| | Question | A | В | С | D | |-----|--|--|--|---|--| | 1. | The actual <mark>site of gas exchange</mark>
in <mark>human</mark> is | larynx | Nasal cavity | Pharynx | alveoli | | 2. | In the human respiratory system, air passes from trachea to the | bronchioles | nasal cavity | larynx | Bronchi | | 3. | From nasal cavity air next passes to | larynx, vocal
cords, Pharynx,
Bronchi,
trachea
bronchioles
then alveoli | Larynx, Pharynx, trachea, vocal cords, Bronchi, alveoli then bronchioles | Pharynx, <u>larynx,</u> <u>vocal cords,</u> trachea, Bronchi bronchioles then alveoli | Pharynx, vocal
cords, larynx,
Bronchi, alveoli,
trachea then
bronchioles | | 4. | In the <mark>lungs ,blood</mark> and | Picks up O ₂
drops off CO ₂ | drops off O ₂
drops off CO ₂ | Picks up CO ₂
drops off O ₂ | drops off O₂
drops off waste
products | | 5. | In the body tissues ,blood
and | Picks up O2
drops off CO2 | drops off O2
drops off CO2 | Picks up CO2
drops off O2 | drops off O2
drops off waste
products | | 6. | The iron-containing pigment (hemoglobin) | is fo <mark>und only</mark> in
birds | is found in
Arthropods | is found in
almost all
vertebrates | is found in
Mollusca | | 7. | The copper-containing pigment (hemocyanin) | Is found in
Arthropods and
Mollusca | is found in many
mammals | is found in
reptiles | is found only in
birds | | 8. | Inhalation occurs when and | the diaphragm
moves upward-
The rib cage
contracts | The rib cage
contracts -
pressure around
lungs increase | The rib cage
contracts - the
diaphragm
moves upward | the diaphragm
moves downward-
The rib cage
expands | | 9. | Exhalation occurs when | the diaphragm
moves upward-
The rib cage
contracts | The rib cage
contracts -
pressure around
lungs decrease | The rib cage
expands - the
diaphragm
moves upward | the diaphragm
moves downward-
The rib cage
expands | | 10. | Birds and mammals use as the respiratory surface | more complex
lungs | Small gills | Their body
surfaces | advanced gills | | 11. | Nonbird reptiles useas the respiratory surface | more complex
lungs | Small gills | Their body
surfaces | Simple lungs | | 12. | Amphibians use as respiratory surface | advanced lungs | more complex
lungs | Their body
surfaces | more complex
lungs | | 13. | The skin is the major site of gas exchange in | flatworms | mammals | arthropods | fish | | | | Have one way | | | | | 14. | Arteries | Have one way
valve that
restrict
backward flow | Force blood back
to right heart
atrium | Composed of single layer of epithelial cells | Have thicker walls | | 15. | Arteries | Have one way
valve that
restrict
backward flow | Force blood back
to right heart
atrium | Have thin walls | Are under more pressure | ## **Scanned with CamScanner** | 16. | Veins | Have one way valve that restrict backward flow | prevent the
backflow of
blood | Composed of single layer of epithelial cells | Have thicker walls | |-----|--|---|---|---|---| | 17. | Veins | force blood
back to right
heart atrium | prevent the
backflow of
blood | Composed of
single layer of
epithelial cells | Have thicker walls | | 18. | Capillaries | Have one way
valve that
restrict
backward flow | prevent the
backflow of
blood | Composed of single layer of epithelial cells | Have thicker walls | | 19. | Heart rate is | is the number
of beats
/minute | is amount of blood/minute pumped into systemic circuit | prevent the
backflow of
blood | is a defect in one or
more heart valves | | 20. | Heart valves is | is the number
of
beats/minute | is amount of
blood/minute
pumped into
systemic circuit | prevent the
backflow of
blood | is a defect in one or
more heart valves | | 21. | cardiac output | is a defect in
one or more
heart valves | defined as the
number of
beats/minute | is the amount of
blood/minute
pumped into
systemic circuit | prevent the
backflow of blood | | 22. | The pacemaker (SA node) | is the amount of blood /minute pumped into systemic circuit | relays electrical
signals to the
ventricles | generates
electrical signals
in atria | develops plaques
inside blood vessels
walls | | 23. | The pacemaker (SA node) | is the amount of blood /minute pumped into systemic circuit | relays electrical
signals to the
ventricles | sets the rate of
heart
contractions | develops plaques
inside blood vessels
