi = ph(x}) A ~ ph(x}) - w(xf)Axy
——
Area of rectangle

Adding these approximations yields the following Riemann sum that approximates the total
force F on the surface:

F = Z F ~ Z Ph(xDwx)) Axy
k=1 k=1

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

n b
F= lim Oth(x,f)w(x,’:)Axsz ph(x)w(x)dx
k=1

max Ax; — a

In summary, we have the following result.

6.8.3 DEFINITION Suppose that a flat surface is immersed vertically in a fluid of
weight density p and that the submerged portion of the surface extends from x = a to
x = b along an x-axis whose positive direction is down (Figure 6.8.4a). Fora < x < b,
suppose that w(x) is the width of the surface and that 4 (x) is the depth of the point x.
Then we define the fluid force F on the surface to be

b
F:/ ph(x)w(x) dx (8)

» Example 3 The face of a dam is a vertical rectangle of height 100 ft and width 200 ft
(Figure 6.8.5a). Find the total fluid force exerted on the face when the water surface is level
with the top of the dam.

Solution. Introduce an x-axis with its origin at the water surface as shown in Figure
6.8.5b. At a point x on this axis, the width of the dam in feet is w(x) = 200 and the depth

in feet is h(x) = x. Thus, from (8) with p = 62.4 b/ ft* (the weight density of water) we
obtain as the total force on the face

100 100
F :/ (62.4)(x)(200) dx = 12,480/ xdx
0 0

ERT
= 12,480 ?] = 62,400,000 1b «
0

» Example 4 A plate in the form of an isosceles triangle with base 10 ft and altitude
4 ft is submerged vertically in machine oil as shown in Figure 6.8.6a. Find the fluid force
F against the plate surface if the oil has weight density p = 30 1b/ ft’.

Solution. Introduce an x-axis as shown in Figure 6.8.6b. By similar triangles, the width
of the plate, in feet, at a depth of 4 (x) = (3 + x) ft satisfies

w(x) X
10 4

so w(x) = Ex
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Thus, it follows from (8) that the force on the plate is

b 4
F = f ph(x)w(x)dx = / B0)(3+ x) <§x) dx
a 0

2 394

4 3
=75/ Gr+x)dr =75 + | = 34001 «
0 2 3 0

/QUICK CHECK EXERCISES 6.8

(See page 473 for answers.)

1. The pressure unit equivalent to a newton per square meter
(N/m?) is called a . The pressure unit psi stands
for

2. Given that the weight density of water is 9810 N/m?, the
fluid pressure on a rectangular 2 m x 3 m flat plate sub-
merged horizontally in water at a depth of 10 mis
The fluid force on the plate is

3. Suppose that a flat surface is immersed vertically in a fluid
of weight density p and that the submerged portion of the

EXERCISE SET 6.8

surface extends from x = a to x = b along an x-axis whose
positive direction is down. If, for a < x < b, the surface
has width w(x) and depth /(x), then the fluid force on the
surface is F' =

4. A rectangular plate 2 m wide and 3 m high is submerged
vertically in water so that the top of the plate is 5 m below
the water surface. An integral expression for the force of
the water on the plate surface is F =

In this exercise set, refer to Table 6.8.2 for weight densities of
fluids, where needed.

1. A flat rectangular plate is submerged horizontally in water.
(a) Find the force (in 1b) and the pressure (in 1b/ft?) on
the top surface of the plate if its area is 100 ft> and the
surface is at a depth of 5 ft.
(b) Find the force (in N) and the pressure (in Pa) on the top
surface of the plate if its area is 25 m? and the surface
is at a depth of 10 m.

2. (a) Find the force (in N) on the deck of a sunken ship
if its area is 160 m? and the pressure acting on it is
6.0 x 10° Pa.
(b) Find the force (in 1b) on a diver’s face mask if its area
is 60 in? and the pressure acting on it is 100 1b/in?.

3-8 The flat surfaces shown are submerged vertically in water.
Find the fluid force against each surface.

3. 4. f
2 ft lm

2m

4 ft

5. l—10 m—| 6.

f—a ft —

4 ft 4 ft

7. 6m f2m 8. 4w 4 ft

8m 10 m o f

9. Suppose that a flat surface is immersed vertically in a fluid
of weight density p. If p is doubled, is the force on the plate
also doubled? Explain your reasoning.

10. An oil tank is shaped like a right circular cylinder of diam-
eter 4 ft. Find the total fluid force against one end when
the axis is horizontal and the tank is half filled with oil of
weight density 50 1b/ft3.

11. A square plate of side a feet is dipped in a liquid of weight
density p 1b/ft3. Find the fluid force on the plate if a ver-
tex is at the surface and a diagonal is perpendicular to the
surface.

12-15 True-False Determine whether the statement is true or
false. Explain your answer.

12. Inthe International System of Units, pressure and force have
the same units.

13. Inacylindrical water tank (with vertical axis), the fluid force
on the base of the tank is equal to the weight of water in the
tank.

14. In a rectangular water tank, the fluid force on any side of
the tank must be less than the fluid force on the base of the
tank.



15. In any water tank with a flat base, no matter what the shape
of the tank, the fluid force on the base is at most equal to
the weight of water in the tank.

16-19 Formula (8) gives the fluid force on a flat surface im-
mersed vertically in a fluid. More generally, if a flat surface
is immersed so that it makes an angle of 0 < 8 < 7/2 with the
vertical, then the fluid force on the surface is given by

b
F:/ ph(x)w(x)secHd dx

Use this formula in these exercises.

16. Derive the formula given above for the fluid force on a flat
surface immersed at an angle in a fluid.

17. The accompanying figure shows a rectangular swimming
pool whose bottom is an inclined plane. Find the fluid force
on the bottom when the pool is filled to the top.

8 ft

10 ft < Figure Ex-17

18. By how many feet should the water in the pool of Exercise
17 be lowered in order for the force on the bottom to be
reduced by a factor of %?

19. The accompanying figure shows a dam whose face is an in-
clined rectangle. Find the fluid force on the face when the
water is level with the top of this dam.

< Figure Ex-19

20. An observation window on a submarine is a square with 2
ft sides. Using po for the weight density of seawater, find

VQUICK CHECK ANSWERS 6.8
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the fluid force on the window when the submarine has de-
scended so that the window is vertical and its top is at a
depth of & feet.

FOCUS ON CONCEPTS

21. (a) Show: If the submarine in Exercise 20 descends
vertically at a constant rate, then the fluid force on
the window increases at a constant rate.

(b) Atwhatrate is the force on the window increasing if
the submarine is descending vertically at 20 ft/min?

22. (a) Let D = D, denote a disk of radius a submerged in
a fluid of weight density p such that the center of D
is i units below the surface of the fluid. For each
value of r in the interval (0, a], let D, denote the
disk of radius r that is concentric with D. Select a
side of the disk D and define P(r) to be the fluid
pressure on the chosen side of D,. Use (5) to prove
that

Ji 7> = ph

(b) Explain why the result in part (a) may be interpreted
to mean that fluid pressure at a given depth is the
same in all directions. (This statement is one ver-
sion of a result known as Pascal’s Principle.)

23. Writing Suppose that we model the Earth’s atmosphere as
a “fluid.” Atmospheric pressure at sea level is P = 14.7
Ib/in” and the weight density of air at sea level is about
p = 4.66 x 107% Ib/in’. With these numbers, what would
Formula (7) yield as the height of the atmosphere above
the Earth? Do you think this answer is reasonable? If not,
explain how we might modify our assumptions to yield a
more plausible answer.

24. Writing Suppose that the weight density p of a fluid is a
function p = p(x) of the depth x within the fluid. How do
you think that Formula (7) for fluid pressure will need to be
modified? Support your answer with plausible arguments.

1. pascal; pounds per square inch 2. 98,100 Pa; 588,600 N

b 3
3. / ph(x)wx)dx 4. / 9810[(5 + x)2]dx
a 0
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H HYPERBOLIC FUNCTIONS AND HANGING CABLES

In this section we will study certain combinations of ¢* and e™*, called “hyperbolic
functions.” These functions, which arise in various engineering applications, have many
properties in common with the trigonometric functions. This similarity is somewhat
surprising, since there is little on the surface to suggest that there should be any
relationship between exponential and trigonometric functions. This is because the
relationship occurs within the context of complex numbers, a topic which we will leave for
more advanced courses.

Il DEFINITIONS OF HYPERBOLIC FUNCTIONS
To introduce the hyperbolic functions, observe from Exercise 61 in Section 0.2 that the
function e* can be expressed in the following way as the sum of an even function and an

odd function: L et e

e = +
2 2
—
Even Odd

These functions are sufficiently important that there are names and notation associated with
them: the odd function is called the hyperbolic sine of x and the even function is called the
hyperbolic cosine of x. They are denoted by

. e —e™* X +et
sinhx = — and coshx = —

where sinh is pronounced “cinch” and cosh rhymes with “gosh.” From these two building

blocks we can create four more functions to produce the following set of six hyperbolic
functions.

6.9.1 DEFINITION

X —e
Hyperbolic sine sinhx = >
The terms “tanh,” “sech,” and “csch”
X —X
are pronounced “tanch,” “seech,” and . . e +e
" p ) Hyperbolic cosine coshx = ———
coseech,” respectively. 2
X sinh x et —e™*
Hyperbolic tangent tanhx = =

cosh x er +e*
cosh x et +e*

Hyperbolic cotangent coth x -
sinh x eX —e™*

1 2
Hyperbolic secant sechx = =
cosh x er +e*
, 1 2
Hyperbolic cosecant csch x = =

sinh x er —e™*

TECHNOLOGY MASTERY

Computer algebra systems have built- > Example 1

h e ] - -t 1-1

in capabilities for evaluating hyperbolic sinh 0 = — =0
functions directly, but some calculators 2 2

do not. However, if you need to eval- e 40 141

uate a hyperbolic function on a calcu- cosh0 = = =1
lator, you can do so by expressing it 2 2

in terms of exponential functions, as in e2 — 2

Example 1. sinh 2 = ~ 3.6269 <«
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B GRAPHS OF THE HYPERBOLIC FUNCTIONS
The graphs of the hyperbolic functions, which are shown in Figure 6.9.1, can be generated
with a graphing utility, but it is worthwhile to observe that the general shape of the graph of
y = cosh x can be obtained by sketching the graphs of y = %e" andy = %e‘x separately and
adding the corresponding y-coordinates [see part (a) of the figure]. Similarly, the general
shape of the graph of y = sinh x can be obtained by sketching the graphs of y = %ex and

y=— %e‘x separately and adding corresponding y-coordinates [see part (b) of the figure].
\ ’ y y / Y
\ 4 /
\ 7 /
L 7 L
AN s 7, 1
_ 1 x ~ - _ 1 —x — leX A
Y2l 203 JITaf - x .
- = —= eix 77777777777777
2 4
4
4
4
/
y = coshx y = sinhx y = tanh x
(@) Q) ()
y y y

y = cothx y =sechx y=cschx
(d (e) )]
A Figure 6.9.1

Observe that sinh x has a domain of (—cc, 4+o0) and a range of (—c, 40), whereas cosh x
has a domain of (—o, +) and arange of [1, +o). Observe also that y = %e" andy = %e"‘
are curvilinear asymptotes for y = cosh x in the sense that the graph of y = cosh x gets
closer and closer to the graph of y = %ex as x — +oo and gets closer and closer to the graph
of y = %e"‘ as x — —oo. (See Section 4.3.) Similarly, y = %e" is a curvilinear asymptote
The design of the Gateway Arch near for y =sinhx as x > 4o and y = —%e’x is a curvilinear asymptote as x — —oo. Other
St. Louis is based on an inverted hyper-  Properties of the hyperbolic functions are explored in the exercises.
bolic cosine curve (Exercise 73).

Glen Allison/Stone/Getty Images

I HANGING CABLES AND OTHER APPLICATIONS

Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in
many problems where mechanical energy is gradually absorbed by a surrounding medium.
They also occur when a homogeneous, flexible cable is suspended between two points, as
with a telephone line hanging between two poles. Such a cable forms a curve, called a
catenary (from the Latin catena, meaning “chain”). If, as in Figure 6.9.2, a coordinate
system is introduced so that the low point of the cable lies on the y-axis, then it can be
shown using principles of physics that the cable has an equation of the form

y = acosh (f)—i—c
a
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y=acosh (x/a)+c  Where the parameters a and c are determined by the distance between the poles and the
= composition of the cable.
I HYPERBOLIC IDENTITIES
The hyperbolic functions satisfy various identities that are similar to identities for trigono-
metric functions. The most fundamental of these is

A Fi 9. .
Figure 6.9.2 cosh’x —sinh®x = 1 @)

which can be proved by writing

cosh? x — sinh? x = (cosh x + sinh x)(cosh x — sinh x)

_ et +e* n ef —e™* e +e ™ ef—eF
N 2 2 2 2

=e'-e' =1

Other hyperbolic identities can be derived in a similar manner or, alternatively, by per-
forming algebraic operations on known identities. For example, if we divide (1) by cosh? x,
btai
e obtain 1 — tanh® x = sech’x
and if we divide (1) by sinh? x, we obtain

coth> x — 1 = csch’x

The following theorem summarizes some of the more useful hyperbolic identities. The

Larry Auippy/Mira.com/Digital Railroad, Inc.
A flexible cable suspended between two ~ proofs of those not already obtained are left as exercises.
poles forms a catenary.

6.9.2 THEOREM

coshx + sinhx = ¢*

sinh(x 4 y) = sinh x cosh y 4 cosh x sinh y
coshx —sinhx = e™* cosh(x 4+ y) = cosh x cosh y + sinh x sinh y

) cosh? x — sinh?> x = 1 sinh(x — y) = sinh x cosh y — cosh x sinh y
X+ (cos 1, sin t)

yi=1
/ 1 — tanh® x = sech? x cosh(x — y) = cosh x cosh y — sinh x sinh y
x coth’ x — 1 = csch® x sinh 2x = 2 sinh x cosh x
\J cosh(—x) = cosh x cosh 2x = cosh? x + sinh® x

sinh(—x) = —sinh x cosh2x = 2sinh®>x + 1 = 2cosh®x — 1

B WHY THEY ARE CALLED HYPERBOLIC FUNCTIONS
Recall that the parametric equations

(cosh 1, sinh 1) X =cost, y=sint O=<tr<2m

x represent the unit circle x> + y?> = 1 (Figure 6.9.3a), as may be seen by writing

/ x2+y2=cos’r+sin’r =1

If 0 <t < 2m, then the parameter ¢ can be interpreted as the angle in radians from the
positive x-axis to the point (cos?, sint) or, alternatively, as twice the shaded area of the
(b) sector in Figure 6.9.3a (verify). Analogously, the parametric equations

AFi 9. .
igure 6.9.3 x =coshz, y=sinht (—o0 <t < +o)
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represent a portion of the curve x> — y?> = 1, as may be seen by writing

x? —y2 =cosh?r —sinh?t = 1
and observing that x = cosh¢ > 0. This curve, which is shown in Figure 6.9.3b, is the right
half of a larger curve called the unit hyperbola; this is the reason why the functions in this

section are called hyperbolic functions. It can be shown that if # > 0, then the parameter ¢
can be interpreted as twice the shaded area in Figure 6.9.3b. (We omit the details.)

DERIVATIVE AND INTEGRAL FORMULAS
Derivative formulas for sinh x and cosh x can be obtained by expressing these functions in

terms of e and e

d d X _ ,—X X —X
—[sinhx] = |:e ¢ :|=€ —Ze = cosh x

dx dx 2

d d [e*+e e —e " .
—[coshx] = — = = sinh x
dx dx 2 2

Derivatives of the remaining hyperbolic functions can be obtained by expressing them in
terms of sinh and cosh and applying appropriate identities. For example,

d . . d
d inh cosh x —[sinh x] — sinh x —[cosh x]
—[tanh x] = — |:sm xj| dx dx

dx dx | coshx cosh? x
cosh® x — sinh? x 1 2
= 5 = >— = sech” x
cosh” x cosh” x

The following theorem provides a complete list of the generalized derivative formulas and
corresponding integration formulas for the hyperbolic functions.

6.9.3 THEOREM

d d
—[sinh u] = cosh u a coshudu = sinhu + C
dx d

X

d d
— [cosh u] = sinh u a sinhu du = coshu + C
dx d

X

d d
— [tanh u] = sech® u i sech? udu = tanhu + C
dx d

x
d , du 5

—[cothu] = —csch™ u — csch” udu = —cothu + C
dx dx

d d
—[sech u] = —sech u tanh u a sech u tanh u du = —sechu + C
dx dx

cschucothudu = —cschu + C

— e — Y — —

d d
—[csch ] = —csch u coth u 4
X dx

» Example 2
d 3 . 5 43 2 3
—/[cosh(x”)] = sinh(x”) - —[x”] = 3x~ sinh(x”)
dx dx

sech® x

d
- —[tanh x] =

d
—[In(tanh =
dx[n( anh )] tanhx dx tanh x
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» Example 3

/ sinh® x cosh x dx = é sinh®x + C u = sinh x
du = coshx dx
sinh x
tanh x dx = dx
cosh x
=In|coshx|+ C u = coshx

du = sinhx dx

= In(cosh x) + C

We were justified in dropping the absolute value signs since cosh x > O for all x. «

» Example 4 A 100 ft wire is attached at its ends to the tops of two 50 ft poles that are
positioned 90 ft apart. How high above the ground is the middle of the wire?

Solution. From above, the wire forms a catenary curve with equation
y = acosh ( ) +c

where the origin is on the ground midway between the poles. Using Formula (4) of Section
6.4 for the length of the catenary, we have

d
0= [ i (2)
45 2
dy By symmetry

- 2./(; T+ (5) dx about the y-axis

45
= 2/ 14 sinh? (2 ) dx

0 a

= 2/ cosh (x> dx By (1) and the fact
0

that coshx > 0

45
4
— 2gsinh (f) ] — 2 sinh <—5>
a 0 a

AV Using a calculating utility’s numeric solver to solve
50 - . 45

\ 40 - \ 100 = 2a sinh [ —

\ \ a

| 20 L | . -

\ \ for a gives a ~ 56.01. Then

| °r L 45

—45 45 50 = y(45) = 56.01 cosh ~ 75.08
y(45) = cos <5601>+C +c
56.01 cosh 25.08

y = 56,01 cosh{gg ) - s0 ¢ &~ —25.08. Thus, the middle of the wire is y(0) & 56.01 — 25.08 = 30.93 ft above

A Figure 6.9.4 the ground (Figure 6.9.4). «

B INVERSES OF HYPERBOLIC FUNCTIONS
Referring to Figure 6.9.1, it is evident that the graphs of sinh x, tanh x, coth x, and csch x
pass the horizontal line test, but the graphs of cosh x and sech x do not. In the latter case,
restricting x to be nonnegative makes the functions invertible (Figure 6.9.5). The graphs of
the six inverse hyperbolic functions in Figure 6.9.6 were obtained by reflecting the graphs
of the hyperbolic functions (with the appropriate restrictions) about the line y = x.
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Table 6.9.1 summarizes the basic properties of the inverse hyperbolic functions. You
should confirm that the domains and ranges listed in this table agree with the graphs in
Figure 6.9.6.

AY Y | y |
| |
| |
| |
/ | |
With the restriction that x > 0, X X 1 1 X
the curves y = cosh x and 1 -1 11
y = sech x pass the horizontal | |
line test. } }
A Figure 6.9.5 } }
y =sinh™!x y =cosh™' x y = tanh™' x
| Y | AY AY
| |
| |
| |
| |
} \ X X X
-1 £ 1
| |
| |
| |
| |
| |
=coth™x =sech™' x =csch™lx
» Figure 6.9.6 J ’ Y
Table 6.9.1

PROPERTIES OF INVERSE HYPERBOLIC FUNCTIONS

FUNCTION DOMAIN RANGE BASIC RELATIONSHIPS

sinh™!(sinhx) = x  if —o0 < X < 400

i h_l —oo, +oo —oo, +oo
st ( ) ( ) sinh(sinh™'x) = x  if —o0 <X < +oo
4 cosh™'(coshx) =x if x>0
cosh™ x [1, +0) [0, +o0) -1 .
cosh(cosh™ x)=x if x>1
tanh~!(tanhx) = x if —oo < x < +oo
tanh~" x 1. 1) (—oo, +00) anh™"(tanh x) = x 1 X<+

tanh(tanh'x) =x if —-l<x<1

coth™!(cothx) =x if x<Oorx>0

coth™ —o0, =1) U (1, +00) (=00, 0) U (0, +oo
* YU Lteo) (oo YU O Ae) - coti ) = x if x<—lorx>1

sech™'(sechx) =x if x20

sech™ x (, 1] [0, o) X i
sech(sech x) =x if O<x<1

csch™'(cschx) =x if x<Oorx>0

csch™! —00,0) U (0, +00)  (—e0, 0) U (0, +o0
* ( YU ) YU ) csch(ecsch™'x) =x if x<Oorx>0
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B LOGARITHMIC FORMS OF INVERSE HYPERBOLIC FUNCTIONS
Because the hyperbolic functions are expressible in terms of e*, it should not be surprising
that the inverse hyperbolic functions are expressible in terms of natural logarithms; the next
theorem shows that this is so.

6.9.4 THEOREM The following relationships hold for all x in the domains of the
stated inverse hyperbolic functions:

sinh™'x =In(x +v/x2+1) cosh™'x =In(x + Vx2 = 1)
1 1 1 1
tanh_lxziln( +x> coth_1x=§1n<x+ )

1—x x—1

L (14T L (1 Jixe
sech  x=In| —— csch™ x =1In —+T
x x X

We will show how to derive the first formula in this theorem and leave the rest as exercises.
The basic idea is to write the equation x = sinh y in terms of exponential functions and
solve this equation for y as a function of x. This will produce the equation y = sinh ™' x
with sinh ™! x expressed in terms of natural logarithms. Expressing x = sinh y in terms of

exponentials yields o — oY

x =sinhy = 5

which can be rewritten as

e —2x—e =0
Multiplying this equation through by ¢” we obtain

e —2xe’ —1=0

and applying the quadratic formula yields

o 2xE4x2+4
&= ————————— =xtVx2+1
2
Since e’ > 0, the solution involving the minus sign is extraneous and must be discarded.

Thus,
eV =x+vVx2+1

Taking natural logarithms yields

y=In(x+vx2+1) or sinh™'x=In(x+vx2+1)

» Example 5

sinh™1=In(14+ 12+ 1) =In(1 + +2) ~ 0.8814

1\ 1, (1+3) 1
tanh™' <§>=§ln<1 §>=§1n3m0.5493 <
~3




Show that the derivative of the func-
tion sinh~! x can also be obtained by
letting y = sinh ™! x and then differen-
tiating x = sinh y implicitly.
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Il DERIVATIVES AND INTEGRALS INVOLVING INVERSE HYPERBOLIC FUNCTIONS

Formulas for the derivatives of the inverse hyperbolic functions can be obtained from
Theorem 6.9.4. For example,

X

d d 1
—[sinh~'x] = —[In(x + Va2 +1)] = 14"
d dx x + x2 +1 xz +1

B xX2+1+x B 1
(x+Vx2+ (Va2 +1) x2+1

This computation leads to two integral formulas, a formula that involves sinh ™' x and an
equivalent formula that involves logarithms:

d
/—x —sinh ' x+C=In(x+Vx2+1)+C
Vaz+1
The following two theorems list the generalized derivative formulas and corresponding
integration formulas for the inverse hyperbolic functions. Some of the proofs appear as
exercises.

6.9.5 THEOREM

1 du 1 du

d d

L sinh ' u) = —— % Zeoth )= —— = jul>1

dx 1+ y2dx dx 1 —u?dx

d 1 d d 1 d

Lcosh ™ u) = ——" 41 Lsech ' uy=———ou 0<u<1
dx /u2 —1dx dx uv1 — 2 dx

d 1 du d 1 du

—(tanh™'u) = —— —, 1 Z(esch ')y =—— 2% 0
dx(an &) 1 —u?dx bl < dx(csc ) lulv/1 + u? dx u#

6.9.6 THEOREM Ifa > 0, then

du o iu . :
[ s =i () € or s Vi) + 0

d —
/\/%=C08h_l<g)+c or hl(l/l+ uz—az)—I—C, u>a
uc —a

1
—tanh™! (E) +C, |ul <a
a

/ du a 1 In
_— or —
a? —u? 1 2a

~ coth™! (5) +C, |u|>a
a a

a—+u
a—u

+C, |ul#a

1 U 1 a++a?—u?
——sech ‘—‘+C or ——In|——— | +C, O< Ju|l <a
a a

/ du .
uv/a? — u? @ lu

——csch—1‘5|+c or ——IH(M>+C, W0
a a

du
/u/a2+u2_ a u]|
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l/ QUICK CHECK EXERCISES 6.9

» Example 6 Evaluate /

dx
_— X > —.
Vax2 -9 2

3

Solution. Letu = 2x. Thus, du = 2dx and

/d_x__
Vax? -9

1 1 2
= —cosh™! (E) +C = =cosh™! <_x) +C

2dx

1/ du
Jaxz—9 2J Juz_3

3 2 3

Alternatively, we can use the logarithmic equivalent of cosh™! (2x/3),
2
cosh™! (%) —In2x +v4x2—9) —In3

(verify), and express the answer as

/ dx
Vaxz—9 2

(See page 485 for answers.)

1
= —InQx +v4x2—9) + C <

1.

2.

3.

EXERCISE SET 6.9

coshx = sinh x =
tanh x =
Complete the table.
coshx | sinhx | tanhx | cothx | sechx | cschx
DOMAIN
RANGE

The parametric equations
y =sinht (—w <t < 4x)

represent the right half of the curvecalleda__ . Elim-
inating the parameter, the equation of this curve is

x = cosht,

™ Graphing Utility

d
4., — hx] =
T [cosh x]
5. /coshxdx:—

d
. —[cosh™'x] =

d['h]
—[sinhx] =
dx

d
E[tanh xX]=_—

/sinhxdx =__

d
__ —J[sinh'x]=
dx dx

/tanhxdx =__

d
E[tanh" xX]=_

1-2 Approximate the expression to four decimal places.

1.

(a) sinh3 (b) cosh(—2) (c) tanh(In4)
(d) sinh™'(-=2)  (e) cosh™'3 (f) tanh™' 3
. (a) csch(—1) (b) sech(In2) (c) coth1
(d) sech™'1 (e) coth™'3 (f) esch™(=v/3)

. Find the exact numerical value of each expression.

(a) sinh(In3)
(¢) tanh(21In5)

(b) cosh(—1n2)
(d) sinh(—31n2)

. Ineach part, rewrite the expression as aratio of polynomials.

(a) cosh(Ilnx)
(¢) tanh(21Inx)

(b) sinh(In x)
(d) cosh(—Inx)

. In each part, a value for one of the hyperbolic functions is

given at an unspecified positive number xy. Use appropri-

ate identities to find the exact values of the remaining five
hyperbolic functions at xg.

(a) sinhxg =2 (b) coshxg = 2

7 (o) tanhxg = %

. Obtain the derivative formulas for csch x, sech x, and coth x

from the derivative formulas for sinh x, cosh x, and tanh x.

. Find the derivatives of cosh™! x and tanh ™' x by differen-

tiating the formulas in Theorem 6.9.4.

. Find the derivatives of sinh™' x, cosh™! x, and tanh ™' x by

differentiating the equations x = sinh y, x = cosh y, and
x = tanh y implicitly.

9-28 Find dy/dx.
9. y =sinh(4x — 8)

10. y = cosh(x*)



11.
13.

15.
17.
19.
21.

23.

25.
27.

y = coth(In x) 12. y = In(tanh 2x)
y = csch(1/x) 14. y = sech(e®)
y = V4x + cosh’(5x)  16. y = sinh’*(2x)
y = x3 tanh?(/x) 18. y = sinh(cos 3x)
y = sinh™! (%x) 20. y =sinh~!(1/x)
y = In(cosh™! x) 22, y = cosh™!(sinh ™! x)
y = ;_1 24. y = (coth™! x)?
tanh™ x
y = cosh™! (cosh x) 26. y = sinh™! (tanh x)
y =e* sech ' /x 28. y = (1+xcsch™!x)!0

29-44 Evaluate the integrals.

29.

31.

33.

35.

37.

39.

41.

43.

45-

/ sinh® x cosh x dx 30. / cosh(2x — 3) dx

/ +/tanh x sech® x dx 32. / csch?(3x) dx

/ tanh 2x dx 34. / coth? x csch® x dx
In3 In3 ef —e ™
/ tanh x sech® x dx 36. / ——dx
In2 o e te*
d d
/7" 38./7)“ (x > V2)
V14 9x2 Vx2 =2
dx sin 6 dO
—— (x<0) 40. _—
/\/1—e2x v1+cos?6
dx dx
—_— 42. —— (x >5/3)
/ xv 1+ 4x2 V9x2 —25

1/2 d V3 dt
/ = 44 /
0 1—x 0 t2 + 1

48 True-False Determine whether the statement is true or

false. Explain your answer.

45.
46.
47.

48.

49.
50.

S1.

[~ 52.

The equation cosh x = sinh x has no solutions.
Exactly two of the hyperbolic functions are bounded.

There is exactly one hyperbolic function f(x) such that
for all real numbers a, the equation f(x) = a has a unique
solution x.

The identities in Theorem 6.9.2 may be obtained from the
corresponding trigonometric identities by replacing each
trigonometric function with its hyperbolic analogue.

Find the area enclosed by y = sinh2x, y = 0,and x = In 3.
Find the volume of the solid that is generated when the
region enclosed by y = sechx,y =0,x =0,andx =1n2
is revolved about the x-axis.

Find the volume of the solid that is generated when the

region enclosed by y = cosh 2x, y = sinh2x, x = 0, and
x = 5 isrevolved about the x-axis.

Approximate the positive value of the constant a such that
the area enclosed by y = coshax,y =0,x =0,andx =1

53.

54.

5S.

FOCUS ON CONCEPTS

56

57.
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is 2 square units. Express your answer to at least five deci-
mal places.

Find the arc length of the catenary y = coshx between
x=0andx =In2.

Find the arc length of the catenary y = a cosh(x/a) between
x =0and x = x; (x; > 0).

In parts (a)—(f) find the limits, and confirm that they are
consistent with the graphs in Figures 6.9.1 and 6.9.6.

(a) ]irrl sinh x (b) lim sinhx

() ]irrl tanh x (d) lim tanhx

(e) lirrl sinh ™' x () 1in11_ tanh ™' x

. Explain how to obtain the asymptotes for y = tanh x
from the curvilinear asymptotes for y = coshx and
y = sinh x.

Prove that sinh x is an odd function of x and that cosh x
is an even function of x, and check that this is consistent
with the graphs in Figure 6.9.1.

58-
58.

59.

60.

61.

62.

63.

59 Prove the identities.

(a) coshx + sinhx = ¢*
(b) coshx —sinhx = ¢~
(c) sinh(x + y) = sinh x cosh y + cosh x sinh y
(d) sinh2x = 2sinh x cosh x
(e) cosh(x + y) = cosh x cosh y + sinh x sinh y
(f) cosh2x = cosh? x + sinh? x
(g) cosh2x = 2sinh?x + 1
(h) cosh2x = 2cosh’x — 1
(a) 1 —tanh’x = sechzhx
tanh x 4 tanh y
(b) tanh(x + ) = 1 + tanh x tanh y
2 tanh x

¢) tanh2x = ————
© 1 + tanh® x

Prove:

(@) cosh™'x =In(x + vVx2 —1),

1 /1
) tanh~ x = ~In [ —2), —1<x<1.
2 1 —x

x>1

Use Exercise 60 to obtain the derivative formulas for

cosh™! x and tanh ' x.

Prove:
sech™ x =cosh™'(1/x), O0<x<1
coth™' x = tanh ' (1/x), |x| > 1
csch™!x =sinh'(1/x), x #0

Use Exercise 62 to express the integral

/ du
1 —u?

entirely in terms of tanh L.
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64. Show that
d 1 1
(a) ——[sech™ |x|] = —

dx xv1—x2
d 1

(b) —[esch x| = ———.
dx xv 14+ x2

65. In each part, find the limit.
cosh x

(a) lim (cosh_1 x —Inx) (b) lim
X —> o0 X — +x ex

66. Use the first and second derivatives to show that the graph
of y = tanh™' x is always increasing and has an inflection
point at the origin.

67. The integration formulas for 1/4/u2 — a2 in Theorem 6.9.6

are valid for u > a. Show that the following formula is
valid for u < —a:

d
v/iuz—coshfl (—E)—i—C or In )u—i—\/uz—az’—ﬁ—C
fu? — a2 a

68. Show that (sinh x 4 cosh x)" = sinh nx + cosh nx.
69. Show that

R 2 sinh at
edx = ———
a t

70. A cable is suspended between two poles as shown in Fig-
ure 6.9.2. Assume that the equation of the curve formed by
the cable is y = a cosh(x/a), where a is a positive constant.
Suppose that the x-coordinates of the points of support are
x = —band x = b, where b > 0.

(a) Show that the length L of the cable is given by

b
L = 2asinh —
a

(b) Show that the sag S (the vertical distance between the
highest and lowest points on the cable) is given by

b
S=acosh— —a
a

71-72 These exercises refer to the hanging cable described in
Exercise 70.

[ 71. Assuming that the poles are 400 ft apart and the sag in the

cable is 30 ft, approximate the length of the cable by approx-
imating a. Express your final answer to the nearest tenth of
a foot. [Hint: First let u = 200/a.]

] 72. Assuming that the cable is 120 ft long and the poles are 100

ft apart, approximate the sag in the cable by approximating
a. Express your final answer to the nearest tenth of a foot.
[Hint: Firstletu = 50/a.]

B 73. The design of the Gateway Arch in St. Louis, Missouri, by

architect Eero Saarinan was implemented using equations
provided by Dr. Hannskarl Badel. The equation used for
the centerline of the arch was

y = 693.8597 — 68.7672 cosh(0.0100333x) ft

for x between —299.2239 and 299.2239.
(a) Use a graphing utility to graph the centerline of the arch.

74.

75.

(b) Find the length of the centerline to four decimal places.

(c) For what values of x is the height of the arch 100 ft?
Round your answers to four decimal places.

(d) Approximate, to the nearest degree, the acute angle that
the tangent line to the centerline makes with the ground
at the ends of the arch.

Suppose that a hollow tube rotates with a constant angular
velocity of @ rad/s about a horizontal axis at one end of the
tube, as shown in the accompanying figure. Assume that an
object is free to slide without friction in the tube while the
tube is rotating. Let r be the distance from the object to the
pivot point at time ¢ > 0, and assume that the object is at rest
andr = Owhent = 0. Itcan be shown that if the tube is hor-
izontal attime ¢ = 0 and rotating as shown in the figure, then

8

y = ——
2w?

[sinh(wt) — sin(wt)]

during the period that the object is in the tube. Assume that

t is in seconds and r is in meters, and use g = 9.8 m/s? and

® = 2 rad/s.

(a) Graphr versust forQ <z < 1.

(b) Assuming that the tube has a length of 1 m, approxi-
mately how long does it take for the object to reach the
end of the tube?

(c) Use the result of part (b) to approximate dr/dt at the
instant that the object reaches the end of the tube.

< Figure Ex-74

The accompanying figure (on the next page) shows a per-
son pulling a boat by holding a rope of length a attached
to the bow and walking along the edge of a dock. If we
assume that the rope is always tangent to the curve traced
by the bow of the boat, then this curve, which is called a
tractrix, has the property that the segment of the tangent
line between the curve and the y-axis has a constant length
a. It can be proved that the equation of this tractrix is

1 X
y=asech™ = — a2 —x2
a

(a) Show that to move the bow of the boat to a point (x, y),
the person must walk a distance

X
D =asech " —
a

from the origin.

(b) If the rope has a length of 15 m, how far must the person
walk from the origin to bring the boat 10 m from the
dock? Round your answer to two decimal places.

(c) Find the distance traveled by the bow along the tractrix
as it moves from its initial position to the point where
itis 5 m from the dock.



76.

y

(x, y)

X
Dock @0 itial

position <« Figure Ex-75

Writing Suppose that, by analogy with the trigonometric
functions, we define cosht and sinh ¢ geometrically using
Figure 6.9.3b:

“For any real number 7, define x = cosh and y = sinh ¢ to
be the unique values of x and y such that

l/ QUICK CHECK ANSWERS 6.9
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(i) P(x,y) is on the right branch of the unit hyperbola
x2— y2 =1;
(ii) ¢ and y have the same sign (or are both 0);

(iii) the area of the region bounded by the x-axis, the right
branch of the unit hyperbola, and the segment from
the origin to P is |¢]/2.”

Discuss what properties would first need to be verified in

order for this to be a legitimate definition.

77. Writing Investigate what properties of cosh# and sinh#

can be proved directly from the geometric definition in
Exercise 76. Write a short description of the results of your
investigation.

1.
2.

3. unit hyperbola; x? — y> =1

er +e’)“ er — e”‘. et —e™*
2 2 e e
cosh x sinh x tanh x coth x sech x cschx
DOMAIN | (=00, +00) | (o0, +00) | (=0, +00) | (=00, 0) U (0,+00) | (oo, +00) | (=0, 0) U (0, +o0)
RANGE [1,+00) | (—oo,+00) -1, 1) (—o0, =1) U (1, +e0) (0, 1] (=0, 0) U (0, +o0)

4. sinh x; cosh x; sech’x
1 1 1

6. ; ;
V21 JT+x2 1—x2

CHAPTER 6 REVIEW EXERCISES

5. sinhx + C; coshx + C; In(coshx) + C

. Describe the method of slicing for finding volumes, and

use that method to derive an integral formula for finding
volumes by the method of disks.

