	Question	A	В	С	D
1.	The actual <mark>site of gas exchange</mark> in <mark>human</mark> is	larynx	Nasal cavity	Pharynx	alveoli
2.	In the human respiratory system, air passes from trachea to the	bronchioles	nasal cavity	larynx	Bronchi
3.	From nasal cavity air next passes to	larynx, vocal cords, Pharynx, Bronchi, trachea bronchioles then alveoli	Larynx, Pharynx, trachea, vocal cords, Bronchi, alveoli then bronchioles	Pharynx, <u>larynx,</u> <u>vocal cords,</u> trachea, Bronchi bronchioles then alveoli	Pharynx, vocal cords, larynx, Bronchi, alveoli, trachea then bronchioles
4.	In the <mark>lungs ,blood</mark> and	Picks up O ₂ drops off CO ₂	drops off O ₂ drops off CO ₂	Picks up CO ₂ drops off O ₂	drops off O₂ drops off waste products
5.	In the body tissues ,blood and	Picks up O2 drops off CO2	drops off O2 drops off CO2	Picks up CO2 drops off O2	drops off O2 drops off waste products
6.	The iron-containing pigment (hemoglobin)	is fo <mark>und only</mark> in birds	is found in Arthropods	is found in almost all vertebrates	is found in Mollusca
7.	The copper-containing pigment (hemocyanin)	Is found in Arthropods and Mollusca	is found in many mammals	is found in reptiles	is found only in birds
8.	Inhalation occurs when and	the diaphragm moves upward- The rib cage contracts	The rib cage contracts - pressure around lungs increase	The rib cage contracts - the diaphragm moves upward	the diaphragm moves downward- The rib cage expands
9.	Exhalation occurs when	the diaphragm moves upward- The rib cage contracts	The rib cage contracts - pressure around lungs decrease	The rib cage expands - the diaphragm moves upward	the diaphragm moves downward- The rib cage expands
10.	Birds and mammals use as the respiratory surface	more complex lungs	Small gills	Their body surfaces	advanced gills
11.	Nonbird reptiles useas the respiratory surface	more complex lungs	Small gills	Their body surfaces	Simple lungs
12.	Amphibians use as respiratory surface	advanced lungs	more complex lungs	Their body surfaces	more complex lungs
13.	The skin is the major site of gas exchange in	flatworms	mammals	arthropods	fish
		Have one way			
14.	Arteries	Have one way valve that restrict backward flow	Force blood back to right heart atrium	Composed of single layer of epithelial cells	Have thicker walls
15.	Arteries	Have one way valve that restrict backward flow	Force blood back to right heart atrium	Have thin walls	Are under more pressure

Scanned with CamScanner

16.	Veins	Have one way valve that restrict backward flow	prevent the backflow of blood	Composed of single layer of epithelial cells	Have thicker walls
17.	Veins	force blood back to right heart atrium	prevent the backflow of blood	Composed of single layer of epithelial cells	Have thicker walls
18.	Capillaries	Have one way valve that restrict backward flow	prevent the backflow of blood	Composed of single layer of epithelial cells	Have thicker walls
19.	Heart rate is	is the number of beats /minute	is amount of blood/minute pumped into systemic circuit	prevent the backflow of blood	is a defect in one or more heart valves
20.	Heart valves is	is the number of beats/minute	is amount of blood/minute pumped into systemic circuit	prevent the backflow of blood	is a defect in one or more heart valves
21.	cardiac output	is a defect in one or more heart valves	defined as the number of beats/minute	is the amount of blood/minute pumped into systemic circuit	prevent the backflow of blood
22.	The pacemaker (SA node)	is the amount of blood /minute pumped into systemic circuit	relays electrical signals to the ventricles	generates electrical signals in atria	develops plaques inside blood vessels walls
23.	The pacemaker (SA node)	is the amount of blood /minute pumped into systemic circuit	relays electrical signals to the ventricles	sets the rate of heart contractions	develops plaques inside blood vessels walls
24.	The (AV node)	is the amount of blood/minute pumped into systemic circuit	relays electrical signals to the ventricles	sets the rate of heart contractions	develops plaques inside blood vessels walls
25.	The generates electrical signals in atria	The pacemaker (SA node)	AV node	Heart murmur	ventricles
26.	The sets the rate of heart contractions	The pacemaker (SA node)	AV node	Heart murmur	ventricles
27.	The relays electrical signals to the ventricles	The pacemaker (SA node)	AV node	Heart murmur	ventricles
28.	the damage to cardiac muscle typically from a blocked coronary artery is	Stroke	Heart murmur	Cardiac output	Heart attack
29.	death of brain tissue from blocked arteries in the head is _	Stroke	Heart murmur	Cardiac output	Heart attack