walls | | 24. | The (AV node) | is the amount of blood/minute pumped into systemic circuit | relays electrical
signals to the
ventricles | sets the rate of
heart
contractions | develops plaques
inside blood vessels
walls | | 25. | The generates electrical signals in atria | The pacemaker
(SA node) | AV node | Heart murmur | ventricles | | 26. | The sets the rate of heart contractions | The pacemaker
(SA node) | AV node | Heart murmur | ventricles | | 27. | The relays electrical signals to the ventricles | The pacemaker
(SA node) | AV node | Heart murmur | ventricles | | 28. | the damage to cardiac muscle typically from a blocked coronary artery is | Stroke | Heart murmur | Cardiac output | Heart attack | | 29. | death of brain tissue from blocked arteries in the head is _ | Stroke | Heart murmur | Cardiac output | Heart attack | | 30. | The heart murmur | Electrical
signals to the
ventricles | Rate of heart
contractions | Electrical signals
to the atria | is a defect in one or
more heart valves | |-----|--|---|--|--|--| | 31. | Atherosclerosis | increase the
blood flow | is a defect in
heart rate | narrows the
blood vessels | Is caused by
ventricular
contraction | | 32. | Atherosclerosis | Reduction of
the blood flow | Measure of systolic pressure | Force blood
exerts on vessels
wall | Is caused by
ventricular
contraction | | 33. | Atherosclerosis | is the
development of
plaques inside
walls of blood
vessels | Measure of
systolic pressure | Force blood
exerts on vessels
wall | Is caused by
ventricular
contraction | | 34. | The systolic pressure | Is caused <u>by</u>
ventricular
contraction | Is the low pressure between contractions | narrows the
blood vessels | reduce the blood
flow | | 35. | The diastolic pressure | Is caused by ventricular contraction | Is the low pressure between contractions | narrows the
blood vessels | reduce the blood
flow | | 36. | The <mark>red</mark> blood cells
(<mark>erythrocyte</mark>) _ | promote clotting | transport O2 | Fight cancer | fight infections | | 37. | The red blood cells (erythrocyte) | promote clotting | transport CO2 | Fight cancer | fight infections | | 38. | Some athletes artificially increase their red blood cell production by injecting | fibrinogen | erythropoietin | immunoglobulin
s | sodium ions | | 39. | is Abnormally low amounts of hemoglobin or red blood cells | Blood clotting | Heart attack | The pacemaker | Anemia | | 40. | Causes fatigue due to lack of oxygen in tissues | Blood clotting | Heart attack | The pacemaker | Anemia | | 41. | regulates red blood cell
production | erythropoietin
hormone | Antidiuretic
hormone | Testosterone
hormone | Insulin hormone | | 42. | The white blood cells (leukocyte) | promote
clotting | transport O2 | transport CO2 | fight cancer | | 43. | The white blood cells (leukocyte) | promote
clotting | transport O2 | transport CO2 | fight infections | | 44. | The white blood cells (leukocyte) | promote
clotting | transport O2 | transport CO2 | function inside and
outside the
circulatory system | | 45. | Blood platelets | promote
clotting | transport O2 | transport CO2 | fight infections | | 46. | Blood platelets | are small
fragments of
cells | transport O2 | transport CO2 | fight infections | |-----|--|--|--|---|--| | 47. | Plasma contains fibrinogen,
which is converted into fibrin
that help | as pH buffering | as solvent | in defense | in blood clotting | | 48. | Platelets adhere to exposed connective tissue during the | Heart rate | anemia | Blood clotting | Heart attack | | 49. | Platelets form a plug during the _ | Heart rate | anemia | Blood clotting | Heart attack | | 50. | A fibrin clot traps blood cells during the | Heart rate | anemia | Blood clotting | Heart attack | | | | | | | | | 51. | The maintenance of steady internal conditions despite fluctuations in the external environment is called | Homeostasis | Osmoregulation | excretion | Thermoregulation | | 52. | is the maintenance of internal temperature within narrow limits | Homeostasis | Osmoregulation | excretion | Thermoregulation | | 53. | The control of the gain and loss of water and solutes is called_ | Thermoregulati
on | Osmoregulation | Homeostasis | excretion | | 54. | The disposal of nitrogen-
containing wastes is called | Thermoregulati