. State an integral formula for finding a volume by the method

of cylindrical shells, and use Riemann sums to derive the
formula.

. State an integral formula for finding the arc length of a

smooth curve y = f(x) over an interval [a, b], and use Rie-
mann sums to derive the formula.

. State an integral formula for the work W done by a variable

force F(x) applied in the direction of motion to an object
moving from x = a to x = b, and use Riemann sums to
derive the formula.

. State an integral formula for the fluid force F exerted on a

vertical flat surface immersed in a fluid of weight density p,
and use Riemann sums to derive the formula.

. Let R be the region in the first quadrant enclosed by y = x2,

y =2+ x, and x = 0. In each part, set up, but do not eval-

uate, an integral or a sum of integrals that will solve the

problem.

(a) Find the area of R by integrating with respect to x.

(b) Find the area of R by integrating with respect to y.

(c) Find the volume of the solid generated by revolving R
about the x-axis by integrating with respect to x.

(d) Find the volume of the solid generated by revolving R
about the x-axis by integrating with respect to y.

(e) Find the volume of the solid generated by revolving R
about the y-axis by integrating with respect to x.

(f) Find the volume of the solid generated by revolving R
about the y-axis by integrating with respect to y.

(g) Find the volume of the solid generated by revolving R
about the line y = —3 by integrating with respect to x.

(h) Find the volume of the solid generated by revolving R
about the line x = 5 by integrating with respect to x.

. (a) Setupasum of definite integrals that represents the total

shaded area between the curves y = f(x)andy = g(x)
in the accompanying figure on the next page. (cont.)
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10.

11.

12.

13.

14.

15.

16.

(b) Find the total area enclosed between y = x> and y = x
over the interval [—1, 2].

< Figure Ex-7

. The accompanying figure shows velocity versus time curves

for two cars that move along a straight track, accelerating

from rest at a common starting line.

(a) How far apart are the cars after 60 seconds?

(b) How far apart are the cars after 7 seconds, where
0<T <607

v (ft/s)

180 -
| v =3¢

vy(1) = 12/20
t(s)

60 < Figure Ex-8

. Let R be the region enclosed by the curves y = x? + 4,

y = x3, and the y-axis. Find and evaluate a definite inte-
gral that represents the volume of the solid generated by
revolving R about the x-axis.

A football has the shape of the solid generated by revolv-
ing the region bounded between the x-axis and the parabola
y = 4R(x? — 1L?)/L? about the x-axis. Find its volume.

Find the volume of the solid whose base is the region
bounded between the curves y = 4/x and y = 1//x for
1 < x <4 and whose cross sections perpendicular to the
X-axis are squares.

Consider the region enclosed by y = sin™' x, y = 0, and
x = 1. Set up, but do not evaluate, an integral that rep-
resents the volume of the solid generated by revolving the
region about the x-axis using

(a) disks (b) cylindrical shells.
Find the arc length in the second quadrant of the curve
x23 4 yz/3 =4 fromx =—-8tox = —1.

Let C be the curve y = e* between x = Qand x = In 10. In
each part, set up, but do not evaluate, an integral that solves
the problem.

(a) Find the arc length of C by integrating with respect to x.
(b) Find the arc length of C by integrating with respect to y.

Find the area of the surface generated by revolving the curve
vy =4/25—x,9 < x < 16, about the x-axis.

Let C be the curve 27x — y®> = Obetweeny = Oand y = 2.
In each part, set up, but do not evaluate, an integral or a sum
of integrals that solves the problem.

(a) Find the area of the surface generated by revolving C
about the x-axis by integrating with respect to x.

(b) Find the area of the surface generated by revolving C
about the y-axis by integrating with respect to y.

(c) Find the area of the surface generated by revolving C
about the line y = —2 by integrating with respect to y.

17. (a) A spring exerts a force of 0.5 N when stretched 0.25 m

beyond its natural length. Assuming that Hooke’s law
applies, how much work was performed in stretching
the spring to this length?

(b) How far beyond its natural length can the spring be
stretched with 25 J of work?

18. Aboat is anchored so that the anchor is 150 ft below the sur-

face of the water. In the water, the anchor weighs 2000 1b
and the chain weighs 30 1b/ft. How much work is required
to raise the anchor to the surface?

19-20 Find the centroid of the region.
19. The region bounded by y?> = 4x and y*> = 8(x — 2).
20. The upper half of the ellipse (x/a)* + (y/b)* = 1.

21. In each part, set up, but do not evaluate, an integral that

solves the problem.

(a) Find the fluid force exerted on a side of a box that has
a 3 m square base and is filled to a depth of 1 m with a
liquid of weight density p N/m?>.

(b) Find the fluid force exerted by a liquid of weight density
p Ib/ft? on a face of the vertical plate shown in part (a)
of the accompanying figure.

(c) Find the fluid force exerted on the parabolic dam in part
(b) of the accompanying figure by water that extends to
the top of the dam.

1 ft } 25m
lj m

4 ft
(a) (b)

A Figure Ex-21

22. Show that for any constant a, the function y = sinh(ax)

satisfies the equation y” = a’y.

23. In each part, prove the identity.

(a) cosh3x =4 cosh® x — 3 cosh x

(b) cosh %x = 1/%(coshx +1)
(c) sinh %x = :I:‘/%(coshx -1



1. Suppose that f is a nonnegative function defined on [0, 1]

such that the area between the graph of f and the interval

[0, 1] is A; and such that the area of the region R between

the graph of g(x) = f(x?) and the interval [0, 1] is A,. In

each part, express your answer in terms of A; and Aj.

(a) What is the volume of the solid of revolution generated
by revolving R about the y-axis?

(b) Find a value of a such that if the xy-plane were horizon-
tal, the region R would balance on the line x = a.

2. A water tank has the shape of a conical frustum with radius

of the base 5 ft, radius of the top 10 ft and (vertical) height

15 ft. Suppose the tank is filled with water and consider the

problem of finding the work required to pump all the water

out through a hole in the top of the tank.

(a) Solve this problem using the method of Example 5 in
Section 6.6.

(b) Solve this problem using Definition 6.6.3. [Hint: Think
of the base as the head of a piston that expands to a water-
tight fit against the sides of the tank as the piston is pushed
upward. What important result about water pressure do
you need to use?]

3. Adisk of radius a is an inhomogeneous lamina whose density

is a function f(r) of the distance r to the center of the lamina.
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Modify the argument used to derive the method of cylindrical
shells to find a formula for the mass of the lamina.

. Compare Formula (10) in Section 6.7 with Formula (8) in

Section 6.8. Then give a plausible argument that the force
on a flat surface immersed vertically in a fluid of constant
weight density is equal to the product of the area of the sur-
face and the pressure at the centroid of the surface. Conclude
that the force on the surface is the same as if the surface were
immersed horizontally at the depth of the centroid.

5. Archimedes’ Principle states that a solid immersed in a fluid

experiences a buoyant force equal to the weight of the fluid

displaced by the solid.

(a) Use the results of Section 6.8 to verify Archimedes’ Prin-
ciple in the case of (i) a box-shaped solid with a pair of
faces parallel to the surface of the fluid, (ii) a solid cylin-
der with vertical axis, and (iii) a cylindrical shell with
vertical axis.

(b) Give a plausible argument for Archimedes’ Principle in
the case of a solid of revolution immersed in fluid such
that the axis of revolution of the solid is vertical. [Hint:
Approximate the solid by a union of cylindrical shells
and use the result from part (a).]
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Derivatives can help to find the most In this chapter we will study various applications of the derivative. For example, we will use
cost-effective location for an methods of calculus to analyze functions and their graphs. In the process, we will show how
offshore oil-drilling rig. calculus and graphing utilities, working together, can provide most of the important

information about the behavior of functions. Another important application of the derivative
will be in the solution of optimization problems. For example, if time is the main consideration
in a problem, we might be interested in finding the quickest way to perform a task, and if cost
is the main consideration, we might be interested in finding the least expensive way to
perform a task. Mathematically, optimization problems can be reduced to finding the largest
or smallest value of a function on some interval, and determining where the largest or smallest
value occurs. Using the derivative, we will develop the mathematical tools necessary for solving
such problems. We will also use the derivative to study the motion of a particle moving along
a line, and we will show how the derivative can help us to approximate solutions of equations.

m ANALYSIS OF FUNCTIONS I: INCREASE, DECREASE, AND CONCAVITY

Although graphing utilities are useful for determining the general shape of a graph, many
problems require more precision than graphing utilities are capable of producing. The
purpose of this section is to develop mathematical tools that can be used to determine the
exact shape of a graph and the precise locations of its key features.

Il INCREASING AND DECREASING FUNCTIONS
The terms increasing, decreasing, and constant are used to describe the behavior of a
function as we travel left to right along its graph. For example, the function graphed in
Figure 4.1.1 can be described as increasing to the left of x = 0, decreasing from x = 0 to
x = 2, increasing from x = 2 to x = 4, and constant to the right of x = 4.

Increasing Decreasing | Increasing Constant x

\ \
\ \
\ \
\ \
| |
> Figure 4.1.1 0 2 4
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The definitions of “increasing,” “de-
creasing,” and “constant” describe the
behavior of a function on an interval
and not at a point. In particular, it is not
inconsistent to say that the function in
Figure 4.1.1 is decreasing on the inter-
val [0, 2] and increasing on the interval
[2,4].

» Figure 4.1.2

P Figure 4.1.3

Observe that the derivative conditions
in Theorem 4.1.2 are only required to
hold inside the interval [a, b], even
though the conclusions apply to the
entire interval.
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The following definition, which is illustrated in Figure 4.1.2, expresses these intuitive
ideas precisely.

4.1.1 pEFINITION Let f be defined on an interval, and let x; and x, denote points
in that interval.

(a) f isincreasing on the interval if f(x;) < f(x2) whenever x; < x,.
(b) f isdecreasing on the interval if f(x;) > f(x;) whenever x; < x,.

(c) f isconstant on the interval if f(x;) = f(x;) for all points x; and x,.

Increasing Decreasing
Constant
‘ T T
| | |
F&x) | \ \
) fe) 17
| | | |
\ \ > \ \
X X X X

f(x) < flxy) if x; < x, flxp) > flxy) ifx; < x, f(x)) = f(x,) for all x; and x,

(a) (D) )

Figure 4.1.3 suggests that a differentiable function f is increasing on any interval where
each tangent line to its graph has positive slope, is decreasing on any interval where each
tangent line to its graph has negative slope, and is constant on any interval where each
tangent line to its graph has zero slope. This intuitive observation suggests the following
important theorem that will be proved in Section 4.8.

Each tangent line
has positive slope.

Each tangent line
has negative slope.

Each tangent line
has zero slope.

4.1.2 THEOREM Let f be a function that is continuous on a closed interval [a, b]
and differentiable on the open interval (a, b).

(a) If f'(x) > O for every value of x in (a, b), then f is increasing on [a, b].
(b) If f'(x) < 0O for every value of x in (a, b), then f is decreasing on [a, b].
(¢) If f'(x) = 0 for every value of x in (a, b), then f is constant on [a, b].
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f)=x?—4x+3

> Figure 4.1.4
AY
4 -
|
-3
4k
flx) =x*
P Figure 4.1.5
Ay
20 -
! N
-3
,30 .

F) =30t +4x® — 1207 + 2

» Figure 4.1.6

Although stated for closed intervals, Theorem 4.1.2 is applicable on any interval on which
f is continuous. For example, if f is continuous on [a, +) and f'(x) > 0 on (a, +x),
then f is increasing on [a, +); and if f is continuous on (—o, +) and f'(x) < 0 on
(—00, +0), then f is decreasing on (—oo, +00).

» Example 1 Find the intervals on which f(x) = x> — 4x + 3 is increasing and the
intervals on which it is decreasing.

Solution. The graph of f in Figure 4.1.4 suggests that f is decreasing for x < 2 and
increasing for x > 2. To confirm this, we analyze the sign of f’. The derivative of f is

flx)=2x—4=2(x—2)

It follows that
ffx) <0 if x<2

ffx)y>0 if 2<x
Since f is continuous everywhere, it follows from the comment after Theorem 4.1.2 that
f is decreasing on (—oo, 2]
f is increasing on [2, 4-o0)

These conclusions are consistent with the graph of f in Figure 4.1.4. «

» Example 2 Find the intervals on which f(x) = x is increasing and the intervals on
which it is decreasing.

Solution. The graph of f in Figure 4.1.5 suggests that f is increasing over the entire
x-axis. To confirm this, we differentiate f to obtain f’(x) = 3x>. Thus,

ffx)>0 if x<0
ffx)>0 if 0<x
Since f is continuous everywhere,
f is increasing on (—oo, 0]
f is increasing on [0, +o)

Since f is increasing on the adjacent intervals (—o, 0] and [0, +), it follows that f is
increasing on their union (—o, +0) (see Exercise 59). «

» Example 3

(a) Use the graph of f(x) = 3x* +4x* — 12x% + 2 in Figure 4.1.6 to make a conjecture
about the intervals on which f is increasing or decreasing.

(b) Use Theorem 4.1.2 to determine whether your conjecture is correct.

Solution (a). The graph suggests that the function f is decreasing if x < —2, increasing
if =2 < x <0, decreasing if 0 < x < 1, and increasing if x > 1.
Solution (b). Differentiating f we obtain

flx) =12x° +12x% = 24x = I2x(x> +x —2) = 12x(x +2)(x — 1)

The sign analysis of f’ in Table 4.1.1 can be obtained using the method of test points dis-
cussed in Web Appendix E. The conclusions in Table 4.1.1 confirm the conjecture in part (a).
<
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Table 4.1.1
INTERVAL 12x)(x+2)x—-1) f'(x) CONCLUSION
x<=2 G EE - fisdecreasing on (oo, —2]
-2<x<0 GICIG) + fis increasing on [-2, 0]
O<x<1 HH ) - fis decreasing on [0, 1]
1<x HH ) + f1is increasing on [1, +oo)

B CONCAVITY

Although the sign of the derivative of f reveals where the graph of f is increasing or
decreasing, itdoes not reveal the direction of curvature. For example, the graph is increasing
on both sides of the point in Figure 4.1.7, but on the left side it has an upward curvature
(“holds water”) and on the right side it has a downward curvature (“spills water”). On
intervals where the graph of f has upward curvature we say that f is concave up, and on
intervals where the graph has downward curvature we say that f is concave down.

Figure 4.1.8 suggests two ways to characterize the concavity of a differentiable function
f on an open interval:

e fis concave up on an open interval if its tangent lines have increasing slopes on that
interval and is concave down if they have decreasing slopes.

* f is concave up on an open interval if its graph lies above its tangent lines on that
interval and is concave down if it lies below its tangent lines.

Our formal definition for “concave up” and “concave down” corresponds to the first of
these characterizations.

4.1.3 perFINITION If f is differentiable on an open interval, then f is said to be
concave up on the open interval if f” is increasing on that interval, and f is said to be
concave down on the open interval if f’ is decreasing on that interval.

Since the slopes of the tangent lines to the graph of a differentiable function f are the
values of its derivative f”, it follows from Theorem 4.1.2 (applied to f” rather than f) that
f’ will be increasing on intervals where f” is positive and that f” will be decreasing on
intervals where f” is negative. Thus, we have the following theorem.

4.1.4 THEOREM Let f be twice differentiable on an open interval.

(@) If f"(x) > O forevery value of x in the open interval, then f is concave up on that
interval.

(b) If f"(x) < O for every value of x in the open interval, then f is concave down on
that interval.

» Example 4 Figure 4.1.4 suggests that the function f(x) = x> — 4x + 3 is concave
up on the interval (—ce, 4o0). This is consistent with Theorem 4.1.4, since f'(x) = 2x — 4

d " — 2, .
and f”(x) s0 f"(x) > 0 on the interval (—os, 4)
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Inflection point
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> Figure 4.1.9

Y

f)=x3-3x2+1

» Figure 4.1.10

Also, Figure 4.1.5 suggests that f(x) = x3 is concave down on the interval (—oo, 0) and
concave up on the interval (0, +-). This agrees with Theorem 4.1.4, since f’(x) = 3x>
and f”(x) = 6x, so

f'(x) <0 ifx<0 and f’(x)>0 ifx>0 «

INFLECTION POINTS

We see from Example 4 and Figure 4.1.5 that the graph of f(x) = x> changes from concave
down to concave up at x = (. Points where a curve changes from concave up to concave
down or vice versa are of special interest, so there is some terminology associated with
them.

4.1.5 pEeFINITION If f is continuous on an open interval containing a value x(, and
if f changes the direction of its concavity at the point (xg, f(xo)), then we say that f
has an inflection point at x,, and we call the point (xo, f(xo)) on the graph of f an
inflection point of f (Figure 4.1.9).

» Example 5 Figure 4.1.10 shows the graph of the function f(x) = x> — 3x2 + 1. Use
the first and second derivatives of f to determine the intervals on which f is increasing,
decreasing, concave up, and concave down. Locate all inflection points and confirm that
your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain
f(x) =3x*—6x =3x(x —2)
f"x)=6x —6=06(x —1)

The sign analysis of these derivatives is shown in the following tables:

INTERVAL (3x)(x—2) f'(x) CONCLUSION

x<0 =) + fis increasing on (—oo, 0]
O<x<?2 HE) - [ is decreasing on [0, 2]
x>2 ) + fis increasing on [2, +o0)

INTERVAL  6(x—1) f”(x) CONCLUSION

x<1 ) -
x> 1 +) +

fis concave down on (—co, 1)
fis concave up on (1, +o0)

The second table shows that there is an inflection point at x = 1, since f changes from
concave down to concave up at that point. The inflection point is (1, (1)) = (1, —1). All
of these conclusions are consistent with the graph of f. «

One can correctly guess from Figure 4.1.10 that the function f(x) = x> — 3x? + 1 has
an inflection point at x = 1 without actually computing derivatives. However, sometimes
changes in concavity are so subtle that calculus is essential to confirm their existence and
identify their location. Here is an example.
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» Example 6 Figure 4.1.11 suggests that the function f(x) = xe™ has an inflection

point but its exact location is not evident from the graph in this figure. Use the first and
. second derivatives of f to determine the intervals on which f is increasing, decreasing,
o 2 3 4 concave up, and concave down. Locate all inflection points.

2F Solution. Calculating the first two derivatives of f we obtain (verify)

f(x) =xe™™ ffx) =010 —x)e™™
> Figure 4.1.11 f(x) = (x —2)e™*

Keeping in mind that e~ is positive for all x, the sign analysis of these derivatives is easily
determined:

INTERVAL (1 —=x)(e™) f'(x) CONCLUSION

x<1 H) + fis increasing on (—eo, 1]
x>1 =) - fis decreasing on [1, +co)

INTERVAL (x—2)(e™) f”(x) CONCLUSION

x<2 =) —  fisconcave down on (—co, 2)
x>2 HE) +  fis concave up on (2, +oo)

The second table shows that there is an inflection point at x = 2, since f changes from
concave down to concave up at that point. All of these conclusions are consistent with the
graph of . «

Y » Example 7 Figure 4.1.12 shows the graph of the function f(x) = x + 2sinx over
L the interval [0, 2r]. Use the first and second derivatives of f to determine where f is
L increasing, decreasing, concave up, and concave down. Locate all inflection points and
confirm that your conclusions are consistent with the graph.

N W R
T

Solution. Calculating the first two derivatives of f we obtain

1H f'(x)=1+2cosx

g‘ T 3 2 f"(x) = —2sinx
2

: Since f’ is a continuous function, it changes sign on the interval (0, 27r) only at points
fo) =x+2sinx where f'(x) = 0 (why?). These values are solutions of the equation

P Figure 4.1.12 .
1+4+2cosx =0 orequivalently cosx = —

1
2
There are two solutions of this equation in the interval (0, 27), namely, x = 27/3 and
x = 47/3 (verify). Similarly, f” is a continuous function, so its sign changes in the interval
(0, 27) will occur only at values of x for which f”(x) = 0. These values are solutions of

the equation .
—2sinx =0
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The signs in the two tables of Exam-
ple 7 can be obtained either using the
method of test points or using the unit
circle definition of the sine and cosine
functions.

) =x*

P Figure 4.1.13

Give an argument to show that the
function f(x) = x* graphed in Figure
4.1.13 is concave up on the interval
(—o0, +00).

There is one solution of this equation in the interval (0, 277), namely, x = w. With the help
of these “‘sign transition points” we obtain the sign analysis shown in the following tables:

INTERVAL f/x)=1+2cosx CONCLUSION
0<x<2m/3 + [ is increasing on [0, 27/3]
2n/3 < x <4n/3 - [ is decreasing on [27/3, 47/3]

4r/3 <x<2m + fis increasing on [47/3, 27]
INTERVAL f"(x) =-2sinx CONCLUSION
O<x<m - fis concave down on (0, 7)
T<x<2m + fis concave up on (7, 27)

The second table shows that there is an inflection point at x = 7, since f changes from
concave down to concave up at that point. All of these conclusions are consistent with the
graph of f. «

In the preceding examples the inflection points of f occurred wherever f”(x) = 0.
However, this is not always the case. Here is a specific example.

» Example 8 Find the inflection points, if any, of f(x) = x*.

Solution. Calculating the first two derivatives of f we obtain
f1(x) = 4x?
F(x) = 12x2

Since f”(x) is positive for x < 0and for x > 0, the function f is concave up on the interval
(—, 0) and on the interval (0, +o0). Thus, there is no change in concavity and hence no
inflection point at x = 0, even though f”(0) = O (Figure 4.1.13). «

We will see later that if a function f has an inflection point at x = x( and f”(xo) exists,
then f”(xp) = 0. Also, we will see in Section 4.3 that an inflection point may also occur
where f”(x) is not defined.

INFLECTION POINTS IN APPLICATIONS

Inflection points of a function f are those points on the graph of y = f(x) where the slopes
of the tangent lines change from increasing to decreasing or vice versa (Figure 4.1.14).
Since the slope of the tangent line at a point on the graph of y = f(x) can be interpreted as
the rate of change of y with respect to x at that point, we can interpret inflection points in
the following way:

Inflection points mark the places on the curve y = f(x) where the rate of change of y
with respect to x changes from increasing to decreasing, or vice versa.

This is a subtle idea, since we are dealing with a change in a rate of change. It can help with
your understanding of this idea to realize that inflection points may have interpretations in
more familiar contexts. For example, consider the statement “Oil prices rose sharply during
the first half of the year but have since begun to level off.” If the price of oil is plotted
as a function of time of year, this statement suggests the existence of an inflection point
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on the graph near the end of June. (Why?) To give a more visual example, consider the
flask shown in Figure 4.1.15. Suppose that water is added to the flask so that the volume
increases at a constant rate with respect to the time ¢, and let us examine the rate at which
the water level y rises with respect to ¢. Initially, the level y will rise at a slow rate because
of the wide base. However, as the diameter of the flask narrows, the rate at which the level
y rises will increase until the level is at the narrow point in the neck. From that point on
the rate at which the level rises will decrease as the diameter gets wider and wider. Thus,
the narrow point in the neck is the point at which the rate of change of y with respect to ¢
changes from increasing to decreasing.

\ v (depth of water)

Concave down

fffffff <— The inflection point
occurs when the water
level is at the narrowest

Concave up point on the flask

t (time)

» Figure 4.1.15

LOGISTIC CURVES

When a population grows in an environment in which space or food is limited, the graph of
population versus time is typically an S-shaped curve of the form shown in Figure 4.1.16.
The scenario described by this curve is a population that grows slowly at first and then more
and more rapidly as the number of individuals producing offspring increases. However, at
a certain point in time (where the inflection point occurs) the environmental factors begin
to show their effect, and the growth rate begins a steady decline. Over an extended period
of time the population approaches a limiting value that represents the upper limit on the
number of individuals that the available space or food can sustain. Population growth
curves of this type are called logistic growth curves.

» Example 9 We will see in a later chapter that logistic growth curves arise from equa-
tions of the form L
(1)

YT I A w

where y is the population at time 7 (r > 0) and A, k, and L are positive constants. Show
that Figure 4.1.17 correctly describes the graph of this equation when A > 1.

Solution. 1t follows from (1) that at time ¢ = 0 the value of y is
_ L
YT 1ra

and it follows from (1) and the fact that 0 < ¢=* < 1 for r > 0 that

< L 2
1+4-7" @

(verify). This is consistent with the graph in Figure 4.1.17. The horizontal asymptote at
y = L is confirmed by the limit
L L

lim y= lim =

=L 3
t— +ox l—>+°cl+A€7kt 1+0 ( )
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VQUICK CHECK EXERCISES 4.1

Physically, Formulas (2) and (3) tell us that L is an upper limit on the population and that
the population approaches this limit over time. Again, this is consistent with the graph in
Figure 4.1.17.

To investigate intervals of increase and decrease, concavity, and inflection points, we
need the first and second derivatives of y with respect to . By multiplying both sides of
Equation (1) by ¥ (1 + Ae™*"), we can rewrite (1) as

yek’ + Ay = LM

Using implicit differentiation, we can derive that

dy _ k B

i Z)’(L y) “
d? k2

d—lf = (L= (L -2y) 5)

(Exercise 70). Since k > 0, y > 0, and L — y > 0, it follows from (4) that dy/dt > 0 for
all z. Thus, y is always increasing, which is consistent with Figure 4.1.17.
Since y > O and L — y > 0, it follows from (5) that

dzy .
d2
d—ti<0 if L—2y<0

Thus, the graph of y versus ¢ is concave up if y < L/2, concave down if y > L/2, and has
an inflection point where y = L/2, all of which is consistent with Figure 4.1.17.
Finally, we leave it for you to solve the equation

L L
2 14 Ae
for ¢ to show that the inflection point occurs at

f=tpa=n4 6)
= —In = —
k k

(See page 244 for answers.)

1. (a) Afunction f isincreasingon (a,b)if _—__ when-

evera < x; < xp < b.

(b) A function f is decreasing on (a,b)if ____ when- (d)

evera < xy < xp < b.

(¢) A function f is concave up on (a, b) if f'is

on (a, b).

(d) If f”(a) exists and f has an inflection point at x = a,

then f"(a) — .

2. Let f(x) = 0.1(x> — 3x> — 9x). Then

(c) The function f is concave down on the interval(s)

is an inflection point on the graph of f.

3. Suppose that f(x) has derivative f'(x) = (x — 4)%e /2.
Then f"(x) = —4(x — 4)(x — 8)e™*/2.
(a) Thefunction f isincreasing on the interval(s)
(b) The function f is concave up on the interval(s)

(c) The function f is concave down on the interval(s)

@) =0.13x2—6x —9) =0.3(x + )(x — 3)

f(x) =0.6(x —1)

(a) Solutionsto f/(x) = 0are x = .
(b) The function f isincreasing on the interval(s)

4. Consider the statement “The rise in the cost of living slowed
during the first half of the year.” If we graph the cost of liv-
ing versus time for the first half of the year, how does the
graph reflect this statement?
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EXERCISE SET 4.1 [ Graphing utility CAS

FOCUS ON CONCEPTS

1. In each part, sketch the graph of a function f with the

6. Use the graph of y = f’(x) in the accompanying figure
to replace the question mark with <, =, or >, as appro-

stated properties, and discuss the signs of f’ and f”.

(a) The function f is concave up and increasing on the
interval (—oo, 40).

(b) The function f is concave down and increasing on
the interval (—oo, +o0).

(c) The function f is concave up and decreasing on the
interval (—oo, 4+0).

(d) The function f is concave down and decreasing on
the interval (—oo, +o0).

. In each part, sketch the graph of a function f with the

stated properties.

(a) f isincreasing on (—oo, +0), has an inflection point
at the origin, and is concave up on (0, 4).

(b) f isincreasing on (—oo, +), has an inflection point
at the origin, and is concave down on (0, +x).

(c) f isdecreasing on (—oo, +c0), has an inflection point
at the origin, and is concave up on (0, +).

(d) f is decreasing on (—o, +), has an inflection point
at the origin, and is concave down on (0, +x).

priate. Explain your reasoning.
@ fO) ? f() (b f(D)? fQ2)
@ f (1?0 () f"(0) 70

N

(©) f(0?0
) /2?0
y=1®

| X

N
<A Figure Ex-6

. In each part, use the graph of y = f(x) in the accompa-

nying figure to find the requested information.

(a) Find the intervals on which f is increasing.

(b) Find the intervals on which f is decreasing.

(c) Find the open intervals on which f is concave up.
(d) Find the open intervals on which f is concave down.
(e) Find all values of x at which f has an inflection point.

3. Use the graph of the equation y = f(x) in the accompa- Y

nying figure to find the signs of dy/dx and d*y/dx? at
the points A, B, and C.

—_f
[\

y=f(x) |
B C \ 3 X
X
V A Figure Ex-7
< Figure Ex-3 8. Use the graph in Exercise 7 to make a table that shows the

signs of f" and f” over the intervals (1, 2), (2, 3), (3, 4),
(4,5),(5,6), and (6, 7).

4. Use the graph of the equation y = f’(x) in the accompa-
nying figure to find the signs of dy/dx and d’y/dx?* at
the points A, B, and C.

5. Use the graph of y = f”(x) in the accompanying figure
to determine the x-coordinates of all inflection points of
f. Explain your reasoning.

9-10 A sign chart is presented for the first and second deriva-
tives of afunction f. Assuming that f is continuous everywhere,
find: (a) the intervals on which f is increasing, (b) the intervals
on which f is decreasing, (c) the open intervals on which f is
concave up, (d) the open intervals on which f is concave down,

Cy and (e) the x-coordinates of all inflection points.

y=f"x 9.

y=f(x) c INTERVAL  SIGN OF f’(x)  SIGN OF f”(x)
/\\ x x<1 - +

\/ l<x<?2 + +
! L5 2<x<3 + -

A B -2 N/ 3 3<x<4 - -
4<x - +

A Figure Ex-4 A Figure Ex-5
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10.
INTERVAL  SIGN OF f’(X)  SIGN OF f”(x)
x<1 + +
l<x<3 + -
3<x + +

11-14 True-False Assume that f is differentiable every-
where. Determine whether the statement is true or false. Explain
your answer.

11. If f is decreasing on [0, 2], then f(0) > f(1) > f(2).
12. If f/(1) > 0, then f is increasing on [0, 2].
13. If f is increasing on [0, 2], then f'(1) > 0.

14. If f’ is increasing on [0, 1] and f’ is decreasing on [1, 2],
then f has an inflection point at x = 1.

15-32 Find: (a) the intervals on which f is increasing, (b) the
intervals on which f is decreasing, (c) the open intervals on
which f is concave up, (d) the open intervals on which f is
concave down, and (e) the x-coordinates of all inflection points.

15. f(x) =x>—=3x+8 16. f(x) =5—4x —x?

17. f(x) = 2x +1)° 18. f(x) =5+ 12x — x3
19. f(x) = 3x* —4x3 20. f(x) = x* — 5x3 4 9x?
21, f(x) = m 2. f(x) = ;#)CT

23, f()=vxl+x+1 24, f(x) = x> —x13

25. f(x) = (x¥3 —1)? 26. f(x) =x?—x

27. f(x) =e 2 28. f(x) = xe*

29. f(x) =Inv/x2+4 30. f(x) =x’Inx

31. f(x) =tan"'(x2 — 1) 32. f(x) =sin~' x?/3

[ 33-38 Analyze the trigonometric function f over the specified
interval, stating where f is increasing, decreasing, concave up,
and concave down, and stating the x-coordinates of all inflection
points. Confirm that your results are consistent with the graph
of f generated with a graphing utility.

33. f(x) =sinx —cosx; [—m, 7]
34. f(x) =secxtanx; (—m/2,7/2)
35. f(x) =1 —tan(x/2); (—m, m)
36. f(x) =2x +cotx; (0, m)

37. f(x) = (sinx + cosx)?; [—m, 7]
38. f(x) = sin?2x; [0, 7]

FOCUS ON CONCEPTS

39. In parts (a)—(c), sketch a continuous curve y = f(x)
with the stated properties.
@ f)=4, f/2)=0, f"(x) > 0forall x
®) f)=4, f'(2)=0, f"(x) <0 for
x <2, f"(x) >0forx > 2

(© f(2)=4, f"(x) <0forx #2and
lim, o+ f(x) = o0, lim,_,»- f'(x) = —oo
40. In each part sketch a continuous curve y = f(x) with
the stated properties.
@ f@ =4, f'=0, f"(x) <0forallx
(®) f2) =4, f/2) =0, f"(x) > 0for
x <2, f"(x) <Oforx >2
(©) f2)=4, f"(x) > 0forx # 2and
lim, o+ f/(x) = —o0, limy - f'(x) = 4o

[ 41-46 If f is increasing on an interval [0, b), then it follows
from Definition 4.1.1 that f(0) < f(x) for each x in the interval
(0, b). Use this result in these exercises.

41. Show that &/T+x < 1+ %x if x > 0, and confirm the in-
equality with a graphing utility. [Hint: Show that the func-
tion f(x) =1+ %x — M +xis increasing on [0, +).]

42. Show that x < tanx if 0 < x < /2, and confirm the in-
equality with a graphing utility. [Hint: Show that the func-
tion f(x) = tanx — x is increasing on [0, 77/2).]

43. Use a graphing utility to make a conjecture about the relative
sizes of x and sin x for x > 0, and prove your conjecture.

44. Use a graphing utility to make a conjecture about the rela-
tive sizes of 1 — x2/2 and cos x for x > 0, and prove your
conjecture. [Hint: Use the result of Exercise 43.]

45. (a) Show thatIn(x + 1) < xifx > 0.
(b) Show thatIn(x + 1) > x — Jx?if x > 0.
(c) Confirm the inequalities in parts (a) and (b) with a graph-
ing utility.
46. (a) Show thate® > 1+ xifx > 0.
(b) Show thate* > 1 +x + Jx?if x > 0.
(c) Confirmtheinequalities in parts (a) and (b) with a graph-
ing utility.

[ 47-48 Use a graphing utility to generate the graphs of f’ and
/" over the stated interval; then use those graphs to estimate
the x-coordinates of the inflection points of f, the intervals on
which f is concave up or down, and the intervals on which f is
increasing or decreasing. Check your estimates by graphing f.

47. f(x) = x* —24x% + 12x,
48. f(x) =

., 5<x=<5

1+ x2

[c] 49-50 Use a CAS to find f” and to approximate the x-
pp

coordinates of the inflection points to six decimal places. Con-
firm that your answer is consistent with the graph of f.

10x — 3 x3—8x +7
49. = 50. = -
T =305 13 Y e
51. Use Definition 4.1.1 to prove that f(x) = x? is increasing
on [0, +o0).
52. Use Definition 4.1.1 to prove that f(x) = 1/x is decreasing
on (0, +).



FOCUS ON CONCEPTS

53

fai
53

If a statement is false, find functions for which the statement

54.

5S.

56.
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-54 Determine whether the statements are true or false.

Is to hold.

. (@) If f and g are increasing on an interval, then so is
f+e

(b) If f and g are increasing on an interval, then so is
f-g

(a) If f and g are concave up on an interval, then so is
f+s.

(b) If f and g are concave up on an interval, then so is
f-s

In each part, find functions f and g that are increasing on

(—o0, +) and for which f — g has the stated property.

(a) f — gisdecreasing on (—oo, 4-0).

(b) f — g is constant on (—oo, +0).

(c) f — gisincreasing on (—oo, +0).

In each part, find functions f and g that are positive

and increasing on (—oo, +o0) and for which f/g has the

stated property.

(a) f/gis decreasing on (—oo, +o0).

(b) f/g is constant on (—oo, +00).

(c) f/gisincreasing on (—oo, +0).

57.

i~ s8.

59.

60.
61.

62.

(a) Prove that a general cubic polynomial
fx)=ax*+bx*+cx+d (a #0)

has exactly one inflection point.

(b) Prove that if a cubic polynomial has three x-intercepts,
then the inflection point occurs at the average value of
the intercepts.

(c) Use the result in part (b) to find the inflection point
of the cubic polynomial f(x) = x> — 3x% + 2x, and
check your result by using f” to determine where f
is concave up and concave down.

From Exercise 57, the polynomial f(x) = x* 4 bx? 4+ 1 has
one inflection point. Use a graphing utility to reach a con-
clusion about the effect of the constant » on the location
of the inflection point. Use f” to explain what you have
observed graphically.

Use Definition 4.1.1 to prove:

(a) If f isincreasing on the intervals (a, c] and [c, b), then
f is increasing on (a, b).

(b) If f is decreasing on the intervals (a, c] and [c, ), then
f is decreasing on (a, b).

Use part (a) of Exercise 59 to show that f(x) = x +sinx

is increasing on the interval (—oo, ).

Use part (b) of Exercise 59 to show that f(x) = cosx —x
is decreasing on the interval (—oo, +0).

Let y = 1/(1 + x?). Find the values of x for which y is
increasing most rapidly or decreasing most rapidly.

FOCUS ON CONCEPTS

63

the container shown. Make a rough sketch of the graph of the
water level y versus the time 7. Make sure that your sketch
conveys where the graph is concave up and concave down,
and label the y-coordinates of the inflection points.

63.

65.

-66 Suppose that water is flowing at a constant rate into

AY

64. Ay

—
T
—
T

Y 66. Y

~ 68.

~ 69.

70.

. Suppose that a population y grows according to the logistic

model given by Formula (1).

(a) At what rate is y increasing at time t = 0?

(b) In words, describe how the rate of growth of y varies
with time.

(c) At what time is the population growing most rapidly?

