Scanned with Ca

Total questions in exam. 40 | Answered. 5

Question No. 23

What is the $[H_3O^+]$ in a solution with $[OH^-] = 1 \times 10^{-12} M$?

- 0 1 x 10 M
- 0 1 x 10⁻² M
- ⁰ 1 x 10⁻¹² M
- $0 1 \times 10^2 M$

Total questions in exam: 40 | Answered: 22

Question No. 21

What is the coefficient of oxygen gas after balancing the following equation $\underline{\hspace{1cm}} H_2O_2(l) \xrightarrow{\Delta} \underline{\hspace{1cm}} H_2O(l) + \underline{\hspace{1cm}} O_2(g)$

- 04
- 01
- 0 3
- 02

В

Saily & Next Life in

*	file:///C:/Users/GOOGLE/Downloads/20% من 20%Chemistry%20f inal%20(%201440)%20.pdf
8 AV 12 9 + -	
Question No. 1	
An aqueous solution of	is collisidered as strong electrolyte, thus, it can conduct electricity.
*	
O CO2	
○ C ₆ H ₁₂ O ₆	
LiCI	
C ₈ H ₁₈	
	and the second s

Total questions in exam: 40 | Answered: 22

Question No. 21

What is the coefficient of oxygen gas after balancing the following equation?

$$\underline{\hspace{1cm}} \text{H}_2\text{O}_2(l) \xrightarrow{\Delta} \underline{\hspace{1cm}} \text{H}_2\text{O}(l) + \underline{\hspace{1cm}} \text{O}_2(g)$$

Total questions in exam: 40 | Answered: 5

Question No. 25

The most correct name for the compound NI3 is:

- nitrogen triiodide
- mononitrogen triiodide
- nitrogen iodide
- triiodo nitrogen

Question No. 23

Which of the following solutions is the most basic?

- $[H_3O^+] > 1.0 \times 10^{-7} \text{ M}$
- $[H_3O^+] = 1.0 \times 10^{-10} \text{ M}$
- $OH \cdot = 1.0 \times 10^{-10} \text{ M}$
- OH-] < 1.0 × 10-10 M

Ou	ac	tion	N/A	111
wu	62	uoi	1440	

A chemical equation is balanced when

- the total number of ions is the same in reactants and products.
- the number of atoms of each element is the same in reactants and products.
- the total number of molecules is the same in reactants and products.
- the sum of the coefficients of the reactants is equal to the sum of the coefficients of the products.

Scanned with CamScanner

Total questions in exam: 40 | Answered 5

Question No. 32

Which statement about diluted solutions is false? When a solution is diluted,

The functional groups in the molecule below are

- O aldehyde and ketone
- o aldehyde and amine
- O carboxylic acid and amine
- ketone and amine

Total questions in exam: 40 | Answered: 28

Question No. 34

Which structure below represents a ketone?

Save & Next , 12, in

Scanned with CamScanner

MKCL OES

Chemistry_FT

Total questions in exam 40 | Answered 32

Question No. 33

Dinitrogen tetraoxide decomposes to produce nitrogen dioxide. Calculate the equilibrium constant for the reaction given the equilibrium concentrations at 100 °C:

 $[N_2O_4] = 0.60 M$ and $[NO_2] = 1.00 M$.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

 $K_{\rm C} \approx 1.67$

 $K_{\rm C} = 2.00$

 $K_{\rm c} = 0.625$

 $K_{\rm C} = 0.500$

Save & Next , 13, in

MKCL OES

Total questions in exam: 40 | Answered: 32

Question No. 37

Identify the type of this organic compound:

- ketone
- alcohol
- carboxylic acid
- aldehyde

В

119/12

Scanned with CamS

Total questions in exam: 40 | Answered: 32

Question No. 38

Solutions that resist sharp changes in their pH values are called ______.