on | Osmoregulation | Homeostasis | excretion | | 55. | Ectothermic animals | are represented
by birds and
mammals | produce sugar
from water and
CO2 | Derive body heat
mainly from
their metabolism | absorb heat from
their surroundings | | 56. | Endothermic animals | produce sugar
from water and
CO2 | produce sugar
from water and
CO2 | Derive body heat
mainly from
their metabolism | absorb heat from
their surroundings | | 57. | Animals that derive body heat mainly from their metabolism are called | Ectothermic | Endothermic | Photosynthetic | Herbivorous | | 58. | Animals that absorb heat from their surroundings are called | Ectothermic | Endothermic | Photosynthetic | Herbivorous | | 59. | Animals exchange heat with the environment by | Pollination | photosynthesis | Fertilization | Conduction | | 60. | The adaptations that promote the process of thermoregulation include | Fertilization | photosynthesis | Pollination | Increased metabolic heat production | | 61. | The adaptations that promote the process of thermoregulation include | Fertilization | photosynthesis | Pollination | Circulatory
adaptations | | 62. | The adaptations that promote the process of thermoregulation include | Fertilization | photosynthesis | Pollination | Evaporative cooling | | 63. | The adaptations that promote the process of thermoregulation include | Fertilization | photosynthesis | Pollination | Insulation | |-------------|--|--|--|--|-----------------------------------| | 64. | The adaptations that promote the process of thermoregulation include | Fertilization | photosynthesis | Pollination | Behavioral
responses | | 65. | Some animals carry out evaporative cooling by | Countercurrent
heat exchange | Shivering | Sweating and panting | fertilization | | 66. | Increased metabolic heat production by | Countercurrent
heat exchange | Shivering | Sweating and panting | fertilization | | 67. | Increased metabolic heat production by | Countercurrent heat exchange | Hormonal changes | Sweating and panting | fertilization | | 68. | have the <mark>same</mark> internal solute concentration as seawater | Osmoconformers | Mammals | Osmoregulators | endothermic | | 69. | Many <mark>marine invertebrates</mark> are | Osmoconformers | Mammals | Osmoregulators | endothermic | | 70. | The freshwater fish_ | Drink seawater | Pump out excess
salt | Gain water by osmosis | All other answers
are correct | | 71. | The <mark>saltwater fish</mark> | Uptake salts
across their
gills | Pump out excess salt | Gain water by osmosis | Excrete excess
water | | 72. | In vertebrates the excretion is primarily carried out by | Skin | Gills | Lungs | liver | | <i>7</i> 3· | In mammals, <mark>the ureters</mark> drain urine into | Kidney | Gills | Lungs | liver | | 74. | In mammals, the urine is expelled through | Urethra | Aorta | Inferior vena
cava | lung | | <i>75</i> . | The function units of the kidneys is the | Urethra | Alveoli | Nephrons | Ureters | | <i>7</i> 6. | The nephron is | The fu <mark>ncti</mark> on
units o <mark>f the</mark>
kidneys | Site of gas
exchange | Site of food
absorption | Site of food
digestion | | 77. | The important function of nephron | Extract filtrate
from blood | Exchange gases | photosynthesis | respiration | | 78. | The important function of nephron | Refine the
filtrate to
produce urine | Exchange gases | photosynthesis | respiration | | <i>7</i> 9. | During blood pressure forces water and many small solutes into the nephron | filtration | reabsorption | secretion | excretion | | 80. | During valuable solutes are reclaimed from filtrate | filtration | reabsorption | secretion | excretion | | 81. | During _ excess toxins & other solutes are added to filtrate | filtration | reabsorption | secretion | excretion | | 82. | The <mark>kidney dialysis</mark> can be a
lifesaver by | Maintaining
the solute
concentration
in the blood | Maintaining the toxic compounds in the blood | Extracting a
filtrate from the
urine | Removing sugars
from the blood | | 83. | The kidney dialysis can be a lifesaver by | Maintaining
the solute
concentration
in the blood | Maintaining the toxic compounds in the blood | Extracting a
filtrate from the
urine | Removing wastes
from the blood | |-----|--|--|---|--|---| | 84. | regulates the amount of water excreted by the kidney | Estrogen