Suppose that the number of individuals at time # in a certain
wildlife population is given by

340

NO =T 5077

where 7 is in years. Use a graphing utility to estimate the
time at which the size of the population is increasing most
rapidly.

Suppose that the spread of a flu virus on a college campus

is modeled by the function
1000
)= ———
Y = T 999,091

where y(¢) is the number of infected students at time ¢ (in
days, starting with ¢ = 0). Use a graphing utility to estimate
the day on which the virus is spreading most rapidly.

The logistic growth model given in Formula (1) is equiva-

lent to
yek’ + Ay = Le!

where y is the population at time (¢ > 0) and A, k, and L
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are positive constants. Use implicit differentiation to verify 72. Writing An approaching storm causes the air temperature
that dy k to fall. Make a statement that indicates there is an inflec-
ar = Z)’(L -y tion point in the graph of temperature versus time. Explain
how the existence of an inflection point follows from your

d*y k* statement.

72 = YL =L —2y) - . .
4 73. Writing Explain what the sign analyses of f’(x) and f”(x)

71. Assuming that A, k, and L are positive constants, verify that tell us about the graph of y = f(x).

the graph of y = L/(1 + Ae™*") has an inflection point at
(tInA, iL).

VQUICK CHECK ANSWERS 4.1

1. (@) f(x1) < f(x2) (b) f(x1) > f(x2) (c) increasing (d) =0 2. (a) —1,3 (b) (—o, —1] and [3, +x) (¢c) (—o, 1)
(d) (1,—-1.1) 3. (a) (=, +x) (b) (4,8) (c) (—o»,4),(8,+x) 4. The graph is increasing and concave down.

mANALYSIS OF FUNCTIONS Ii: RELATIVE EXTREMA; GRAPHING POLYNOMIALS

In this section we will develop methods for finding the high and low points on the graph of
a function and we will discuss procedures for analyzing the graphs of polynomials.

B RELATIVE MAXIMA AND MINIMA

Highest If we imagine the graph of a function f to be a two-dimensional mountain range with hills
mountain . « : . »

and valleys, then the tops of the hills are called “relative maxima,” and the bottoms of the
valleys are called “relative minima” (Figure 4.2.1). The relative maxima are the high points
in their immediate vicinity, and the relative minima are the low points. A relative maximum
g need not be the highest point in the entire mountain range, and a relative minimum need not
s m'l\ﬁ e ‘pe the lowest point.—they are ju.st high apq low points relative to the nearby terrain. These

valley ideas are captured in the following definition.

Relative
maximum

A Figure 4.2.1

4.2.1 DEFINITION A function f is said to have a relative maximum at x, if there is
an open interval containing xo on which f(xo) is the largest value, thatis, f(xo) > f(x)
for all x in the interval. Similarly, f is said to have arelative minimum at x if there is an
open interval containing xo on which f(x() is the smallest value, that is, f(xo) < f(x)
for all x in the interval. If f has either a relative maximum or a relative minimum at
Xo, then f is said to have a relative extremum at x.

» Example 1 We can see from Figure 4.2.2 that:

*  f(x) = x? has arelative minimum at x = 0 but no relative maxima.

e f(x) = x> has no relative extrema.

e f(x)= x% —3x + 3 has a relative maximum at x = —1 and a relative minimum at
x=1.
e f(x)= %x“ — ‘3—‘x3 — x2 + 4x + 1 has relative minima at x = —1 and x = 2 and a

relative maximum at x = 1.
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® f(x) = cosx has relative maxima at all even multiples of 7 and relative minima at
all odd multiples of . «

AY
Y
6 T
Sk 4r
4+ 4+ 3+ y
3k 3k ‘
2
2 2F ‘ | L
|
I/l 7 : /R SAW/\NWAW
[ [ [ L1y I [ R ! ! ! !
3-2-1 | 123 32 [l 123 3 -2 } 1 2 3 727:W \727:
Lo \ -1k
3k 2F
4L 3|
y=x2 y=x3 y=x-3x+3 y:%x4—§x3—x2+4x+l y =Cosx
A Figure 4.2.2
y Point of

nondifferentiability

Point of}

|

|

|

|

| nondifferentiability N
| | | | |

Xl )Cz x3 X4 XS

A Figure 4.2.3 The points x, x2, x3,
x4, and x5 are critical points. Of these,
X1, X2, and x5 are stationary points.

y

y=x>-3x+1

A Figure 4.2.4

What is the maximum number of criti-
cal points that a polynomial of degree
n can have? Why?

The relative extrema for the five functions in Example 1 occur at points where the
graphs of the functions have horizontal tangent lines. Figure 4.2.3 illustrates that a relative
extremum can also occur at a point where a function is not differentiable. In general, we
define a critical point for a function f to be a point in the domain of f at which either the
graph of f has a horizontal tangent line or f is not differentiable. To distinguish between
the two types of critical points we call x a stationary point of f if f'(x) = 0. The following
theorem, which is proved in Appendix D, states that the critical points for a function form a
complete set of candidates for relative extrema on the interior of the domain of the function.

4.2.2 THEOREM Suppose that f is a function defined on an open interval containing
the point xo. If f has a relative extremum at x = xq, then x = xq is a critical point of
[ that is, either f'(xo) = 0 or f is not differentiable at x.

» Example 2 Find all critical points of f(x) = x> —3x + 1.

Solution. The function f, being a polynomial, is differentiable everywhere, so its critical
points are all stationary points. To find these points we must solve the equation f’(x) = 0.
Since

fl(x)=3x2=3=3(x+Dx—1)
we conclude that the critical points occur at x = —1 and x = 1. This is consistent with the
graph of f in Figure 4.2.4. «

» Example 3 Find all critical points of f(x) = 3x%/3 — 15x%3,

Solution. The function f is continuous everywhere and its derivative is

5 —2)

X173
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We see from this that f'(x) = 0if x = 2 and f'(x) is undefined if x = 0. Thus x = 0 and
x = 2 are critical points and x = 2 is a stationary point. This is consistent with the graph
of f shown in Figure 4.2.5. «

TECHNOLOGY | Your graphing utility may have trouble producing portions of the graph in Figure 4.2.5 because of the
MASTERY | fractional exponents. If this is the case for you, graph the function

y = 3(x|/x)|x[*? — 15)x7?

which is equivalent to f(x) for x # 0. Appendix A explores the method suggested here in more detail.

Y B FIRST DERIVATIVE TEST

Theorem 4.2.2 asserts that the relative extrema must occur at critical points, but it does
not say that a relative extremum occurs at every critical point. For example, for the eight
=] B 6 critical points in Figure 4.2.6, relative extrema occur at each xy in the top row but not at
any xo in the bottom row. Moreover, at the critical points in the first row the derivatives
have opposite signs on the two sides of x(, whereas at the critical points in the second row
the signs of the derivatives are the same on both sides. This suggests:

A function f has a relative extremum at those critical points where [’ changes sign.

y= 3x5/3 _ 15x2/3
A Figure 4.2.5 y y y
\
\
\ | |
‘ X } X } X
%o | R | X0
Critical point Critical point Critical point Critical point
Stationary point Not a stationary point Stationary point Not a stationary point
Relative maximum Relative maximum Relative minimum Relative minimum
y y
| |
| : | x
| Xo | %o
Critical point Critical point Critical point Critical point
Stationary point Stationary point Not a stationary point Not a stationary point
Inflection point Inflection point Inflection point Inflection point
Not a relative extremum Not a relative extremum Not a relative extremum Not a relative extremum

A Figure 4.2.6

We can actually take this a step further. At the two relative maxima in Figure 4.2.6 the
derivative is positive on the left side and negative on the right side, and at the two relative
minima the derivative is negative on the left side and positive on the right side. All of this
is summarized more precisely in the following theorem.



Informally stated, parts (a) and (b) of
Theorem 4.2.3 tell us that for a contin-
uous function, relative maxima occur
at critical points where the derivative
changes from + to — and relative min-

ima where it changes from — to +.

Use the first derivative test to confirm
the behavior at xq of each graph in Fig-

ure 4.2.6.

Table 4.2.1

INTERVAL 5(x—2)/x13 f'(x)

x<0 =)/(=) +

O0<x<?2 =)/+) -

x>2 H)/(+) +
<0

Concave down

>0
Concave up

Relative
maximum

A Figure 4.2.7

Relative
minimum
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4.2.3 THEOREM (First Derivative Test) Suppose that f is continuous at a critical
point xo.

(a) If f'(x) > 0on an open interval extending left from xo and f'(x) < 0 on an open
interval extending right from xg, then f has a relative maximum at x.

(b) If f'(x) < 0on an open interval extending left from xo and f’'(x) > 0 on an open
interval extending right from xo, then f has a relative minimum at x.

(¢) If f'(x) has the same sign on an open interval extending left from xq as it does on
an open interval extending right from xg, then f does not have a relative extremum
at xgp.

PROOF We will prove part (a) and leave parts (b) and (c) as exercises. We are assuming
that f’(x) > 0 on the interval (a, xo) and that f’(x) < 0 on the interval (x¢, b), and we
want to show that

fxo) = f(x)

for all x in the interval (a, b). However, the two hypotheses, together with Theorem 4.1.2
and its associated marginal note imply that f is increasing on the interval (a, xo] and
decreasing on the interval [xo, ). Thus, f(xo) > f(x) for all x in (a, b) with equality only
at xo. W

» Example 4 We showed in Example 3 that the function f(x) = 3x%3 — 15x2/3 has
critical points at x = 0 and x = 2. Figure 4.2.5 suggests that f has a relative maximum at
x = 0 and a relative minimum at x = 2. Confirm this using the first derivative test.

Solution. We showed in Example 3 that

, 5(x—2)
ffx)= T

A sign analysis of this derivative is shown in Table 4.2.1. The sign of f’ changes from +
to — at x = 0, so there is a relative maximum at that point. The sign changes from — to +
at x = 2, so there is a relative minimum at that point. «

SECOND DERIVATIVE TEST
There is another test for relative extrema that is based on the following geometric obser-
vation: A function f has a relative maximum at a stationary point if the graph of f is
concave down on an open interval containing that point, and it has a relative minimum if it
is concave up (Figure 4.2.7).

4.2.4 THEOREM (Second Derivative Test) Suppose that f is twice differentiable at the
point xo.

(a) If f'(xo) = 0and f"(xg) > 0, then f has a relative minimum at x.
(b) If f'(xo) =0and f"(xg) <O, then f has a relative maximum at x.

(¢) If f'(x0) = 0and f”(x9) = 0, then the test is inconclusive; that is, f may have a
relative maximum, a relative minimum, or neither at x.
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The second derivative test is often eas-
ier to apply than the first derivative
test. However, the first derivative test
can be used at any critical point of a
continuous function, while the second
derivative test applies only at station-
ary points where the second derivative
exists.

y
2L
1L
! ! ! !
-2 1 1 2
1L
72,
y=3x5—5x3

A Figure 4.2.8

We will prove parts (a) and (c) and leave part (b) as an exercise.

PROOF (a) We are given that f'(xo) = Oand f"(x¢) > 0, and we want to show that f has
a relative minimum at xo. Expressing f”(xo) as a limit and using the two given conditions

we obtain £ (x) = f'(x0) — i S -

F"(x0) = lim
X=X X — Xo x—X0 X — X0

0

This implies that for x sufficiently close to but different from x, we have
')

X — Xo

>0 ey

Thus, there is an open interval extending left from xy and an open interval extending right
from x¢ on which (1) holds. On the open interval extending left the denominator in (1) is
negative, so f’(x) < 0, and on the open interval extending right the denominator is positive,
so f’(x) > 0. It now follows from part (b) of the first derivative test (Theorem 4.2.3) that
f has arelative minimum at xo.

PROOF (c¢) To prove this part of the theorem we need only provide functions for which
f'(x0) =0and f"(xo) = 0 at some point xy, but with one having a relative minimum at
X0, one having a relative maximum at xy, and one having neither at x,. We leave it as
an exercise for you to show that three such functions are f(x) = x* (relative minimum
at x = 0), f(x) = —x* (relative maximum at x = 0), and f(x) = x> (neither a relative
maximum nor a relative minimum at xg). B

» Example 5 Find the relative extrema of f(x) = 3x% — 5x3.

Solution. We have
fl(x) = 15x* — 15x2 = 15x%(x% — 1) = 15x2(x + D(x — 1)
£ (x) = 60x> — 30x = 30x(2x> — 1)
Solving f’(x) = 0 yields the stationary points x = 0, x = —1, and x = 1. As shown in

the following table, we can conclude from the second derivative test that f has a relative
maximum at x = —1 and a relative minimum at x = 1.

STATIONARY POINT ~ 30x(2x2—1)  f”(x) SECOND DERIVATIVE TEST

x=-1 -30 - f has a relative maximum
x=0 0 0 Inconclusive
x=1 30 + f has a relative minimum

The test is inconclusive at x = 0, so we will try the first derivative test at that point. A sign
analysis of f’ is given in the following table:

INTERVAL 15x2(x+ D(x—1) f'(x)

-1<x<0 H ) -
O<x<1 HHE) -

Since there is no sign change in f’ at x = 0, there is neither a relative maximum nor a
relative minimum at that point. All of this is consistent with the graph of f shown in
Figure 4.2.8. «
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B GEOMETRIC IMPLICATIONS OF MULTIPLICITY

Our final goal in this section is to outline a general procedure that can be used to analyze and
graph polynomials. To do so, it will be helpful to understand how the graph of a polynomial
behaves in the vicinity of its roots. For example, it would be nice to know what property
of the polynomial in Example 5 produced the inflection point and horizontal tangent at the
root x = 0.

Recall that a root x = r of a polynomial p(x) has multiplicity m if (x — r)" divides
p(x) but (x — r)"*! does not. A root of multiplicity 1 is called a simple root. Figure 4.2.9
and the following theorem show that the behavior of a polynomial in the vicinity of a real
root is determined by the multiplicity of that root (we omit the proof).

4.2.5 THE GEOMETRIC IMPLICATIONS OF MULTIPLICITY Suppose that p(x) is a
polynomial with a root of multiplicity m at x = r.

(a) Ifmiseven, then the graph of y = p(x) is tangent to the x-axis at x = r, does not
cross the x-axis there, and does not have an inflection point there.

(b) If m is odd and greater than 1, then the graph is tangent to the x-axis at x = r,
crosses the x-axis there, and also has an inflection point there.

(¢) Ifm =1 (so that the root is simple), then the graph is not tangent to the x-axis at
X = r, crosses the x-axis there, and may or may not have an inflection point there.

o o o ® g &
SN

Roots of even multiplicity Roots of odd multiplicity (> 1) Simple roots
A Figure 4.2.9
AY
10 -
sk » Example 6 Make a conjecture about the behavior of the graph of
— 43 2
‘ ‘ o, s y=x"0Cx =4 +2)
_3 _2 _l l 2 3 . . . . . . . .
in the vicinity of its x-intercepts, and test your conjecture by generating the graph.
-5+
Solution. The x-intercepts occur at x =0, x = 3, and x = —2. The root x = 0 has
multiplicity 3, which is odd, so at that point the graph should be tangent to the x-axis, cross
-0 the x-axis, and have an inflection point there. The root x = —2 has multiplicity 2, which
is even, so the graph should be tangent to but not cross the x-axis there. The root x = % is

y=x'Gx - +2)7 : . I . :
simple, so at that point the curve should cross the x-axis without being tangent to it. All of

A Figure 4.2.10 this is consistent with the graph in Figure 4.2.10. <«
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For each of the graphs in Figure 4.2.11,
count the number of x-intercepts, rela-
tive extrema, and inflection points, and
confirm that your count is consistent
with the degree of the polynomial.

Il ANALYSIS OF POLYNOMIALS

Historically, the term “curve sketching” meant using calculus to help draw the graph of a
function by hand—the graph was the goal. Since graphs can now be produced with great
precision using calculators and computers, the purpose of curve sketching has changed.
Today, we typically start with a graph produced by a calculator or computer, then use curve
sketching to identify important features of the graph that the calculator or computer might
have missed. Thus, the goal of curve sketching is no longer the graph itself, but rather the
information it reveals about the function.

Polynomials are among the simplest functions to graph and analyze. Their significant
features are symmetry, intercepts, relative extrema, inflection points, and the behavior as
X — o0 and as x — —oo. Figure 4.2.11 shows the graphs of four polynomials in x. The
graphs in Figure 4.2.11 have properties that are common to all polynomials:

¢ The natural domain of a polynomial is (—oo, +0).
¢ Polynomials are continuous everywhere.

* Polynomials are differentiable everywhere, so their graphs have no corners or vertical
tangent lines.

e The graph of a nonconstant polynomial eventually increases or decreases without
bound as x — 40 and as x — —co. This is because the limit of a nonconstant poly-
nomial as x — +o or as x — —oo is oo, depending on the sign of the term of highest
degree and whether the polynomial has even or odd degree [see Formulas (17) and
(18) of Section 1.3 and the related discussion].

e The graph of a polynomial of degree n (> 2) has at most n x-intercepts, at most
n — 1 relative extrema, and at most n — 2 inflection points. This is because the x-
intercepts, relative extrema, and inflection points of a polynomial p(x) are among
the real solutions of the equations p(x) =0, p’(x) =0, and p”(x) =0, and the
polynomials in these equations have degree n, n — 1, and n — 2, respectively. Thus,
for example, the graph of a quadratic polynomial has at most two x-intercepts, one
relative extremum, and no inflection points; and the graph of a cubic polynomial has
at most three x-intercepts, two relative extrema, and one inflection point.

y y y

/\ x /TN x N\ x

N\

Degree 2

A Figure 4.2.11

[-2,2] x[-3, 3]
y =3x%—6x7 + 2x

A Figure 4.2.12

\VARVARY \/

Degree 3 Degree 4 Degree 5

» Example 7 Figure 4.2.12 shows the graph of
y =3x* —6x% 4+ 2x

produced on a graphing calculator. Confirm that the graph is not missing any significant
features.

Solution. 'We can be confident that the graph shows all significant features of the polyno-
mial because the polynomial has degree 4 and we can account for four roots, three relative
extrema, and two inflection points. Moreover, the graph suggests the correct behavior as
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X — +oo and as x — —oo, since

fim GBx* —6x3 +2x) = fim 3xt = 4o

lim 3x* —6x> +2x) = lim 3x* = 4 «

X— — X—>—»

» Example 8 Sketch the graph of the equation

y=x>—3x+2

and identify the locations of the intercepts, relative extrema, and inflection points.

Solution. Thefollowing analysis will produce the information needed to sketch the graph:

A review of polynomial factoring is
given in Appendix C.

x-intercepts: Factoring the polynomial yields

X =3x42=x+2)(x—1)>
which tells us that the x-intercepts are x = —2 and x = 1.
y-intercept: Setting x = 0 yields y = 2.
End behavior: We have

lim (x> =3x+2) = lim x’ =4
X — +o X —> +x

lim (x*=3x+2) = lim x’ = —»
X — —0 X —> —®

so the graph increases without bound as x — 4 and decreases without bound as
X —> —oo,

Derivatives: dy )
— =3x"-3=3x—-Dx+1)
dx
d?y
P

Increase, decrease, relative extrema, inflection points: Figure 4.2.13 gives a sign
analysis of the first and second derivatives and indicates its geometric significance.
There are stationary points at x = —1 and x = 1. Since the sign of dy/dx changes
from + to — at x = —1, there is a relative maximum there, and since it changes from
— to + at x = 1, there is a relative minimum there. The sign of d?y/dx? changes
from — to + at x = 0, so there is an inflection point there.

Final sketch: Figure 4.2.14 shows the final sketch with the coordinates of the inter-
cepts, relative extrema, and inflection point labeled. «

(=1,4)

-1 1 X
| |
+++++0 - - - - == 0+ ++++ dy/de=3x—-1Dx+1)
Increasing Decreasing Increasing  Conclusion for y

0
|

X

Concave down

A Figure 4.2.13

0+ +++++++++++ dy/dd®=06x

Concave up Conclusion for y

-2 -1
Rough sketch of f
y=x3=3x+2

y=x3-3x+2

A Figure 4.2.14
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VQUICK CHECK EXERCISES 4.2

(See page 254 for answers.)

1. Afunction f has arelative maximum at x if there is an open
interval containing xo on which f(x) is f(xg) for
every x in the interval.

2. Suppose that f is defined everywhere and x = 2, 3,5, 7 are
critical points for f. If f’(x) is positive on the intervals
(—o,2) and (5, 7), and if f'(x) is negative on the intervals
(2,3), (3,5), and (7, +), then f has relative maxima at
x=___  and f hasrelative minima at x =

EXERCISE SET 4.2 I Graphing utility CAS

3. Suppose that f is defined everywhere and x = —2 and
x =1 are critical points for f. If f”(x) = 2x + 1, then
f has a relative at x = —2 and f has a relative

atx = 1.

4. Let f(x) = (x> —=4)2. Then f'(x) =4x(x>—4) and
f"(x) = 4(3x? — 4). dentify the locations of the (a) rela-
tive maxima, (b) relative minima, and (c) inflection points
on the graph of f.

FOCUS ON CONCEPTS

1. In each part, sketch the graph of a continuous function f

with the stated properties.

(a) f is concave up on the interval (—o, 4+c) and has
exactly one relative extremum.

(b) f isconcave up on the interval (—oo, +o0) and has no
relative extrema.

(c) The function f has exactly two relative extrema on
the interval (—oo, 4+o0), and f(x) — o0 as x — +ce.

(d) The function f has exactly two relative extrema on
the interval (—oc, +0), and f(x) — —oo as x — +-oo.

2. In each part, sketch the graph of a continuous function f

with the stated properties.

(a) f has exactly one relative extremum on (—oo, 4),
and f(x) — 0 as x - 4o and as x — —cx.

(b) f hasexactly two relative extrema on (—oo, +00), and
f(x)—0as x — oo and as x — —c.

(c) f has exactly one inflection point and one relative
extremum on (—oo, +0).

(d) f hasinfinitely many relative extrema, and f(x) — 0
as x — +oo and as x — —oo.

3. (a) Use both the first and second derivative tests to show
that f(x) = 3x? — 6x + 1 has a relative minimum at
x =1
(b) Use both the first and second derivative tests to show
that f(x) = x> — 3x 4 3 has a relative minimum at
x = 1 and a relative maximum at x = —1.

4. (a) Use both the first and second derivative tests to show
that f(x) = sin® x has a relative minimum at x = 0.
(b) Use both the first and second derivative tests to show
that g(x) = tan® x has a relative minimum at x = 0.
(c) Give an informal verbal argument to explain without
calculus why the functions in parts (a) and (b) have rel-
ative minima at x = 0.

5. (a) Show that both of the functions f(x) = (x — 1)* and
g(x) = x> — 3x% 4+ 3x — 2 have stationary points at
x=1.

(b) What does the second derivative test tell you about the
nature of these stationary points?

(c) What does the first derivative test tell you about the
nature of these stationary points?
6. (a) Show that f(x) =1 —x° and g(x) = 3x* — 8x> both
have stationary points at x = 0.
(b) What does the second derivative test tell you about the
nature of these stationary points?
(c) What does the first derivative test tell you about the
nature of these stationary points?

7-14 Locate the critical points and identify which critical points
are stationary points.

7. f(x) =4x* —16x2+17 8. f(x) =3x*+ 12x

x+1 x2
9. f(x) = m 10. f(x) = m

11. f(x) = JxT =25 12, f(x) = x%(x — 1?3
13. f(x) = |sinx| 14. f(x) = sin |x]|

15-18 True-False Assume that f is continuous everywhere.
Determine whether the statement is true or false. Explain your
answer.

15. If f has a relative maximum at x = 1, then f(1) > f(2).

16. If f hasarelative maximumatx = 1, thenx = lisacritical
point for f.

17. If f”(x) > 0, then f has a relative minimum at x = 1.

18. If p(x) is a polynomial such that p’(x) has a simple root at
x = 1, then p has a relative extremum at x = 1.

FOCUS ON CONCEPTS

19-20 The graph of a function f(x) is given. Sketch graphs
of y = f'(x)and y = f"(x).

19. AY
y=fx)
| | X

L1 !
-2-1 23 4/56
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21-24 Use the graph of f’ shown in the figure to estimate
all values of x at which f has (a) relative minima, (b) relative
maxima, and (c) inflection points. (d) Draw a rough sketch
of the graph of a function f with the given derivative.

21. Y 22, Y

N

y=r

25-32 Use the given derivative to find all critical points of f,
and at each critical point determine whether a relative maximum,
relative minimum, or neither occurs. Assume in each case that
[ is continuous everywhere.

25. f'(x) =x*(x3 = 5) 26. f'(x) =4x> —9%x

2-3 27
27. f'(x) = g/)sz 28. f’@):fTH

29. f'(x) = xe! =

/ — i ! _ 2x X
31. f(x)_ln(1+x2> 32, flix)=e 5e¢* 4+ 6

30. f'(x) = x*(e* —3)

33-36 Find the relative extrema using both first and second
derivative tests.

33. f(x) =14 8x —3x?
35. f(x) =sin2x,

34. f(x) =x*— 1243
36. f(x) =(x —3)e*

O<x<m

37-50 Use any method to find the relative extrema of the func-
tion f.

37. f(x) = x* —4x3 + 447
39. f(x) =x3(x +1)? 40. f(x) =x2(x+1)3
41. f(x) =2x + 3x%3 42. f(x) =2x+3x!3

x+3 x2
44. -
X2 F& =T e

38. f(x) =x(x —4)°

43. f(x) =

45. f(x) =In(2 + x?)
47. f(x) =¥ —¢*
49. f(x) = |3x — x?|

46. f(x) =1n|2 4+ x3|
48. f(x) = (xe)?
50. f(x) =1+ Jx|

M 51-60 Give a graph of the polynomial and label the coordinates
of the intercepts, stationary points, and inflection points. Check
your work with a graphing utility.

51. p(x) =x>—3x—4

53. p(x) =2x3 —3x* —36x +5
54. p(x) =2 —x +2x* — x3
55. p(x) = (x + 1)2(2x — x?)
56. p(x) =x* —6x2+5

57. p(x) =x* —2x34+2x — 1
59. p(x) =x(x2—1)2

K~ 61.

52. p(x) =1+ 8x —x?

58. p(x) = 4x3 — 9x*
60. p(x) =x(x*—1)3
In each part: (i) Make a conjecture about the behavior of the
graph in the vicinity of its x-intercepts. (ii) Make a rough
sketch of the graph based on your conjecture and the limits
of the polynomial as x — +cc and as x — —oo. (iii) Compare
your sketch to the graph generated with a graphing utility.
@ y=x(x-Da+1D b y=x>x-1)"x+1)
© y=x*c =D’ +1)° @ y=x(x—1)x+1D*
62. Sketch the graph of y = (x —a)™(x — b)" for the stated
values of m and n, assuming thata < b (six graphs in total).
@m=1,n=1,2,3 b)ym=2,n=2,3
c)ym=3,n=3

B 63-66 Find the relative extrema in the interval 0 < x < 2,
and confirm that your results are consistent with the graph of f
generated with a graphing utility.

63. f(x) = |sin2x| 64. f(x) =+/3x +2sinx

sin x
06 100 = 3 cosx

65. f(x) =cos’x

M 67-70 Use a graphing utility to make a conjecture about the rel-
ative extrema of f, and then check your conjecture using either
the first or second derivative test.

67. f(x) =xIlnx 68. f(x) = 2

er t+e™*

69. f(x) =x%e ™ 70. f(x) =10lnx — x

4 71-72 Use a graphing utility to generate the graphs of f’ and
" over the stated interval, and then use those graphs to estimate
the x-coordinates of the relative extrema of f. Check that your
estimates are consistent with the graph of f.
71. f(x) =x*—24x> +12x, —-5<x<5
72. f(x) =sin %x cosx, —m/2<x<m/2

73-76 UseaCAStograph f’and f”, and then use those graphs
to estimate the x-coordinates of the relative extrema of f. Check
that your estimates are consistent with the graph of f.

10x3 —3
73 f00) =3

tan~! (x2 — x)
x2—5x+38

) ==
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75.
77.

[c] 78.

~ 79.

f(x) =+vx*fcos?x 76, f(x)=x%(e* —e)
In each part, find k so that f has a relative extremum at the
point where x = 3.

@ f() =2+~ ®) f06) =
- x T x2+k
(a) Use a CAS to graph the function
xt+1
T =

and use the graph to estimate the x-coordinates of the
relative extrema.

(b) Find the exact x-coordinates by using the CAS to solve
the equation f'(x) = 0.

Functions similar to
1 2
e /2

fx) = Nor

arise in a wide variety of statistical problems.

(a) Use the first derivative test to show that f has a rel-
ative maximum at x = 0, and confirm this by using a
graphing utility to graph f.

(b) Sketch the graph of

1
fx) = —e
V2
where u is a constant, and label the coordinates of the
relative extrema.

—(x—w)?/2

l/ QUICK CHECK ANSWERS 4.2

~ 8o.

81.

82.

83.

84.

Functions of the form
x"e™
x>0

fx) =

n! '

where n is a positive integer, arise in the statistical study of

traffic flow.

(a) Use a graphing utility to generate the graph of f for
n=2,3,4, and 5, and make a conjecture about the
number and locations of the relative extrema of f.

(b) Confirm your conjecture using the first derivative test.

Let /1 and g have relative maxima at x,. Prove or disprove:
(a) h + g has a relative maximum at x,
(b) h — g has arelative maximum at xg.

Sketch some curves that show that the three parts of the
first derivative test (Theorem 4.2.3) can be false without the
assumption that f is continuous at x;.

Writing Discuss the relative advantages or disadvantages
of using the first derivative test versus using the second
derivative test to classify candidates for relative extrema on
the interior of the domain of a function. Include specific
examples to illustrate your points.

Writing If p(x) is a polynomial, discuss the usefulness
of knowing zeros for p, p’, and p” when determining
information about the graph of p.

1. less than or equal to

2. 2,7, 5 3. maximum; minimum

() (—2/+/3,64/9) and (2/+/3, 64/9)

4. (a) (0,16) (b) (—2,0) and (2, 0)

ANALYSIS OF FUNCTIONS I1I: RATIONAL FUNCTIONS, CUSPS,

AND VERTICAL TANGENTS

In this section we will discuss procedures for graphing rational functions and other kinds
of curves. We will also discuss the interplay between calculus and technology in curve

sketching.

B PROPERTIES OF GRAPHS
In many problems, the properties of interest in the graph of a function are:

* symmetries
* x-intercepts

e relative extrema

e intervals of increase and decrease °

® asymptotes

e periodicity

* y-intercepts

® concavity
inflection points

e Dbehavior as x — +o or as x — —w

Some of these properties may not be relevant in certain cases; for example, asymptotes are
characteristic of rational functions but not of polynomials, and periodicity is characteristic of
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trigonometric functions but not of polynomial or rational functions. Thus, when analyzing
the graph of a function f, it helps to know something about the general properties of the
family to which it belongs.

In a given problem you will usually have a definite objective for your analysis of a graph.
For example, you may be interested in showing all of the important characteristics of the
function, you may only be interested in the behavior of the graph as x — 40 or as x — —oo,
or you may be interested in some specific feature such as a particular inflection point. Thus,
your objectives in the problem will dictate those characteristics on which you want to focus.

GRAPHING RATIONAL FUNCTIONS

Recall that a rational function is a function of the form f(x) = P(x)/Q(x) in which P (x)
and Q(x) are polynomials. Graphs of rational functions are more complicated than those of
polynomials because of the possibility of asymptotes and discontinuities (see Figure 0.3.11,
for example). If P(x) and Q(x) have no common factors, then the information obtained in
the following steps will usually be sufficient to obtain an accurate sketch of the graph of a
rational function.

Graphing a Rational Function f(x) = P(x)/ Q(x) if P(x) and Q(x) have no Com-
mon Factors

Step 1. (symmetries). Determine whether there is symmetry about the y-axis or the
origin.

Step 2. (x- and y-intercepts). Find the x- and y-intercepts.

Step 3. (vertical asymptotes). Find the values of x for which Q(x) = 0. The graph
has a vertical asymptote at each such value.

Step 4. (sign of f(x)). The only places where f(x) can change sign are at the x-
intercepts or vertical asymptotes. Mark the points on the x-axis at which these
occur and calculate a sample value of f(x) in each of the open intervals deter-
mined by these points. This will tell you whether f(x) is positive or negative
over that interval.

Step 5. (end behavior). Determine the end behavior of the graph by computing the
limits of f(x) as x — +o and as x — —oo. If either limit has a finite value L,
then the line y = L is a horizontal asymptote.

Step 6. (derivatives). Find f'(x) and f”(x).

Step 7. (conclusions and graph). Analyze the sign changes of f’(x) and f”(x) to
determine the intervals where f(x) is increasing, decreasing, concave up, and
concave down. Determine the locations of all stationary points, relative extrema,
and inflection points. Use the sign analysis of f(x) to determine the behavior
of the graph in the vicinity of the vertical asymptotes. Sketch a graph of f that
exhibits these conclusions.

» Example 1 Sketch a graph of the equation
2x2 -8
S x2-16
and identify the locations of the intercepts, relative extrema, inflection points, and asymp-
totes.

y

Solution. The numerator and denominator have no common factors, so we will use the
procedure just outlined.
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Table 4.3.1
2x2 -8
x2-16

SIGN ANALYSIS OF y =

TEST VALUE SIGN

INTERVAL POINT OF y OF y
(—o0,—4) =5 14/3 +
(-4,-2) -3 -10/7 -
(-2,2) 0 1/2 +
2, 4) 3 —10/7 -
(4, +o0) 5 14/3 +

The procedure we stated for graphing
a rational function P (x)/Q(x) applies
only if the polynomials P (x) and Q(x)
have no common factors. How would
you find the graph if those polynomials
have common factors?

Symmetries: Replacing x by —x does not change the equation, so the graph is sym-
metric about the y-axis.

x-and y-intercepts: Setting y = 0 yields the x-intercepts x = —2 and x = 2. Setting
x = 0 yields the y-intercept y = %

Vertical asymptotes: We observed above that the numerator and denominator of y

have no common factors, so the graph has vertical asymptotes at the points where the
denominator of y is zero, namely, at x = —4 and x = 4.

Sign of y: The set of points where x-intercepts or vertical asymptotes occur is
{—4, —2, 2, 4}. These points divide the x-axis into the open intervals

(=0, —4), (—4,-2), (=2,2), (2,4), 4, +x)

We can find the sign of y on each interval by choosing an arbitrary test point in the
interval and evaluating y = f(x) at the test point (Table 4.3.1). This analysis is
summarized on the first line of Figure 4.3.1a.

End behavior: The limits

o 2x*—8 . 2—(@8/xH)
lim = lm —— =

x—+o x2 — 16 X—>+°Ol_(l6/x2)

2x%—8 ) 2 — (8/x%)

A e = T e T
yield the horizontal asymptote y = 2.
Derivatives:
dy (x*—16)(4x) — (2x* — 8)(2x) 48x
dx (X2 — 16)? T T2 16)2
d’y  48(16+3x%)

- 216y verty)

Conclusions and graph:

® The sign analysis of y in Figure 4.3.1a reveals the behavior of the graph in the

vicinity of the vertical asymptotes: The graph increases without bound as x — —4~
and decreases without bound as x — —47; and the graph decreases without bound as
x — 4~ and increases without bound as x — 4% (Figure 4.3.1b).

The sign analysis of dy/dx in Figure 4.3.1a shows that the graph is increasing to
the left of x = 0 and is decreasing to the right of x = 0. Thus, there is a relative
maximum at the stationary point x = 0. There are no relative minima.

The sign analysis of d%y/dx? in Figure 4.3.1a shows that the graph is concave up to
the left of x = —4, is concave down between x = —4 and x = 4, and is concave up
to the right of x = 4. There are no inflection points.

The graph is shown in Figure 4.3.1c. «

» Example 2 Sketch a graph of

and identify the locations of all asymptotes, intercepts, relative extrema, and inflection
points.

Solution. The numerator and denominator have no common factors, so we will use the
procedure outlined previously.
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-4 =2 0 2 4 x
\ \ \ \ \
++++00—=0+++++0—-—o00+ +++ Signofy ' ‘
—4 0 4 x | |
! ! ! > l .
4+t +++40-———— oo — — — —  Sign of dy/dx | | X
Incr Incr Decr Decr Conclusion for y 4| 1z
-4 4 X ' ‘
| | ]\
A+ FO mm e mm - — — o+ + + +  Sign of d?y/dx?
Concave Concave Concave  Conclusion for y ‘ .
up down up
(a) (b) ()

A Figure 4.3.1

e Symmetries: Replacing x by —x and y by —y yields an equation that simplifies to

the original equation, so the graph is symmetric about the origin.

Table 4.3.2 ) * x-and y-intercepts: Setting y = 0 yields the x-intercepts x = —1 and x = 1. Setting
SIGN ANALYSIS OF y = “— 1 x = 0 leads to a division by zero, so there is no y-intercept.
N

e Vertical asymptotes: Setting x> = 0 yields the solution x = 0. This is not a root of

TEST  VALUE SIGN x2 — 1,50 x = 0 is a vertical asymptote.
INTERVAL POINT OFy OFy . . . . .
Sign of y: The set of points where x-intercepts or vertical asymptotes occur is

{—1, 0, 1}. These points divide the x-axis into the open intervals

(meo,=1) 2 -2 -

(-1,0) _% 6 + (=, =1, (=1,0), (0,1), (1,+e)

0, 1) % -6 - Table 4.3.2 uses the method of test points to produce the sign of y on each of these
(1. 400 ) ) % N intervals.

e End behavior: The limits

. xr—1 . 1 1
lim =lm |(-——=])=0
X — +o© x3 x—+40o \ X x3
. xz—1 . 1 1
lim = Ilm |[-——])=0
X — —© x3 x—>—0o \ X )C3

yield the horizontal asymptote y = 0.

e Derivatives:

dy _ ¥ -@2-DEY) _3-x _ (3+0(3-x)

dx (x3)2 x4 x4
Py 20 - B-x)Exd)  262-6 20— VO +v6)
dx? (x%)? - x5 - x5

Conclusions and graph:

* The sign analysis of y in Figure 4.3.2a reveals the behavior of the graph in the vicinity
of the vertical asymptote x = 0: The graph increases without bound as x — 0~ and
decreases without bound as x — 0" (Figure 4.3.2b).