30.	The heart murmur	Electrical signals to the ventricles	Rate of heart contractions	Electrical signals to the atria	is a defect in one or more heart valves
31.	Atherosclerosis	increase the blood flow	is a defect in heart rate	narrows the blood vessels	Is caused by ventricular contraction
32.	Atherosclerosis	Reduction of the blood flow	Measure of systolic pressure	Force blood exerts on vessels wall	Is caused by ventricular contraction
33.	Atherosclerosis	is the development of plaques inside walls of blood vessels	Measure of systolic pressure	Force blood exerts on vessels wall	Is caused by ventricular contraction
34.	The systolic pressure	Is caused <u>by</u> ventricular contraction	Is the low pressure between contractions	narrows the blood vessels	reduce the blood flow
35.	The diastolic pressure	Is caused by ventricular contraction	Is the low pressure between contractions	narrows the blood vessels	reduce the blood flow
36.	The <mark>red</mark> blood cells (<mark>erythrocyte</mark>) _	promote clotting	transport O2	Fight cancer	fight infections
37.	The red blood cells (erythrocyte)	promote clotting	transport CO2	Fight cancer	fight infections
38.	Some athletes artificially increase their red blood cell production by injecting	fibrinogen	erythropoietin	immunoglobulin s	sodium ions
39.	is Abnormally low amounts of hemoglobin or red blood cells	Blood clotting	Heart attack	The pacemaker	Anemia
40.	Causes fatigue due to lack of oxygen in tissues	Blood clotting	Heart attack	The pacemaker	Anemia
41.	regulates red blood cell production	erythropoietin hormone	Antidiuretic hormone	Testosterone hormone	Insulin hormone
42.	The white blood cells (leukocyte)	promote clotting	transport O2	transport CO2	fight cancer
43.	The white blood cells (leukocyte)	promote clotting	transport O2	transport CO2	fight infections
44.	The white blood cells (leukocyte)	promote clotting	transport O2	transport CO2	function inside and outside the circulatory system
45.	Blood platelets	promote clotting	transport O2	transport CO2	fight infections

46.	Blood platelets	are small fragments of cells	transport O2	transport CO2	fight infections
47.	Plasma contains fibrinogen, which is converted into fibrin that help	as pH buffering	as solvent	in defense	in blood clotting
48.	Platelets adhere to exposed connective tissue during the	Heart rate	anemia	Blood clotting	Heart attack
49.	Platelets form a plug during the _	Heart rate	anemia	Blood clotting	Heart attack
50.	A fibrin clot traps blood cells during the	Heart rate	anemia	Blood clotting	Heart attack
51.	The maintenance of steady internal conditions despite fluctuations in the external environment is called	Homeostasis	Osmoregulation	excretion	Thermoregulation
52.	is the maintenance of internal temperature within narrow limits	Homeostasis	Osmoregulation	excretion	Thermoregulation
53.	The control of the gain and loss of water and solutes is called_	Thermoregulati on	Osmoregulation	Homeostasis	excretion
54.	The disposal of nitrogen- containing wastes is called	Thermoregulati on	Osmoregulation	Homeostasis	excretion
55.	Ectothermic animals	are represented by birds and mammals	produce sugar from water and CO2	Derive body heat mainly from their metabolism	absorb heat from their surroundings
56.	Endothermic animals	produce sugar from water and CO2	produce sugar from water and CO2	Derive body heat mainly from their metabolism	absorb heat from their surroundings
57.	Animals that derive body heat mainly from their metabolism are called	Ectothermic	Endothermic	Photosynthetic	Herbivorous
58.	Animals that absorb heat from their surroundings are called	Ectothermic	Endothermic	Photosynthetic	Herbivorous
59.	Animals exchange heat with the environment by	Pollination	photosynthesis	Fertilization	Conduction
60.	The adaptations that promote the process of thermoregulation include	Fertilization	photosynthesis	Pollination	Increased metabolic heat production
61.	The adaptations that promote the process of thermoregulation include	Fertilization	photosynthesis	Pollination	Circulatory adaptations
62.	The adaptations that promote the process of thermoregulation include	Fertilization	photosynthesis	Pollination	Evaporative cooling