hormone | Antidiuretic hormone | Testosterone
hormone | Insulin hormone | | 85. | The nitrogenous wastes are toxic breakdown products of | Inorganic compounds | Fats | Protein | carbohydrates | | 86. | The nitrogenous wastes are toxic breakdown products of | Inorganic
compounds | Fats | Nucleic acids | carbohydrates | | 87. | The animals dispose of nitrogenous wastes in the form of | Sugar | Nitrate | Urea | carbonate | | 88. | The nitrogen-containing metabolic waste products in most aquatic animals is | ammonia | urea | uric acids | carbonate | | 89. | is the <mark>nitrogen</mark> -containing
metabolic waste products in
mammals, amphibians | ammonia | urea | uric acids | carbonate | | 90. | The nitrogen-containing metabolic waste products in birds and many reptiles, is | ammonia | urea | uric acids | carbonate | | 91. | Excess of CO2 or O2 in the plant leaves exit through | Stomata | Phloem | Cortex | xylem | | 92. | The halophytes excrete the excess salts outside their body by | Special salt
glands | Stomata | vascular bundles | Cortex | | 93. | is secretion of water and its solutes by hydathodes | Guttation | Transpiration | Photosynthesis | Respiration | | 94. | is evaporation of water
from the surface of leaves
through stomata | Guttation | Transpiration | Photosynthesis | Respiration | | 95. | The terrestrial plants convert excess amino acids into | Ammonia and keto acids | ammonia and
urea | keto acids and
urea | uric acids and keto
acids | | 96. | In aquatic plants the excess of amino acids are converted to | Ammonia and
keto acids | ammonia and
urea | keto acids and
urea | uric acids and keto
acids | | | | | 266 | | | | 97. | Sexual reproduction Involves | Offspring have
no traits from
parents | Offspring are similar to parents, but show variations in traits | inheritance of
unique sets of
genes from one
parent | Offspring are
similar to one
parent | | 98. | Sexual reproduction Involves | inheritance of
unique sets of
genes from
parents | Offspring are
similar to one
parent only | Offspring have
no traits from
parents | Offspring are
similar to one
parent | | 99. | Asexual reproduction | Can proceed via
Budding,
Fission, and
Fragmentation | One parent produces genetically different offspring | Very slow
reproduction | Two parent produces genetically identical offspring | |------|---|--|---|---|---| | 100. | Asexual reproduction | Two parent produces genetically identical offspring | One parent produces genetically identical offspring | One parent produces genetically different offspring | Very slow
reproduction | | 101. | Asexual reproduction | Two parent produces genetically identical offspring | Very rapid
reproduction | One parent produces genetically different offspring | Very slow
reproduction | | 102. | Prokaryotes are reproduced by | mitosis | meiosis | asexually | budding | | 103. | Prokaryotes are reproduced by | mitosis | meiosis | Binnary fission | budding | | 104. | Fertilization is the union of | sperm and ova
to form a
haploid zygote | sperm and egg to
form a diploid
zygote | testis and ovary
to form a sex
organ | sperm and egg to
form a sex organ | | 105. | In sexual reproduction, sperm may be transferred to the female by | Budding | Internal
Fertilization | Binary fission | Regeneration | | 106. | In sexual reproduction, sperm may be transferred to the female by | Budding | External
Fertilization | Binary fission | Regeneration | | 107. | Ineggs and sperm are discharged near each other | Internal
Fertilization | Fragmentation | External
Fertilization | Binary fission | | 108. | In sperm is deposited in or near the female reproductive tract | Inter <mark>nal</mark>
Fertilization | Fragmentation | External
Fertilization | Binary fission | | 109. | External Fertilization occurs in | Many fish and
amphibian
species | Mammals and birds | Asexual reproduction | Binary fission | | 110. | External Fertilization | eggs and sperm
are discharged
near each other | A type of asexual reproduction | Is done by
budding | Is done by
fragmentation | | 111. | Internal Fertilization occurs in | Nearly all
terrestrial
animals | Mammals and
