

WILE

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Organic Compounds

- Organic compounds contain carbon atoms
 - With its <u>four valence electrons</u>, a carbon atom can covalently bind with up to four other atoms
 - Leading to an almost infinite set of carbon structures
 - From simple methane (CH₄) to complex ring and chain structures like simple sugars or complex starch molecules
 - Attaching <u>functional groups</u> to the carbon structures helps to increase the solubility and reactivity of organic molecules in water
 thus making them useful to biological systems
 - These organic molecules are called Macromolecules
 - Also called polymers
 - Made up of smaller "building blocks" called MONOMERS

Condensation (Dehydration) reactions

 Monomers form larger molecules by condensation reactions called dehydration reactions

Polymers can disassemble by <u>– Hydrolysis</u>

- Four categories of organic compounds are important to living organisms
 - Carbohydrates
 - Lipids
 - Proteins
 - Nucleic acids

VISUALIZING Carbobydr

Carbohydrates

- Carbohydrates are the most abundant organic molecules in organisms
- A carbohydrate is composed of carbon, hydrogen, and oxygen atoms
 - In a ratio of 1:2:1 for example, $C_6H_{12}O_6$
- Carbohydrates serve as energy source for the human body

Many Carbohydrates are Saccharides (Sugars)

Monosaccharides

- Single sugar molecules simple carbohydrates
- For example, *glucose , fructose , ribose, galactose* etc...
- <u>Disaccharides</u>
 - Formed from the binding of *two monosaccharides*
 - For example, *sucrose* (glucose and fructose);
 lactose (glucose and galactose)
 Maltose (glucose + glucose).
 - Are joined by a *glycosidic linkage*

Oligosaccharides and Polysaccharides

- Longer chains (polymers) of monosaccharides (*oligo* = few, and *poly* = many)
- Complex carbohydrates

<u>Glycogen</u>

-is a polysaccharide(*energy storage form*) that is stored in muscle and liver tissues

- It consists of long chains of glucose molecules
 stored glucose *in animals* Starch and cellulose
- -- are polysaccharides that are found *in plants*
- -They also are long chains of glucose molecules but are organized differently than glycogen .
- Starch is a major energy storage form of glucose in plants.
- Cellulose is a *structural polysaccharide in plants*.

In aqueous (watery) solutions, monosaccharides form ring structures

Glucose: Chain and Ring

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Examples of disaccharides

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Lipids

Lipids are Long-Chain Organic Compounds That are Not Soluble in Water

- Lipids are hydrophobic
 - Consisting of *fatty acids and glycerol*
 - Lipids are fats, oils, phospholipids, cholesterol, sterols, and waxes
- Fatty acids
 - Energy-storing lipids
 - Long chain of hydrogen and carbon atoms with a carboxyl functional group at one end
 - The carboxyl group can bind to glycerol molecules to build fats
 - Such as *triglycerides* (with *three* fatty acids)
 - And *phospholipids* (with *two* fatty acids)

1. Fats and oils (triglycerides)

- Composed of Glycerol & 3 fatty acid chains
- Glycerol forms a key component and the "backbone" of the fat. Glycerol contains 3 carbons and 3 hydroxyl groups.
- Fat forms when a *glycerol head* connects with *three fatty acid tails*.

Fatty Acid Structure R-C-OHII

- Carboxyl group (COOH) forms the acid.
- R" group is a hydrocarbon chain.

Fats

 Dietary fat consists largely of the molecule triglyceride composed of glycerol and three fatty acid chains

Glycerol (a) Dehydration reaction in the synthesis of a fat

Fatty Acids

- <u>Unsaturated fats</u> have at least one double bond between adjacent carbons in their fatty acid chains and bend in shape at each double bond
 - Monounsaturated (1 double bond); Polyunsaturated (2 or more double bonds)
 - Unsaturated fats tend to be *liquid* at room temperature i.e., *oils*
- <u>Saturated fats</u> have *no double bonds* between the carbons in their fatty acid chains - and thus are *straight* in shape
 - They are completely <u>saturated</u> with hydrogen atoms and cannot hold any more
 - Saturated fats are <u>solid</u> to semi-solid at room temperature i.e., butter
 - A diet high in saturated fats may increase the risk of having a stroke or heart attack
 © 2013 by John Wiley & Sons, Inc. All rights reserved.