 The sign analysis of dy/dx in Figure 4.3.2a shows that there is a relative minimum
at x = —+/3 and a relative maximum at x = /3.

* The sign analysis of d*y/dx? in Figure 4.3.2a shows that the graph changes concavity
at the vertical asymptote x = O and that there are inflection points at x = —+/6 and

x = /6.
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The graph is shown in Figure 4.3.2¢. To produce a slightly more accurate sketch, we used a
graphing utility to help plot the relative extrema and inflection points. You should confirm
that the approximate coordinates of the inflection points are (—2.45, —0.34) and (2.45,
0.34) and that the approximate coordinates of the relative minimum and relative maximum
are (—1.73, —0.38) and (1.73, 0.38), respectively. «

-1 0 X AY
! !
——————— 0 ++o0 —=0+++++++ Signofy y o
-3 0 V3 x I
1 1 1 r‘\x
————— 0+ + + + +oo+ ++++0———— Signof dy/dx _731 : 2 é é >
Decr Incr Decr Conclusion for y X b
-6 0 V6 X ok
! ! !
—=— =0+ +++t oo —— 0 +++ Sign of d?y/dx*
Concave  Concave Concave  Concave Conclusion fory N
down up down up y=2X—"= 1
3
(a) (b) (c)
A Figure 4.3.2

~ [l RATIONAL FUNCTIONS WITH OBLIQUE OR CURVILINEAR ASYMPTOTES
In the rational functions of Examples 1 and 2, the degree of the numerator did not exceed
the degree of the denominator, and the asymptotes were either vertical or horizontal. If the
numerator of a rational function has greater degree than the denominator, then other kinds
of “asymptotes” are possible. For example, consider the rational functions

2 1 3 _ 2_8
S awd g =t (1)
—

fx) =

By division we can rewrite these as

f(x):x—l—l and g(x):xz—
X x—1

Since the second terms both approach 0 as x — +co or as x — —oo, it follows that

(fx) —x)—0 asx—>+worasx— —w

(g(x) —x*)—0 asx— +oorasx— —ow

Geometrically, this means that the graph of y = f(x) eventually gets closer and closer to
the line y = x as x — 4o or as x - —o. The line y = x is called an oblique or slant
asymptote of f. Similarly, the graph of y = g(x) eventually gets closer and closer to the
parabola y = x? as x — oo or as x — —oo. The parabola is called a curvilinear asymptote
of g. The graphs of the functions in (1) are shown in Figures 4.3.3 and 4.3.4.

In general, if f(x) = P(x)/Q(x) is a rational function, then we can find quotient and
remainder polynomials ¢ (x) and 7 (x) such that

A Figure 4.3.4

r(x)
Q(x)

and the degree of r(x) is less than the degree of Q(x). Then r(x)/Q(x) — 0 as x — o0
and as x — —o0, s0 y = ¢(x) is an asymptote of f. This asymptote will be an oblique line
if the degree of P (x) is one greater than the degree of Q(x), and it will be curvilinear if the
degree of P(x) exceeds that of Q(x) by two or more. Problems involving these kinds of
asymptotes are given in the exercises (Exercises 17 and 18).

fx) =qx) +
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B GRAPHS WITH VERTICAL TANGENTS AND CUSPS

P Figure 4.3.5

The steps that are used to sketch the
graph of a rational function can serve as
guidelines for sketching graphs of other
types of functions. This is illustrated in
Examples 3, 4, and 5.

Figure 4.3.5 shows four curve elements that are commonly found in graphs of functions that
involve radicals or fractional exponents. In all four cases, the function is not differentiable at
xo because the secant line through (x¢, f(x¢)) and (x, f(x)) approaches a vertical position
as x approaches x( from either side. Thus, in each case, the curve has a vertical tangent line
at (xo, f(xp)). In parts (a) and (b) of the figure, there is an inflection point at x, because
there is a change in concavity at that point. In parts (¢) and (d), where f’(x) approaches
+o0 from one side of x( and — from the other side, we say that the graph has a cusp at x.

A

| |

| |

\ \ \ \
R R R R

lim f’(x) = +oo lim f’(x) = —oo lim f’(x) = —co lim f’(x) = +oo
) x=x§ x=xf x>
lim f’(x) = +oo lim f’(x) = —oo lim f’(x) = +oo0 lim f(x) = —oo
X—?Xa X—?Xa X—?Xa X—?Xa

(@) () (¢) (d)

» Example 3 Sketch the graph of y = (x — 4)%/3.

e Symmetries: There are no symmetries about the coordinate axes or the origin (verify).
However, the graph of y = (x — 4)%/3 is symmetric about the line x = 4 since it is a
translation (4 units to the right) of the graph of y = x%3, which is symmetric about
the y-axis.

e x-and y-intercepts: Setting y = 0 yields the x-intercept x = 4. Setting x = 0 yields
the y-intercept y = J16 ~ 2.5,

e Vertical asymptotes: None, since f(x) = (x — 4)*? is continuous everywhere.

® End behavior: The graph has no horizontal asymptotes since

lim (x —4)”* =40 and lim (x —4)*° = 4

X — 4

e Derivatives:

dy , 2 —_1/3 2

—_—= = — — 4 [ —

dx =~ O=30079 3 — )73

dy 2 43 2

_— = ¢ = —— —4)~ = -
dz ==Y O(x — 4)*/3

o Vertical tangent lines: There is a vertical tangent line and cusp at x = 4 of the type
in Figure 4.3.5d since f(x) = (x — 4)*3 is continuous at x = 4 and

2SO = ey T

Jm fie) = lim 3x -3

Conclusions and graph:

e The function f(x) = (x — HY3 = ((x — D32 s nonnegative for all x. There is a
zero for f atx = 4.
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e There is a critical point at x = 4 since f is not differentiable there. We saw above
that a cusp occurs at this point. The sign analysis of dy/dx in Figure 4.3.6a and the
first derivative test show that there is a relative minimum at this cusp since f'(x) < 0
ifx <4and f'(x) >0ifx > 4.

* The sign analysis of d*y/dx? in Figure 4.3.6a shows that the graph is concave down
on both sides of the cusp.

The graph is shown in Figure 4.3.6b. «

4 X 5+
|

4+ttt +++0++++++++ Signofy=(x—4)7

4 X
!
———————— o + + + + + + + + Sign of dy/dx
Decreasing Increasing Conclusion for y
4 X
!
———————— 0 — ——————— Sign of d®/dx*
Concave down Concave down Conclusion for y
» Figure 4.3.6 (a) (b)

» Example 4 Sketch the graph of y = 6x'/3 4 3x*/3.

Solution. Tt will help in our analysis to write
fx) = 6x'3 4 3x*3 =3x"32 4+ x)

o Symmetries: There are no symmetries about the coordinate axes or the origin (verify).

o x-and y-intercepts: Setting y = 3x'/3(2 + x) = 0 yields the x-intercepts x = 0 and
x = —2. Setting x = 0 yields the y-intercept y = 0.

e Vertical asymptotes: None, since f(x) = 6x'/3 + 3x*3 is continuous everywhere.

e End behavior: The graph has no horizontal asymptotes since

lim (613 4 3x¥%) = lim B2+ x) =4
lim (6x"? 4+ 3x*%) = lim 3x'?Q2+x) = 4+

e Derivatives:

d 22 1
D pray =22 4 = 2 (1 oy = 22D
dx x2/3
d’y " 4 s34 o4 s 4x -1
preant A e S L T
e Vertical tangent lines: There is a vertical tangent line at x = 0 since f is continuous
there and ) , . 2Q2x+1)
x11>n(‘)14r f (X) - xliz‘%* x2/3 =t
. , . 22x+ 1)
RSO =1I e =t

This and the change in concavity at x = 0 mean that (0, 0) is an inflection point of
the type in Figure 4.3.5a.



4.3 Analysis of Functions IlI: Rational Functions, Cusps, and Vertical Tangents

261

Conclusions and graph:

TECHNOLOGY MASTERY

The graph in Figure 4.3.7b was gen-
erated with a graphing utilit. How-
ever, the inflection point at x = 1 is so
subtle that it is not evident from this
graph. See if you can produce a version
of this graph with your graphing utility
that makes the inflection point evident.

-2
|

From the sign analysis of y in Figure 4.3.7a, the graph is below the x-axis between
the x-intercepts x = —2 and x = 0 and is above the x-axis if x < —2 or x > 0.

From the formula for dy/dx we see that there is a stationary point at x = —% and a
critical point at x = 0 at which f is not differentiable. We saw above that a vertical

tangent line and inflection point are at that critical point.
The sign analysis of dy/dx in Figure 4.3.7a and the first derivative test show that
there is a relative minimum at the stationary point at x = —% (verify).

The sign analysis of d?y/dx? in Figure 4.3.7a shows that in addition to the inflection
point at the vertical tangent there is an inflection point at x = 1 at which the graph
changes from concave down to concave up.

The graph is shown in Figure 4.3.7b. «

0 X y
! 15+

+++++++0

—————— O++++++++++++

|
ol

Sign of y = 3x'3(2 + x)

0 X

Decreasing

!
O+++o00+ +++++++++++ Signof dy/dx 51
Incr Increasing Conclusion for y N
1 1 1 1

0 1 by
! |

+4++ Attt oo

Concave
up

A Figure 4.3.7

0+ ++++ Signof d?y/dx?

Concave Concave Conclusion for y
down up y = 6x173 4+ 3243
(a) (b)

Il GRAPHING OTHER KINDS OF FUNCTIONS
We have discussed methods for graphing polynomials, rational functions, and functions
with cusps and vertical tangent lines. The same calculus tools that we used to analyze these
functions can also be used to analyze and graph trigonometric functions, logarithmic and
exponential functions, and an endless variety of other kinds of functions.

» Example 5 Sketch the graph of y = e"/2 and identify the locations of all relative
extrema and inflection points.

Solution.

Symmetries: Replacing x by —x does not change the equation, so the graph is sym-
metric about the y-axis.

x- and y-intercepts: Setting y = 0 leads to the equation e*"/2 = 0, which has no

solutions since all powers of e have positive values. Thus, there are no x-intercepts.
Setting x = 0 yields the y-intercept y = 1.

Vertical asymptotes: There are no vertical asymptotes since ¢™"/2 is continuous on
(=00, +0).
End behavior: The x-axis (y = 0) is a horizontal asymptote since

x2/2 — lim e—x2/2 =0

X — 4o

lim e~

X— —»
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e Derivatives: dy _epd [ x2i| —x2/2
—~ —¢ — | —— | = —Xxe

dx dx 2
d’y d. _vp —epd
m——xa[e l+e E[_X]

— 2o X2 _ P2 (x2 _ 1)e’x2/2

Conclusions and graph:

e The sign analysis of y in Figure 4.3.8a is based on the fact that /2 > 0 forall x.

This shows that the graph is always above the x-axis.
e Thesignanalysis of dy/dx in Figure 4.3.8a is based on the fact thatdy/dx = —xe™"/2
has the same sign as —x. This analysis and the first derivative test show that there is
a stationary point at x = 0 at which there is a relative maximum. The value of y at

the relative maximum is y = ¢° = 1.

 The sign analysis of d”y/dx? in Figure 4.3.8a is based on the fact that d*y/dx* =
(x2 — 1)e=*"/2 has the same sign as x> — 1. This analysis shows that there are inflec-
tion points at x = —1 and x = 1. The graph changes from concave up to concave
down at x = —1 and from concave down to concave up at x = 1. The coordinates of
the inflection points are (—1, e="/2) ~ (—=1,0.61) and (1, e~/2) ~ (1, 0.61).

The graph is shown in Figure 4.3.8b. «

0 X
l y

+++++++++++++++++++  Signofy

0 x
|
+++++++++0—-—-—-—-—-————— Sign of dy/dx N
Increasing Decreasing Conclusion for y 5 ‘l l‘ >
—-1 1 X
! !
+4+++++0-—-—-—-—-- 0+ +++++ Sign of d?y/dx* 2
Concave Concave Concave Conclusion for y y=e!
down up
(a) (b)
A Figure 4.3.8

[-1,25] x[-0.5,0.5]
xScl=5,yScl =0.2

y=1x

A Figure 4.3.9

B GRAPHING USING CALCULUS AND TECHNOLOGY TOGETHER

Thus far in this chapter we have used calculus to produce graphs of functions; the graph
was the end result. Now we will work in the reverse direction by starting with a graph
produced by a graphing utility. Our goal will be to use the tools of calculus to determine the
exact locations of relative extrema, inflection points, and other features suggested by that
graph and to determine whether the graph may be missing some important features that we
would like to see.

» Example 6 Use a graphing utility to generate the graph of f(x) = (Inx)/x, and
discuss what it tells you about relative extrema, inflection points, asymptotes, and end
behavior. Use calculus to find the locations of all key features of the graph.

Solution. Figure 4.3.9 shows a graph of f produced by a graphing utility. The graph
suggests that there is an x-intercept near x = 1, a relative maximum somewhere between
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x = 0and x = 5, an inflection point near x = 5, a vertical asymptote at x = 0, and possibly
a horizontal asymptote y = 0. For a more precise analysis of this information we need to
consider the derivatives

X <l) — (Inx)(1)
X . 1 —Inx

fix) = — —

()
x*|— ] -0 —=1Inx)2x)
X

4

_2xlnx—3x _21nx—3
- - 3

') =

x x4 X

* Relative extrema: Solving f’(x) = 0yields the stationary point x = e (verify). Since

2-3 1
f//(€)=7=—;<0

there is a relative maximum at x = e & 2.7 by the second derivative test.

 Inflection points: Since f(x) = (Inx)/x is only defined for positive values of x, the
second derivative f”(x) has the same sign as 2 In x — 3. We leave it for you to use the
inequalities (2Inx — 3) < Oand (2Inx — 3) > 0to show that f”(x) < Oifx < ¢3/2
and f”(x) > 0if x > ¢*/2. Thus, there is an inflection point at x = 32 ~ 4.5.
* Asymptotes: Applying L'Hopital’s rule we have
Inx /]

lim — = lim lim — =0
x— 4o X x— +o 1 X —+o X

so that y = 0 is a horizontal asymptote. Also, there is a vertical asymptote at x = 0
since . Inx
lim — = —
x—0t Xx
(why?).
o [Intercepts: Setting f(x) =0 yields (Inx)/x = 0. The only real solution of this
equation is x = 1, so there is an x-intercept at this point. <«

VQUlCK CHECK EXERCISES 4.3  (See page 266 for answers.)

3(x + D(x —3)

1. Let f(x) = _Given that (a) The x-intercepts are
(xr+2)(x—4) (b) The vertical asymptote is
, —30(x — 1) , 90(x2 —2x + 4) (c) The horizontal asymptote is
fx) = G +22(x —42 )= x+27(x—4)7 (d) The graph is above the x-axis on the 1ntervals - .

(e) The graph is increasing on the intervals
(f) The graph is concave up on the intervals

(b) The vertical asymptotes are (¢) Inflection points occur at.x =

(c) The horizontal asymptote is 3. Let f(x) = (x —2)%""%. Given that

(d) The graph is above the x-axis on the 1ntervals - . f(x) = %(x2 — 4)e*/2, f(x) = i(XZ +4x — 4)e*?
(e) The graph is increasing on the intervals
(f) The graph is concave up on the intervals

determine the following properties of the graph of f.
(a) The x- and y-intercepts are

determine the following properties of the graph of f.

(g) The relative maximum point on the graph is
x> -4
. Let f(x) = ——. Given that

x8/3
, —2(x* - 16) . 2(5x% — 176)
f(x)=w, f(x)=9x174/3

determine the following properties of the graph of f.

(a) The horizontal asymptote is

(b) The graphis above the x-axis on the 1ntervals
(c) The graph is increasing on the intervals

(d) The graph is concave up on the intervals

(e) The relative minimum point on the graph is
(f) The relative maximum point on the graph is
(g) Inflection points occur at x =
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EXERCISE SET 4.3 [ Graphing Utility

1 1-14 Give a graph of the rational function and label the co-
ordinates of the stationary points and inflection points. Show
the horizontal and vertical asymptotes and label them with their
equations. Label point(s), if any, where the graph crosses a hor-
izontal asymptote. Check your work with a graphing utility.

2x — 6 8 X
1. 2. 3.
4—x x2—4 x2—4
4 2x2 5 7;2 6. -1
x2—4 x2+4 xt+1
3 +1 1
7. —— 82— ———
x3—1 3x2 4 x3
4 2 3(x + 1)?
9, — ——+3 10, ——
x2 x+ (x — 1)2
3 1)2 1
11.()‘+)2 12,34 20
x-=1 x—=1
2 2
13. X tx 14. R
1 —x2 1—x3

[ 15-16 In each part, make a rough sketch of the graph using
asymptotes and appropriate limits but no derivatives. Compare
your graph to that generated with a graphing utility.

3x2 -8 x2 4+ 2x
15. = b =
@ y=-"73—4 b) y=-—73—
2x — x2 x2
16- = —FF b = -
@ x24+x-=2 ®y x2—x-=2

17. Show that y = x + 3 is an oblique asymptote of the graph of
f(x) = x*/(x — 3). Sketch the graph of y = f(x) showing
this asymptotic behavior.

18. Showthaty = 3 — x?isacurvilinear asymptote of the graph
of f(x) = (24 3x — x3)/x. Sketch the graph of y = f(x)
showing this asymptotic behavior.

4 19-24 Sketch a graph of the rational function and label the co-
ordinates of the stationary points and inflection points. Show
the horizontal, vertical, oblique, and curvilinear asymptotes and
label them with their equations. Label point(s), if any, where the
graph crosses an asymptote. Check your work with a graphing
utility.

2 _
19. 22— 1 20, © 2
X X
3
2 * 72 2 -1 1
x2 x  x2
3_4_ 5
23‘w 24.x7
x+2 x241

FOCUS ON CONCEPTS

25. In each part, match the function with graphs I-VI.
(a) x1/3 (b) x1/4 (c) x /5
@) x> (e) x*3 () x5

II y

y
1 1 *\
X X
—Q R R R -
1 -1 1
111 y v AY
1F 1
X X
-1 1 -1 1
v y VI y
\/ 1+ :
X X
-1 1 -1 J 1

A Figure Ex-25

26. Sketch the general shape of the graph of y = x!/", and
then explain in words what happens to the shape of the
graph as n increases if
(a) n is a positive even integer
(b) n is a positive odd integer.

27-30 True-False Determine whether the statement is true or
false. Explain your answer.

27. Suppose that f(x) = P(x)/Q(x), where P and Q are poly-
nomials with no common factors. If y = 5 is a horizontal
asymptote for the graph of f, then P and Q have the same
degree.

28. If the graph of f has a vertical asymptote at x = 1, then f
cannot be continuous at x = 1.

29. If the graph of f” has a vertical asymptote at x = 1, then f
cannot be continuous at x = 1.

30. If the graph of f has a cusp at x = 1, then f cannot have
an inflection point at x = 1.

[ 31-38 Give a graph of the function and identify the locations
of all critical points and inflection points. Check your work with
a graphing utility.

31. V4x2 -1

33. 2x +3x23

35, 4x1/3 — x43
8+ x

37.
2+ Ix

32. Ix2—4
34, 2x2 — 3x*3
36. 5x*3 4 x93
8(vx—1)

X

38.
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[ 39-44 Give a graph of the function and identify the locations
of all relative extrema and inflection points. Check your work
with a graphing utility.

39. x +sinx

41. /3 cosx + sin x
43. sin’x — cos x,

44, Jtanx, 0<x <nx/2

I 45-54 Using L’Hopital’s rule (Section 3.6) one can verify that

X

40. x —tanx
42. sinx + cosx

—nm<x<3m

lim xe* =0

X —> —o

. X
lim — =0,

lim — = —+o0,
x—tow eX

X— 4w X
In these exercises: (a) Use these results, as necessary, to find the
limits of f(x) as x - +o and as x — —o. (b) Sketch a graph
of f(x) and identify all relative extrema, inflection points, and
asymptotes (as appropriate). Check your work with a graphing
utility.

45. f(x) = xe* 46. f(x) = xe™
47. f(x) = x2e™ 48. f(x) = x%e*
49. f(x) =x%e ™ 50. f(x) =e V¥
51. f(x) = le_xx 52. f(x) = x3e*
53. f(x) = x%e!™* 54, f(x) = x3e"!

M 55-60 Using L' Hopital’s rule (Section 3.6) one can verify that

Inx ! .
Iim x"Inx =0
x—0t

lim
x— 4w xI

=0, lim
x—+o Ilnx

for any positive real number r. In these exercises: (a) Use these
results, as necessary, to find the limits of f(x) as x — +o0 and as
x— 07, (b) Sketch a graph of f(x) and identify all relative ex-
trema, inflection points, and asymptotes (as appropriate). Check
your work with a graphing utility.

55. f(x) =xInx 56. f(x) =x*Inx

57. f(x) = x*In(2x) 58. f(x) =In(x?+1)

59. f(x) =x¥?Inx 60. f(x)=x""Inx

I 61. Consider the family of curves y = xe™* (b > 0).

(a) Use a graphing utility to generate some members of
this family.

(b) Discuss the effect of varying b on the shape of the
graph, and discuss the locations of the relative ex-
trema and inflection points.

[~ 62. Consider the family of curves y = e’ (b > 0).

(a) Use a graphing utility to generate some members of
this family.

(b) Discuss the effect of varying b on the shape of the
graph, and discuss the locations of the relative ex-
trema and inflection points.

= +OO,

[~ 63. (a) Determine whether the following limits exist, and
if so, find them:

lim e cosx

X —> —o

lim e* cosx,

X — 4o

(b) Sketch the graphs of the equations y =e*, y = —e*,
and y = e* cos x in the same coordinate system, and
label any points of intersection.

(c) Use a graphing utility to generate some members of
the family y = ¢** cosbx (a > 0 and b > 0), and
discuss the effect of varying a and b on the shape
of the curve.

M 64. Consider the family of curves y = x"e /" where n is

a positive integer.

(a) Use a graphing utility to generate some members of
this family.

(b) Discuss the effect of varying n on the shape of the
graph, and discuss the locations of the relative ex-
trema and inflection points.

65. The accompanying figure shows the graph of the deriva-
tive of a function 4 that is defined and continuous on the
interval (—oo, +o0). Assume that the graph of 4’ has a
vertical asymptote at x = 3 and that

W (x)—0" asx — —o
K (x) = —o0 as x — 4o
(a) What are the critical points for 4 (x)?
(b) Identify the intervals on which % (x) is increasing.
(c) Identify the x-coordinates of relative extrema for
h(x) and classify each as a relative maximum or
relative minimum.

(d) Estimate the x-coordinates of inflection points for
h(x).

y
3

y=h(x)
1 [

— | | L | \X
-1 1\7 3[4\5\5
_1,

-3 < Figure Ex-65

66. Let f(x) = (1 — 2x)h(x), where h(x) is as given in Ex-
ercise 65. Suppose that x = 5is a critical point for f(x).
(a) Estimate A(5).
(b) Use the second derivative test to determine whether
f(x) has arelative maximum or a relative minimum
atx =5.

67. Arectangular plot of land is to be fenced off so that the area
enclosed will be 400 ft>. Let L be the length of fencing
needed and x the length of one side of the rectangle. Show
that L = 2x + 800/x for x > 0, and sketch the graph of L
versus x for x > 0.

68. A box with a square base and open top is to be made from
sheet metal so that its volume is 500 in®. Let S be the area
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of the surface of the box and x the length of a side of the 0.2

square base. Show that S = x2 4 2000/x for x > 0, and 0.1

sketch the graph of S versus x for x > 0. e T

69. The accompanying figure shows a computer-generated _'2 1| i 2' / ot i:
graph of the polynomial y = 0.1x>(x — 1) using a view- -t 0.2

PN W o

ing window of [—2,2.5] x [—1, 5]. Show that the choice Generated by Mathematica Generated by Mathematica
of the vertical scale caused the computer to miss important A Figure Ex-69 A Figure Ex-70
features of the graph. Find the features that were missed and 71. Writing Suppose that x = xq is a point at which a func-
make your own sketch of the graph that shows the missing tion f is continuous but not differentiable and that f’(x)
features. approaches different finite limits as x approaches x( from
either side. Invent your own term to describe the graph of
70. The accompanying figure shows a computer-generated f at such a point and discuss the appropriateness of your
graph of the polynomial y = 0.1x°(x + 1)? using a viewing term.

window of [—2, 1.5] x [—0.2, 0.2]. Show that the choice
of the vertical scale caused the computer to miss important
features of the graph. Find the features that were missed and
make your own sketch of the graph that shows the missing
features.

72. Writing Suppose that the graph of a function f is obtained
using a graphing utility. Discuss the information that cal-
culus techniques can provide about f to add to what can
already be inferred about f from the graph as shown on
your utility’s display.

‘/QU|CK CHECK ANSWERS 4.3

1. (@) (=1,0),(3,0),(0,2) (b) x=—2andx =4 (c) y =3 (d) (-, —2),(—1,3), and (4, +) () (—, —2) and (-2, 1]
(f) (=%, —2)and (4, +) (g) (1. 3) 2. () (=2,0),(2,0) (b) x=0 (c) y=0 (d) (—oe, —2) and (2, )

(e) (—oo, —4]and (0,4] (f) (—oo, —4+/11/5) and (44/11/5, +) (g) +4/11/5~ £5.93 3. (a) y = 0(asx — —x)

(b) (—o,2) and (2, +) (c) (—oe, —2] and [2, 40) (d) (—o0, —2 — 2+/2) and (=2 4 2+/2, +) (e) (2,0)

(f) (=2,16e7 ") ~ (=2,5.89) (2) —2+2/2

m ABSOLUTE MAXIMA AND MINIMA

At the beginning of Section 4.2 we observed that if the graph of a function f is viewed as a
two-dimensional mountain range (Figure 4.2.1), then the relative maxima and minima
correspond to the tops of the hills and the bottoms of the valleys; that is, they are the high
and low points in their immediate vicinity. In this section we will be concerned with the
more encompassing problem of finding the highest and lowest points over the entire
mountain range, that is, we will be looking for the top of the highest hill and the bottom of
the deepest valley. In mathematical terms, we will be looking for the largest and smallest
values of a function over an interval.

Il ABSOLUTE EXTREMA
We will begin with some terminology for describing the largest and smallest values of a
function on an interval.

4.4.1 perFINITION Consider an interval in the domain of a function f and a point x,
in that interval. We say that f has an absolute maximum at x, if f(x) < f(xq) for all
x in the interval, and we say that f has an absolute minimum at x if f(xy) < f(x) for
all x in the interval. We say that f has an absolute extremum at x if it has either an
absolute maximum or an absolute minimum at that point.



4.4 Absolute Maxima and Minima 267

If f has an absolute maximum at the point x, on an interval, then f(xo) is the largest value
of f on the interval, and if f has an absolute minimum at x,, then f(x() is the smallest
value of f on the interval. In general, there is no guarantee that a function will actually
have an absolute maximum or minimum on a given interval (Figure 4.4.1).

AY Yy AY | y I Y
| |
| |
| | |
x s T L
\,/ \./ af (C a\L b
X | |
| |
| |
[ has an absolute f has no absolute f has an absolute f has no absolute f has an absolute
minimum but no extrema on maximum and extrema on (a, b). maximum and
absolute maximum (=00, +00). minimum on minimum on [a, b].
on (—oo, +o0). (o0, +00).
(@) ) (©) (d) ()
A Figure 4.4.1

B THE EXTREME VALUE THEOREM

The hypotheses in the Extreme-Value
Theorem are essential. That is, if ei-
ther the interval is not closed or f is
not continuous on the interval, then f
need not have absolute extrema on the
interval (Exercises 4-6).

REMARK

Theorem 4.4.3 is also valid on infinite
open intervals, that is, intervals of the
form (—o0, +), (a, +99), and (=0, b).

Parts (a)—(d) of Figure 4.4.1 show that a continuous function may or may not have absolute
maxima or minima on an infinite interval or on a finite open interval. However, the following
theorem shows that a continuous function must have both an absolute maximum and an
absolute minimum on every finite closed interval [see part (e) of Figure 4.4.1].

4.4.2 THEOREM (Extreme-Value Theorem) If afunction f is continuous on a finite closed

interval [a, b], then f has both an absolute maximum and an absolute minimum on
la, b].

Although the proof of this theorem is too difficult to include here, you should be able to convince
yourself of its validity with a little experimentation—try graphing various continuous functions over the
interval [0, 1], and convince yourself that there is no way to avoid having a highest and lowest point
on a graph. As a physical analogy, if you imagine the graph to be a roller-coaster track starting at x = 0
and ending at x = 1, the roller coaster will have to pass through a highest point and a lowest point
during the trip.

The Extreme-Value Theorem is an example of what mathematicians call an existence
theorem. Such theorems state conditions under which certain objects exist, in this case
absolute extrema. However, knowing that an object exists and finding it are two separate
things. We will now address methods for determining the locations of absolute extrema
under the conditions of the Extreme-Value Theorem.

If f is continuous on the finite closed interval [a, b], then the absolute extrema of f
occur either at the endpoints of the interval or inside on the open interval (a, b). If the
absolute extrema happen to fall inside, then the following theorem tells us that they must
occur at critical points of f.

4.4.3 THEOREM If f has an absolute extremum on an open interval (a, b), then it
must occur at a critical point of f.
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A Figure 4.4.2 In part (a) the absolute
maximum occurs at an endpoint of
[a, b], in part (b) it occurs at a stationary
point in (a, b), and in part (c) it occurs at
a critical point in (a, b) where f is not
differentiable.

[1, 5] % [20, 55]
xScl =1, yScl = 10

y = 2x3 = 15x% + 36x

A Figure 4.4.3
Table 4.4.1
1
X -11]0 3|1
9
f(x) 910| -5 1|3

PROOF If f has an absolute maximum on (a, b) at xo, then f(x() is also a relative max-
imum for f; for if f(x¢) is the largest value of f on all (a, b), then f(xq) is certainly the
largest value for f in the immediate vicinity of xo. Thus, xq is a critical point of f by
Theorem 4.2.2. The proof for absolute minima is similar. ®

It follows from this theorem that if f is continuous on the finite closed interval [a, b],
then the absolute extrema occur either at the endpoints of the interval or at critical points
inside the interval (Figure 4.4.2). Thus, we can use the following procedure to find the
absolute extrema of a continuous function on a finite closed interval [a, b].

A Procedure for Finding the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval [a, b)

Step 1. Find the critical points of f in (a, b).
Step 2. Evaluate f at all the critical points and at the endpoints a and b.

Step 3. The largest of the values in Step 2 is the absolute maximum value of f on [a, b]
and the smallest value is the absolute minimum.

» Example 1 Find the absolute maximum and minimum values of the function
fx) = 2x3 — 15x2 4+ 36x on the interval [1, 5], and determine where these values occur.

Solution. Since f is continuous and differentiable everywhere, the absolute extrema
must occur either at endpoints of the interval or at solutions to the equation f'(x) = 0 in
the open interval (1, 5). The equation f’(x) = 0 can be written as

6x% — 30x +36 = 6(x* —5x +6) = 6(x —2)(x —3) =0

Thus, there are stationary points at x = 2 and at x = 3. Evaluating f at the endpoints, at
x =2, and at x = 3 yields

F(1) =2(1)3 —15(1)% +36(1) =23

) =212)° —15(2)* +36(2) =28

f(3) =23)* —15(3)> +36(3) = 27

£(5) =2(5) — 15(5)> +36(5) = 55
from which we conclude that the absolute minimum of f on [1, 5] is 23, occurring at x = 1,

and the absolute maximum of f on [1, 5] is 55, occurring at x = 5. This is consistent with
the graph of f in Figure 4.4.3. «

» Example?2 Findthe absolute extremaof f(x) = 6x*? — 3x'3 ontheinterval [—1, 1],
and determine where these values occur.

Solution. Note that f is continuous everywhere and therefore the Extreme-Value The-
orem guarantees that f has a maximum and a minimum value in the interval [—1, 1].
Differentiating, we obtain

8x — 1

flo) =8x"P —x P =x BBy — 1) = —
X

Thus, f'(x) =0atx = %, and f’(x) is undefined at x = 0. Evaluating f at these critical
points and endpoints yields Table 4.4.1, from which we conclude that an absolute minimum
value of —% occurs at x = %, and an absolute maximum value of 9 occurs at x = —1. «
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Il ABSOLUTE EXTREMA ON INFINITE INTERVALS
We observed earlier that a continuous function may or may not have absolute extrema on
an infinite interval (see Figure 4.4.1). However, certain conclusions about the existence of
absolute extrema of a continuous function f on (—o, +) can be drawn from the behavior
of f(x) as x > —oo and as x — +oc (Table 4.4.2).

Table 4.4.2

ABSOLUTE EXTREMA ON INFINITE INTERVALS

LIMITS

lim f(x) = +oo
X—>—00

lim f(x) = +oo
X —>+oo

lim f(x) = —eo

X —>—00

lim f(x) = —oo

X —>+oo

lim f(x) = —oo
X—>—o0

lim f(x) = 4o0
X—>+oo

lim f(x) = +oo
X —>—00
lim f(x) = —oo
X —>+oo

CONCLUSION IF
f IS CONTINUOUS
EVERYWHERE

f has an absolute minimum
but no absolute maximum
on (—oo, 4o0).

f has an absolute maximum
but no absolute minimum
on (—oo, 400).

f has neither an absolute
maximum nor an absolute
minimum on (—oo, +c0).

f has neither an absolute
maximum nor an absolute
minimum on (—oo, +o0).
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» Example 3 What can you say about the existence of absolute extrema on (—oo, +0)
for polynomials?

Solution.

If p(x) is a polynomial of odd degree, then

lim p(x) and lim p(x)
X — 4 X —> —®©

6]

have opposite signs (one is +oo and the other is —x), so there are no absolute extrema. On
the other hand, if p(x) has even degree, then the limits in (1) have the same sign (both +o
or both —co). If the leading coefficient is positive, then both limits are 4o, and there is an
absolute minimum but no absolute maximum; if the leading coefficient is negative, then
both limits are —oo, and there is an absolute maximum but no absolute minimum. <

» Example 4 Determine by inspection whether p(x) = 3x* + 4x3 has any absolute
extrema. If so, find them and state where they occur.

Solution.

v =

Since p(x) has even degree and the leading coefficient is positive, p(x) — o0
as x — Foo. Thus, there is an absolute minimum but no absolute maximum. From Theorem
4.4.3 [applied to the interval (—oo, +o0)], the absolute minimum must occur at a critical
point of p. Since p is differentiable everywhere, we can find all critical points by solving

the equation p’(x) = 0. This equation is

123+ 123> = 12x°(x + 1) =0

from which we conclude that the critical points are x = 0 and x = —1. Evaluating p at
these critical points yields

p(x) = 3x* + 4x3

A Figure 4.4.4

p(0)=0 and p(—1)=—1

Therefore, p has an absolute minimum of —1 at x = —1 (Figure 4.4.4). <«



270 Chapter 4 / The Derivative in Graphing and Applications

Il ABSOLUTE EXTREMA ON OPEN INTERVALS

We know that a continuous function may or may not have absolute extrema on an open
interval. However, certain conclusions about the existence of absolute extrema of a con-
tinuous function f on a finite open interval (a, b) can be drawn from the behavior of f(x)
as x —a™ and as x — b~ (Table 4.4.3). Similar conclusions can be drawn for intervals of

the form (—o0, b) or (a, +x).

Table 4.4.3

ABSOLUTE EXTREMA ON OPEN INTERVALS

lim f(x) = 4oo

LIMITS xat
lim f(x) = 4oo

x—b~

lim f(x) = —oo

x—at

lim f(x) = —eo

x—b~

lim f(x) = —oo
x—at

lim f(x) = 4oo
x—b~

lim f(x) = 4oo
x—at

lim f(x) = —oo
x—b~

CONCLUSION IF
f IS CONTINUOUS
ON (a, b)

f has an absolute
minimum but no absolute
maximum on (a, b).

f has an absolute
maximum but no absolute
minimum on (a, b).

£ has neither an absolute
maximum nor an absolute
minimum on (a, b).

f has neither an absolute
maximum nor an absolute
minimum on (a, b).