birds | Asexual reproduction | Binary fission | | 112. | The produces sperms and male hormones | Tests | Liver | Kidney | Ovary | | 113. | The produces eggs and female hormones | Tests | Liver | Kidney | Ovary | | 114. | The tests produces sperms which stored and develop further in | Epididymis | Pancreas | Liver | Kidney | | 115. | The gland contribute to semen production | Ovary | Seminal vesicle | Liver | Pancreas | |------|--|--|--|---|--| | 116. | The gland contribute to semen production | Ovary | Prostate | Liver | Pancreas | | 117. | The gland contribute to semen production | Ovary | bulbourethral | Liver | Pancreas | | 118. | The female <mark>vagina</mark> | Receives the
penis during
sexual
intercourse | Is for external
fertilization | Receive the egg
from ovary | Is the site for egg
fertilization | | 119. | The female vagina | Forms the birth canal | Is for external
fertilization | Receive the ova
from ovary | Is the site for egg
fertilization | | 120. | Both sexes in humans have | Sepals | A set of gonads where gametes (sperms & ovum) are produced | Petals | Carpels | | 121. | Both sexes in humans have | Sepals | Ducts for gamete
transport | Petals | Carpels | | 122. | Both sexes in humans have | Sepals | Structures for copulation | Petals | Carpels | | 123. | Some animals exhibit hermaphroditism | Individual with female reproductive system only | Takes place in
mammals | Easier to find a
mate for animals
less mobile or
solitary. | Individual with
male reproductive
system only | | 124. | Some animals exhibit hermaphroditism | Individual with female reproductive system only | Takes place in
mammals | One individual with male and female reproductive system | Individual with
male reproductive
system only | | 125. | Hermaphroditism | One individual with male reproductive system <u>and</u> the other with female reproductive systems | One parent produces genetically identical offspring | Two individuals
with male and
female
reproductive
systems | One individuals
with male and
female reproductive
systems | | 126. | Spermatogenesis (the sperm formation) | Occurs in
seminiferous
tubules | Is controlled by
estrogen | Starts in seminal vesicles | Occurs in follicles | | 127. | Primary spermatocytes are | Formed inside
ovary | Formed by
mieosis | Formed by
mitosis | formed before birth | | 128. | Primary spermatocytes are | Formed inside
ovary | Formed by
mieosis | divide by meiosis I to produce secondary spermatocytes | formed before birth | | 129. | Secondary spermatocytes are | Formed inside ovary | Formed by
Mitosis | divide by meiosis
II to produce
spermatids | formed before birth | |------|---|--|--|--|---| | 130. | Oogenesis (the formation of egg) | Is controlled by bulbourethral | Starts in seminal vesicles | Occurs in follicles in ovary | Regulated by prostate hormone | | 131. | Oogenesis (the formation of egg) | Is controlled by bulbourethral | Starts in seminal vesicles | Begins before
birth as diploid
cells start
meiosis and stop | Regulated by prostate hormone | | 132. | Corpus luteum secretes estrogen & progesterone hormones which | Stimulate
hypothalamus ,
increasing FSH
and LH
secretion | Stimulate ovary
to produce new
egg | Stimulate
endometrium to
thicken | Stimulate
endometrium to
become thin | | 133. | Corpus luteum secretes estrogen & progesterone hormones which | Stimulate hypothalamus increasing FSH and LH secretion | Stimulate ovary
to produce new
egg | Prepare the
uterus for
implantation of
the embryo | Stimulate
endometrium to
become thin | | 134. | Corpus luteum secretes estrogen & progesterone hormones which | Stimulate hypothalamus, increasing FSH and LH secretion | Stimulate ovary
to produce new
egg | inhibit
hypothalamus ,
reducing FSH
and LH secretion | Stimulate
endometrium to
become thin | | 135. | If female <mark>egg</mark> is <mark>fertilized</mark> | Drop of LH shut down corpus luteum and its hormones | Menstruation is
triggered | Embryo release
hormone that
maintain uterine
lining | Hypothalamus and pituitary inhibits development a new follicles | | 136. | If fe <mark>male egg</mark> is <mark>fertilized</mark> | Drop of LH shut down corpus luteum and its hormones | Menstruation is
triggered | Menstruation is
not occur | Hypothalamus and pituitary inhibits development a new follicles | | 137. | If female egg is not fertilized | Hypothalamus
and pituitary
<u>inhibits</u>
development a