- adducts
- electrolytes
- non-electrolytes
- buffers

and of the changes listed below will shift the equilibrium position to the right for the following reversible reaction? $SO_3(g) + NO(g) + heat \approx SO_2(g) + NO_2(g)$

- A decrease of temperature
- An increase of [SO3]
- An increase of [SO2]

119/145

مقار اللي 310

Total questions in exam: 40 | Answered: 32

Question No. 39

When the temperature is decreased on the following system at equilibrium: $HCl_{(aq)} + Mg_{(s)} \rightleftharpoons MgCl_{2(aq)} + H_{2(g)} + heat$

- O None of these choices is true
- the reaction shifts left to restore equilibrium
- the reaction shifts right to restore equilibrium
- No change occurs

Scanned with CamSc

MKCL OES

Total questions in exam: 40 | Answered: 11

Question No. 8

What substance is oxidized in the following redox reaction? $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

- O Zn
- O Cu
- O Zn2+
- Cu2+

Total questions in exam: 40 | Answered: 5

Question No. 24

Refer to the equilibrium shown below. Adding excess oxygen will $CH_4(g) + 2O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(g)$

- o have no effect
- o cannot be determined, since the temperature is not known
- shift the reaction to the right
- shift the reaction to the left

Question No. 27

After a chemical reaction reaches equilibrium,

- The amount of products is increasing.
- The amount of reactants and products are constant.
- The amount of products is decreasing.
- The amount of reactants and products are equal.

Scanned with CamScanner

MKCL OES

Total questions in exam: 40 | Answered: 11

Question No. 8

Total questions in ex	am: 40 A	nswered: 3	15						
Question No. 29	Tolland	V. Marie	70000	Con	10000	10000	10000	10000	100
What is the emptand 15.8% H?	irical forn	nula of th	e compo	und that	has a con	position	ıby mass	of84.29	6С.
O C ₃ H ₈ O C ₄ H ₁₀		6	64						
C ₄ H ₉ C ₃ H ₉		₩ 1							
The state of the s	+								
	40		Aug Co						
	Some								

مطرقال Save & Next

Scanned with CamScanner

Total questions in exam: 40 | Answered: 32

Question No. 30

Which of the following is true if the hydronium ion concentration "increases" in an aqueous solution?

- pH decreases
- pH increases
- Kw increases
- Kw decreases

SHIP & NEXT ULB gain

Total questions in exam: 40 | Answered: 5

Question No. 20

Identify the conjugate acid in the following reversible reaction. $HF(aq) + HSO_3(aq) \leftrightarrow F(aq) + H_2SO_3(aq)$

- F (aq)
- H₂SO₃(aq)
- O HF(aq)
- HSO₃-(aq)

B

مطروفلن Save & Next

Total questions in exam: 40 | Answered: 32

Question No. 39

When the temperature is decreased on the following system at equilibrium: $HCl_{(aq)} + Mg_{(s)} \rightleftharpoons MgCl_{2(aq)} + H_{2(g)} + heat$

- O None of these choices is true
- the reaction shifts left to restore equilibrium
- the reaction shifts right to restore equilibrium
- No change occurs

Save & Next (12)

Total questions in exam: 40 | Answered: 5

Question No. 26

Which of the following pairs of species is NOT a conjugate acid-base pair?

- H2SO4 and HSO4
- NH3 and NH2
- H2O and OH
- O HSO4 and SO42

B

Question No. 28

For the following acid-base reaction, identify HCl + NaOH ≠ ????? + ?

- H3OCl, acid
- NaOH2, base
- NaCl, acid
- NaCl, water

Total questions in exam: 40 | Answered: 32

Question No. 29

In the reaction below, what is the theoretical yield in grams for B₂H₆ when 5 moles of BF₃ react with 4 moles of NaH?

 $8BF_3 + 6NaH \rightarrow 6NaBF4 + B_2H_6$

- 28.5 g
- 0 9.5 g
- 0 17.3 g
- 0 12.5 g

C

A Miller Land and Land

Scanned with CamScanner

Total questions in exam: 40 | Answered: 5

MKCL OES

Chem

Total questions in exam: 40 | Answered: 5

Question No. 21

Determine the limiting reactant (LR) and the theoretical yield (in g) of iron (I can be formed from 28.65 g Fe₂O₃ and 10.0 g Al according to the following e Fe₂O₃ + 2 Al \rightarrow Al₂O₃ + 2 Fe

- O Al, 19.99 g Fe.
- Fe₂O₃, 20.7 g Fe.
- Fe₂O₃, 19.99 g Fe.
- O Al, 20.7 g Fe.