=N

S

GRAPH 5 5 2 A
\ a \
T ~ N
» Example 5 Determine whether the function
[ = —
X% —x
has any absolute extrema on the interval (0, 1). If so, find them and state where they occur.
Solution. Since f is continuous on the interval (0, 1) and
. . 1
)cli>n(}+ f(X) - )cll{l(}+ x2—x a Xi)n(}+ )C(x — 1) T
1
lim = lim ——= lim —— = —
y x—1- f(X) x—>1-x2 —x x—1- x(x— 1)
; X the function f has an absolute maximum but no absolute minimum on the interval (0, 1).
1 1 1 . .. . . .
I By Theorem 4.4.3 the absolute maximum must occur at a critical point of f in the interval
Sl T 2 1 } (0, 1). We have . Iy — 1
X)=——
} (x2— x)2
-10 - \
} so the only solution of the equation f'(x) = 0isx = % Although f is not differentiable at
~-15F \ x = 0oratx = 1, these values are doubly disqualified since they are neither in the domain
} of f nor in the interval (0, 1). Thus, the absolute maximum occurs at x = % and this
! absolute maximum is : 1
P8 =y =4

y= 5 (0<x<1)
X" —X

A Figure 4.4.5

(Figure 4.4.5). «

Il ABSOLUTE EXTREMA OF FUNCTIONS WITH ONE RELATIVE EXTREMUM

If a continuous function has only one relative extremum on a finite or infinite interval, then
that relative extremum must of necessity also be an absolute extremum. To understand why



A second
relative
extremum

A Figure 4.4.6

fx) = o739

A Figure 4.4.7

Does the function in Example 6 have
an absolute minimum on the interval
(o0, +20)?
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this is so, suppose that f has a relative maximum at x, in an interval, and there are no other
relative extrema of f on the interval. If f(x() is not the absolute maximum of f on the
interval, then the graph of f has to make an upward turn somewhere on the interval to rise
above f(xp). However, this cannot happen because in the process of making an upward
turn it would produce a second relative extremum (Figure 4.4.6). Thus, f(xp) must be the
absolute maximum as well as a relative maximum. This idea is captured in the following
theorem, which we state without proof.

4.4.4 THEOREM Supposethat f is continuous and has exactly one relative extremum
on an interval, say at x.

(@) If f has a relative minimum at xy, then f(x¢) is the absolute minimum of f on the
interval.

(b) If f has a relative maximum at xg, then f(xo) is the absolute maximum of f the
interval.

This theorem is often helpful in situations where other methods are difficult or tedious to
apply.

» Example 6 Find the absolute extrema, if any, of the function f(x) = ¢™ =3 on the
interval (0, +o).

Solution. We have
linl f(x) =+
(verify), so f does not have an absolute maximum on the interval (0, +o). However, the
continuity of f together with the fact that
. _ O _
i 1) =€ =1

is finite allow for the possibility that f has an absolute minimum on (0, 4). If so, it would
have to occur at a critical point of f, so we consider

£/ = eI (3x% — 6x) = 3x(x — 2)e™ )

Since ¢®’ =3 < 0 for all values of x, we see that x = 0 and x = 2 are the only critical
points of f. Of these, only x = 2 is in the interval (0, +), so this is the point at which an
absolute minimum could occur. To see whether an absolute minimum actually does occur
at this point, we can apply part (a) of Theorem 4.4.4. Since

F7(x) = ¥ 3 (3x2 — 6x)2 + €3 (6x — 6)
= [(3x? — 6x)% + (6x — 6)]e™’=3x)

we have f'2) = (0+6)e* =6e*>0

so arelative minimum occurs atx = 2 by the second derivative test. Thus, f(x) has an abso-

lute minimum at x = 2, and this absolute minimum is f(2) = e~* & 0.0183 (Figure 4.4.7).
<
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VQUICK CHECK EXERCISES 4.4

(See page 274 for answers.)

1. Use the accompanying graph to find the x-coordinates of
the relative extrema and absolute extrema of f on [0, 6].

AY

< Figure Ex-1

to determine the absolute maximum and absolute minimum
values, if any, for f on the indicated intervals.

(@ [1,4] () [-2,2] (o) [-4.4] (@ (=44

x | —4 =3 |-2]|-1 0 1 2 3 4

f(x) (2224 |-1333| 0 1603|2096 |2293|2400|2717 | 6064

3. Let f(x) =x>—3x2—9x 4 25. Use the derivative
f'(x) =3(x 4+ 1)(x — 3) to determine the absolute maxi-
mum and absolute minimum values, if any, for f on each
of the given intervals.

2. Suppose that a function f is continuous on [—4, 4] and has () [0, 4] (b) [=2,4] (©) [—4,2]
critical points atx = —3, 0, 2. Use the accompanying table () [-5,10] (e) (=5,4)
EXERCISE SET 4.4 1 Graphing utility CAS
6 Lo o fr 0<r<
X) =
1-2 Use the graph to find x-coordinates of the relative ex- %’ x=01

trema and absolute extrema of f on [0, 7].
1. 2. Y

X

3. In each part, sketch the graph of a continuous function f

with the stated properties on the interval [0, 10].

(a) f hasan absolute minimum at x = 0 and an absolute
maximum at x = 10.

(b) f has an absolute minimum at x = 2 and an absolute
maximum at x = 7.

(c) f has relative minima at x = 1 and x = 8, has rel-
ative maxima at x = 3 and x = 7, has an absolute
minimum at x = 5, and has an absolute maximum at
x = 10.

4. In each part, sketch the graph of a continuous function f
with the stated properties on the interval (—oo, 4-c0).

(a) f has no relative extrema or absolute extrema.

(b) f has an absolute minimum at x = O but no absolute

maximum.
(c) f has an absolute maximum at x = —5 and an abso-
lute minimum at x = 5.
5. Let 1 0 |
—_—, <x <
fx)=q91-x
0, x=1

Explain why f has a minimum value but no maximum
value on the closed interval [0, 1].

Explain why f has neither a minimum value nor a max-
imum value on the closed interval [0, 1].

7-16 Find the absolute maximum and minimum values of f on
the given closed interval, and state where those values occur.

7. f(x) = 4x% — 12x + 10; [1,2]
8. f(x) =8x —x% [0,6]
9. f(x)=(x—27% [1,4]
10. f(x) = 2x> +3x% — 12x; [-3,2]

3x
11. f(x)_m,[ 1,1]
12. f(x) = >+ 0?3 [-2.3]
13. f(x) =x —2sinx; [—n/4, 7/2]
14. f(x) = sinx —cosx; [0, 7]
15. f(x)=1+19—x2; [-5,1]
16. f(x) = |6 —4x|; [-3,3]

17-20 True-False Determine whether the statement is true or

false. Explain your answer.

17. If a function f is continuous on [a, b], then f has an abso-
lute maximum on [a, b].

18. If a function f is continuous on (a, b), then f has an abso-
lute minimum on (a, b).

19. If a function f has an absolute minimum on (a, b), then
there is a critical point of f in (a, b).

20. If afunction f is continuous on [a, b] and f has no relative

extreme values in (a, b), then the absolute maximum value
of f exists and occurs either at x = a or at x = b.



21-28 Find the absolute maximum and minimum values of f,
if any, on the given interval, and state where those values occur.

21.
22,
23.
24.
25.
26.

27.

28.

fO) =x"—x =2; (=, +)
f(x) =3 —4dx — 2x2; (—, )
f(x) = 4x® = 3x*; (—o0, +0)
Fx) = x* +4x; (—o0, +0)

Fx) =2x° —6x +2; (—, +)
Fx) =x3—9x 4+ 1; (—o0, +)

x24+1
fx) = m, (=5,-1)
fo =22 15
x+1

4 29-42 Use a graphing utility to estimate the absolute maximum
and minimum values of f, if any, on the stated interval, and then
use calculus methods to find the exact values.

29.
30.
31.

32.

33.

34.

35.

36.
37.

38.

39.
40.
41.
42.
43.

44.

Fx) = (x* = 2x)%; (—o0, +)
F&x) = (x = D*(x +2)% (=00, +)
Fx) =x*320 - x); [—1,20]

X
fx) = m, [—1,4]
1
fx)y=1+ pE (0, +)
2x%2 —3x +3
fx) = PEI TR [1, +)
Flry = 225 /4. 30/4)
sin x
fx) = sin®x + cosx; [—m, 7]

fo) =x%e5 [1,4]
Fo = @D

X
fx) =5In(x* + 1) — 3x; [0, 4]

f(x) = (= e*; [-2,2]

f(x) = sin(cosx); [0, 27]

f(x) = cos(sinx); [0, 7]

Find the absolute maximum and minimum values of

. 4x — 2, x <1
=10 3. x=1

on [3. 3].

Let f(x) = x> + px + ¢. Find the values of p and ¢ such
that f(1) = 3 is an extreme value of f on [0, 2]. Is this
value a maximum or minimum?

45-46 If f is a periodic function, then the locations of all ab-
solute extrema on the interval (—oc, +o0) can be obtained by
finding the locations of the absolute extrema for one period and
using the periodicity to locate the rest. Use this idea in these
exercises to find the absolute maximum and minimum values of
the function, and state the x-values at which they occur.
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45. f(x) =2cosx +cos2x 46. f(x)=3cos g + 2 cos %
47-48 One way of proving that f(x) < g(x) forall x ina given
interval is to show that 0 < g(x) — f(x) for all x in the inter-
val; and one way of proving the latter inequality is to show that
the absolute minimum value of g(x) — f(x) on the interval is
nonnegative. Use this idea to prove the inequalities in these
exercises.

47. Prove that sin x < x for all x in the interval [0, 27].

48. Prove that cosx > 1 — (x2/2) for all x in the interval
[0, 2].

49. Whatis the smallest possible slope for a tangent to the graph
of the equation y = x3 — 3x% 4 5x?

50. (a) Show that f(x) = secx + cscx has a minimum value

but no maximum value on the interval (0, 7/2).
(b) Find the minimum value in part (a).

[c] 51. Show that the absolute minimum value of

2

f(x)=x2+(8i7x)2, x> 8

occurs at x = 10 by using a CAS to find f’(x) and to solve
the equation f'(x) = 0.

[ 52. The concentration C(r) of a drug in the bloodstream ¢ hours

after it has been injected is commonly modeled by an equa-
tion of the form

—bt —at
Car) = K™ —e™)
a—>b
where K > Oanda > b > 0.
(a) At what time does the maximum concentration occur?
(b) Let K = 1 for simplicity, and use a graphing utility to
check your result in part (a) by graphing C(¢) for vari-
ous values of a and b.
53. Suppose that the equations of motion of a paper airplane
during the first 12 seconds of flight are

x=t—2sint, y=2-—2cost 0O<r<12)
What are the highest and lowest points in the trajectory, and
when is the airplane at those points?
54. The accompanying figure shows the path of a fly whose
equations of motion are
cost
x= ;
2+sint
(a) How high and low does it fly?
(b) How far left and right of the origin does it fly?

y=3+sin(2r) —2sin’r (0 <t <27)

y

< Figure Ex-54
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5S.

Let f(x) =ax?>+bx+c, where a >0. Prove that
f(x) = 0for all x if and only if b> — 4ac < 0. [Hint: Find

cannot have an absolute minimum but may have a relative
minimum.

the minimum of f(x).]

56.
a minimum.

57. Writing Suppose that f is continuous and positive-valued
everywhere and that the x-axis is an asymptote for the graph
of f, both as x — — and as x — +. Explain why f

Prove Theorem 4.4.3 in the case where the extreme value is

58. Writing Explain the difference between a relative maxi-
mum and an absolute maximum. Sketch a graph that il-
lustrates a function with a relative maximum that is not an
absolute maximum, and sketch another graph illustrating an
absolute maximum that is not a relative maximum. Explain
how these graphs satisfy the given conditions.

‘/QU|CK CHECK ANSWERS 4.4

1. There is a relative minimum at x = 3, a relative maximum at x = 1, an absolute minimum at x = 3, and an absolute maximum

atx = 6.

(d) max, f(10) = 635; min, f(—5)

2. (a) max, 6064; min, 2293 (b) max, 2400; min, 0 (c) max, 6064; min, —1333 (d) no max; min, —1333
3. (a) max, f(0) =25; min, f(3) =
= —130 (e) max, f(—1) = 30; no min

—2 (b) max, f(—1) =30; min, f(3) = =2 (c¢) max, f(—1) = 30; min, f(—4) = =51

m APPLIED MAXIMUM AND MIMIMUM PROBLEMS

In this section we will show how the methods discussed in the last section can be used to
solve various applied optimization problems.

CLASSIFICATION OF OPTIMIZATION PROBLEMS
The applied optimization problems that we will consider in this section fall into the following
two categories:

* Problems that reduce to maximizing or minimizing a continuous function over a finite
closed interval.

* Problems that reduce to maximizing or minimizing a continuous function over an
infinite interval or a finite interval that is not closed.

For problems of the first type the Extreme-Value Theorem (4.4.2) guarantees that the prob-
lem has a solution, and we know that the solution can be obtained by examining the values
of the function at the critical points and at the endpoints. However, for problems of the
second type there may or may not be a solution. If the function is continuous and has
exactly one relative extremum of the appropriate type on the interval, then Theorem 4.4.4
guarantees the existence of a solution and provides a method for finding it. In cases where
this theorem is not applicable some ingenuity may be required to solve the problem.

PROBLEMS INVOLVING FINITE CLOSED INTERVALS

In his On a Method for the Evaluation of Maxima and Minima, the seventeenth century
French mathematician Pierre de Fermat solved an optimization problem very similar to the
one posed in our first example. Fermat’s work on such optimization problems prompted
the French mathematician Laplace to proclaim Fermat the “true inventor of the differential
calculus.” Although this honor must still reside with Newton and Leibniz, it is the case that
Fermat developed procedures that anticipated parts of differential calculus.



X

Perimeter
2x+2y =100

A Figure 4.5.1
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» Example 1 A garden is to be laid out in a rectangular area and protected by a chicken
wire fence. What is the largest possible area of the garden if only 100 running feet of
chicken wire is available for the fence?

Solution. Let x = length of the rectangle (ft)

y = width of the rectangle (ft)
A = area of the rectangle (ft?)

Then A=xy )
Since the perimeter of the rectangle is 100 ft, the variables x and y are related by the equation
2x4+2y =100 or y=50—x 2)

(See Figure 4.5.1.) Substituting (2) in (1) yields
A = x(50 — x) = 50x — x? 3)

Because x represents a length, it cannot be negative, and because the two sides of length x
cannot have a combined length exceeding the total perimeter of 100 ft, the variable x must

satisfy 0<x<50 @)

Thus, we have reduced the problem to that of finding the value (or values) of x in [0, 50],
for which A is maximum. Since A is a polynomial in x, it is continuous on [0, 50], and so

the maximum must occur at an endpoint of this interval or at a critical point.

From (3) we obtain

Setting dA/dx = 0 we obtain

Pierre de Fermat (1601-1665) Fermat, the son of a suc-

cessful French leather merchant, was a lawyer who prac-

ticed mathematics as a hobby. He received a Bachelor of

Civil Laws degree from the University of Orleans in 1631

and subsequently held various government positions, in-

cluding a post as councillor to the Toulouse parliament.
Although he was apparently financially successful, confidential doc-
uments of that time suggest that his performance in office and as
a lawyer was poor, perhaps because he devoted so much time to
mathematics. Throughout his life, Fermat fought all efforts to have
his mathematical results published. He had the unfortunate habit
of scribbling his work in the margins of books and often sent his
results to friends without keeping copies for himself. As a result, he
never received credit for many major achievements until his name
was raised from obscurity in the mid-nineteenth century. It is now
known that Fermat, simultaneously and independently of Descartes,
developed analytic geometry. Unfortunately, Descartes and Fermat
argued bitterly over various problems so that there was never any
real cooperation between these two great geniuses.

Fermat solved many fundamental calculus problems. He ob-
tained the first procedure for differentiating polynomials, and solved
many important maximization, minimization, area, and tangent
problems. His work served to inspire Isaac Newton. Fermat is
best known for his work in number theory, the study of proper-
ties of and relationships between whole numbers. He was the first

dA
— =50 —-2x
d

X

50-2x=0

mathematician to make substantial contributions to this field after
the ancient Greek mathematician Diophantus. Unfortunately, none
of Fermat’s contemporaries appreciated his work in this area, a fact
that eventually pushed Fermat into isolation and obscurity in later
life. In addition to his work in calculus and number theory, Fer-
mat was one of the founders of probability theory and made major
contributions to the theory of optics. Outside mathematics, Fermat
was a classical scholar of some note, was fluent in French, Italian,
Spanish, Latin, and Greek, and he composed a considerable amount
of Latin poetry.

One of the great mysteries of mathematics is shrouded in Fer-
mat’s work in number theory. In the margin of a book by Diophan-
tus, Fermat scribbled that for integer values of n greater than 2, the
equation x" 4 y" = z" has no nonzero integer solutions for x, y,
and z. He stated, “I have discovered a truly marvelous proof of this,
which however the margin is not large enough to contain.” This
result, which became known as “Fermat’s last theorem,” appeared
to be true, but its proof evaded the greatest mathematical geniuses
for 300 years until Professor Andrew Wiles of Princeton University
presented a proof in June 1993 in a dramatic series of three lec-
tures that drew international media attention (see New York Times,
June 27, 1993). As it turned out, that proof had a serious gap that
Wiles and Richard Taylor fixed and published in 1995. A prize of
100,000 German marks was offered in 1908 for the solution, but it
is worthless today because of inflation.
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Table 4.5.1 or x = 25. Thus, the maximum occurs at one of the values
x | 0| 25|50 x=0, x=25 x=50
Al o les| o Substituting these values in (3) yields Table 4.5.1, which tells us that the maximum area of

625 ft? occurs at x = 25, which is consistent with the graph of (3) in Figure 4.5.2. From
(2) the corresponding value of y is 25, so the rectangle of perimeter 100 ft with greatest

A (ft?) area is a square with sides of length 25 ft. «

700 -

600 F T 7

288 B } Example 1 illustrates the following five-step procedure that can be used for solving many

300 - \ applied maximum and minimum problems.

200 - |

100 1 1 1 1 l 1 1 1 1 X (ft)

5 1015202530354045 50 A Procedure for Solving Applied Maximum and Minimum Problems

A Figure 4.5.2 . .
Step 1. Draw an appropriate figure and label the quantities relevant to the problem.
Step 2. Find a formula for the quantity to be maximized or minimized.

In Example 1 we included x = 0 and Step 3. Using the conditions stated in the problem to eliminate variables, express the

x = 50 as possible values of x, even

though these correspond to rectan-

gles with two sides of length zero. If Step 4.
we view this as a purely mathematical

problem, then there is nothing wrong

with this. However, if we view this as an Step 5.
applied problem in which the rectangle

will be formed from physical material,

then it would make sense to exclude

these values.

quantity to be maximized or minimized as a function of one variable.

Find the interval of possible values for this variable from the physical restrictions
in the problem.

If applicable, use the techniques of the preceding section to obtain the maximum
or minimum.

» Example 2 An open box is to be made from a 16-inch by 30-inch piece of card-
board by cutting out squares of equal size from the four corners and bending up the sides
(Figure 4.5.3). What size should the squares be to obtain a box with the largest volume?

» Figure 4.5.3 (@) (b)

Solution. For emphasis, we explicitly list the steps of the five-step problem-solving
procedure given above as an outline for the solution of this problem. (In later examples we
will follow these guidelines without listing the steps.)

e Step 1: Figure 4.5.3a illustrates the cardboard piece with squares removed from its
corners. Let

x = length (in inches) of the sides of the squares to be cut out

V = volume (in cubic inches) of the resulting box

* Step 2: Because we are removing a square of side x from each corner, the resulting
box will have dimensions 16 — 2x by 30 — 2x by x (Figure 4.5.3b). Since the volume
of a box is the product of its dimensions, we have

V = (16 — 2x)(30 — 2x)x = 480x — 92x> + 4x3 (5)



Table 4.5.2

x |0 % 8

19,600 _
V1o 7~726 0

AV (in?)
800
700
600
500
400
300
200
100

‘rfx——q+——8—x*—>
’ 8 km

A Figure 4.5.5
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e Step 3: Note that our volume expression is already in terms of the single variable x.

e Step 4: The variable x in (5) is subject to certain restrictions. Because x represents a
length, it cannot be negative, and because the width of the cardboard is 16 inches, we
cannot cut out squares whose sides are more than 8§ inches long. Thus, the variable x
in (5) must satisf’

(%) y 0<x<8
and hence we have reduced our problem to finding the value (or values) of x in the
interval [0, 8] for which (5) is a maximum.

e Step 5: From (5) we obtain

dv 5 5
i 480 — 184x + 12x° = 4(120 — 46x + 3x7)

x
— 4(x — 12)(3x — 10)
Setting dV /dx = 0 yields

x:%o and x =12

Since x = 12 falls outside the interval [0, 8], the maximum value of V occurs either
at the critical point x = % or at the endpoints x = 0, x = 8. Substituting these
values into (5) yields Table 4.5.2, which tells us that the greatest possible volume
V= % in® &2 726 in® occurs when we cut out squares whose sides have length
% inches. This is consistent with the graph of (5) shown in Figure 4.5.4. «

» Example 3 Figure 4.5.5 shows an offshore oil well located at a point W that is 5 km
from the closest point A on a straight shoreline. Oil is to be piped from W to a shore point
B that is 8 km from A by piping it on a straight line under water from W to some shore
point P between A and B and then on to B via pipe along the shoreline. If the cost of laying
pipe is $1,000,000/km under water and $500,000/km over land, where should the point P
be located to minimize the cost of laying the pipe?

Solution. Let

x = distance (in kilometers) between A and P
¢ = cost (in millions of dollars) for the entire pipeline

From Figure 4.5.5 the length of pipe under water is the distance between W and P. By the
Theorem of Pythagoras that length is

VxZ+25 ©6)

Also from Figure 4.5.5, the length of pipe over land is the distance between P and B, which
' 8 —x %)

From (6) and (7) it follows that the total cost ¢ (in millions of dollars) for the pipeline is
c=1(/x2+25)+ 18 —x) = Va2 + 25+ (8 - x) ®)
Because the distance between A and B is 8 km, the distance x between A and P must satisfy
0<x=<8

We have thus reduced our problem to finding the value (or values) of x in the interval [0, 8]
for which ¢ is a minimum. Since c¢ is a continuous function of x on the closed interval
[0, 8], we can use the methods developed in the preceding section to find the minimum.
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TECHNOLOGY MASTERY

If you have a CAS, use it to check all
of the computations in Example 3.
Specifically, differentiate ¢ with respect
to x, solve the equation dc/dx =0,
and perform all of the numerical cal-
culations.

From (8) we obtain de X 1

dx — vVx2+25 2

Setting dc/dx = 0 and solving for x yields

by 1 ©)
Vatt2s 2
1
x? = Z(x2+25)
5
x=+—
V3

The number —5/+/3 is not a solution of (9) and must be discarded, leaving x = 5/ V3 as

the only critical point. Since this point lies in the interval [0, 8], the minimum must occur
t f the val

at one of the values x = 5/3,

Substituting these values into (8) yields Table 4.5.3, which tells us that the least possible
cost of the pipeline (to the nearest dollar) is ¢ = $8,330,127, and this occurs when the point
P is located at a distance of 5/+/3 ~ 2.89 km from A. <

x =0, x=28

Table 4.5.3

+ (4— i) ~ 8330127 | V89 =~ 9.433981

%

10 in

(@)
T
10-h
I
T 10 in
h
Pl
(0)
A Figure 4.5.6

» Example 4 Find the radius and height of the right circular cylinder of largest volume
that can be inscribed in a right circular cone with radius 6 inches and height 10 inches
(Figure 4.5.6a).

Solution.  Let r = radius (in inches) of the cylinder

h = height (in inches) of the cylinder

V' = volume (in cubic inches) of the cylinder
The formula for the volume of the inscribed cylinder is
V = ar’h (10)

To eliminate one of the variables in (10) we need a relationship between r and 4. Using
similar triangles (Figure 4.5.6b) we obtain

10—h 10
r 6
Substituting (11) into (10) we obtain

5
or h:lO—gr (11)

5 5
V = ar? (10 — §r> = 10nr? — gnr3 (12)

which expresses V in terms of 7 alone. Because r represents a radius, it cannot be negative,
and because the radius of the inscribed cylinder cannot exceed the radius of the cone, the

variable » must satisfy 0<r<6
=r=
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Thus, we have reduced the problem to that of finding the value (or values) of r in [0, 6]
for which (12) is a maximum. Since V is a continuous function of r on [0, 6], the methods
developed in the preceding section apply.
From (12) we obtain
av

— =207r — 5nr’ = Sar(4 —r)
dr

Setting dV /dr = 0 gives
Sar(4—r)=0

so r = 0 and r = 4 are critical points. Since these lie in the interval [0, 6], the maximum
must occur at one of the values

Substituting these values into (12) yields Table 4.5.4, which tells us that the maximum

volume V = 13@71 ~ 168 in® occurs when the inscribed cylinder has radius 4 in. When
r = 4 it follows from (11) that & = %. Thus, the inscribed cylinder of largest volume has

radius r = 4 in and height & = %) in. <«
PROBLEMS INVOLVING INTERVALS THAT ARE NOT BOTH FINITE AND CLOSED

» Example5 Aclosed cylindrical canis to hold I liter (1000 cm?) of liquid. How should
we choose the height and radius to minimize the amount of material needed to manufacture
the can?

Solution. Let
h = height (in cm) of the can
r = radius (in cm) of the can

S = surface area (in cm?) of the can

Assuming there is no waste or overlap, the amount of material needed for manufacture will
be the same as the surface area of the can. Since the can consists of two circular disks of
radius r and a rectangular sheet with dimensions 4 by 277 (Figure 4.5.7), the surface area

will be 5
S =2nr°+ 2nrh (13)

Since S depends on two variables, r and &, we will look for some condition in the problem
that will allow us to express one of these variables in terms of the other. For this purpose,

//‘ 2nr

~—r—> | (- r—»i —_
T | | T
h } | h
| |
| |
| ' /
— \ o r—l —
Area 27r? Area 2mrh

A Figure 4.5.7
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2500
2000
1500
1000

500 ‘
r

A Figure 4.5.8

In Example 5, the surface area S has no
absolute maximum, since S increases
without bound as the radius r ap-
proaches 0 (Figure 4.5.8). Thus, had
we asked for the dimensions of the can
requiring the maximum amount of ma-
terial for its manufacture, there would
have been no solution to the problem.
Optimization problems with no solu-
tion are sometimes called ill posed.

observe that the volume of the can is 1000 cm?, so it follows from the formula V = 7r2h
for the volume of a cylinder that

1000
1000 = 7wr’h or h = > (14-15)
r
Substituting (15) in (13) yields
2000
S =2mr? 4+ —— (16)
r

Thus, we have reduced the problem to finding a value of r in the interval (0, 4-o0) for which
S is minimum. Since S is a continuous function of r on the interval (0, +o0) and

2000 2000
lim (27172 + > =+ and lim <2nr2 + ) = 4o

r—0% r r—+o r

the analysis in Table 4.4.3 implies that S does have a minimum on the interval (0, +o0).
Since this minimum must occur at a critical point, we calculate

das 4 2000 a7
L4 —
dr r?
Setting dS/dr = 0 gives
10
r= ~ 5.4 (18)
NGOz

Since (18) is the only critical point in the interval (0, 4-o0), this value of 7 yields the minimum
value of S. From (15) the value of £ corresponding to this r is
1000 20 5
= = = Zr
n(10/ 27?2 27
It is not an accident here that the minimum occurs when the height of the can is equal to
the diameter of its base (Exercise 29).

Second Solution. The conclusion that a minimum occurs at the value of 7 in (18) can
be deduced from Theorem 4.4.4 and the second derivative test by noting that
d’*s 4000

arn =S

is positive if > 0 and hence is positive if » = 10/ 27 This implies that a relative mini-
mum, and therefore a minimum, occurs at the critical point » = 10/ \3/ 27,

Third Solution. An alternative justification that the critical point r = 10/ /27 corre-
sponds to a minimum for § is to view the graph of S versus r (Figure 4.5.8). <«

» Example 6 Find a point on the curve y = x? that is closest to the point (18, 0).

Solution. The distance L between (18, 0) and an arbitrary point (x, y) on the curve
y = x? (Figure 4.5.9) is given by

L=(x—18)2+(y —0)?
Since (x, y) lies on the curve, x and y satisfy y = xZ%; thus,
L=+y(x—18)2+x* (19)

Because there are no restrictions on x, the problem reduces to finding a value of x in
(—o0, 40) for which (19) is a minimum. The distance L and the square of the distance L>




A Figure 4.5.9
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are minimized at the same value (see Exercise 66). Thus, the minimum value of L in (19)
and the minimum value of

S=L%=(x—18)% +x* (20)
occur at the same x-value.
From (20),
ds 3 3
d—=2(x—18)+4x‘ =4x° +2x — 36 21)
X
so the critical points satisfy 4x* + 2x — 36 = 0 or, equivalently,
23 +x—18=0 (22)

To solve for x we will begin by checking the divisors of —18 to see whether the polynomial
on the left side has any integer roots (see Appendix C). These divisors are £1, £2, £3, £6,
19, and £18. A check of these values shows that x = 2 is aroot, so x — 2 is a factor of the
polynomial. After dividing the polynomial by this factor we can rewrite (22) as

(x—2)2x>+4x+9) =0
Thus, the remaining solutions of (22) satisfy the quadratic equation
26 +4x4+9=0

But this equation has no real solutions (using the quadratic formula), so x = 2 is the only
critical point of S. To determine the nature of this critical point we will use the second
derivative test. From (21),

d*s ) d*s
WZIZX +2, SO EX=2=50>0

which shows that a relative minimum occurs at x = 2. Since x = 2 yields the only relative
extremum for L, it follows from Theorem 4.4.4 that an absolute minimum value of L also
occurs at x = 2. Thus, the point on the curve y = x2 closest to (18, 0) is

(x,y) = (x,x}) = (2,4) «

AN APPLICATION TO ECONOMICS
Three functions of importance to an economist or a manufacturer are

C(x) = total cost of producing x units of a product during some time period
R(x) = total revenue from selling x units of the product during the time period

P (x) = total profit obtained by selling x units of the product during the time period

These are called, respectively, the cost function, revenue function, and profit function. 1If
all units produced are sold, then these are related by

P(x) = R(x) — C(x)

23
[profit] = [revenue] — [cost] ( )
The total cost C(x) of producing x units can be expressed as a sum
Cx)y=a+ M(x) 24)

where a is a constant, called overhead, and M (x) is a function representing manufacturing
cost. The overhead, which includes such fixed costs as rent and insurance, does not depend
on x; it must be paid even if nothing is produced. On the other hand, the manufacturing cost
M (x), which includes such items as cost of materials and labor, depends on the number of
items manufactured. It is shown in economics that with suitable simplifying assumptions,
M (x) can be expressed in the form

M(x) = bx + cx?
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Jim Karageorge/Getty Images
A pharmaceutical firm's profit is a
Sfunction of the number of units produced.

where b and ¢ are constants. Substituting this in (24) yields
C(x) = a+ bx + cx? (25)

If a manufacturing firm can sell all the items it produces for p dollars apiece, then its
total revenue R(x) (in dollars) will be

R(x) = px (26)
and its total profit P(x) (in dollars) will be
P (x) = [total revenue] — [total cost] = R(x) — C(x) = px — C(x)
Thus, if the cost function is given by (25),
P(x) = px — (a + bx + cx?) 27

Depending on such factors as number of employees, amount of machinery available, eco-
nomic conditions, and competition, there will be some upper limit / on the number of items
a manufacturer is capable of producing and selling. Thus, during a fixed time period the

variable x in (27) will satisfy 0<x <]

By determining the value or values of x in [0, /] that maximize (27), the firm can determine
how many units of its product must be manufactured and sold to yield the greatest profit.
This is illustrated in the following numerical example.

» Example 7 Aliquid form of antibiotic manufactured by a pharmaceutical firm is sold
in bulk at a price of $200 per unit. If the total production cost (in dollars) for x units is

C(x) = 500,000 + 80x + 0.003x>

and if the production capacity of the firm is at most 30,000 units in a specified time, how
many units of antibiotic must be manufactured and sold in that time to maximize the profit?

Solution. Since the total revenue for selling x units is R(x) = 200x, the profit P(x) on
X units will be

P(x) = R(x) — C(x) = 200x — (500,000 + 80x + 0.003x2) (28)

Since the production capacity is at most 30,000 units, x must lie in the interval [0, 30,000].

From (28) dP

il 200 — (80 4 0.006x) = 120 — 0.006x
X

Setting dP/dx = 0 gives

120 — 0.006x =0 or x = 20,000
Since this critical point lies in the interval [0, 30,000], the maximum profit must occur at
oneof the values o+ 220,000, or x = 30,000

Substituting these values in (28) yields Table 4.5.5, which tells us that the maximum profit
P = $700,000 occurs when x = 20,000 units are manufactured and sold in the specified
time. <«

Table 4.5.5

x 0 20,000 30,000

P(x) | 500,000 | 700,000 | 400,000
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Bl MARGINAL ANALYSIS

Economists call P'(x), R'(x), and C’(x) the marginal profit, marginal revenue, and
marginal cost, respectively; and they interpret these quantities as the additional profit,
revenue, and cost that result from producing and selling one additional unit of the product
when the production and sales levels are at x units. These interpretations follow from
the local linear approximations of the profit, revenue, and cost functions. For example, it
follows from Formula (2) of Section 3.5 that when the production and sales levels are at x
units the local linear approximation of the profit function is

P(x + Ax) ~ P(x) + P'(x)Ax
Thus, if Ax = 1 (one additional unit produced and sold), this formula implies
P(x+ 1)~ P(x)+ P'(x)
and hence the additional profit that results from producing and selling one additional unit
can be approximated as P(x+1)— P(x) ~ P'(x)
Similarly, R(x + 1) — R(x) & R'(x) and C(x + 1) — C(x) =~ C’'(x).

Il A BASIC PRINCIPLE OF ECONOMICS
It follows from (23) that P’(x) = 0 has the same solution as C'(x) = R’(x), and this implies
that the maximum profit must occur at a point where the marginal revenue is equal to the
marginal cost; that is:

If profit is maximum, then the cost of manufacturing and selling an additional unit of a
product is approximately equal to the revenue generated by the additional unit.

In Example 7, the maximum profit occurs when x = 20,000 units. Note that
C(20,001) — C(20,000) = $200.003 and R(20,001) — R(20,000) = $200

which is consistent with this basic economic principle.

VQUlCK CHECK EXERCISES 4.5  (See page 288 for answers.)

1. A positive number x and its reciprocal are added together.
The smallest possible value of this sum is obtained by min-
imizing f(x) =

point on the line segment from (0, 4) to (3, 0). The largest
possible area of the rectangle is obtained by maximizing
for x in the interval ______| Alx) = for x in the interval

2. Two nonnegative numbers, x and y, have a sum equal to
10. The largest possible product of the two numbers is ob-
tained by maximizing f(x) = for x in the interval

4. An open box is to be made from a 20-inch by 32-inch piece
of cardboard by cutting out x-inch by x-inch squares from
the four corners and bending up the sides. The largest pos-
sible volume of the box is obtained by maximizing V (x) =

3. A rectangle in the xy-plane has one corner at the origin, an for x in the interval

adjacent corner at the point (x, 0), and a third corner at a

EXERCISE SET 4.5

1. Find a number in the closed interval [%, %] such that the 2. How should two nonnegative numbers be chosen so that

sum of the number and its reciprocal is
(a) as small as possible
(b) as large as possible.

their sum is 1 and the sum of their squares is
(a) as large as possible
(b) as small as possible?
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3.

10.

11.

12.
13.

14.

15.

Arectangular field is to be bounded by a fence on three sides
and by a straight stream on the fourth side. Find the dimen-
sions of the field with maximum area that can be enclosed
using 1000 ft of fence.

. The boundary of a field is a right triangle with a straight

stream along its hypotenuse and with fences along its other
two sides. Find the dimensions of the field with maximum
area that can be enclosed using 1000 ft of fence.

. Arectangular plot of land is to be fenced in using two kinds

of fencing. Two opposite sides will use heavy-duty fenc-
ing selling for $3 a foot, while the remaining two sides will
use standard fencing selling for $2 a foot. What are the di-
mensions of the rectangular plot of greatest area that can be
fenced in at a cost of $6000?

. Arectangle is to be inscribed in a right triangle having sides

of length 6 in, 8 in, and 10 in. Find the dimensions of
the rectangle with greatest area assuming the rectangle is
positioned as in Figure Ex-6.

. Solve the problem in Exercise 6 assuming the rectangle is

positioned as in Figure Ex-7.

10 in % in 10 in 3in

6 in 6 in
A Figure Ex-6 A Figure Ex-7

. A rectangle has its two lower corners on the x-axis and its

two upper corners on the curve y = 16 — x2. For all such
rectangles, what are the dimensions of the one with largest
area?

. Find the dimensions of the rectangle with maximum area

that can be inscribed in a circle of radius 10.

Find the point P in the first quadrant on the curve y = x 2

such that a rectangle with sides on the coordinate axes and
a vertex at P has the smallest possible perimeter.

A rectangular area of 3200 ft> is to be fenced off. Two
opposite sides will use fencing costing $1 per foot and the
remaining sides will use fencing costing $2 per foot. Find
the dimensions of the rectangle of least cost.

Show that among all rectangles with perimeter p, the square
has the maximum area.

Show that among all rectangles with area A, the square has
the minimum perimeter.

A wire of length 12 in can be bent into a circle, bent into a
square, or cut into two pieces to make both a circle and a
square. How much wire should be used for the circle if the
total area enclosed by the figure(s) is to be

(a) a maximum (b) a minimum?

A rectangle R in the plane has corners at (+8, £12), and
a 100 by 100 square S is positioned in the plane so that its

16.
17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

sides are parallel to the coordinate axes and the lower left
corner of S is on the line y = —3x. What is the largest pos-
sible area of a region in the plane that is contained in both
R and S?

Solve the problem in Exercise 15 if S is a 16 by 16 square.

Solve the problem in Exercise 15 if S is positioned with its
lower left corner on the line y = —6x.