new follicles | Embryo release
hormone that
maintain uterine
lining | Menstruation is
not occur | Menstruation is
triggered | | 138. | If female <mark>egg</mark> is <mark>not fertilized</mark> | Hypothalamus
and pituitary
inhibits
development a
new follicles | Embryo release
hormone that
maintain uterine
lining | Menstruation is
not occur | Drop of LH shut
down corpus
luteum and its
hormones | | 139. | If female <mark>egg</mark> is <mark>not fertilized</mark> | Hypothalamus
and pituitary
<u>inhibits</u>
development a
new follicles | Embryo release
hormone that
maintain uterine
lining | Menstruation is
not occur | Hypothalamus and pituitary <u>stimulate</u> development a new follicles | | 140. | Menstrual Cycles Occur about everydays | 29 | 28. | 21 | 26 | |------|---|--|---|---|---| | 141. | Sperm are adapted to reach and fertilize an egg via | Less
mitochondria
provide ATP
for tail
movements | Cubical shape
moves more
easily through
fluids | Many
mitochondria
provide ATP for
tail movements | Head contains a
diploid nucleus | | 142. | Cleavage | Embryo is
getting larger | is a slow series
of cell divisions | Produces a ball
of cell called
gastrula | Produces a ball of cell called blastula | | 143. | Gastrula produces an embryo with | a four-layers | a two-layers | a three-layers | a one-layers | | 144. | sister chromatids | Containing
identical DNA
molecules | Containing
different DNA
molecules | Separated in cytokinesis stage | are joined at a
narrow region
called the telomere | | 145. | sister chromatids | are joined at a narrow region called the centromere | Containing
different DNA
molecules | Separated in cytokinesis stage | are joined at a
narrow region
called the telomere | | 146. | sister chromatids | Separated in anaphase stage | Containing
different DNA
molecules | Separated in cytokinesis stage | are joined at a
narrow region
called the telomere | | 147. | Eukaryotic Cell Division includes | Binary fission | Mitosis | budding | fragmentation | | 148. | Eukaryotic Cell Division includes | Binary fission | meiosis | budding | fragmentation | | 149. | Eukaryotic Cell Division includes | Binary fission | produces two
identical cells
from one cell | budding | fragmentation | | 150. | Cytoplasmic division | Is called | Is called | Is called | Is called | | | | cytokinesis
Overlaps with | cytogenesis
Is called | anaphase
Is called | prometaphase
Is called | | 151. | Cytoplasmic division | telophase | cytogenesis | anaphase | prometaphase | | 152. | Synapsis | Anaphase of meiosis I | Metaphase of mitosis | Metaphase of
meiosis I | Prophase of meiosis I | | 153. | Tetrad | Anaphase of meiosis I | Metaphase of mitosis | Metaphase of meiosis I | Prophase of meiosis I | | 154. | Crossing over occurs during | Metaphase of
meiosis II | meiosis II | Prophase of
meiosis I | Metaphase of
meiosis I | | 155. | Sister chromatids separate during_ | metaphase | meiosis I | meiosis II | telophase | | 156. | homologous chromosomes
separate during_ | mitosis | meiosis I | meiosis II | telophase | | | | 1) | have three | have two | | |------|--|---|---|---|--| | 157. | Haploid cells | Are somatic cell | homologous sets
of chromosomes
(3n) | homologous sets
of chromosomes
(2n) | have one set of
chromosomes (1n) | | 158. | Haploid cells | are sex
gametes | have two
homologous sets
of chromosomes
(2n) | have two
homologous sets
of chromosomes
(2n) | have three
homologous sets of
chromosomes (3n) | | 159. | Diploid cells | are sex
gametes | have two
homologous sets
of chromosomes
(2n) | have one set of
chromosomes
(in) | have three
homologous sets of
chromosomes (3n) | | 160. | Somatic cell | receiving one
member of each
pair from
father and from
mother | receiving one
member of each
pair from one
parent only | contain haploid
number of
chromosomes | pairs of
heterogenous
chromosomes | | 161. | Somatic cell | have pairs of
homologous
chromosomes | receiving one
member of each
pair from one
parent only | contain haploid
number of
chromosomes | pairs of
heterogenous
chromosomes | | 162. | Somatic cell | contain diploid
number of
chromosomes | receiving one
member of each
pair from one
parent only | contain haploid
number of
chromosomes | pairs of
heterogenous