Scanned with

China (samulan) galan			C	hemistry_F	_Sem2_2019
Total questions in exam: 40: Answ	ered: 400				
Questian No. 39	Var. Na.	13 h	TOTAL	- Man	illus.
A reaction with an equilibriu	m constant K _c =1.	x 10 ¹⁶ would co	onsist of which	of the followi	ng at equilibriu
some reactants and products with					
mainly reactants are favored	In the same of the	The state of the s	Physical Land	PNOT	PAREL
mainly products are favored.	475 H		La Transfer	14272	
approximately equal reactants as	nd products			ST. ST.	
		200			
	All the control of th			14	
	2000 2000 2000 2000 2000 2000 2000 200				
			e e		

Question No. 22

Solid aluminum and gaseous oxygen react in a combination reaction to produce Al_2O_3 $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$

The maximum amount of Al₂O₃ that can be produced from 2.5 g of Al and 2.5 g of O₂ is ______g.

- 0 4.7
- 0 7.4
- 0 5.3
- 9.4

Total questions in exam: 40 | Answered: 40

Question No. 6

gives a non-electrolyte when dissolved in water.

- weak base
- CaCl₂
- HNO₃
- O C₁₂H₂₂O₁₁

Save & Next , LD, line

Scannec

What is the type of the following alcohol?

- O Quaternary
- O streety
- 0 SHIRRARY
- 6 Tertary

Primary

MKCL OES

Chemis

Total questions in exam: 40 | Answered: 40

Question No. 3

What is the coefficient of oxygen gas after balancing the following equation? $AgClO_3(s) \xrightarrow{\Delta} AgCl(s) + O_2(g)$

- 0 1
- 0 3
- 0 2
- 0 4

B

MKCL OES

Total questions in exam: 40 | Answered: 11

Question No. 8

What substance is oxidized in the following redox reaction? $Zn(s) + Cu^{2-}(aq) \rightarrow Zn^{2-}(aq) + Cu(s)$

- O Zn
- Cu
- 2n2+
- Cu2+

Scanned with CamScanner

MKCL OES

Chemis

Question No. 7

If 5.0 moles of LiF are dissolved in enough water to make 2.5 L of solution, calculate the molarity of this solution.

- 1.0 M
- O 2.0 M
- O 2.5 M
- O 0.75 M

B

Scanned with

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 8

Which of the following molecular formulas corresponds to an alkene?

- C_§H₁₆
- O C8H14
- O C₈H₂₀
- O C8H18

Scanned with CamScanner

MKCL OES

Chemistry_FT

Total questions in exam: 40 | Answered: 40

Question No. 14

How many grams of AlCl₃ could be produced when 1.5 moles of Cl₂ completely react with aluminum according to the reaction?

 $2A1 + 3Cl_2 \rightarrow 2AlCl_3$

0 134 g

∪ 333 g

• 267 g

9 533 g

Scanned with Cam!

Total questions in exam: 40 | Answered: 0

Question No. 4

What is the oxidation number of iron in Fe₂O₃?

- 0 -6
- 0 -3
- 0 +3
- O +6

Total questions in exam: 40 | Answered: 0

Question No. 6

Which of the following generic formulas is correctly representing a "saturated hydrocarbon"? C_nH_{2n+2} C_nH_n C_nH_{2n-2} C_nH_{2n}

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 5

What is the correct name of the following compound?

- 2-fluoropropane
- fluoropropy!
- 2-fluorobutane
- 1-fluoropropane

Question No. 40

What is the final molarity of H₂SO₄ solution, if 80 mL of 4M H₂SO₄ was diluted to a final volume of 1 L?

- 0 0.48 M
- 0.24 M
- O 0.32 M
- 0.40 M

Scanned with CamScanner

Total questions in exam: 40 | Answered: 0

Question No. 3

The following reaction is exothermic. Which of the following will drive the reaction the right (towards products)?

$$CH_4(g) + 2 O_2(g) \rightleftharpoons CO_2(g) + 2 H_2O(g) + heat$$

- An increase in temperature
- O An increase of H2O

Scanned with CamScanner

Total questions in exam: 40 | Answered: 0

Question No. 3

The following reaction is exothermic. Which of the following will drive the reaction to the right (towards products)?