A rectangular page is to contain 42 square inches of print-
able area. The margins at the top and bottom of the page
are each 1 inch, one side margin is 1 inch, and the other side
margin is 2 inches. What should the dimensions of the page
be so that the least amount of paper is used?

A box with a square base is taller than it is wide. In order
to send the box through the U.S. mail, the height of the box
and the perimeter of the base can sum to no more than 108
in. What is the maximum volume for such a box?

A box with a square base is wider than it is tall. In order to
send the box through the U.S. mail, the width of the box and
the perimeter of one of the (nonsquare) sides of the box can
sum to no more than 108 in. What is the maximum volume
for such a box?

An open box is to be made from a 3 ft by 8 ft rectangular
piece of sheet metal by cutting out squares of equal size
from the four corners and bending up the sides. Find the
maximum volume that the box can have.

A closed rectangular container with a square base is to have
a volume of 2250 in®. The material for the top and bottom
of the container will cost $2 per in?, and the material for
the sides will cost $3 per in?. Find the dimensions of the
container of least cost.

A closed rectangular container with a square base is to have
a volume of 2000 cm?>. It costs twice as much per square
centimeter for the top and bottom as it does for the sides.
Find the dimensions of the container of least cost.

A container with square base, vertical sides, and open top is
to be made from 1000 ft> of material. Find the dimensions
of the container with greatest volume.

A rectangular container with two square sides and an open
top is to have a volume of V cubic units. Find the dimen-
sions of the container with minimum surface area.

A church window consisting of a rectangle topped by a semi-
circle is to have a perimeter p. Find the radius of the semi-
circle if the area of the window is to be maximum.

Find the dimensions of the right circular cylinder of largest
volume that can be inscribed in a sphere of radius R.

Find the dimensions of the right circular cylinder of greatest
surface area that can be inscribed in a sphere of radius R.

A closed, cylindrical can is to have a volume of V cu-
bic units. Show that the can of minimum surface area is
achieved when the height is equal to the diameter of the
base.



30.

31.

32.

33.

34.

35.

36.

37.

38.

A closed cylindrical can is to have a surface area of S square
units. Show that the can of maximum volume is achieved
when the height is equal to the diameter of the base.

A cylindrical can, open at the top, is to hold 500 cm? of
liquid. Find the height and radius that minimize the amount
of material needed to manufacture the can.

A soup can in the shape of a right circular cylinder of radius
r and height £ is to have a prescribed volume V. The top and
bottom are cut from squares as shown in Figure Ex-32. If
the shaded corners are wasted, but there is no other waste,
find the ratio r/h for the can requiring the least material
(including waste).

A box-shaped wire frame consists of two identical wire
squares whose vertices are connected by four straight wires
of equal length (Figure Ex-33). If the frame is to be made
from a wire of length L, what should the dimensions be to
obtain a box of greatest volume?

&
N/

A Figure Ex-32

A Figure Ex-33

Suppose that the sum of the surface areas of a sphere and a

cube is a constant.

(a) Show that the sum of their volumes is smallest when
the diameter of the sphere is equal to the length of an
edge of the cube.

(b) When will the sum of their volumes be greatest?

Find the height and radius of the cone of slant height L
whose volume is as large as possible.

A cone is made from a circular sheet of radius R by cutting
out a sector and gluing the cut edges of the remaining piece
together (Figure Ex-36). What is the maximum volume
attainable for the cone?

A Figure Ex-36

A cone-shaped paper drinking cup is to hold 100 cm? of wa-
ter. Find the height and radius of the cup that will require
the least amount of paper.

Find the dimensions of the isosceles triangle of least area
that can be circumscribed about a circle of radius R.

39.

40.

41.

42,

43.

4.
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Find the height and radius of the right circular cone with
least volume that can be circumscribed about a sphere of
radius R.

A commercial cattle ranch currently allows 20 steers per
acre of grazing land; on the average its steers weigh 2000 1b
at market. Estimates by the Agriculture Department indi-
cate that the average market weight per steer will be reduced
by 50 Ib for each additional steer added per acre of grazing
land. How many steers per acre should be allowed in order
for the ranch to get the largest possible total market weight
for its cattle?

A company mines low-grade nickel ore. If the company
mines x tons of ore, it can sell the ore for p = 225 — 0.25x
dollars per ton. Find the revenue and marginal revenue
functions. At what level of production would the company
obtain the maximum revenue?

A fertilizer producer finds that it can sell its product at a
price of p = 300 — 0.1x dollars per unit when it produces
x units of fertilizer. The total production cost (in dollars)
for x units is

C(x) = 15,000 + 125x + 0.025x>

If the production capacity of the firm is at most 1000 units
of fertilizer in a specified time, how many units must be
manufactured and sold in that time to maximize the profit?

(a) A chemical manufacturer sells sulfuric acid in bulk at a
price of $100 per unit. If the daily total production cost
in dollars for x units is

C(x) = 100,000 4 50x + 0.0025x>

and if the daily production capacity is at most 7000
units, how many units of sulfuric acid must be manu-
factured and sold daily to maximize the profit?

(b) Would it benefit the manufacturer to expand the daily
production capacity?

(c) Use marginal analysis to approximate the effect on
profit if daily production could be increased from 7000
to 7001 units.

A firm determines that x units of its product can be sold
daily at p dollars per unit, where

x =1000 — p
The cost of producing x units per day is
C(x) = 3000 + 20x

(a) Find the revenue function R(x).

(b) Find the profit function P (x).

(c) Assuming that the production capacity is at most 500
units per day, determine how many units the company
must produce and sell each day to maximize the profit.

(d) Find the maximum profit.

(e) What price per unit must be charged to obtain the max-
imum profit?
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45. In a certain chemical manufacturing process, the daily

weight y of defective chemical output depends on the total
weight x of all output according to the empirical formula
y = 0.01x 4 0.00003x?

where x and y are in pounds. If the profit is $100 per pound
of nondefective chemical produced and the loss is $20 per
pound of defective chemical produced, how many pounds
of chemical should be produced daily to maximize the total
daily profit?

46. An independent truck driver charges a client $15 for each

hour of driving, plus the cost of fuel. At highway speeds of
v miles per hour, the trucker’s rig gets 10 — 0.07v miles per
gallon of diesel fuel. If diesel fuel costs $2.50 per gallon,
what speed v will minimize the cost to the client?

47. A trapezoid is inscribed in a semicircle of radius 2 so that

one side is along the diameter (Figure Ex-47). Find the
maximum possible area for the trapezoid. [Hint: Express
the area of the trapezoid in terms of 6.]

48. A drainage channel is to be made so that its cross section

is a trapezoid with equally sloping sides (Figure Ex-48). If
the sides and bottom all have a length of 5 ft, how should
the angle 6 (0 < § < m/2) be chosen to yield the greatest
cross-sectional area of the channel?

o7 ,ﬁﬁ

5ft

/
N6
fe—2—

A Figure Ex-47

A Figure Ex-48

49. Alamp is suspended above the center of a round table of ra-

dius . How high above the table should the lamp be placed
to achieve maximum illumination at the edge of the table?
[Assume that the illumination [ is directly proportional to
the cosine of the angle of incidence ¢ of the light rays and
inversely proportional to the square of the distance / from
the light source (Figure Ex-49).]

50. A plank is used to reach over a fence 8 ft high to support a

wall that is 1 ft behind the fence (Figure Ex-50). What is
the length of the shortest plank that can be used? [Hint: Ex-
press the length of the plank in terms of the angle 6 shown
in the figure.]

Light
source

8 ft
%0 |
P

A Figure Ex-50

A Figure Ex-49

51. Find the coordinates of the point P on the curve

1
y== >0
X

52,

53.

54.

55.

56.

57.

58.

where the segment of the tangent line at P that is cut off by
the coordinate axes has its shortest length.

Find the x-coordinate of the point P on the parabola
y=1-x> O<x<1

where the triangle that is enclosed by the tangent line at P

and the coordinate axes has the smallest area.

Where on the curve y = (1 + xz)_1 does the tangent line
have the greatest slope?

Suppose that the number of bacteria in a culture at time ¢ is

given by N = 5000(25 + re~"/20).

(a) Find the largest and smallest number of bacteria in the
culture during the time interval 0 < ¢ < 100.

(b) At what time during the time interval in part (a) is the
number of bacteria decreasing most rapidly?

The shoreline of Circle Lake is a circle with diameter 2 mi.
Nancy’s training routine begins at point E on the eastern
shore of the lake. She jogs along the north shore to a point
P and then swims the straight line distance, if any, from P
to point W diametrically opposite E (Figure Ex-55). Nancy
swims at arate of 2 mi/h and jogs at 8 mi/h. How far should
Nancy jog in order to complete her training routine in

(a) the least amount of time

(b) the greatest amount of time?

A man is floating in a rowboat 1 mile from the (straight)
shoreline of a large lake. A town is located on the shoreline
1 mile from the point on the shoreline closest to the man. As
suggested in Figure Ex-56, he intends to row in a straight
line to some point P on the shoreline and then walk the re-
maining distance to the town. To what point should he row
in order to reach his destination in the least time if

(a) he can walk 5 mi/h and row 3 mi/h

(b) he can walk 5 mi/h and row 4 mi/h?

P

“‘1 mi—»' Town

Jog

Rowboat
| 2 mi |

A Figure Ex-55

A Figure Ex-56

A pipe of negligible diameter is to be carried horizontally
around a corner from a hallway 8 ft wide into a hallway
4 ft wide (Figure Ex-57 on the next page). What is the
maximum length that the pipe can have?

Source: An interesting discussion of this problem in the case where the di-

ameter of the pipe is not neglected is given by Norman Miller in the American
Mathematical Monthly, Vol. 56, 1949, pp. 177-179.

A concrete barrier whose cross section is an isosceles tri-
angle runs parallel to a wall. The height of the barrier is 3
ft, the width of the base of a cross section is 8 ft, and the
barrier is positioned on level ground with its base 1 ft from
the wall. A straight, stiff metal rod of negligible diameter



has one end on the ground, the other end against the wall,
and touches the top of the barrier (Figure Ex-58). What is
the minimum length the rod can have?

i
!

-
N |.E
| 3 ft
| 2
fe——8 ft ——i«]
—| 41t |« 1ft
A Figure Ex-57 A Figure Ex-58

59. Suppose that the intensity of a point light source is directly
proportional to the strength of the source and inversely pro-
portional to the square of the distance from the source. Two
point light sources with strengths of S and 85 are separated
by a distance of 90 cm. Where on the line segment between
the two sources is the total intensity a minimum?

60. Given points A(2, 1) and B(5, 4), find the point P in the
interval [2, 5] on the x-axis that maximizes angle APB.

61. The lower edge of a painting, 10 ft in height, is 2 ft above
an observer’s eye level. Assuming that the best view is ob-
tained when the angle subtended at the observer’s eye by
the painting is maximum, how far from the wall should the
observer stand?

FOCUS ON CONCEPTS

62. Fermat’s principle (biography on p. 275) in optics states
that light traveling from one point to another follows
that path for which the total travel time is minimum. In
a uniform medium, the paths of “minimum time” and
“shortest distance” turn out to be the same, so that light,
if unobstructed, travels along a straight line. Assume
that we have a light source, a flat mirror, and an ob-
server in a uniform medium. If a light ray leaves the
source, bounces off the mirror, and travels on to the ob-
server, then its path will consist of two line segments,
as shown in Figure Ex-62. According to Fermat’s prin-
ciple, the path will be such that the total travel time ¢ is
minimum or, since the medium is uniform, the path will
be such that the total distance traveled from A to P to B
is as small as possible. Assuming the minimum occurs
when dt/dx = 0, show that the light ray will strike the
mirror at the point P where the “angle of incidence” 6,
equals the “angle of reflection” 6.

Source A

< Figure Ex-62

63

64.

65.
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. Fermat’s principle (Exercise 62) also explains why light
rays traveling between air and water undergo bending
(refraction). Imagine that we have two uniform media
(such as air and water) and a light ray traveling from a
source A in one medium to an observer B in the other
medium (Figure Ex-63). Itis known thatlight travels ata
constant speed in a uniform medium, but more slowly in
a dense medium (such as water) than in a thin medium
(such as air). Consequently, the path of shortest time
from A to B is not necessarily a straight line, but rather
some broken line path A to P to B allowing the light to
take greatest advantage of its higher speed through the
thin medium. Snell’s law of refraction (biography on
p- 288) states that the path of the light ray will be such

h . .
that sin 6, sin 6,

Vg v2
where v is the speed of light in the first medium, v, is
the speed of light in the second medium, and 6; and 6,
are the angles shown in Figure Ex-63. Show that this
follows from the assumption that the path of minimum
time occurs when dt/dx = 0.

A farmer wants to walk at a constant rate from her barn

to a straight river, fill her pail, and carry it to her house

in the least time.

(a) Explain how this problem relates to Fermat’s prin-
ciple and the light-reflection problem in Exercise
62.

(b) Use the result of Exercise 62 to describe geometri-
cally the best path for the farmer to take.

(c) Use part (b) to determine where the farmer should
fill her pail if her house and barn are located as in
Figure Ex-64.

(Source) Medium 1

1 mi
Barn &
1 3
7 House 4‘
g mi
mi
Medium 2 Ry
A Figure Ex-63 A Figure Ex-64

If an unknown physical quantity x is measured n times,
the measurements x, x, .. ., X, often vary because of
uncontrollable factors such as temperature, atmospheric
pressure, and so forth. Thus, a scientist is often faced
with the problem of using n different observed measure-
ments to obtain an estimate x of an unknown quantity x.
One method for making such an estimate is based on the
least squares principle, which states that the estimate x
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should be chosen to minimize
5= =52+ (-5 + -+ (x, — 1)

which is the sum of the squares of the deviations between
the estimate x and the measured values. Show that the
estimate resulting from the least squares principle is

|
X=-(+x+-+x)

thatis, x is the arithmetic average of the observed values.

‘/QU|CK CHECK ANSWERS 4.5

66. Prove: If f(x) > Oonaninterval and if f(x) has a max-
imum value on that interval at xo, then 4/ f(x) also has
a maximum value at xo. Similarly for minimum values.
[Hint: Use the fact that 4/x is an increasing function on
the interval [0, +o0).]

67. Writing Discuss the importance of finding intervals of pos-
sible values imposed by physical restrictions on variables
in an applied maximum or minimum problem.

1
Loxd (042 2. x(10-x):[0,10] 3 x(~$x+4) =~

4. x(20 — 2x)(32 — 2x) = 4x> — 104x% + 640x; [0, 10]

m RECTILINEAR MOTION

1x2 +4x; [0, 3]

In this section we will continue the study of rectilinear motion that we began in Section
2.1. We will define the notion of “acceleration” mathematically, and we will show how
the tools of calculus developed earlier in this chapter can be used to analyze rectilinear

motion in more depth.

B REVIEW OF TERMINOLOGY
Recall from Section 2.1 that a particle that can move in either direction along a coordinate
line is said to be in rectilinear motion. The line might be an x-axis, a y-axis, or a coordinate

So

Particle
is on the
positive side
of the origin

Particle is on the
negative side of,

Position versus time curve

line inclined at some angle. In general discussions we will designate the coordinate line as

the s-axis. We will assume that units are chosen for measuring distance and time and that

we begin observing the motion of the particle at time # = 0. As the particle moves along

the s-axis, its coordinate s will be some function of time, say s = s(#). We call s(¢) the

position function of the particle,” and we call the graph of s versus ¢ the position versus

/ 1 time curve. If the coordinate of a particle at time #; is s(#;) and the coordinate at a later

time 1, is s(f2), then s(t;) — s(¢;) is called the displacement of the particle over the time
interval [t;, #,]. The displacement describes the change in position of the particle.

Figure 4.6.1 shows a typical position versus time curve for a particle in rectilinear motion.

We can tell from that graph that the coordinate of the particle at time r = 0 is 5o, and we

can tell from the sign of s when the particle is on the negative or the positive side of the
A Figure 4.6.1 origin as it moves along the coordinate line.

“In writing s = s(¢), rather than the more familiar s = f(¢), we are using the letter s both as the dependent variable
and the name of the function. This is common practice in engineering and physics.

Willebrord van Roijen Snell (1591-1626) Dutch mathematician.
Snell, who succeeded his father to the post of Professor of Mathe-
matics at the University of Leiden in 1613, is most famous for the
result of light refraction that bears his name. Although this phe-
nomenon was studied as far back as the ancient Greek astronomer

Ptolemy, until Snell’s work the relationship was incorrectly thought
to be 0,/v; = 6,/v,. Snell’s law was published by Descartes in
1638 without giving proper credit to Snell. Snell also discovered a
method for determining distances by triangulation that founded the
modern technique of mapmaking.



We should more properly call v(r)
the instantaneous velocity function
to distinguish instantaneous velocity
from average velocity. However, we
will follow the standard practice of re-
ferring to it as the “velocity function,”
leaving it understood that it describes
instantaneous velocity.
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» Example 1 Figure 4.6.2a shows the position versus time curve for a particle moving
along an s-axis. In words, describe how the position of the particle changes with time.

Solution. The particle is at s = —3 at time ¢ = 0. It moves in the positive direction until
time t = 4, since s is increasing. Attime ¢ = 4 the particle is at position s = 3. At that time
it turns around and travels in the negative direction until time ¢ = 7, since s is decreasing.
At time ¢t = 7 the particle is at position s = —1, and it remains stationary thereafter, since
s is constant for # > 7. This is illustrated schematically in Figure 4.6.2b. <

s
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012345678910 -3 -0t 3

(a) (b)

A Figure 4.6.2

B VELOCITY AND SPEED

Recall from Formula (5) of Section 2.1 and Formula (4) of Section 2.2 that the instantaneous
velocity of a particle in rectilinear motion is the derivative of the position function. Thus,
if a particle in rectilinear motion has position function s(t), then we define its velocity
function v(t) to be

d
v(t) = 5’ (1) = d—j (1)

The sign of the velocity tells which way the particle is moving—a positive value for v(z)
means that s is increasing with time, so the particle is moving in the positive direction, and
a negative value for v(#) means that s is decreasing with time, so the particle is moving in
the negative direction. If v(¢) = 0, then the particle has momentarily stopped.

For a particle in rectilinear motion it is important to distinguish between its velocity,
which describes how fast and in what direction the particle is moving, and its speed, which
describes only how fast the particle is moving. We make this distinction by defining speed
to be the absolute value of velocity. Thus a particle with a velocity of 2 m/s has a speed of
2 m/s and is moving in the positive direction, while a particle with a velocity of —2 m/s
also has a speed of 2 m/s but is moving in the negative direction.

Since the instantaneous speed of a particle is the absolute value of its instantaneous
velocity, we define its speed function to be

()] =1s'(t)| = al @)
dt

The speed function, which is always nonnegative, tells us how fast the particle is moving
but not its direction of motion.

» Example 2 Let s(t) = > — 6¢> be the position function of a particle moving along
an s-axis, where s is in meters and ¢ is in seconds. Find the velocity and speed functions,
and show the graphs of position, velocity, and speed versus time.
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N
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A Figure 4.6.3
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—40
Acceleration versus time
A Figure 4.6.4

Solution. From (1) and (2), the velocity and speed functions are given by

ds 2 2
v(t) = i 3t — 12t and |v(t)| = |37 — 12¢]
The graphs of position, velocity, and speed versus time are shown in Figure 4.6.3. Observe
that velocity and speed both have units of meters per second (m/s), since s is in meters (m)
and time is in seconds (s). <

The graphs in Figure 4.6.3 provide a wealth of visual information about the motion of
the particle. For example, the position versus time curve tells us that the particle is on the
negative side of the origin for 0 < ¢ < 6, is on the positive side of the origin for ¢ > 6, and
is at the origin at times # = 0 and r = 6. The velocity versus time curve tells us that the
particle is moving in the negative direction if 0 < ¢ < 4, is moving in the positive direction
if t > 4, and is momentarily stopped at times t = 0 and # = 4 (the velocity is zero at those
times). The speed versus time curve tells us that the speed of the particle is increasing for
0 <t < 2, decreasing for 2 < t < 4, and increasing again for t > 4.

ACCELERATION

In rectilinear motion, the rate at which the instantaneous velocity of a particle changes with
time is called its instantaneous acceleration. Thus, if a particle in rectilinear motion has
velocity function v(#), then we define its acceleration function to be

d
al) = ') = d—lt’ 3)

Alternatively, we can use the fact that v(z) = s'(¢) to express the acceleration function in
terms of the position function as

2

a(it) =s"@) = o

“

» Example 3 Let s(t) = > — 6¢> be the position function of a particle moving along
an s-axis, where s is in meters and 7 is in seconds. Find the acceleration function a(t), and
show the graph of acceleration versus time.

Solution. From Example 2, the velocity function of the particle is v(r) = 3t> — 12¢, so
the acceleration function is dv
a(t) = — =6t —12

dt
and the acceleration versus time curve is the line shown in Figure 4.6.4. Note that in this
example the acceleration has units of m/s?, since v is in meters per second (m/s) and time
is in seconds (s). <«

SPEEDING UP AND SLOWING DOWN

We will say that a particle in rectilinear motion is speeding up when its speed is increasing
and is slowing down when its speed is decreasing. In everyday language an object that is
speeding up is said to be “accelerating” and an object that is slowing down is said to be
“decelerating”’; thus, one might expect that a particle in rectilinear motion will be speeding
up when its acceleration is positive and slowing down when it is negative. Although this is
true for a particle moving in the positive direction, it is not true for a particle moving in the



If a(t) = O over a certain time interval,
what does this tell you about the mo-
tion of the particle during that time?
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negative direction—a particle with negative velocity is speeding up when its acceleration
is negative and slowing down when its acceleration is positive. This is because a positive
acceleration implies an increasing velocity, and increasing a negative velocity decreases
its absolute value; similarly, a negative acceleration implies a decreasing velocity, and
decreasing a negative velocity increases its absolute value.

The preceding informal discussion can be summarized as follows (Exercise 41):

INTERPRETING THE SIGN OF ACCELERATION A particle in rectilinear motion is
speeding up when its velocity and acceleration have the same sign and slowing down
when they have opposite signs.

» Example 4 In Examples 2 and 3 we found the velocity versus time curve and the
acceleration versus time curve for a particle with position function s(¢) = 13 — 6. Use
those curves to determine when the particle is speeding up and slowing down, and confirm
that your results are consistent with the speed versus time curve obtained in Example 2.

Solution. Over the time interval 0 < ¢ < 2 the velocity and acceleration are negative, so
the particle is speeding up. This is consistent with the speed versus time curve, since the
speed is increasing over this time interval. Over the time interval 2 < t < 4 the velocity
is negative and the acceleration is positive, so the particle is slowing down. This is also
consistent with the speed versus time curve, since the speed is decreasing over this time
interval. Finally, on the time interval ¢ > 4 the velocity and acceleration are positive, so
the particle is speeding up, which again is consistent with the speed versus time curve. <«

ANALYZING THE POSITION VERSUS TIME CURVE
The position versus time curve contains all of the significant information about the position
and velocity of a particle in rectilinear motion:

e Ifs(t) > O, the particle is on the positive side of the s-axis.
e Ifs(t) < O, the particle is on the negative side of the s-axis.
* The slope of the curve at any time is equal to the instantaneous velocity at that time.

e Where the curve has positive slope, the velocity is positive and the particle is moving
in the positive direction.

e Where the curve has negative slope, the velocity is negative and the particle is moving
in the negative direction.

* Where the slope of the curve is zero, the velocity is zero, and the particle is momen-
tarily stopped.

Information about the acceleration of a particle in rectilinear motion can also be deduced
from the position versus time curve by examining its concavity. For example, we know
that the position versus time curve will be concave up on intervals where s”(¢) > 0 and
will be concave down on intervals where s” (1) < 0. But we know from (4) that s”(¢) is
the acceleration, so that on intervals where the position versus time curve is concave up the
particle has a positive acceleration, and on intervals where it is concave down the particle
has a negative acceleration.
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Table 4.6.1 summarizes our observations about the position versus time curve.

Table 4.6.1

ANALYSIS OF PARTICLE MOTION

POSITION VERSUS

CHARACTERISTICS OF THE

BEHAVIOR OF THE PARTICLE

TIME CURVE CURVE AT 1 = { AT TIME t = 1,
s * s(t)) >0 « Particle is on the positive side of the origin.
‘  Curve has positive slope. * Particle is moving in the positive direction.
} e Curve is concave down. * Velocity is decreasing.
B B S e Particle is slowing down.
Iy
s e s(ty)) >0 « Particle is on the positive side of the origin.
| * Curve has negative slope. « Particle is moving in the negative direction.
} * Curve is concave down. * Velocity is decreasing.
_—tk_t,  Particle is speeding up.
0

s(1) <0

Curve has negative slope.

Curve is concave up.

Particle is on the negative side of the origin.
Particle is moving in the negative direction.
Velocity is increasing.

Particle is slowing down.

S
_Aiti
|
S
|
/T\ |
I N g
1

0

s(t)) >0
Curve has zero slope.
Curve is concave down.

Particle is on the positive side of the origin.
Particle is momentarily stopped.
Velocity is decreasing.
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A Figure 4.6.5

» Example 5 Use the position versus time curve in Figure 4.6.5 to determine when the
particle in Example 1 is speeding up and slowing down.

Solution. Fromt = 0tot = 2, the acceleration and velocity are positive, so the particle
is speeding up. From# = 2tot = 4, the acceleration is negative and the velocity is positive,
sothe particle is slowing down. Atr = 4, the velocity is zero, so the particle has momentarily
stopped. From ¢t = 4 to t = 6, the acceleration is negative and the velocity is negative, so
the particle is speeding up. From¢ = 6tor = 7, the acceleration is positive and the velocity
is negative, so the particle is slowing down. Thereafter, the velocity is zero, so the particle
has stopped. <«

» Example 6 Suppose that the position function of a particle moving on a coordinate
line is given by s(¢) = 213 — 21¢> + 60t + 3. Analyze the motion of the particle for t > 0.
Solution. The velocity and acceleration functions are

v(t) = 5'(t) = 617 — 421 + 60 = 6(t — 2)(1 — 5)
alt) =v'(@) =12t —42 =12 (t _ %)

e Direction of motion: The sign analysis of the velocity function in Figure 4.6.6 shows
that the particle is moving in the positive direction over the time interval 0 < ¢ < 2,
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stops momentarily attime ¢ = 2, moves in the negative direction over the time interval
2 <t < 5, stops momentarily at time # = 5, and then moves in the positive direction

thereafter.
0 2 5 t
| | |
+++++++4+0 - - - - - — - - — - — — O++++++++ Signofv(r)=6(-2)(r-5)
Positive Negative Positive Direction of motion
direction direction direction
A Figure 4.6.6

* Change in speed: A comparison of the signs of the velocity and acceleration functions
is shown in Figure 4.6.7. Since the particle is speeding up when the signs are the
same and is slowing down when they are opposite, we see that the particle is slowing
down over the time interval 0 <t < 2 and stops momentarily at time = 2. It is
then speeding up over the time interval 2 < ¢t < % Attime t = % the instantaneous
acceleration is zero, so the particle is neither speeding up nor slowing down. It is
then slowing down over the time interval % <t < 5 and stops momentarily at time
t = 5. Thereafter, it is speeding up.

7
0 : % : f
B o | O++++++++ Signof o) =6(—2)(t-75)

————————————— O+++++++++++++ Signofa(z):IZ(t—%)

7
0 2 2 5 t
|
Slowing Speeding Slowing Speeding Change in speed
down up down up
A Figure 4.6.7

Conclusions: The diagram in Figure 4.6.8 summarizes the above information schematically.
The curved line is descriptive only; the actual path is back and forth on the coordinate line.
The coordinates of the particle at timest = 0, = 2, ¢t = %, and t = 5 were computed from
s(t). Segments in red indicate that the particle is speeding up and segments in blue indicate

that it is slowing down. <«

_17 -
=s{___ 1=}
}z:Z

N

Y

t=0

| |
» Figure 4.6.8 03 28 41.5 55

VQUlCK CHECK EXERCISES 4.6  (See page 296 for answers.)

1. For a particle in rectilinear motion, the velocity and position 3. Aparticle in rectilinear motion is speeding up if the signs of
functions v(¢) and s (¢) are related by theequation | its velocity and accelerationare ___ and it is slowing
and the acceleration and velocity functions a () and v(¢) are down if these signs are
related by the equation . 4. Suppose that a particle moving along the s-axis has position

2. Suppose that a particle moving along the s-axis has posi- function s(f) = t* — 24¢> over the time interval t > 0. The
tion function s(f) = 7t — 2t%. At time t = 3, the particle’s particle slows down over the time interval(s)
positionis —its velocity is | its speed is

, and its acceleration is
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EXERCISE SET 4.6 [ Graphing Utility

FOCUS ON CONCEPTS

1. The graphs of three position functions are shown in the
accompanying figure. In each case determine the signs of
the velocity and acceleration, and then determine whether
the particle is speeding up or slowing down.

N N s

12 t t

(@) (b) (©)
A Figure Ex-1

2. The graphs of three velocity functions are shown in the
accompanying figure. In each case determine the sign of
the acceleration, and then determine whether the particle
is speeding up or slowing down.

v v v

— 1T

(b) ()

A Figure Ex-2

3. The graph of the position function of a particle moving
on a horizontal line is shown in the accompanying figure.
(a) Is the particle moving left or right at time #,?

(b) Is the acceleration positive or negative at time fy?

(c) Is the particle speeding up or slowing down at
time #?

(d) Is the particle speeding up or slowing down at
time #,?

WA

gl <« Figure Ex-3

4. For the graphs in the accompanying figure, match the po-
sition functions (a)—(c) with their corresponding velocity
functions (I)—(I1I).

- | /
| |/

(@) (b) ()

[ t / t \ t
(D (I (110
A Figure Ex-4

5. Sketch areasonable graph of s versus ¢ for a mouse that is
trapped in a narrow corridor (an s-axis with the positive
direction to the right) and scurries back and forth as fol-
lows. It runs right with a constant speed of 1.2 m/s for a
while, then gradually slows down to 0.6 m/s, then quickly
speeds up to 2.0 m/s, then gradually slows to a stop but
immediately reverses direction and quickly speeds up to
1.2 m/s.

6. The accompanying figure shows the position versus time
curve for an ant that moves along a narrow vertical pipe,
where ¢ is measured in seconds and the s-axis is along the
pipe with the positive direction up.

(a) When, if ever, is the ant above the origin?
(b) When, if ever, does the ant have velocity zero?
(c) When, if ever, is the ant moving down the pipe?

/"
\/

1 2 3 4 5 6 7 <Figure Ex-6

7. The accompanying figure shows the graph of velocity
versus time for a particle moving along a coordinate line.
Make a rough sketch of the graphs of speed versus time
and acceleration versus time.

v (m/s)
15 +

5L /
0 1 1 1 1 1 |t(s)

1 2 3 4 5 6

< Figure Ex-7

8. The accompanying figure (on the next page) shows the
position versus time graph for an elevator that ascends 40

m from one stop to the next.
(a) Estimate the velocity when the elevator is halfway
up to the top. (cont.)




(b) Sketchrough graphs of the velocity versus time curve
and the acceleration versus time curve.

40

30

20

10

Position s (m)

I I B
0 5 10 15 20 25

Time £ (s)

< Figure Ex-8

9-12 True-False Determine whether the statement is true or
false. Explain your answer.

9. Aparticle is speeding up when its position versus time graph
is increasing.

10. Velocity is the derivative of position with respect to time.
11. Acceleration is the absolute value of velocity.

12. If the position versus time curve is increasing and concave
down, then the particle is slowing down.

13. The accompanying figure shows the velocity versus time
graph for a test run on a Pontiac Grand Prix GTP. Using this
graph, estimate
(a) the acceleration at 60 mi/h (in ft/s?)

(b) the time at which the maximum acceleration occurs.
Source: Data from Car and Driver Magazine, July 2003.

14. The accompanying figure shows the velocity versus time
graph for a test run on a Chevrolet Malibu. Using this graph,
estimate
(a) the acceleration at 60 mi/h (in ft/s?)

(b) the time at which the maximum acceleration occurs.
Source: Data from Car and Driver Magazine, November 2003.

120 100
£ 100 £ 50
E % g 60
=) 60 =)

> >

S 40 5 40
S S

T 20 T 20

0 5 10 15 20 25 30 0 5 10 15 20 25
Time 7 (s) Time 1 (s)

A Figure Ex-13 A Figure Ex-14

15-16 The function s(¢) describes the position of a particle

moving along a coordinate line, where s is in meters and ¢ is in

seconds.

(a) Make a table showing the position, velocity, and accelera-
tion to two decimal places at times t = 1, 2, 3,4, 5.

(b) At each of the times in part (a), determine whether the
particle is stopped; if it is not, state its direction of motion.

(c) At each of the times in part (a), determine whether the
particle is speeding up, slowing down, or neither.

t
15. s(r) = sin HZ 16. s(t) =t*e~", >0

4.6 Rectilinear Motion 295

17-22 The function s(¢) describes the position of a particle

moving along a coordinate line, where s is in feet and ¢ is in

seconds.

(a) Find the velocity and acceleration functions.

(b) Find the position, velocity, speed, and acceleration at time
t=1.

(c) At what times is the particle stopped?

(d) When is the particle speeding up? Slowing down?

(e) Find the total distance traveled by the particle from time
t =0totimer = 5.

17. s() =12 =3¢%, >0

18. s(t) =t*— 4> +4, >0

19. s(1) =9 —9cos(nt/3), 0<t<5

t
20. S(t)zm, [ZO

21, s(t) = (12 +8)e3, >0
22. s()=42—In(t+1), >0

M 23. Let s(t) = t/(t> + 5) be the position function of a particle

moving along a coordinate line, where s is in meters and ¢

is in seconds. Use a graphing utility to generate the graphs

of s(t), v(t), and a(t) for t > 0, and use those graphs where
needed.

(a) Use the appropriate graph to make a rough estimate of
the time at which the particle first reverses the direction
of its motion; and then find the time exactly.

(b) Find the exact position of the particle when it first re-
verses the direction of its motion.

(c) Use the appropriate graphs to make a rough estimate of
the time intervals on which the particle is speeding up
and on which it is slowing down; and then find those
time intervals exactly.

] 24. Let s(t) = t/e' be the position function of a particle mov-

ing along a coordinate line, where s is in meters and ¢ is in

seconds. Use a graphing utility to generate the graphs of

s(t), v(t), and a(¢) for t > 0, and use those graphs where

needed.

(a) Use the appropriate graph to make a rough estimate of
the time at which the particle first reverses the direction
of its motion; and then find the time exactly.

(b) Find the exact position of the particle when it first re-
verses the direction of its motion.

(c) Use the appropriate graphs to make a rough estimate of
the time intervals on which the particle is speeding up
and on which it is slowing down; and then find those
time intervals exactly.

25-32 A position function of a particle moving along a coordi-
nate line is given. Use the method of Example 6 to analyze the
motion of the particle for # > 0, and give a schematic picture of
the motion (as in Figure 4.6.8).
25. s =—4t+3

27. s =13 — 912 4+ 24¢

26. s = 5t> —20¢
28. s =13 —6124+9r+ 1



296 Chapter 4 / The Derivative in Graphing and Applications

25
29. 5 = 16t~/ 30 s =14+ ——
t+2

cost, 0<t<2m
31. s =

1, t>2m

21 (t —2)2, 0<t<3
32. 5 =

13—-70t—-4)?% >3
33. Let s(¢) = 5t> — 22t be the position function of a particle

34.

moving along a coordinate line, where s is in feet and 7 is

in seconds.

(a) Find the maximum speed of the particle during the time
interval 1 <t < 3.

(b) When, during the time interval 1 <t < 3, is the parti-
cle farthest from the origin? What is its position at that
instant?

Lets = 100/(¢> + 12) be the position function of a particle
moving along a coordinate line, where s is in feet and 7 is in
seconds. Find the maximum speed of the particle for r > 0,
and find the direction of motion of the particle when it has
its maximum speed.

35-36 A position function of a particle moving along a coor-
dinate line is provided. (a) Evaluate s and v when a = 0. (b)
Evaluate s and a when v = 0.

35.
~ 37.

38.

s =In(3r* — 12t +13)  36. s =1> — 61> + 1

Lets = +/2¢2 + 1 be the position function of a particle mov-

ing along a coordinate line.

(a) Use a graphing utility to generate the graph of v versus
t, and make a conjecture about the velocity of the par-
ticle as ¢ — +-co.

(b) Check your conjecture by finding ;LITOC v.

(a) Use the chain rule to show that for a particle in rectilin-
ear motion a = v(dv/ds).

l/ QUICK CHECK ANSWERS 4.6

40.

41.

42.

43.

(b) Lets = /3t +7,t > 0. Find a formula for v in terms
of s and use the equation in part (a) to find the acceler-
ation when s = 5.

. Suppose that the position functions of two particles, P; and

P>, in motion along the same line are
si=32—t+3 and s =—12+1+1

respectively, for ¢ > 0.

(a) Prove that P; and P, do not collide.

(b) How close do P, and P, get to each other?

(c) During what intervals of time are they moving in oppo-
site directions?

Let s4 = 15¢% 4+ 10t + 20 and s = 5¢t> +40¢t,1 > 0, be

the position functions of cars A and B that are moving along

parallel straight lanes of a highway.

(a) How far is car A ahead of car B when t = 0?

(b) At what instants of time are the cars next to each other?

(c) Atwhat instant of time do they have the same velocity?
Which car is ahead at this instant?

Prove that a particle is speeding up if the velocity and accel-
eration have the same sign, and slowing down if they have
opposite signs. [Hint: Letr(¢t) = |v(¢)| and find /() using
the chain rule.]