chromosomes | | 163. | Which of following is true in human sex determination system? | XY = male | XO = female | XX= male | ZW= male | | 164. | Which of following is true in human sex determination system? | XX = female | XO = female | XX= male | ZW= male | | 165. | Which of following is true in fruit fly sex determination system? | XX= female | XO = female | XX= male | ZW= male | | 166. | In XY system female human are | XY | ZX | XX | XO | | 167. | In XY system male human are_ | XY | ZX | XX | XO | | 168. | Which of following is true in grasshoppers sex determination system? | XO = male | XO = female | XX= male | ZW= male | | 169. | Which of following is true in grasshoppers sex determination system? | XX= female | XO = female | XX= male | ZW= male | | 170. | In <mark>XO</mark> system <mark>female</mark> insects
are | XY | ZX | XX | хо | | 171. | In XO system male insects are _ | XY | ZX | XX | XO | | 172. | Which of following is true in birds" sex determination system? | ZZ = female | XY = male | ZW= female | ZW= male | | 173. | Sex determination in <mark>ZW</mark>
system <mark>, female</mark> birds are | XY | ZZ | ZW | XX | |------|--|--|--|--|---------------------------------| | 174. | Sex determination in ZW system male birds are | XY | ZZ | ZW | XX | | 175. | Which of following is true in bees sex determination system? | Haploid =
female | Diploid = male | Triploid = male | Diploid = female | | 176. | The are the information unit in chromosomes | Genes | allele | loci | phenotype | | 177. | The is copy of a gene | Genes | allele | loci | phenotype | | 178. | Alleles are | not responsible
for alternative
traits | three alternative
forms of a gene | have different
locus on
homologous
chromosoes | Two alternative forms of a gene | | 179. | Alleles are | not responsible
for alternative
traits | three alternative
forms of a gene | have different
locus on
homologous
chromosoes | copy of a gene | | 180. | A locus is the | Pairs of heterogonous chromosome | Position on the cytoplasm | Separation of
chromatids | Position of a gene | | 181. | Which of the following is Homozygous? | AB | ab | AA | Aa | | 182. | Which of the following is Homozygous? | AB | ab | aa | Aa | | 183. | Which of the following is
Heterozygous? | aa | ab | AA | Aa | | 184. | Which of the following is Heterozygous? | Bb | ab | AA | AA | | 185. | Allele that is not expressed in the heterozygous is | Genotype | Recessive allele | Phenotype | Dominant allele | | 186. | Allele that is expressed in the heterozygous is | Genotype | Recessive allele | Phenotype | Dominant allele | | 187. | Allele that is not expressed in the heterozygous is | Genotype | Recessive allele | Phenotype | Dominant allele | | 188. | Allele that is expressed in the heterozygous is | Genotype | Recessive allele | Phenotype | Dominant allele | | 189. | The genetic constitution of a trait is called | Recessive allele | Phenotype | Dominant allele | Genotype | | 190. | The genetic makeup of a trait is called | Recessive allele | Phenotype | Dominant allele | Genotype | | 191. | The appearance of a trait is called | Recessive allele | Phenotype | Dominant allele | Genotype | | 192. | Phenotype | | The physical
traits that
appears on an
individual | | | | 193. | Genotype | | The genetic
constitution of a trai | t | | | 194. | Open circle in human pedigree is symbol for | affected female | normal female | normal male | affected male | |------|---|--|----------------------------|--------------------------|------------------------------| | 195. | The exception of mendel's law are and | Incomplete
dominance
multiple allele | dominance
Recessiveness | Segregation
dominance | Recessiveness
Segregation | | 196. | Which of the following is an exception to Mendels Laws? | dominance | Co-dominance | recessiveness | Segregation | | 197. | Which of the following is an exception to Mendels Laws? | dominance | Incomplete
dominance | recessiveness | Segregation | | 198. | Which of the following is an exception to Mendels Laws? | dominance | multiple alleles | recessiveness | Segregation | | 199. | Which of the following is an exception to Mendels Laws? | dominance | polygens | recessiveness | Segregation | | 200. | Which of the following is an exception to Mendels Laws? | dominance | poliotropy | recessiveness | Segregation |