 $CH_4(g) + 2 O_2(g) \rightleftharpoons CO_2(g) + 2 H_2O(g) + heat$

- An increase in temperature
- An increase of H₂O
- The removal of CH₄
- O A decrease of CO2

مظرراتلی Save & Next

مظراقلي Save & Next

Scanned with CamScanner

Total questions in exam: 40 | Answered: 0

Question No. 2

What substance is the oxidizing agent in the following redox reaction? $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2-}(aq) + Cu(s)$

- Cu2+
- O Zn
- Cu
- Zn2+

Save & Next and a min

Scanned with CamScanner

MKCL OES Chemistry FT Se

Question No. 38 When the substances in the equation below are at equilibrium, at pressure P and temperature T, the equilibrium can be shifted to favor the products by $CuO(s) + H_2(g) \rightleftharpoons H_2O(g) + Cu(s) + Heat$ © adding more CuO increasing the pressure. © decreasing the temperature Scientific Calculator

Scanned with CamScanner

Which of the following is NOT a conjugate acid/base pair?

- H₂SO₃ /SO₃²-
- O HCl/Cl-
- HNO₃ / NO₃-
- HBr/Br

Scanned with CamScanr

Scanned with CamScan

What is the family of a compound that has he following general formula?

R—C—H

ketone
aldehyde
carboxylic acid
ester

Scanned with CamScan

Give the direction of the reaction, if Kc >> 1

- Both directions are equally favored.
- The forward reaction is favored.
- The reverse reaction is favored.
- Neither direction is favored.

Question No. 37

Determine the value of K_c for the following reaction if the equilibrium concentrations are as follows: $[N_2]_{eq} = 1.5 \text{ M}$, $[H_2]_{eq} = 1.1 \text{ M}$, $[NH_3]_{eq} = 0.47 \text{ M}$.

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

- 0.11
- O 3.5
- 0.28
- 0 9 1

Scanned with CamScanner

Question No. 36

Choose the correct name for the following compound:

- 2-bromo-2-methyltoluene
- 1-bromo-1,2-dimethylcyclohexane
- 1-bromo-1,2-dimethylbenzene
- 2-bromo-1,2-dimethylcyclohexane

Scanned with CamScanner

The conjugate base of H2SO4 is

- O HSO4.
- O HSO4+
- H2SO4
- OH-

Question No. 29	Allegar.	1240	2440	
Organic compounds that cont	ain a "benzene ri	ng" are called	compounds	
saturated carboxylic cycloalkane aromatic	Mydaga S	19440900	411408003	
day day				
		Scanned	l with CamScann	

11/400000

Question No. 32

What is the [OH⁻] in a solution that has a $[H_3O^+] = 1 \times 10^{-6} M$?

- O 1 x 10-8 M
- [☉] 1 x 10⁻² M
- 0 1 x 10-6 M
- 1 x 10⁻¹⁰ M

Scanned with CamScanner

FINAL... محلول B&H

Question No. 31	4400	MHADO	MHADO	MHADO	MHZOO	MY
How many gram with Cl ₂ according			duced when 9	4.5 grams of A	l completely r	eact
Mys 4	Han		Cl ₂ → 2AlC	13 MH30	MHAD	11/
● 533 g ● 133 g	708 ₀₆₈₉	~0806	89	589	689	689
● 399 g● 467 g	Tr.	An	An.	Arc.	Are	
799680		1740304	174081			
		A Topics	September 1			

Scanned with CamScann

How many grams of AlCl₃ could be produced when 94.5 grams of Al completely react with Cl₂ according to the reaction? 2Al + 3Cl₂ → 2AlCl₃ 533 g 133 g 399 g 467 g

Scanned with CamScan

Total questions in exam: 40 | Answered: 3 Question No. 27 The mass percent composition of oxygen in the acid H₂SO₃ is: 0 65.3% 0 2.5% 0 58.5% 0 39.1%

Scanned with CamScanne

Question No. 24

Identify the substance that contains ionic bond.