Writing A speedometer on a bicycle calculates the bicy-
cle’s speed by measuring the time per rotation for one of
the bicycle’s wheels. Explain how this measurement can
be used to calculate an average velocity for the bicycle, and
discuss how well it approximates the instantaneous velocity
for the bicycle.

Writing A toy rocket is launched into the air and falls to
the ground after its fuel runs out. Describe the rocket’s ac-
celeration and when the rocket is speeding up or slowing
down during its flight. Accompany your description with a
sketch of a graph of the rocket’s acceleration versus time.

1. v(t) = s'(1); a(t) =v' (1)

%4 NEWTON'S METHOD

2. 3; =5; 5; —4 3. the same; opposite

4.2 <t <23

In Section 1.5 we showed how to approximate the roots of an equation f(x) = 0 using the
Intermediate-Value Theorem. In this section we will study a technique, called “Newton’s
Method,” that is usually more efficient than that method. Newton’s Method is the
technique used by many commercial and scientific computer programs for finding roots.

M NEWTON’'S METHOD

In beginning algebra one learns that the solution of a first-degree equation ax + b = 0 is
given by the formula x = —b/a, and the solutions of a second-degree equation

ax>+bx+c=0
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are given by the quadratic formula. Formulas also exist for the solutions of all third- and
fourth-degree equations, although they are too complicated to be of practical use. In 1826
it was shown by the Norwegian mathematician Niels Henrik Abel that it is impossible to
construct a similar formula for the solutions of a general fifth-degree equation or higher.
Thus, for a specific fifth-degree polynomial equation such as

X =9t 4+ 2% =52+ 17x —8=0

it may be difficult or impossible to find exact values for all of the solutions. Similar diffi-
culties occur for nonpolynomial equations such as

x—cosx =0

For such equations the solutions are generally approximated in some way, often by the
method we will now discuss.

Suppose that we are trying to find a root r of the equation f(x) = 0, and suppose that by
some method we are able to obtain an initial rough estimate, x;, of r, say by generating the
graph of y = f(x) with a graphing utility and examining the x-intercept. If f(x;) = 0, then
r = x1. If f(x;) # 0, then we consider an easier problem, that of finding a root to a linear
equation. The best linear approximation to y = f(x) near x = x; is given by the tangent
line to the graph of f at x;, so it might be reasonable to expect that the x-intercept to this
tangent line provides an improved approximation to r. Call this intercept x; (Figure 4.7.1).
We can now treat x, in the same way we did x;. If f(x;) =0, then r = x,. If f(xp) # 0,
then construct the tangent line to the graph of f at x,, and take x3 to be the x-intercept of
this tangent line. Continuing in this way we can generate a succession of values xy, x7, x3,
X4, . . . that will usually approach r. This procedure for approximating r is called Newton’s
Method.

To implement Newton’s Method analytically, we must derive a formula that will tell
us how to calculate each improved approximation from the preceding approximation. For
this purpose, we note that the point-slope form of the tangent line to y = f(x) at the initial

A Figure 4.7.1

Niels Henrik Abel (1802-1829) Norwegian mathemati-
cian. Abel was the son of a poor Lutheran minister and
a remarkably beautiful mother from whom he inherited
strikingly good looks. In his brief life of 26 years Abel
lived in virtual poverty and suffered a succession of ad-
versities, yet he managed to prove major results that al-

great German mathematician Gauss, who casually declared it to be
a “monstrosity” and tossed it aside. However, in 1826 Abel’s paper
on the fifth-degree equation and other work was published in the
first issue of a new journal, founded by his friend, Leopold Crelle.
In the summer of 1826 he completed a landmark work on transcen-
dental functions, which he submitted to the French Academy of

tered the mathematical landscape forever. At the age of thirteen
he was sent away from home to a school whose better days had
long passed. By a stroke of luck the school had just hired a teacher
named Bernt Michael Holmboe, who quickly discovered that Abel
had extraordinary mathematical ability. Together, they studied the
calculus texts of Euler and works of Newton and the later French
mathematicians. By the time he graduated, Abel was familar with
most of the great mathematical literature. In 1820 his father died,
leaving the family in dire financial straits. Abel was able to enter
the University of Christiania in Oslo only because he was granted a
free room and several professors supported him directly from their
salaries. The University had no advanced courses in mathematics,
so Abel took a preliminary degree in 1822 and then continued to
study mathematics on his own. In 1824 he published at his own
expense the proof that it is impossible to solve the general fifth-
degree polynomial equation algebraically. With the hope that this
landmark paper would lead to his recognition and acceptance by
the European mathematical community, Abel sent the paper to the

Sciences. He hoped to establish himself as a major mathematician,
for many young mathematicians had gained quick distinction by
having their work accepted by the Academy. However, Abel waited
in vain because the paper was either ignored or misplaced by one
of the referees, and it did not surface again until two years after
his death. That paper was later described by one major mathemati-
cian as “...the most important mathematical discovery that has been
made in our century....” After submitting his paper, Abel returned
to Norway, ill with tuberculosis and in heavy debt. While eking out
a meager living as a tutor, he continued to produce great work and
his fame spread. Soon great efforts were being made to secure a
suitable mathematical position for him. Fearing that his great work
had been lost by the Academy, he mailed a proof of the main results
to Crelle in January of 1829. In April he suffered a violent hem-
orrhage and died. Two days later Crelle wrote to inform him that
an appointment had been secured for him in Berlin and his days of
poverty were over! Abel’s great paper was finally published by the
Academy twelve years after his death.
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[-2,4]x[-3,3]
xScl=1,yScl =1
y=x-x-1

A Figure 4.7.2

TECHNOLOGY MASTERY

Many calculators and computer pro-
grams calculate internally with more
digits than they display. Where pos-
sible, you should use stored cal-
culated values rather than values
displayed from earlier calculations.
Thus, in Example 1 the value of x; used
in (7) should be the stored value, not
the value in (6).

approximation x; is

y = fx) = f'x)(x = x1) (D)

If f'(x1) # 0, then this line is not parallel to the x-axis and consequently it crosses the
x-axis at some point (x,, 0). Substituting the coordinates of this point in (1) yields

—fx1) = f(x)(xa — x1)
Solving for x, we obtain
_fG)
J(x)
The next approximation can be obtained more easily. If we view x; as the starting approx-

imation and x3 the new approximation, we can simply apply (2) with x, in place of x| and
x3 in place of x,. This yields F(x)

f/(x2)

provided f’(x;) # 0. In general, if x, is the nth approximation, then it is evident from the
pattern in (2) and (3) that the improved approximation x,4| is given by

@)

X2 = X1

3

X3 = X3 —

Newton’s Method
(€]
xn+1:xn_f(xn), n:1,2,3,...
S/ (xn)

» Example 1 Use Newton’s Method to approximate the real solutions of

HB—x—1=0

Solution. Let f(x) = x> —x —1,s0 f'(x) = 3x> — 1 and (4) becomes

3
X, — xp — 1
2
3x;—1

Xntl = Xp — (5)
From the graph of f in Figure 4.7.2, we see that the given equation has only one real
solution. This solution lies between 1 and 2 because f(1) = —1 <0 and f(2) =5 > 0.
We will use x; = 1.5 as our first approximation (x; = 1 or x; = 2 would also be reasonable
choices).
Letting n = 1 in (5) and substituting x; = 1.5 yields
1.53 -15-1
X, =15— a5 -15-1 ~ 1.34782609 ©6)
3(1.5)2 -1

(We used a calculator that displays nine digits.) Next, we let » = 2 in (5) and substitute x,
to obtain 3

-1
Xy = xy — 22T A 130520040 %)

2
3x; —

If we continue this process until two identical approximations are generated in succession,
we obtain
X1 = 1.5

xy ~ 1.34782609
x3 ~ 1.32520040
x4 ~ 1.32471817
x5 ~ 1.32471796
Xe ~ 1.32471796



y = cosx
[0, 5] x [-2, 2]
xScl=1,yScl =1
A Figure 4.7.3
y

X3 cannot be generated.

A Figure 4.7.4
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At this stage there is no need to continue further because we have reached the display
accuracy limit of our calculator, and all subsequent approximations that the calculator
generates will likely be the same. Thus, the solution is approximately x ~ 1.32471796. <«

» Example 2 Itis evident from Figure 4.7.3 that if x is in radians, then the equation
cosSx =X

has a solution between 0 and 1. Use Newton’s Method to approximate it.

Solution. Rewrite the equation as
x—cosx =0

and apply (4) with f(x) = x — cosx. Since f’'(x) = 1 + sin x, (4) becomes
X, — COS X,
Xntl = Xn = o @
From Figure 4.7.3, the solution seems closer to x = 1 than x = 0, so we will use x; = 1
(radian) as our initial approximation. Letting n = 1 in (8) and substituting x; = 1 yields
1 —cosl
~ 1+sinl

Next, letting n = 2 in (8) and substituting this value of x; yields

Xy = ~ (0.750363868

Xy = xy — 2 0739112891
1 + sin x,

If we continue this process until two identical approximations are generated in succession,
we obtain x; =1

xy ~ 0.750363868
x3 ~ 0.739112891
x4 ~ 0.739085133
x5 ~ (0.739085133

Thus, to the accuracy limit of our calculator, the solution of the equation cosx = x is
x 2 0.739085133. «

SOME DIFFICULTIES WITH NEWTON’'S METHOD
When Newton’s Method works, the approximations usually converge toward the solution
with dramatic speed. However, there are situations in which the method fails. For example,
if f’(x,) = 0 for some n, then (4) involves a division by zero, making it impossible to
generate x,;. However, this is to be expected because the tangent line to y = f(x) is
parallel to the x-axis where f’(x,) =0, and hence this tangent line does not cross the
x-axis to generate the next approximation (Figure 4.7.4).

Newton’s Method can fail for other reasons as well; sometimes it may overlook the root
you are trying to find and converge to a different root, and sometimes it may fail to converge
altogether. For example, consider the equation

X1/3 -0

which has x = 0 as its only solution, and try to approximate this solution by Newton’s
Method with a starting value of xo = 1. Letting f(x) = x'/3, Formula (4) becomes

(x,)'/3

W =Xy — 3xn = —2x,,

Xn+1 = Xn —
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Beginning with x; = 1, the successive values generated by this formula are

x1=1, x=-2, x3=4, x34=-8,...

which obviously do not converge to x = 0. Figure 4.7.5 illustrates what is happening
geometrically in this situation.

> Figure 4.7.5

To learn more about the conditions under which Newton’s Method converges and for
a discussion of error questions, you should consult a book on numerical analysis. For a
more in-depth discussion of Newton’s Method and its relationship to contemporary studies
of chaos and fractals, you may want to read the article, “Newton’s Method and Fractal
Patterns,” by Philip Straffin, which appears in Applications of Calculus, MAA Notes, Vol.

3, No. 29, 1993, published by the Mathematical Association of America.

(See page 302 for answers.)

EXERCISE SET 4.7

. Use the accompanying graph to estimate x, and x3 if New-

ton’s Method is applied to the equation y = f(x) with
X1 = 8.

. Suppose that f(1) = 2 and f'(1) = 4. If Newton’s Method

is applied to y = f(x) with x; = 1, then x; =

. Suppose we are given that f(0) = 3 and that x, = 3 when

Newton’s Method is applied to y = f(x) withx; = 0. Then
ffo=—_.

. If Newton’s Method is appliedto y = ¢* — 1 withx; =1n2,

then x, =

~ Graphing Utility

< Figure Ex-1

In this exercise set, express your answers with as many dec-
imal digits as your calculating utility can display, but use the
procedure in the Technology Mastery on p. 298.

1.

Approximate V2 by applying Newton’s Method to the
equation x> — 2 = 0.

. Approximate NG by applying Newton’s Method to the

equation x> — 5 = 0.

. Approximate J6 by applying Newton’s Method to the

equation x> — 6 = 0.

. To what equation would you apply Newton’s Method to

approximate the nth root of a?

5-8 The given equation has one real solution. Approximate it
by Newton’s Method.

5. x3-2x—-2=0
7. x> +x*=5=0

6. x>+x—-1=0
8 x>—3x+3=0

[ 9-14 Use a graphing utility to determine how many solutions
the equation has, and then use Newton’s Method to approximate
the solution that satisfies the stated condition.

9. x*4+x2—-4=0;x<0
10. x°—5x3—-2=0; x>0
11. 2cosx =x; x >0

x>0

12. sinx = x2;



13.
14.

~ 15-

x—tanx =0; /2 < x < 37/2
14+e sinx =0; n/2 <x <37/2

20 Use a graphing utility to determine the number of times

the curves intersect and then apply Newton’s Method, where
needed, to approximate the x-coordinates of all intersections.

15.
16.
17.
18.
19.
20.

21-

y=x’andy=1-—x
y=sinxandy =x3—2x2+1
y=x%andy=+2x+1
y=gx*—landy=cosx —2
y=landy =e¢*sinx; O<x <m

y=e ‘andy =Inx

24 True-False Determine whether the statement is true or

false. Explain your answer.

21.

22,

23.

24,

25.

26.

27.

28.

Newton’s Method uses the tangent line to y = f(x) at
X = X, to compute x, 4.

Newton’s Method is a process to find exact solutions to
f(x)=0.

If f(x) = 0 has a root, then Newton’s Method starting at
x = x; will approximate the root nearest x;.

Newton’s Method can be used to appoximate a point of in-
tersection of two curves.

The mechanic’s rule for approximating square roots states
that \/a ~ x,41, where

1 a
Xnt1 = s\ Xn+— |, n=1,2,3,...
2 X

n

and x; is any positive approximation to /a.
(a) Apply Newton’s Method to

fx)=x*—a
to derive the mechanic’s rule.

(b) Use the mechanic’s rule to approximate +/10.
Many calculators compute reciprocals using the approxima-
tion 1/a ~ x,1, where

Xpp1 = X2 —ax,), n=12,3,...
and x; is an initial approximation to 1/a. This formula
makes it possible to perform divisions using multiplications
and subtractions, which is a faster procedure than dividing

directly.
(a) Apply Newton’s Method to

1
fx)=-—a
X
to derive this approximation.
(b) Use the formula to approximate %

Use Newton’s Method to approximate the absolute mini-
mum of f(x) = %x“ + x2 — 5x.

Use Newton’s Method to approximate the absolute maxi-
mum of f(x) = x sinx on the interval [0, r].
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29. For the function e
0=

use Newton’s Method to approximate the x-coordinates of
the inflection points to two decimal places.

30. Use Newton’s Method to approximate the absolute maxi-
mum of f(x) = (1 — 2x)tan"! x.

31. Use Newton’s Method to approximate the coordinates of
the point on the parabola y = x? that is closest to the point
(1,0).

32. Use Newton’s Method to approximate the dimensions of
the rectangle of largest area that can be inscribed under the
curve y = cosx for 0 < x < m/2 (Figure Ex-32).

33. (a) Show thaton acircle of radius r, the central angle 6 that
subtends an arc whose length is 1.5 times the length L of
its chord satisfies the equation # = 3 sin(6/2) (Figure
Ex-33).

(b) Use Newton’s Method to approximate 6.

AN

A Figure Ex-32 A Figure Ex-33

34. Asegment of a circle is the region enclosed by an arc and its
chord (Figure Ex-34). If r is the radius of the circle and 6
the angle subtended at the center of the circle, then it can be
shown that the area A of the segmentis A = %rZ(Q —sinf),
where 6 is in radians. Find the value of 6 for which the area
of the segment is one-fourth the area of the circle. Give 6
to the nearest degree.

.‘

< Figure Ex-34

35-36 Use Newton’s Method to approximate all real values of

y satisfying the given equation for the indicated value of x.

35 0" +x%y=1; x=1 36. xy—cos(3xy) =0; x =2

37. An annuity is a sequence of equal payments that are paid
or received at regular time intervals. For example, you may
want to deposit equal amounts at the end of each year into
an interest-bearing account for the purpose of accumulat-
ing a lump sum at some future time. If, at the end of each
year, interest of i x 100% on the account balance for that
year is added to the account, then the account is said to pay
i x 100% interest, compounded annually. It can be shown



302 Chapter 4 / The Derivative in Graphing and Applications

that if payments of QO dollars are deposited at the end of ing value of x; = 0.5. Check your conclusion by
each year into an account that pays i x 100% compounded computing x,, X3, X4, and xs.
annually, then at the time when the nth payment and the 39. (a) Apply Newton’s Method to f(x) = x2 + 1 with a
accrued interest for the past year are deposited, the amount starting value of x; = 0.5, and determine if the val-
S(n) in the account is given by the formula ues of xa, . . ., X10 appear to converge.

0 (b) Explain what is happening.

Sy =—[1+)"—1]
l 40. In each part, explain what happens if you apply New-

Suppose that you can invest $5000 in an interest-bearing ton’s Method to a function f when the given condition
account at the end of each year, and your objective is to is satisfied for some value of 7.

have $250,000 on the 25th payment. Approximately what (@ f(x,) =0 (b) Xpp1 = X,

annual compound interest rate must the account pay for you (©) Xpi2 = Xp 7 Xnyi

to achieve your goal? [Hint: Show that the interest rate i
satisfies the equation 50i = (1 +i)?>® — 1, and solve it using
Newton’s Method. ]

41. Writing Compare Newton’s Method and the Intermediate-
Value Theorem (1.5.7; see Example 5 in Section 1.5) as

methods to locate solutions to f(x) = 0.
I~ 38. (a) Use a graphing utility to generate the graph of 42. Writing Newton’s Method uses a local linear approxima-
X tionto y = f(x) at x = x, to find an “improved” approxi-
Jx) = X241 mation x, to a zero of f. Your friend proposes a process
and use it to explain what happens if you apply New- that uses a local quadratic approximation to y = f(x) at
ton’s Method with a starting value of x; = 2. Check x = x, (that is, matching values for the function and its
your conclusion by computing x5, x3, x4, and xs. first two derivatives) to obtain x,.;. Discuss the pros and
(b) Use the graph generated in part (a) to explain what cons of this proposal. Support your statements with some
happens if you apply Newton’s Method with a start- examples.
VQUICK CHECK ANSWERS 4.7

L xy~4,x3~2 2.1 3. -1 4.In2-1~0.193147

m ROLLE’S THEOREM: MEAN-VALUE THEOREM

In this section we will discuss a result called the Mean-Value Theorem. This theorem has
so many important consequences that it is regarded as one of the major principles in
calculus.

\ y=Jfx) H ROLLE'S THEOREM
} We will begin with a special case of the Mean-Value Theorem, called Rolle’s Theorem, in
\ honor of the mathematician Michel Rolle. This theorem states the geometrically obvious

b . . . . . .
Ja ! fact that if the graph of a differentiable function intersects the x-axis at two places, a and
b, then somewhere between a and b there must be at least one place where the tangent line
y=fx) is horizontal (Figure 4.8.1). The precise statement of the theorem is as follows.
\ | >
a\ ! b

4.8.1 THEOREM (Rolle’s Theorem) Let [ be continuous on the closed interval [a, b]

and differentiable on the open interval (a, b). I
A Figure 4.8.1 U P ( -

fay=0 and f(b)=0

then there is at least one point ¢ in the interval (a, b) such that f'(c) = 0.
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PROOF We will divide the proof into three cases: the case where f(x) = 0 for all x in
(a, b), the case where f(x) > 0 at some point in (a, b), and the case where f(x) < 0 at
some point in (a, b).

cAsE 1 If f(x) = 0 for all x in (a, b), then f'(c) = 0 at every point ¢ in (a, b) because
f is a constant function on that interval.

CASE 2 Assume that f(x) > 0 at some point in (a, b). Since f is continuous on [a, b],
it follows from the Extreme-Value Theorem (4.4.2) that f has an absolute maximum on
[a, b]. The absolute maximum value cannot occur at an endpoint of [a, b] because we
have assumed that f(a) = f(b) = 0, and that f(x) > 0 at some point in (a, b). Thus, the
absolute maximum must occur at some point ¢ in (a, b). It follows from Theorem 4.4.3
that c is a critical point of f, and since f is differentiable on (a, b), this critical point must
be a stationary point; that is, f'(c) = 0.

CASE 3 Assume that f(x) < 0 at some point in (a, b). The proof of this case is similar to
Case 2 and will be omitted. =

» Example 1 Find the two x-intercepts of the function f(x) = x> — 5x + 4 and confirm

v that f’(c) = 0 at some point ¢ between those intercepts.
2+ . .
Solution. The function f can be factored as
1 L
N X =Sx+d=(x—Dx—4)
1 1 >
2 } 3 so the x-intercepts are x = 1 and x = 4. Since the polynomial f is continuous and differ-
-1r } entiable everywhere, the hypotheses of Rolle’s Theorem are satisfied on the interval [1, 4].
Sl \ Thus, we are guaranteed the existence of at least one point c in the interval (1, 4) such that
F3)=0 f'(c) = 0. Differentiating f yields
o fl(x)=2x—5
y=x*-5x+4 . . , . 5 5 . . .
Solving the equation f(x) = 0 yields x = 3, so ¢ = 3 is a point in the interval (1, 4) at
A Figure 4.8.2 which f’(c) = 0 (Figure 4.8.2). <

» Example 2 The differentiability requirement in Rolle’s Theorem is critical. If f fails
to be differentiable at even one place in the interval (a, b), then the conclusion of the

Michel Rolle (1652-1719) French mathematician. Rolle, the son
of a shopkeeper, received only an elementary education. He mar-
ried early and as a young man struggled hard to support his family
on the meager wages of a transcriber for notaries and attorneys. In
spite of his financial problems and minimal education, Rolle stud-
ied algebra and Diophantine analysis (a branch of number theory)
on his own. Rolle’s fortune changed dramatically in 1682 when
he published an elegant solution of a difficult, unsolved problem in
Diophantine analysis. The public recognition of his achievement
led to a patronage under minister Louvois, a job as an elementary
mathematics teacher, and eventually to a short-term administrative
post in the Ministry of War. In 1685 he joined the Académie des Sci-
ences in a low-level position for which he received no regular salary
until 1699. He stayed at the Académie until he died of apoplexy
in 1719.

While Rolle’s forte was always Diophantine analysis, his most
important work was a book on the algebra of equations, called Traité
d’algebre, published in 1690. In that book Rolle firmly established
the notation {/a [earlier written as /@ a] for the nth root of a,
and proved a polynomial version of the theorem that today bears
his name. (Rolle’s Theorem was named by Giusto Bellavitis in
1846.) Ironically, Rolle was one of the most vocal early antagonists
of calculus. He strove intently to demonstrate that it gave erroneous
results and was based on unsound reasoning. He quarreled so vig-
orously on the subject that the Académie des Sciences was forced to
intervene on several occasions. Among his several achievements,
Rolle helped advance the currently accepted size order for negative
numbers. Descartes, for example, viewed —2 as smaller than —5.
Rolle preceded most of his contemporaries by adopting the current
convention in 1691.
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y

%

A Figure 4.8.3

-1+

A Figure 4.8.4

In Examples 1 and 3 we were able
to find exact values of ¢ because the
equation f’(x) = 0 was easy to solve.
However, in the applications of Rolle’s
Theorem it is usually the existence of
¢ that is important and not its actual
value.

B(b. f())

The tangent line is parallel to the
secant line where the vertical
distance v(x) between the secant line
and the graph of fis maximum.

A Figure 4.8.6

theorem may not hold. For example, the function f(x) = |x| — 1 graphed in Figure 4.8.3
has roots at x = —1 and x = 1, yet there is no horizontal tangent to the graph of f over the
interval (—1,1). <«

» Example 3 If f satisfies the conditions of Rolle’s Theorem on [a, b], then the theorem
guarantees the existence of at least one point ¢ in (a, b) at which f’(¢) = 0. There may,
however, be more than one such c¢. For example, the function f(x) = sin x is continuous
and differentiable everywhere, so the hypotheses of Rolle’s Theorem are satisfied on the
interval [0, 2;r] whose endpoints are roots of f. As indicated in Figure 4.8.4, there are two
points in the interval [0, 277] at which the graph of f has a horizontal tangent, ¢; = 7/2 and
¢, =31 / 2. «

THE MEAN-VALUE THEOREM

Rolle’s Theorem is a special case of a more general result, called the Mean-Value Theorem.
Geometrically, this theorem states that between any two points A(a, f(a)) and B(b, f(b))
on the graph of a differentiable function f, there is at least one place where the tangent line
to the graph is parallel to the secant line joining A and B (Figure 4.8.5).

B(b, f(b))
|
Ala, f(a)) | |
\ } } x
a c b g
(a)
A Figure 4.8.5

Note that the slope of the secant line joining A(a, f(a)) and B(b, f(b)) is

f) — f(a)
b—a

and that the slope of the tangent line at ¢ in Figure 4.8.5a is f’(c). Similarly, in Figure 4.8.5b
the slopes of the tangent lines at ¢; and ¢, are f'(c;) and f’(cz), respectively. Since
nonvertical parallel lines have the same slope, the Mean-Value Theorem can be stated
precisely as follows.

4.8.2 THEOREM (Mean-Value Theorem) Let f be continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). Then there is at least one point ¢
in (a, b) such that £(b) — f(a)

fio)= ﬁ ()

MOTIVATION FOR THE PROOF OF THEOREM 4.8.2 Figure 4.8.6 suggests that (1) will
hold (i.e., the tangent line will be parallel to the secant line) at a point ¢ where the vertical
distance between the curve and the secant line is maximum. Thus, to prove the Mean-Value
Theorem it is natural to begin by looking for a formula for the vertical distance v(x) between
the curve y = f(x) and the secant line joining (a, f(a)) and (b, f(b)).



A Figure 4.8.7
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PROOF OF THEOREM 4.8.2 Since the two-point form of the equation of the secant line
joining (a, f(a)) and (b, f(b)) is
fb) — fla)

y— fla) = b —a)
—a
or, equivalently,
b) —
=02 ID o+ @
—a
the difference v(x) between the height of the graph of f and the height of the secant line is
b) —

o = s = [ L0 0+ o) @

Since f(x) is continuous on [a, b] and differentiable on (a, ), so is v(x). Moreover,
va)=0 and v() =0

so that v(x) satisfies the hypotheses of Rolle’s Theorem on the interval [a, b]. Thus, there
is a point ¢ in (a, b) such that v'(¢) = 0. But from Equation (2)

b —
v = o - O
—d
SO
b —
V() = fllo - 10T
—d
Since v'(¢) = 0, we have
po=10=@
—a

» Example 4 Show that the function f(x) = %x3 + 1 satisfies the hypotheses of the
Mean-Value Theorem over the interval [0, 2], and find all values of ¢ in the interval (0, 2)
at which the tangent line to the graph of f is parallel to the secant line joining the points

(0, f(0)) and (2, f(2)).

Solution. The function f is continuous and differentiable everywhere because it is a
polynomial. In particular, f is continuous on [0, 2] and differentiable on (0, 2), so the
hypotheses of the Mean-Value Theorem are satisfied with @ = 0 and b = 2. But

fl@ay=fO)=1, fb)=f2) =3

3x2 3c?
! = — / = —
fx)= 1 f© 1
so in this case Equation (1) becomes
3c? _3-1

=—— or 3°=4
4 2-0
which has the two solutions ¢ = 42/+/3 & £1.15. However, only the positive solution
lies in the interval (0, 2); this value of ¢ is consistent with Figure 4.8.7. «

VELOCITY INTERPRETATION OF THE MEAN-VALUE THEOREM

There is a nice interpretation of the Mean-Value Theorem in the situation where x = f(¢)
is the position versus time curve for a car moving along a straight road. In this case, the
right side of (1) is the average velocity of the car over the time interval from a <t < b,
and the left side is the instantaneous velocity at time ¢ = c. Thus, the Mean-Value Theorem
implies that at least once during the time interval the instantaneous velocity must equal the
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average velocity. This agrees with our real-world experience—if the average velocity for
a trip is 40 mi/h, then sometime during the trip the speedometer has to read 40 mi/h.

» Example 5 You are driving on a straight highway on which the speed limitis 55 mi/h.
At 8:05 A.M. a police car clocks your velocity at 50 mi/h and at 8:10 A.M. a second police
car posted 5 mi down the road clocks your velocity at 55 mi/h. Explain why the police
have a right to charge you with a speeding violation.

Solution. You traveled 5 mi in 5 min (: 1—12 h), so your average velocity was 60 mi/h.
Therefore, the Mean-Value Theorem guarantees the police that your instantaneous velocity
was 60 mi/h at least once over the 5 mi section of highway. <

Il CONSEQUENCES OF THE MEAN-VALUE THEOREM
We stated at the beginning of this section that the Mean-Value Theorem is the starting point
for many important results in calculus. As an example of this, we will use it to prove
Theorem 4.1.2, which was one of our fundamental tools for analyzing graphs of functions.

4.1.2 THEOREM (Revisited) Let  be afunction that is continuous on a closed interval
[a, b] and differentiable on the open interval (a, b).

(a) If f'(x) > Oforevery value of x in (a, b), then f is increasing on [a, b].
(b) If f'(x) < O forevery value of x in (a, b), then f is decreasing on [a, b).
(¢) If f'(x) = 0 for every value of x in (a, b), then f is constant on [a, b].

PROOF (a) Suppose that x; and x; are points in [a, b] such that x; < x,. We must show
that f(x;) < f(x2). Because the hypotheses of the Mean-Value Theorem are satisfied on
the entire interval [a, b], they are satisfied on the subinterval [x|, x,]. Thus, there is some
point ¢ in the open interval (x;, x») such that

F(e) = Sx2) = f(x1)
X2 — X1
or, equivalently,
f(x2) = f(x1) = f'(e)(x2 — x1) (€)]
Since c is in the open interval (x1, x2), it follows thata < ¢ < b; thus, f'(c) > 0. However,
X3 — x1 > 0 since we assumed that x; < x;. It follows from (3) that f(x;) — f(x1) > Oor,

equivalently, f(x;) < f(x2), which is what we were to prove. The proofs of parts (b) and
(c¢) are similar and are left as exercises. H

Il THE CONSTANT DIFFERENCE THEOREM
We know from our earliest study of derivatives that the derivative of a constant is zero. Part
(¢) of Theorem 4.1.2 is the converse of that result; that is, a function whose derivative is
zero on an interval must be constant on that interval. If we apply this to the difference of
two functions, we obtain the following useful theorem.

4.8.3 THEOREM (Constant Difference Theorem) If f and g are differentiable on an inter-
val, and if ' (x) = g'(x) for all x in that interval, then f — g is constant on the interval;
that is, there is a constant k such that f(x) — g(x) = k or, equivalently,

fx) =gx)+k

for all x in the interval.



y=f(x) =gx)+k

;
k

X

If f’(x) = g’(x) on an interval,
then the graphs of fand g are
vertical translations of each
other.

A Figure 4.8.8

VQUICK CHECK EXERCISES 4.8
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PROOF Let x| and x; be any points in the interval such that x; < x,. Since the functions
f and g are differentiable on the interval, they are continuous on the interval. Since [x, x;]
is a subinterval, it follows that f and g are continuous on [x;, x;] and differentiable on
(x1, x2). Moreover, it follows from the basic properties of derivatives and continuity that
the same is true of the function

F(x) = f(x) —g)

Since , / /
Fx)=fx)—gkx)=0

it follows from part (¢) of Theorem 4.1.2 that F(x) = f(x) — g(x) is constant on the
interval [x;, x]. This means that f(x) — g(x) has the same value at any two points x; and
X3 in the interval, and this implies that f — g is constant on the interval. |

Geometrically, the Constant Difference Theorem tells us that if / and g have the same
derivative on an interval, then the graphs of f and g are vertical translations of each other
over that interval (Figure 4.8.8).

» Example 6 Part (c) of Theorem 4.1.2 is sometimes useful for establishing identities.
For example, although we do not need calculus to prove the identity

sin'x +coslx == (-l<x<1 4)
it can be done by letting f(x) = sin~! x + cos™! x. It follows from Formulas (9) and (10)
of Section 3.3 that

£ = -Lisin 51+ Ljeos™ 51 = — "
x) = —[sin" x] 4+ —[cos™ x] = - =

dx dx VI—x2 J1-—x2
so f(x) = sin~! x + cos™! x is constant on the interval [—1, 1]. We can find this constant
by evaluating f at any convenient point in this interval. For example, using x = 0 we
obtain 4

T
0) =sin"'0 lo=04+==2=
f(0) = sin + cos +2 )

1

which proves (4). <«

(See page 310 for answers.)

1. Let f(x) = x> — x.

(a) An interval on which f satisfies the hypotheses of

Rolle’s Theorem is

3. Let f(x) = x? — x.
(a) Find a point b such that the slope of the secant line
through (0, 0) and (b, f(b)) is 1.

(b) Find all values of ¢ that satisfy the conclusion of Rolle’s
Theorem for the function f on the interval in part (a).

. Use the accompanying graph of f to find an interval [a, b]
on which Rolle’s Theorem applies, and find all values of ¢
in that interval that satisfy the conclusion of the theorem.

3

i \

1

01— ||

-1
-2
-3
-4
-5
-6

-7
-5-4-3-2-1 01 2 3 4 5 <Figure Ex-2

(b) Find all values of c that satisfy the conclusion of the
Mean-Value Theorem for the function f on the interval
[0, b], where b is the point found in part (a).

. Use the graph of f in the accompanying figure to estimate
all values of ¢ that satisfy the conclusion of the Mean-Value
Theorem on the interval

(b) [0, 4].

(a) [0, 8]

{ X

| | | | | | | | |
0123456 78 910 <FigureEx-4
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5. Find a function f such that the graph of f contains the point
(1,5) and such that for every value of x, the tangent line

EXERCISE SET 4.8 [ Graphing Utility

to the graph of f at xq is parallel to the tangent line to the
graph of y = x? at xo.

1-4 Verify that the hypotheses of Rolle’s Theorem are satisfied
on the given interval, and find all values of ¢ in that interval that
satisfy the conclusion of the theorem.

1. f(x) =x%>—8x+15; [3,5]

2. f(x) =x3—3x24+2x; [0,2]

3. f(x) =cosx; [m/2,37/2]

4. f(x) =1n@4 +2x — x?); [—1,3]

5-8 Verify that the hypotheses of the Mean-Value Theorem are
satisfied on the given interval, and find all values of ¢ in that
interval that satisfy the conclusion of the theorem.
5. f(x) =x* —x; [-3,5]
6. f(x)=x+x—4 [-1,2]
7. f(x) =vx+1; [0,3]
1
8. f(x)=x——; [3,4]
X

9. (a) Find an interval [a, b] on which
f(x) =x*+x—x?4+x-2
satisfies the hypotheses of Rolle’s Theorem.

(b) Generate the graph of f’(x), and use it to make rough
estimates of all values of ¢ in the interval obtained in
part (a) that satisfy the conclusion of Rolle’s Theorem.

(c) Use Newton’s Method to improve on the rough esti-
mates obtained in part (b).

M 10. Let f(x) = x> — 4x.

(a) Find the equation of the secant line through the points
(=2, f(=2)) and (1, f(1)).

(b) Show that there is only one point c in the interval (—2, 1)
that satisfies the conclusion of the Mean-Value Theorem
for the secant line in part (a).

(c) Find the equation of the tangent line to the graph of f
at the point (¢, f(c)).

(d) Use a graphing utility to generate the secant line in part
(a) and the tangent line in part (c) in the same coor-
dinate system, and confirm visually that the two lines
seem parallel.

11-14 True-False Determine whether the statement is true or
false. Explain your answer.

11. Rolle’s Theorem says that if f is a continuous function on
[a, b] and f(a) = f(b), then there is a point between a and
b at which the curve y = f(x) has a horizontal tangent line.

12. If f is continuous on a closed interval [a, b] and differen-
tiable on (a, b), then there is a point between a and b at
which the instantaneous rate of change of f matches the
average rate of change of f over [a, b].

13. The Constant Difference Theorem says that if two functions
have derivatives that differ by a constant on an interval, then
the functions are equal on the interval.

14. One application of the Mean-Value Theorem is to prove that
a function with positive derivative on an interval must be
increasing on that interval.

FOCUS ON CONCEPTS

15. Let f(x) = tanx.
(a) Show that there is no point ¢ in the interval (0, )
such that f/(c) = 0, even though f(0) = f(7r) = 0.
(b) Explain why the result in part (a) does not contradict
Rolle’s Theorem.

16. Let f(x) =x¥3,a = —1,and b = 8.
(a) Show that there is no point ¢ in (a, b) such that
fo = IO 1@
—a
(b) Explain why the result in part (a) does not contradict
the Mean-Value Theorem.

17. (a) Show thatif f is differentiable on (—o, 4o0), and if
y = f(x)andy = f’(x) are graphed in the same co-
ordinate system, then between any two x-intercepts
of f there is at least one x-intercept of f”.

(b) Give some examples that illustrate this.

18. Review Formulas (8) and (9) in Section 2.1 and use the
Mean-Value Theorem to show that if f is differentiable
on (—oo, +), then for any interval [xg, x;] there is at
least one point in (xg, x;) where the instantaneous rate
of change of y with respect to x is equal to the average
rate of change over the interval.

19-21 Use the result of Exercise 18 in these exercises.

19. An automobile travels 4 mi along a straight road in 5 min.
Show that the speedometer reads exactly 48 mi/h at least
once during the trip.

20. At 11 A.M. on a certain morning the outside temperature
was 76°F. At 11 p.M. that evening it had dropped to 52°F.

(a) Show that at some instant during this period the tem-
perature was decreasing at the rate of 2°F/h.