Fatty Acids

Copyright © John Wiley & Sons, Inc. All rights reserved.

VISUALIZING Eatc in Ord

Fats in Organisms Fats with saturated fatty acids are saturated fats

 Most animal fats have a high proportion of saturated fatty acids & exist as solids at room temperature (butter, margarine)

Fats in Organisms

- Fats with unsaturated fatty acids are unsaturated fats
- Most plant oils tend to be low in saturated fatty acids & exist as liquids at room temperature (oils)

Phospholipids

Phospholipids are Both Hydrophilic and Hydrophobic

- Consist of a glycerol molecule, a *polar head (*containing a phosphate group), and *2 non-polar fatty acids tails*
- Their unique structure allows phospholipids to form <u>bilayers</u> when placed in water
 - Polar heads face outward the non-polar fatty acid tails face inward
 - The *cell membrane* is one such bilayer

Phospholipids are Both Hydrophilic and Hydrophobic

WILEY VISUALIZING

a. Chemical structure of a phospholipid

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Steroids

Steroids are Lipids with a Common Four-Ring Structure

- Steroids and sterols are important to normal growth and development
 - Include cholesterol, sex hormones, and metabolism regulators
- *Cholesterol* is an integral part of cell membranes
 - Allowing for membrane flexibility and growth
- The sex hormones are steroids that are important to the reproductive systems
 -- Estrogen and Testosterone
- Anabolic steroids, which are related to testosterone, stimulate growth of the muscles © 2013 by John Wiley & Sons, Inc. All rights reserved.

Steroids and Sterols

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Proteins

All the different proteins found in the human body are formed from just 20 building blocks called *amino acids*

- Proteins Serve as transport and messenger
- acts as enzymes
- An amino acid is composed of
 - A central carbon atom with four groups attached to it
 - A hydrogen atom
 - An amino group (–NH₂)
 - A carboxyl group (–COOH)
 - A radical group or side chain (R)

ALL 20 amino acids have common structure *except for the R group*. The R group determines the activity of the amino acid

An amino acid

Representative amino acids

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Individual Amino Acids Combine to Form Proteins

- Amino acids are joined by peptide bonds
 - Peptide bonds form between the *amino group* of one amino acid and the *carboxyl group* of the next amino acid
 - The resulting two amino-acid compound is called a *dipeptide*
- As more amino acids join the growing chain, it becomes a polypeptide
- Polypeptides are linear sequences (polymers) of amino acids
 - Polypeptides normally cannot function as proteins
 - Must first develop into a unique three-dimensional shape (conformation)
 - The shape depends on the *specific sequence* of amino acids

Copyright © John Wiley & Sons, Inc. All rights reserved.

Quaternary structure

- Aggregation of two or more polypeptide chains(Subunits) that associate to form asingle protein.
- Form in aqueous environment.
- For example , <u>haemoglobin</u> contains four polypeptide chains.

Protein Function Emerges From Its Shape

- The folding and interacting of adjacent amino acids within a polypeptide determine the final shape of a protein (it's conformation)
- The final shape of a protein is either *globular or fibrous*
 - Globular proteins are round and usually water-soluble
 - <u>Fibrous proteins</u> are *stringy, tough,* and usually *insoluble* in water (provide the framework for supporting cells and tissues)
- The shape of a protein molecule determines its function, and the final shape is determined by its primary structure (amino acid sequence)
 - Changing even one amino acid can alter the *folding pattern*, with devastating effects on the protein's function
 - In sickle cell anemia, a change in only one amino acid leads to serious consequences © 2013 by John Wiley & Sons, Inc. All rights reserved.

What Determines Protein Structure?

- physical and chemical conditions can affect protein structure.
- Alterations in <u>pH, salt concentration, temperature</u>, or other environmental factors can cause a protein to unravel
- This loss of a protein's native structure is called denaturation
- A denatured protein is *biologically inactive*

Enzymes Serve as Catalysts for Biochemical Reactions

- Catalysts bring the reactants, or substrates, together, so that they can participate in a chemical reaction <u>much more quickly</u>
- Enzymes facilitate a specific chemical reaction *without being altered* during the chemical reaction
 - Unlike the substrates which may be altered during the chemical reaction
- Enzymes <u>rely on shape</u> to function properly
 - The active site of the protein is shaped to bind to one specific substrate
 - After the substrate binds, the enzyme provides an environment for the specific chemical reaction to occur

Enzyme Function

Copyright © John Wiley & Sons, Inc. All rights reserved.