- O KCl
- 0 Ne
- o co
- H₂O

Scanned with Cam

Scanned with CamScanner

uestion No. 25

dentify the Bronsted-Lowry conjugate acid in the following reaction

$$H_2O + CO_3^2 \rightarrow HCO_3^- + OH^-$$

HCO3

) H₂O

CO₃²⁻

OH-

Scanned with CamScanner

Question No. 26 Based on Lewis structures, the number of lone pairs of electrons in the water molecule And Androne A

		Scanned wi	th CamScanner
		Scallieu Wi	ur Camocamiei
Total questions in exam: 4	0 Answered: 3		A STREET, STRE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Question No. 23	Myan	Mylyn	14/40
Which of the following exp	ression symbols is us	sed for quantifying	acidity and basicity
	1 6		
⊙ рн	May	Mys	Aller
O aH	lone. Top	0.900	b. "U806b
● bH	- C.O	9	001
○ ен			
Allera Allera	13		
	Office Co.	a tugot	
		Scanned wi	th CamScanner
Total questions in ex	kam: 40 Answe	ered: 3	

tion No 24

Scanned w

Question No. 20

Which of these substances gives a weak electrolyte when dissolved in water?

- ionic salt
- strong acid
- weak base
- strong base

C

Scanned with CamSc

Question No. 16

Provide the name of the compound below.

- 1,3-dimethylcyclohexane
- 1,2-dimethylhexane
- 2.4-dimethylcyclohexane
- Dimethylcyclohexane

Scientific Calculator

Scanned with CamSc

Scanned with CamScar

Scanned with CamScar

Which of the following is a polyatomic ion?

- NO31-
- O Br1-
- Na¹⁺
- @ S2-

Scanned	J seciela	Came
ocannec	ı witn	Cama

Question No. 10

How many moles of (NH4), S are there in 150 g of (NH4), S?

- 0 1.56
- 0 154
- 0 221
- 0 15

C

Scanned with Cams

The oxidation number of Cr in Cr₂O, 2 is _____

- 0 .7
- 0 .6
- 0 .5
- 0 .4

What is the mass% of carbon in (C2H5O2)?

- 0 773%
- @ 63%
- 6 30 6%
- @ 38 7%

38.7%

Scani

Total questions in exam. To Transmerou.

Question No. 5

What is the name of the following compound?

- 3-methylenehexane
- 3-methyl-3-hexene
- 4-ethyl-4-hexene
- 3-methyl-2-hexene

Scanned wi

Question No. 7

The IUPAC name of C3H4 is ___

- propene
- propane
- butyne
- propyne

Question No. 9

How many grams of AlCl₁ could be produced when 54 grams of Al completely react with Cl₂ according to the reaction?

- 0 342 9
- 0 1120
- 0 133 0
- 9 267 0

Save & Next , Lift, him

Scanned with CamScanner

Session NO. 8

If the reaction is endothermic, which of the following is always true?

- the reaction gives out heat
- the reaction rate is fast
- the reaction rate is slow

Total questions in exam: 40 | Answered: 3

Question No. 11

To which family does this organic compound belong?

- ether
- o amine
- carboxylic acid
- o amide

Scanned with CamScanner

Scanned with Can

Question No. 2

Identify the type of this organic compound:

- ketone
- aldehyde
- carboxylic acid
- alcohol

Question No. 4

lonic bonding is formed as a result of _____

- transfer of electrons.
- sharing of electrons
- gain of electrons only.
- loss of electrons only.

Scanned 1

Question No. 1

The name of the chemical compound KNO3 is:

- o potassium nitrite
- opotassium(I) nitrite
- o potassium(I) nitrate
- potassium nitrate

Total questions in exam: 40 | Answered: 0

Question No. 1

Express the equilibrium constant for the following reaction. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

$$K = \frac{[PCl_3][Cl_2]}{[PCl_5]}$$

$$K = \frac{[PCl_3]^2[Cl_2]^{2}}{[PCl_5]^2}$$

$$K = \frac{[PCl_5]}{[PCl_3][Cl_2]}$$

$$K = \frac{[PCl_3][Cl]^2}{[PCl_5]}$$

B

حطر راقلی Save & Next

Save & Next حناراتان

Scanned with CamScanner

Question No. 3

Determine the molecular formula of a compound that has a molar mass of 146 g/mol an an empirical formula of $C_3H_5O_2$.