(b) Suppose that you know the temperature reached a high
of 88°F sometime between 11 A.M. and 11 p.M. Show
that at some instant during this period the temperature
was decreasing at a rate greater than 3°F/h.

21. Suppose that two runners in a 100 m dash finish in a tie.
Show that they had the same velocity at least once during
the race.



22,

23.

24,

25.

26.

FOCUS ON CONCEPTS

27. (a) Use the Mean-Value Theorem to show that if f is

28. (a) Use the Mean-Value Theorem to show that if f

Use the fact that

d by
E[xln(Z—x)] =In2—x)— T

to show that the equation x = (2 — x) In(2 — x) has at least

one solution in the interval (0, 1).

(a) Use the Constant Difference Theorem (4.8.3) to show
thatif f'(x) = g’(x) for all x in the interval (—oo, +0),
and if f and g have the same value at some point x,
then f(x) = g(x) for all x in (—o0, +0).

(b) Use the result in part (a) to confirm the trigonometric
identity sin®x + cos?x = 1.

(a) Use the Constant Difference Theorem (4.8.3) to show
that if f'(x) = g’(x) for all x in (—oo, +), and if
f(x0) — g(x0) = ¢ at some point xo, then

) —glx)=c
for all x in (—oo, +).
(b) Use the result in part (a) to show that the function
o) = (= 1)) = (2 +3)(x = 3)

is constant for all x in (—oo, +o0), and find the constant.
(c) Check the result in part (b) by multiplying out and sim-
plifying the formula for A (x).
Let g(x) = xe® — ¢*. Find f(x) so that f'(x) = g’(x) and
f()=2.
Let g(x) = tan"' x. Find f(x) so that f'(x) = g’(x) and
f() =2.

differentiable on an interval, and if | f'(x)| < M for
all values of x in the interval, then

Lf(x) = fOD)l = Mlx -yl

for all values of x and y in the interval.
(b) Use the result in part (a) to show that

sinx —siny| < |x —
y y

for all real values of x and y.

is differentiable on an open interval, and if
| f/(x)| > M for all values of x in the interval, then

[f(x) — fOD)| = M|x — y|

for all values of x and y in the interval.
(b) Use the result in part (a) to show that

[tanx —tany| > |x — y|

for all values of x and y in the interval (—m/2, /2).
(c) Use the result in part (b) to show that

[tan x + tan y| > |x + y|

for all values of x and y in the interval (—7/2, 7/2).

29.

30.

31.

32.

33.

34.

35.

FOCUS ON CONCEPTS

36. Let f and g be continuous on [a, b] and differentiable

37. Tlustrate the result in Exercise 36 by drawing an appro-

38. (a) Prove that if f”(x) > 0 for all x in (a, b), then
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(a) Use the Mean-Value Theorem to show that

y—x
vy =< 2/%
if0 <x < y.

(b) Use the resultin part (a) to show thatif 0 < x < y, then
SRV < LG+ y).
Show that if f is differentiable on an open interval and

f(x) # 0 on the interval, the equation f(x) = 0 can have
at most one real root in the interval.

Use the result in Exercise 30 to show the following:
(a) Theequationx® +4x — 1 = Ohasexactly one real root.
(b) If > — 3ac < 0 and if a # 0, then the equation

ax®* +bx* +cx+d=0

has exactly one real root.
Use the inequality V3 <18t prove that
17 <3 < 1.75

[Hint: Let f(x) = \/x, a = 3,and b = 4in the Mean-Value
Theorem.]
Use the Mean-Value Theorem to prove that

(x>0

X -1
— <tan x <x
1+ x2
(a) Show thatif f and g are functions for which

f')=gk) and g'(x)= f(x)
for all x, then f%(x) — g2(x) is a constant.
(b) Show that the function f(x) = %(ex + ™) and the
function g(x) = %(e" — e™*) have this property.
(a) Show thatif f and g are functions for which
f(x)=gx) and g'(x)=—f(x)
for all x, then f?(x) + g2(x) is a constant.
(b) Giveanexample of functions f and g with this property.

on (a, b). Prove: If f(a) = g(a) and f(b) = g(b), then
there is a point ¢ in (a, b) such that f'(c) = g'(c).

priate picture.

f’(x) = 0 at most once in (a, b).
(b) Give a geometric interpretation of the result in (a).

39.

40.

(a) Prove part (b) of Theorem 4.1.2.
(b) Prove part (c) of Theorem 4.1.2.
Use the Mean-Value Theorem to prove the following result:
Let f be continuous at xo and suppose that lim, _, ,, f'(x)
exists. Then f is differentiable at x, and
f'(x0) = lim f'(x)
X — Xo

[Hint: The derivative f'(xg) is given by
P = tim L8 = f00)

X — X0 X — X9

provided this limit exists.]
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FOCUS ON CONCEPTS
3x2, x <1

41. Let
f(x):{ax—}—b, x>1

Find the values of @ and b so that f will be differentiable
atx = 1.

42. (a) Let 2 x<0

X,
f(x)_{x2+1, x>0
Show that

l' / — 1 !/
7w =l £

but that f'(0) does not exist.
x<0

(b) Let x2,
fx) = {x3, x>0

Show that f'(0) exists but f”(0) does not.

VQUICK CHECK ANSWERS 4.8

43. Use the Mean-Value Theorem to prove the following result:
The graph of a function f has a point of vertical tangency
at (xo, f(xo)) if f is continuous at xo and f’(x) approaches
either 400 or —oo as x — x; and as x — x; .

44. Writing Suppose that p(x) is a nonconstant polynomial
with zeros at x =a and x = b. Explain how both the
Extreme-Value Theorem (4.4.2) and Rolle’s Theorem can
be used to show that p has a critical point between a and b.

45. Writing Find and describe a physical situation that illus-
trates the Mean-Value Theorem.

1. (@ [0,1] () c=1

CHAPTER 4 REVIEW EXERCISES

2. [-3,3]; c=-2,0,2 3. (ab=2(b) c=1

4. (a) 1.5 (b) 0.8 5. f(x) =x2+4

~ Graphing Utility CAS

1. (a) If x; < x,, what relationship must hold between f(x;)
and f(xy) if f is increasing on an interval containing
x1 and x,? Decreasing? Constant?

(b) What condition on f” ensures that f is increasing on an
interval [a, b]? Decreasing? Constant?

2. (a) What condition on f’ ensures that f is concave up on
an open interval? Concave down?
(b) What condition on f” ensures that f is concave up on
an open interval? Concave down?
(c) In words, what is an inflection point of f?

3-10 Find: (a) the intervals on which f is increasing, (b) the
intervals on which f is decreasing, (c) the open intervals on
which f is concave up, (d) the open intervals on which f is
concave down, and (e) the x-coordinates of all inflection points.

3. fx)=x*=5x+6
2

4. f(x) =x*—8x24+16
6. f(x) = vx+2

8. f(x) = 43 _ 13
10. f(x) = tan~'x?

/W =750

7. f) =x3(x+4)
9. f(x)=1/e"

M 11-14 Analyze the trigonometric function f over the specified

interval, stating where f is increasing, decreasing, concave up,
and concave down, and stating the x-coordinates of all inflection
points. Confirm that your results are consistent with the graph
of f generated with a graphing utility.

11. f(x) =cosx; [0, 27]

12. f(x) =tanx; (—n/2,7/2)

13. f(x) =sinxcosx; [0, 7]
14. f(x) = cos> x — 2sinx; [0, 27]
15. In each part, sketch a continuous curve y = f(x) with the
stated properties.
@ fQ =4, /=1, f"(x) <0forx <2,
f"(x) >0forx >2
(b) f2) =4, f"(x) > 0forx <2, f"(x) <Oforx > 2,
lim f'(x) = 4o, lim f'(x) = 4o
x—2- x—2*
(©) [ =4, f"(x) <Oforx #2, Jim [ =1,

o 710 =1

M 16. In parts (a)—(d), the graph of a polynomial with degree at

most 6 is given. Find equations for polynomials that pro-
duce graphs with these shapes, and check your answers with
a graphing utility.

(a) y (b) Ly




17. For a general quadratic polynomial
f@)=ax*+bx+c (a#0)

find conditions on a, b, and c to ensure that f is always
increasing or always decreasing on [0, 4).

18. For the general cubic polynomial
fx)=ax*+bx>+cx+d (a#0)

find conditions on a, b, ¢, and d to ensure that f is always
increasing or always decreasing on (—oo, +).

[ 19. Use a graphing utility to estimate the value of x at which

2X
o) = e

is increasing most rapidly.

20. Prove that for any positive constants a and k, the graph of

aX

= 1+ax+k

has an inflection point at x = —k.

y

21. (a) Where on the graph of y = f(x) would you expect y to
be increasing or decreasing most rapidly with respect
tox?

(b) In words, what is a relative extremum?
(c) State a procedure for determining where the relative
extrema of f occur.

22. Determine whether the statement is true or false. If it is

false, give an example for which the statement fails.

(a) If f has a relative maximum at xo, then f(xg) is the
largest value that f(x) can have.

(b) If the largest value for f on the interval (a, b) is at xo,
then f has a relative maximum at x.

(c) Afunction f has arelative extremum at each of its crit-
ical points.

23. (a) According to the first derivative test, what conditions
ensure that f has a relative maximum at x,? A relative
minimum?

(b) According to the second derivative test, what conditions
ensure that f has a relative maximum at xy? A relative
minimum?

24-26 Locate the critical points and identify which critical
points correspond to stationary points.
24. (3) f(x)=x>+3x2—9x+1

®) f(x)=x*—6x>-3

>3
5. @ f0)= 57 B ) =5

x2+1
2. () f)=x"x—-4) (b fx)=x**—6x!73

27. In each part, find all critical points, and use the first deriva-
tive test to classify them as relative maxima, relative min-
ima, or neither.

@ fOx)=x"3x -7
(b) f(x) =2sinx —cos2x, 0<x <2mw
© f(x)=3x—(x— 12
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28. In each part, find all critical points, and use the second
derivative test (where possible) to classify them as relative
maxima, relative minima, or neither.

(3.) f(x) — x—1/2 + $x1/2
®) f(x) =x>+8/x

(c) f(x)=sin2x—cosx, 0<x<2m

29-36 Give a graph of the function f, and identify the limits as
x — *oo, as well as locations of all relative extrema, inflection
points, and asymptotes (as appropriate).

29, f(x) =x* —3x34+3x2+1

30. f(x) = x> —4x* + 453

31. f(x) =tan(x>+ 1) 32. f(x) =x —cosx
x? 25 — 9x?

33. = 34, =
f) x24+2x+5 f) x3
3. =] 70
. fx) =
—x% x>0

36. f(x)=(14+x)2@3—x)'3

37-44 Use any method to find the relative extrema of the func-
tion f.

37. f(x)=x>+5x -2
39. f(x) =x*°

x2

38. f(x) =x*—2x2+4+7
40. f(x) =2x 4+ x?3

4L @ = 42. f(x) = xx?

43. f(x) =1In(1 + x?) 4. f(x) = x%e*

[ 45-46 When using a graphing utility, important features of a

graph may be missed if the viewing window is not chosen ap-
propriately. This is illustrated in Exercises 45 and 46.

45. (a) Generate the graph of f(x) = %x3 — W%ox over the in-
terval [—5, 5], and make a conjecture about the loca-
tions and nature of all critical points.

(b) Find the exact locations of all the critical points, and
classify them as relative maxima, relative minima, or
neither.

(c) Confirm the results in part (b) by graphing f over an

appropriate interval.

46. (a) Generate the graph of
f&) = 2x% — Ix*+ qx + Ix? —6x

over the interval [—5, 5], and make a conjecture about
the locations and nature of all critical points.

(b) Find the exact locations of all the critical points, and
classify them as relative maxima, relative minima, or
neither.

(c) Confirm the results in part (b) by graphing portions of
f over appropriate intervals. [Note: It will not be pos-
sible to find a single window in which all of the critical
points are discernible.]
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~ 47.

48.

49.

50.

51.

52.

53.

(a) Use a graphing utility to generate the graphs of y = x
and y = (x> — 8)/(x? + 1) together over the interval
[—5, 5], and make a conjecture about the relationship
between the two graphs.

(b) Confirm your conjecture in part (a).

Use implicit differentiation to show that a function defined
implicitly by sin x 4 cos y = 2y has a critical point when-
ever cosx = 0. Then use either the first or second deriva-
tive test to classify these critical points as relative maxima
or minima.

Let
© 203+ x> —15x +7

Qx—DBx2+x—1)

Jx) =

Graph y = f(x), and find the equations of all horizontal
and vertical asymptotes. Explain why there is no vertical
asymptote at x = %, even though the denominator of f is
zero at that point.

Let
© X —x*=3x34+2x+4

—2x0 —3x5 +6x* +4x — 8

f@) = =

(a) Use a CAS to factor the numerator and denominator of
f, and use the results to determine the locations of all
vertical asymptotes.

(b) Confirm that your answer is consistent with the graph
of f.

(a) What inequality must f(x) satisfy for the function f to
have an absolute maximum on an interval I at x,?

(b) What inequality must f(x) satisfy for f to have an ab-
solute minimum on an interval I at x?

(c) What is the difference between an absolute extremum
and a relative extremum?

According to the Extreme-Value Theorem, what conditions
on a function f and a given interval guarantee that f will
have both an absolute maximum and an absolute minimum
on the interval?

In each part, determine whether the statement is true or false,

and justify your answer.

(a) If f is differentiable on the open interval (a, b), and
if f has an absolute extremum on that interval, then it
must occur at a stationary point of f.

(b) If f is continuous on the open interval (a, b), and if f
has an absolute extremum on that interval, then it must
occur at a stationary point of f.

54-56 In each part, find the absolute minimum m and the abso-
Iute maximum M of f on the given interval (if they exist), and
state where the absolute extrema occur.

54.

5S.

(@ f(x)=1/x; [-2,—1]

(b) fx)=x>—x* [-1,3]

(¢) f(x) =x —tanx; [—7/4, 7/4]
(d fx)=—|x* —2x]; [1,3]

@ f(x)=x%>—=3x—1; (=00, +)
(b) f(x) =x>—=3x —2; (—o0, +)

56.

~ 57.

58.
59,

60.

61.

62.

(©) f(x) =e*/x% (0, 4)

(d) f(x)=x*; (0,+x)

(@ fx)=2x>-5x*+7, (-1,3)

(b) f(x)=03B-x)/2-x); (0,2)

(©) f(x)=2x/(x*+3); (0,2]

@ fx) =x*(x —2)'3%; (0,3]

In each part, use a graphing utility to estimate the absolute
maximum and minimum values of f, if any, on the stated
interval, and then use calculus methods to find the exact
values.

@ f(x)=x*—1)% (—o, 4x)

(b) f(x) =x/(x*+1); [0, 4o0)

(c) f(x) =2secx —tanx; [0, /4]

(d) f(x) =x/2+In(x*+1); [-4,0]

Prove that x < sin~! x for all x in [0, 1].

Let 3

fo =5

(a) Generate the graph of y = f(x), and use the graph to
make rough estimates of the coordinates of the absolute
extrema.

(b) Usea CAS to solve the equation f’(x) = 0 and then use
it to make more accurate approximations of the coordi-
nates in part (a).

A church window consists of a blue semicircular section
surmounting a clear rectangular section as shown in the ac-
companying figure. The blue glass lets through half as much
light per unit area as the clear glass. Find the radius r of
the window that admits the most light if the perimeter of the
entire window is to be P feet.

Find the dimensions of the rectangle of maximum area that
can be inscribed inside the ellipse (x/4)? 4+ (y/3)? = 1 (see
the accompanying figure).

y
/97 +(v/3)* = 1

N

Blue

X
>

Clear h

A Figure Ex-60 A Figure Ex-61

As shown in the accompanying figure on the next page,
suppose that a boat enters the river at the point (1, 0) and
maintains a heading toward the origin. As a result of the
strong current, the boat follows the path

x10/3 -1

WY

where x and y are in miles.

(a) Graph the path taken by the boat.

(b) Can the boat reach the origin? If not, discuss its fate
and find how close it comes to the origin.



63.

64.

65.

~ 66.

67.

S

(1,0)

Y=

< Figure Ex-62

A sheet of cardboard 12 in square is used to make an open
box by cutting squares of equal size from the four corners
and folding up the sides. What size squares should be cut
to obtain a box with largest possible volume?

Is it true or false that a particle in rectilinear motion is speed-
ing up when its velocity is increasing and slowing down
when its velocity is decreasing? Justify your answer.

(a) Can an object in rectilinear motion reverse direction if
its acceleration is constant? Justify your answer using
a velocity versus time curve.

(b) Can an object in rectilinear motion have increasing
speed and decreasing acceleration? Justify your answer
using a velocity versus time curve.

Suppose that the position function of a particle in rectilin-
ear motion is given by the formula s(z) = t/(2¢t*> + 8) for
t>0.

(a) Use a graphing utility to generate the position, velocity,
and acceleration versus time curves.

(b) Use the appropriate graph to make a rough estimate of
the time when the particle reverses direction, and then
find that time exactly.

(c) Find the position, velocity, and acceleration at the in-
stant when the particle reverses direction.

(d) Use the appropriate graphs to make rough estimates of
the time intervals on which the particle is speeding up
and the time intervals on which it is slowing down, and
then find those time intervals exactly.

(e) When does the particle have its maximum and minimum
velocities?

For parts (a)—(f), suppose that the position function of a
particle in rectilinear motion is given by the formula
?+1
s(t) = ranE t>0

(a) Use a CAS to find simplified formulas for the velocity
function v(¢) and the acceleration function a(z).

(b) Graph the position, velocity, and acceleration versus
time curves.

(c) Use the appropriate graph to make a rough estimate of
the time at which the particle is farthest from the origin
and its distance from the origin at that time.

(d) Use the appropriate graph to make a rough estimate of
the time interval during which the particle is moving in
the positive direction.

68.
69.

70.

~ 71.

72.

73.

74.

75.

76.
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(e) Use the appropriate graphs to make rough estimates of
the time intervals during which the particle is speeding
up and the time intervals during which it is slowing
down.

(f) Use the appropriate graph to make a rough estimate
of the maximum speed of the particle and the time at
which the maximum speed occurs.

Draw an appropriate picture, and describe the basic idea of
Newton’s Method without using any formulas.

Use Newton’s Method to approximate all three solutions of
¥ —4x+1=0.

Use Newton’s Method to approximate the smallest positive
solution of sin x 4+ cosx = 0.

Use a graphing utility to determine the number of times the
curve y = x° intersects the curve y = (x/2) — 1. Then ap-
ply Newton’s Method to approximate the x-coordinates of
all intersections.

According to Kepler’s law, the planets in our solar system
move in elliptical orbits around the Sun. If a planet’s closest
approach to the Sun occurs at time # = 0, then the distance
r from the center of the planet to the center of the Sun at
some later time ¢ can be determined from the equation

r=a(l —ecos¢)

where a is the average distance between centers, e is a pos-
itive constant that measures the “flatness” of the elliptical
orbit, and ¢ is the solution of Kepler’s equation

2t

T = ¢ —esin¢g
in which T is the time it takes for one complete orbit of
the planet. Estimate the distance from the Earth to the Sun
whent = 90 days. [First find ¢ from Kepler’s equation, and
then use this value of ¢ to find the distance. Use a = 150 x
10° km, e = 0.0167, and T = 365 days.]

Using the formulas in Exercise 72, find the distance from
the planet Mars to the Sun when ¢ = 1 year. For Mars use
a =228 x 10°km, e = 0.0934, and T = 1.88 years.

Suppose that f is continuous on the closed interval [a, b]
and differentiable on the open interval (a, b), and suppose
that f(a) = f(b). Isittrue or false that f must have at least
one stationary point in (a, b)? Justify your answer.

In each part, determine whether all of the hypotheses of
Rolle’s Theorem are satisfied on the stated interval. If not,
state which hypotheses fail; if so, find all values of ¢ guar-
anteed in the conclusion of the theorem.

(@) f(x) =+v4—x2o0n[-2,2]

) fx)=x*>—-1on[-1,1]

(©) f(x) =sin(x?) on [0, /7]

In each part, determine whether all of the hypotheses of the
Mean-Value Theorem are satisfied on the stated interval. If
not, state which hypotheses fail; if so, find all values of ¢
guaranteed in the conclusion of the theorem.
(@ f(x)=lx—1lon[-2,2]

(cont.)
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® =" on 23]
_ 3—x2 ifx<l1 0.2
© f(x)_{z/x ity > Oni0:2]

77. Use the fact that

d
T -2 ) =607 —dx 1
X

1. Suppose that g(x) is a function that is defined and differen-

tiable for all real numbers x and that g(x) has the following
properties:
(i) ¢(0) =2and g'(0) = —2.
(i) g(4) =3 and g'(4) = 3.
(iii) g(x) is concave up for x < 4 and concave down for
x > 4.
@iv) g(x) = —10 for all x.
Use these properties to answer the following questions.
(a) How many zeros does g have?
(b) How many zeros does g’ have?
(c) Exactly one of the following limits is possible:

0 / _ . / — J / =
Jim g =-5. lim ¢@) =0, lim ¢x)=5

Identify which of these results is possible and draw a
rough sketch of the graph of such a function g(x). Ex-
plain why the other two results are impossible.

2. The two graphs in the accompanying figure depict a function

r(x) and its derivative r’(x).

(a) Approximate the coordinates of each inflection point on
the graph of y = r(x).

(b) Suppose that f(x) is a function that is continuous every-
where and whose derivative satisfies

fo)=6=4)r@
What are the critical points for f(x)? At each critical
point, identify whether f(x) has a (relative) maximum,

minimum, or neither a maximum or minimum. Approx-
imate f”(1).

y=rx)

— N W A
T

to show that the equation 6x3 — 4x + 1 = 0 has at least one
solution in the interval (0, 1).

78. Let g(x) = x> — 4x 4+ 6. Find f(x) so that f'(x) = g’(x)

and f(1) = 2.

-3+ Figure Ex-2

3. With the function r(x) as provided in Exercise 2, let

g(x) be a function that is continuous everywhere such that
g'(x) = x — r(x). For which values of x does g(x) have an
inflection point?

. Suppose that f is a function whose derivative is continuous

everywhere. Assume that there exists a real number ¢ such
that when Newton’s Method is applied to f, the inequality

|xn _C| < =
n

is satisfied for all valuesof n =1,2,3,....
(a) Explain why
|xn+l - xn| < ;

for all valuesof n =1,2,3,....
(b) Show that there exists a positive constant M such that

2M
|f(xn)| = M|-xn+l _-xnl < 7

for all valuesof n =1,2,3,....
(c) Provethatif f(c) # 0, then there exists a positive integer
N such that
Lf()

o < 1fG)l

if n > N. [Hint: Argue that f(x)— f(c) as x — ¢ and
then apply Definition 1.4.1 with € = %If(c)|.]
(d) What can you conclude from parts (b) and (c)?

5. What are the important elements in the argument suggested

by Exercise 4? Can you extend this argument to a wider
collection of functions?

6. Abug crawling on a linoleum floor along the edge of a plush

carpet encounters an irregularity in the form of a2 in by 3 in
rectangular section of carpet that juts out into the linoleum
as illustrated in Figure Ex-6a on the next page.



3in
2in  Carpet 2in
A B
° ° Figure Ex-6a
The bug crawls at 0.7 in/s on the linoleum, but only at 0.3 in/s
through the carpet, and its goal is to travel from point A to point
B. Four possible routes from A to B are as follows: (i) crawl
on linoleum along the edge of the carpet; (ii) crawl through the
carpet to a point on the wider side of the rectangle, and finish
the journey on linoleum along the edge of the carpet; (iii) crawl
through the carpet to a point on the shorter side of the rectangle,
and finish the journey on linoleum along the edge of the carpet;
or (iv) crawl through the carpet directly to point B. (See Figure
Ex-6b.)

®
Figure Ex-6b

(i)

(iii)
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(a) Calculate the times it would take the bug to crawl from A
to B via routes (i) and (iv).

Suppose the bug follows route (ii) and use x to represent
the total distance the bug crawls on linoleum. Identify the
appropriate interval for x in this case, and determine the
shortest time for the bug to complete the journey using route
(ii).

Suppose the bug follows route (iii) and again use x to repre-
sent the total distance the bug crawls on linoleum. Identify
the appropriate interval for x in this case, and determine the
shortest time for the bug to complete the journey using route
(iii).

(d) Which of routes (i), (ii), (iii), or (iv) is quickest? What is

the shortest time for the bug to complete the journey?

(b)

(©

A/43 A B
o= ¢

i)



	Cover Page
	CONTENTS
	0 BEFORE CALCULUS
	0.1 Functions
	DEFINITION OF A FUNCTION
	INDEPENDENT AND DEPENDENT VARIABLES
	GRAPHS OF FUNCTIONS
	THE VERTICAL LINE TEST
	THE ABSOLUTE VALUE FUNCTION
	PIECEWISE-DEFINED FUNCTIONS
	DOMAIN AND RANGE
	THE EFFECT OF ALGEBRAIC OPERATIONS ON THE DOMAIN
	DOMAIN AND RANGE IN APPLIED PROBLEMS
	ISSUES OF SCALE AND UNITS

	0.2 New Functions from Old
	ARITHMETIC OPERATIONS ON FUNCTIONS
	COMPOSITION OF FUNCTIONS
	EXPRESSING A FUNCTION AS A COMPOSITION
	NEW FUNCTIONS FROM OLD
	TRANSLATIONS
	REFLECTIONS
	STRETCHES AND COMPRESSIONS
	SYMMETRY
	EVEN AND ODD FUNCTIONS

	0.3 Families of Functions
	FAMILIES OF CURVES
	POWER FUNCTIONS; THE FAMILY y = xn
	THE FAMILY y = x–n
	INVERSE PROPORTIONS
	POWER FUNCTIONS WITH NONINTEGER EXPONENTS
	POLYNOMIALS
	RATIONAL FUNCTIONS
	ALGEBRAIC FUNCTIONS
	THE FAMILIES y = A sin Bx AND y = A cos Bx
	THE FAMILIES y = A sin(Bx – C) AND y = A cos(Bx – C)

	0.4 Inverse Functions; Inverse Trigonometric Functions
	INVERSE FUNCTIONS
	CHANGING THE INDEPENDENT VARIABLE
	DOMAIN AND RANGE OF INVERSE FUNCTIONS
	A METHOD FOR FINDING INVERSE FUNCTIONS
	EXISTENCE OF INVERSE FUNCTIONS
	INCREASING OR DECREASING FUNCTIONS ARE INVERTIBLE
	GRAPHS OF INVERSE FUNCTIONS
	RESTRICTING DOMAINS FOR INVERTIBILITY
	INVERSE TRIGONOMETRIC FUNCTIONS
	EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS
	IDENTITIES FOR INVERSE TRIGONOMETRIC FUNCTIONS

	0.5 Exponential and Logarithmic Functions
	IRRATIONAL EXPONENTS
	THE FAMILY OF EXPONENTIAL FUNCTIONS
	THE NATURAL EXPONENTIAL FUNCTION
	LOGARITHMIC FUNCTIONS
	SOLVING EQUATIONS INVOLVING EXPONENTIALS AND LOGARITHMS
	CHANGE OF BASE FORMULA FOR LOGARITHMS
	LOGARITHMIC SCALES IN SCIENCE AND ENGINEERING
	EXPONENTIAL AND LOGARITHMIC GROWTH


	1 LIMITS AND CONTINUITY
	1.1 Limits (An Intuitive Approach)
	TANGENT LINES AND LIMITS
	AREAS AND LIMITS
	DECIMALS AND LIMITS
	LIMITS
	SAMPLING PITFALLS
	ONE-SIDED LIMITS
	THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS
	INFINITE LIMITS
	VERTICAL ASYMPTOTES

	1.2 Computing Limits
	SOME BASIC LIMITS
	LIMITS OF POLYNOMIALS AND RATIONAL FUNCTIONS AS x→a
	LIMITS INVOLVING RADICALS
	LIMITS OF PIECEWISE-DEFINED FUNCTIONS

	1.3 Limits at Infinity; End Behavior of a Function
	LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
	LIMIT LAWS FOR LIMITS AT INFINITY
	INFINITE LIMITS AT INFINITY
	LIMITS OF xn AS x→±∞
	LIMITS OF POLYNOMIALS AS x→±∞
	LIMITS OF RATIONAL FUNCTIONS AS x→±∞
	A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS x→+∞ OR x→−∞
	LIMITS INVOLVING RADICALS
	END BEHAVIOR OF TRIGONOMETRIC, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

	1.4 Limits (Discussed More Rigorously)
	MOTIVATION FOR THE DEFINITION OF A TWO-SIDED LIMIT
	THE VALUE OF δ IS NOT UNIQUE
	LIMITS AS x→±∞
	INFINITE LIMITS

	1.5 Continuity
	DEFINITION OF CONTINUITY
	CONTINUITY IN APPLICATIONS
	CONTINUITY ON AN INTERVAL
	SOME PROPERTIES OF CONTINUOUS FUNCTIONS
	CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS
	CONTINUITY OF COMPOSITIONS
	THE INTERMEDIATE-VALUE THEOREM
	APPROXIMATING ROOTS USING THE INTERMEDIATE-VALUE THEOREM

	1.6 Continuity of Trigonometric, Exponential, and Inverse Functions
	CONTINUITY OF TRIGONOMETRIC FUNCTIONS
	CONTINUITY OF INVERSE FUNCTIONS
	OBTAINING LIMITS BY SQUEEZING


	2 THE DERIVATIVE
	2.1 Tangent Lines and Rates of Change
	TANGENT LINES
	VELOCITY
	SLOPES AND RATES OF CHANGE
	RATES OF CHANGE IN APPLICATIONS

	2.2 The Derivative Function
	DEFINITION OF THE DERIVATIVE FUNCTION
	COMPUTING INSTANTANEOUS VELOCITY
	DIFFERENTIABILITY
	THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY
	DERIVATIVES AT THE ENDPOINTS OF AN INTERVAL
	OTHER DERIVATIVE NOTATIONS

	2.3 Introduction to Techniques of Differentiation
	DERIVATIVE OF A CONSTANT
	DERIVATIVES OF POWER FUNCTIONS
	DERIVATIVE OF A CONSTANT TIMES A FUNCTION
	DERIVATIVES OF SUMS AND DIFFERENCES
	HIGHER DERIVATIVES

	2.4 The Product and Quotient Rules
	DERIVATIVE OF A PRODUCT
	DERIVATIVE OF A QUOTIENT
	SUMMARY OF DIFFERENTIATION RULES

	2.5 Derivatives of Trigonometric Functions
	2.6 The Chain Rule
	DERIVATIVES OF COMPOSITIONS
	AN ALTERNATIVE VERSION OF THE CHAIN RULE
	GENERALIZED DERIVATIVE FORMULAS
	DIFFERENTIATING USING COMPUTER ALGEBRA SYSTEMS


	3 TOPICS IN DIFFERENTIATION
	3.1 Implicit Differentiation
	FUNCTIONS DEFINED EXPLICITLY AND IMPLICITLY
	IMPLICIT DIFFERENTIATION
	DIFFERENTIABILITY OF FUNCTIONS DEFINED IMPLICITLY

	3.2 Derivatives of Logarithmic Functions
	DERIVATIVES OF LOGARITHMIC FUNCTIONS
	LOGARITHMIC DIFFERENTIATION
	DERIVATIVES OF REAL POWERS OF x

	3.3 Derivatives of Exponential and Inverse Trigonometric Functions
	INCREASING OR DECREASING FUNCTIONS ARE ONE-TO-ONE
	DERIVATIVES OF EXPONENTIAL FUNCTIONS
	DERIVATIVES OF THE INVERSE TRIGONOMETRIC FUNCTIONS

	3.4 Related Rates
	DIFFERENTIATING EQUATIONS TO RELATE RATES

	3.5 Local Linear Approximation; Differentials
	ERROR IN LOCAL LINEAR APPROXIMATIONS
	DIFFERENTIALS
	LOCAL LINEAR APPROXIMATION FROM THE DIFFERENTIAL POINT OF VIEW
	ERROR PROPAGATION
	MORE NOTATION; DIFFERENTIAL FORMULAS

	3.6 L’Hôpital’s Rule; Indeterminate Forms
	INDETERMINATE FORMS OF TYPE 0/0
	INDETERMINATE FORMS OF TYPE ∞/∞
	ANALYZING THE GROWTH OF EXPONENTIAL FUNCTIONS USING L’HÔPITAL’S RULE
	INDETERMINATE FORMS OF TYPE 0 · ∞
	INDETERMINATE FORMS OF TYPE ∞ − ∞
	INDETERMINATE FORMS OF TYPE 00,∞0, 1∞


	WEB PROJECTS
	ROBOTICS

	6 APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING
	6.1 Area Between Two Curves
	A REVIEW OF RIEMANN SUMS
	AREA BETWEEN y = f (x) AND y = g(x)
	REVERSING THE ROLES OF x AND y

	6.2 Volumes by Slicing; Disks and Washers
	VOLUMES BY SLICING
	SOLIDS OF REVOLUTION
	VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS
	VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS
	VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
	OTHER AXES OF REVOLUTION

	6.3 Volumes by Cylindrical Shells
	CYLINDRICAL SHELLS
	VARIATIONS OF THE METHOD OF CYLINDRICAL SHELLS

	6.4 Length of a Plane Curve
	ARC LENGTH
	FINDING ARC LENGTH BY NUMERICAL METHODS

	6.5 Area of a Surface of Revolution
	SURFACE AREA

	6.6 Work
	THE ROLE OF WORK IN PHYSICS AND ENGINEERING
	WORK DONE BY A CONSTANT FORCE APPLIED IN THE DIRECTION OF MOTION
	WORK DONE BY A VARIABLE FORCE APPLIED IN THE DIRECTION OF MOTION
	CALCULATING WORK FROM BASIC PRINCIPLES
	THE WORK–ENERGY RELATIONSHIP

	6.7 Moments, Centers of Gravity, and Centroids
	DENSITY AND MASS OF A LAMINA
	CENTER OF GRAVITY OF A LAMINA
	OTHER TYPES OF REGIONS
	THEOREM OF PAPPUS

	6.8 Fluid Pressure and Force
	WHAT IS A FLUID?
	THE CONCEPT OF PRESSURE
	FLUID DENSITY
	FLUID PRESSURE
	FLUID FORCE ON A VERTICAL SURFACE

	6.9 Hyperbolic Functions and Hanging Cables
	DEFINITIONS OF HYPERBOLIC FUNCTIONS
	GRAPHS OF THE HYPERBOLIC FUNCTIONS
	HANGING CABLES AND OTHER APPLICATIONS
	HYPERBOLIC IDENTITIES
	WHY THEY ARE CALLED HYPERBOLIC FUNCTIONS
	DERIVATIVE AND INTEGRAL FORMULAS
	INVERSES OF HYPERBOLIC FUNCTIONS
	LOGARITHMIC FORMS OF INVERSE HYPERBOLIC FUNCTIONS
	DERIVATIVES AND INTEGRALS INVOLVING INVERSE HYPERBOLIC FUNCTIONS


	4 THE DERIVATIVE IN GRAPHING AND APPLICATIONS
	4.1 Analysis of Functions I: Increase, Decrease, and Concavity
	INCREASING AND DECREASING FUNCTIONS
	CONCAVITY
	INFLECTION POINTS
	INFLECTION POINTS IN APPLICATIONS
	LOGISTIC CURVES

	4.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials
	RELATIVE MAXIMA AND MINIMA
	FIRST DERIVATIVE TEST
	SECOND DERIVATIVE TEST
	GEOMETRIC IMPLICATIONS OF MULTIPLICITY
	ANALYSIS OF POLYNOMIALS

	4.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents
	PROPERTIES OF GRAPHS
	GRAPHING RATIONAL FUNCTIONS
	RATIONAL FUNCTIONS WITH OBLIQUE OR CURVILINEAR ASYMPTOTES
	GRAPHS WITH VERTICAL TANGENTS AND CUSPS
	GRAPHING OTHER KINDS OF FUNCTIONS
	GRAPHING USING CALCULUS AND TECHNOLOGY TOGETHER

	4.4 Absolute Maxima and Minima
	ABSOLUTE EXTREMA
	THE EXTREME VALUE THEOREM
	ABSOLUTE EXTREMA ON INFINITE INTERVALS
	ABSOLUTE EXTREMA ON OPEN INTERVALS
	ABSOLUTE EXTREMA OF FUNCTIONS WITH ONE RELATIVE EXTREMUM

	4.5 Applied Maximum and Minimum Problems
	CLASSIFICATION OF OPTIMIZATION PROBLEMS
	PROBLEMS INVOLVING FINITE CLOSED INTERVALS
	PROBLEMS INVOLVING INTERVALS THAT ARE NOT BOTH FINITE AND CLOSED
	AN APPLICATION TO ECONOMICS
	MARGINAL ANALYSIS
	A BASIC PRINCIPLE OF ECONOMICS

	4.6 Rectilinear Motion
	REVIEW OF TERMINOLOGY
	VELOCITY AND SPEED
	ACCELERATION
	SPEEDING UP AND SLOWING DOWN
	ANALYZING THE POSITION VERSUS TIME CURVE

	4.7 Newton’s Method
	NEWTON’S METHOD
	SOME DIFFICULTIES WITH NEWTON’S METHOD

	4.8 Rolle’s Theorem; Mean-Value Theorem
	ROLLE’S THEOREM
	THE MEAN-VALUE THEOREM
	VELOCITY INTERPRETATION OF THE MEAN-VALUE THEOREM
	CONSEQUENCES OF THE MEAN-VALUE THEOREM
	THE CONSTANT DIFFERENCE THEOREM