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Nucleic Acids

Nucleic Acids Store and Process an Organism's Hereditary Information

- There are two types of nucleic acids
 - Deoxyribonucleic acid (DNA)
 - Ribonucleic acid (RNA)
- DNA exists in the nucleus of our cells
 - It contains the hereditary *(genetic) information* of the cell
 - To build proteins
 - To regulate physiological processes
 - To maintain homeostasis

RNA acts as a messenger molecule both inside and outside the nucleu

 – RNA serves to regulate cellular metabolism, produce proteins, and govern developmental timing

© 2013 by John Wiley & Sons, Inc. All rights reserved.

The Structure of DNA & RNA

- Nucleic acids are composed of units called *nucleotides*
- The bond is *phosphodiester* bond
- Each nucleotide contains a *base, a sugar,* and a *phosphate group*
- sugar is *deoxyribose* (DNA) or *ribose* (RNA).
- The bases of DNA are adenine, guanine, cytosine, and thymine.
- The bases of RNA are adenine, guanine, cytosine, and <u>uracil</u>

e (in DNA)

The DNA *double helix*

Consists of two antiparallel nucleotide strands
 The end of a single strand that has the phosphate
 group is called the 5' end. The other end is the 3' end.
 The RNA

VISUALIZIN

- is a *single-stranded* molecule of nucleotides.

Copyright © John Wiley & Sons, Inc. All rights reserved.

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Complimentary base pairing

- The nitrogenous bases in DNA
- Form hydrogen bonds in a complementary fashion (A with T only, and C with G only) Chargaff's rule

Meselson-Stahl Experiment

Semiconservative Replication

•Each daughter double helix consists of

- -1 original strand from parent molecule
- -1 new complementary strand

Bidirectional Replication

1- strands are separated by "DNA helicase" forming the fork.
"Single strand binding proteins" bind to both DNA strands and prevent the helix from reforming.
2- Elongation of DNA strands requires "RNA primer" which initiates the addition of nucleotides at 3' end.

3- Finally, two daughter DNA molecules are formed, each containing one old and one newly synthesized strand.

Each double helix is a chromatid of duplicated chromosome.

DNA Synthesis

- Always proceeds in 5' → 3' direction
- Leading strand
 - synthesized continuously
- <u>Lagging strand</u>
 - synthesized discontinuously
 - forms short Okazaki fragments
 - "DNA primase" synthesizes RNA primers
 - "DNA ligase" links Okazaki fragments

© 2013 by John Wiley & Sons, Inc. All rights reserved.

Enzymes Involved in DNA replication

Enzyme	Function
Helicase	separate strands of DNA
DNA Primase	synthesizes a RNA primer
DNA polymerase	add free nucleotides to the 3' end (Make a copy of DNA)
DNA-Ligase	joins the okazaki fragments on lagging strand
Single strand binding (SSB) protein	prevents the helix from re-forming

"Packaging" DNA

. 1st level of DNA packaging in eukaryotes is around proteins called *histones*

. Each core histone with its associated DNA is called a *nucleosome* – first level of chromatin packing.

Life Requires Energy

- High energy compounds power cellular activity
- Most often energy is available in spurts, rather than as a continuous stream all day long
- Our energy storage system provides short- and long-term storage
 - <u>Long-term energy storage</u> includes
 - *Glycogen* in muscles and liver
 - Triglycerides packed into specialized storage cells called adipocytes (fat cells)
 - <u>Short-term energy storage</u> uses a high-energy system that is reversible and instantly available
 - The most common storage system is ATP, or <u>adenosine</u> <u>triphosphate</u>
 - ATP powers all cellular activity, from forming proteins to contracting muscles

 $\ensuremath{\mathbb{C}}$ 2013 by John Wiley & Sons, Inc. All rights reserved.

Adenosine Triphosphate

Copyright © John Wiley & Sons, Inc. All rights reserved.

© 2013 by John Wiley & Sons, Inc. All rights reserved.