- C₃H₅O₂
- O C9H15O6
- C₆H₁₅O₄
- C₆H₁₀O₄

D

مطرقان Save & Next

Scanned with CamScanner

Question No. 4

Question No. 6

What is the equilibrium constant expression for the following reaction? $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightleftharpoons 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

- $K_{c} = [NH_{3}]^{4} [O_{2}]^{5} / [NO]^{4} [H_{2}O]^{6}$
- $K_{\rm C} = [{\rm NO}]^4 [{\rm H_2O}]^6 / [{\rm NH_3}]^4 [{\rm O_2}]^5$
- $^{\circ}$ $K_{c} = [NO][H_{2}O]/[NH_{3}][O_{2}]$
- $K_c = [NH_3][O_2]/[NO][H_2O]$

B

مطراقلي Save & Next

Question No. 2 Consider the reaction: $2 \cdot SO_2(g) + O_2(g) \leftrightarrow 2 \cdot SO_3(g)$ If, at equilibrium at a certain temperature, $[SO_2] = 1.50 \text{ M}$, $[O_2] = 0.120 \text{ M}$, and $[SO_3] = 1.25 \text{ M}$, what is the value of the equilibrium constant K_{eq} ? 0.14 8.68 5.79 6.94

Scanned with CamScar

Scanned with CamSo

Scanned with CamSo

Total questions in exam: 40 | Answered: 0

Question No. 2

Name the following compound:

- 2-methyl-4-ethyl-5-hexyne
- 4-ethyl-2-methyl-5-hexyne
- 3-ethyl-5-methyl-1-hexyne
- 5-methyl-3-ethyl-1-hexyne

Question No. 36

If the reaction is endothermic, which of the following is always true?

- the reaction rate is fast
- the reaction takes in heat
- the reaction gives out heat
- the reaction rate is slow

В

	The second second			
The reaction that requi	ires thermal energ	y to proceed is	known as	reaction
oxidation				
o endothermic				
isothermic isothermic				
exothermic				
HIA PARA				
All the Things				

Scanned with CamScanner

Scanned with CamScanner Question No. 27 Refer to the equilibrium shown below. Which of the following will shift the reaction to the right? CH₄ (g) + 2O₂ (g) = CO₂ (g) + 2H₂O (g) adding excess oxygen o increasing the pressure removing carbon dioxide as soon as it is formed adding O2 and removing CO2

Scanned with CamScanner

		Scanned with CamScanner
Refer to the equilibrium s shift the reaction to the left shift the reaction to the right cannot be determined, since have no effect	CH ₄ (g) + 2O ₂ (g) ≠ CO	on volume is increased, this will
		Scanned with CamScanner

Question No. 12

In the following reaction, what is the effect on the direction of the reaction if more SO_3 is added to the reaction mixture?

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

- The equilibrium shifts to produce more products.
- The rate of formation of products is increased.
- The position of the equilibrium remains unchanged.
- The equilibrium shifts to produce more reactants.

in a neutralization reaction,

- an acid reacts with a base to form a salt and water
- two acxes react to form water
- water and a sait react to form an acid and a base
- an acid and a sait react to form water and a base

مطروفلی Save & Next

Scanned with CamSo

Question No. 21

"A system at equilibrium tends to maintain equilibrium", this statement is known as

- Avogadro's principle
- Haber's law
- The law of chemical equilibrium
- Le Chatelier's principle

Question No. 20

What is the IUPAC name for: CH3-CH2-CH2-CH3?

- pentane
- butane
- heptane
- O hexane

Total questions in exam: 40 | Answered: 11

Question No. 32

Which of the following pairs is NOT a conjugate acid-base pair according to the concept of Bronsted-Lowry?

- O H₃PO₄ and HPO₄²-
- H₃PO₄ and H₂PÒ₄-
- H₂PO₄⁻ and HPO₄²⁻
- O HPO₄²- and PO₄³-

Scanned with CamScanner

Scanned with CamScal

Question No. 39

If the [OH] in a blood sample = 1×10^{-7} , the pH of this blood sample is _____

- \circ pH = 1 x 10-7
- $9 \text{ pH} = 1 \times 10^{-7}$
- O pH = 7
- 0 pH = 7

Save & Next مشار الثان

Scanned with CamScal

Save & Next منا راكلي Scanned with CamScanner Total questions in exam: 40 | Answered: 30 Question No. 40 Based on Lewis dot structures, the number of lone pairs of electrons in HCI molecule is 0 1 0 2 03 00

منظر را الكلي Save & Next

A solution is made by dissolving 2.68 mole of KF in enough water to give a final volume of 1030 mL. What is the molarity of the solution?

1.52 M
2.60 M
0.0800 M
0.125 M

Scanned with CamScanner

Question No. 38

Provide the name of the compound below.

Question No. 38

Provide the name of the compound below.

- 2,3-dimethyl-1-hexene
- 4.5-dimethyl-6-hexene
- 4,5-dimethyl-5-hexene
- 2,3-dimethyl-2-hexene

Scanned wi

Total questions in exam: 40 | Answered: 13

Question No. 17

What is the oxidation number of sulfur in SO₃²?

- 0 +2
-
- 0 +4
- 0 46

Question No. 13

Refer to the reaction shown below. Removing sulfur dioxide as it is formed will $2H_2S(g) + 3O_2(g) \rightleftharpoons 2SO_2(g) + 2H_2O(g)$

- shift the reaction to the left
- shift the reaction to the right
- nave no effect
- cannot be determined, since the temperature is unknown

В

Scanned with CamScanner

Question No. 16

The name of the chemical compound CuOH is _____

Copper hydroxide

copper(II) hydroxide

copper(III) hydroxide

copper(III) hydroxide

		Scanned v	Scanned with Can	
Question No. 10	60	42.	1	
The molecular formula for the hy	vdrocarbon "butan	ne" is		
C ₅ H ₁₂ C ₆ H ₁₄ C ₄ H ₁₀	<u> </u>			
H10	By	30 m		
4				
	- 100			
		-		
		1. 18		
*				
			-	

...FINAL...

Scanned with Cams Question No. 11 If a drain cleaning solution has a pH = 13, this solution is_ weakly acidic strongly acidic strongly basic weakly basic

Question No. 8	de la constantina	1940	Myon
To which family does t	he following o	organic compo	und belong?
	C)	
	// CH₃-CH₂-C-	-СН₂-СН₃	4
() alsohal		477	137
alcohol alcohol			
aldehyde kelone	1	h Mr.	44
ether		4	1
	3	A STATE OF	9
	100		
	And the second		
	5		
		5	
		14	
	a		
-			

Scanned with CamScann

Scanned with CamS

Scanned

Question No. 5

Identify an ionic bond

- Electrons are shared.
- O Protons are lost
- Electrons are transferred.
- Protons are gained

Scanned with CamScanner

حطرقلی Save & Next

Scanned with CamScanner

Scanned with CamScanner

Wext "The "

Scanned

Total questions in exam: 40 | Answered: 9

Question No. 4

Two mole of any substance contains _____ particles?

- 12.044 x 10²⁴
- 6.022 x 10 ²³
- 1.20 x 10 ²⁴
- 3.011 x 10²⁴

Scanned with Cam

If a rain-water sample has a pH = 5.8, this sample is ____

- weakly acidic
- strongly acidic
- weakly basic
- neutral

Total questions in exam: 40 | Answered: 9

Question No. 1

When a system is at chemical equilibrium

- the rate of the forward reaction is small compared to the reverse.
- the rate of the forward reaction is equal to the rate of the reverse.
- the rate of the reverse reaction is small compared to forward. the amounts of product and reactant are exactly equal.

Scanned with CamScanner

Total questions in a

Scanne

Scanned with CamScanner

Scanned w

The compound below is an CH3 CH3—C—NH2 H acid ester amine amide

rain-water sample has a pH = 5.8, this sample is ______.