63.	The adaptations that promote the process of thermoregulation include	Fertilization	photosynthesis	Pollination	Insulation
64.	The adaptations that promote the process of thermoregulation include	Fertilization	photosynthesis	Pollination	Behavioral responses
65.	Some animals carry out evaporative cooling by	Countercurrent heat exchange	Shivering	Sweating and panting	fertilization
66.	Increased metabolic heat production by	Countercurrent heat exchange	Shivering	Sweating and panting	fertilization
67.	Increased metabolic heat production by	Countercurrent heat exchange	Hormonal changes	Sweating and panting	fertilization
68.	have the <mark>same</mark> internal solute concentration as seawater	Osmoconformers	Mammals	Osmoregulators	endothermic
69.	Many <mark>marine invertebrates</mark> are	Osmoconformers	Mammals	Osmoregulators	endothermic
70.	The freshwater fish_	Drink seawater	Pump out excess salt	Gain water by osmosis	All other answers are correct
71.	The <mark>saltwater fish</mark>	Uptake salts across their gills	Pump out excess salt	Gain water by osmosis	Excrete excess water
72.	In vertebrates the excretion is primarily carried out by	Skin	Gills	Lungs	liver
<i>7</i> 3·	In mammals, <mark>the ureters</mark> drain urine into	Kidney	Gills	Lungs	liver
74.	In mammals, the urine is expelled through	Urethra	Aorta	Inferior vena cava	lung
<i>75</i> .	The function units of the kidneys is the	Urethra	Alveoli	Nephrons	Ureters
<i>7</i> 6.	The nephron is	The fu <mark>ncti</mark> on units o <mark>f the</mark> kidneys	Site of gas exchange	Site of food absorption	Site of food digestion
77.	The important function of nephron	Extract filtrate from blood	Exchange gases	photosynthesis	respiration
78.	The important function of nephron	Refine the filtrate to produce urine	Exchange gases	photosynthesis	respiration
<i>7</i> 9.	During blood pressure forces water and many small solutes into the nephron	filtration	reabsorption	secretion	excretion
80.	During valuable solutes are reclaimed from filtrate	filtration	reabsorption	secretion	excretion
81.	During _ excess toxins & other solutes are added to filtrate	filtration	reabsorption	secretion	excretion
82.	The <mark>kidney dialysis</mark> can be a lifesaver by	Maintaining the solute concentration in the blood	Maintaining the toxic compounds in the blood	Extracting a filtrate from the urine	Removing sugars from the blood

83.	The kidney dialysis can be a lifesaver by	Maintaining the solute concentration in the blood	Maintaining the toxic compounds in the blood	Extracting a filtrate from the urine	Removing wastes from the blood
84.	regulates the amount of water excreted by the kidney	Estrogen hormone	Antidiuretic hormone	Testosterone hormone	Insulin hormone
85.	The nitrogenous wastes are toxic breakdown products of	Inorganic compounds	Fats	Protein	carbohydrates
86.	The nitrogenous wastes are toxic breakdown products of	Inorganic compounds	Fats	Nucleic acids	carbohydrates
87.	The animals dispose of nitrogenous wastes in the form of	Sugar	Nitrate	Urea	carbonate
88.	The nitrogen-containing metabolic waste products in most aquatic animals is	ammonia	urea	uric acids	carbonate
89.	is the <mark>nitrogen</mark> -containing metabolic waste products in mammals, amphibians	ammonia	urea	uric acids	carbonate
90.	The nitrogen-containing metabolic waste products in birds and many reptiles, is	ammonia	urea	uric acids	carbonate
91.	Excess of CO2 or O2 in the plant leaves exit through	Stomata	Phloem	Cortex	xylem
92.	The halophytes excrete the excess salts outside their body by	Special salt glands	Stomata	vascular bundles	Cortex
93.	is secretion of water and its solutes by hydathodes	Guttation	Transpiration	Photosynthesis	Respiration
94.	is evaporation of water from the surface of leaves through stomata	Guttation	Transpiration	Photosynthesis	Respiration
95.	The terrestrial plants convert excess amino acids into	Ammonia and keto acids	ammonia and urea	keto acids and urea	uric acids and keto acids
96.	In aquatic plants the excess of amino acids are converted to	Ammonia and keto acids	ammonia and urea	keto acids and urea	uric acids and keto acids
			266		
97.	Sexual reproduction Involves	Offspring have no traits from parents	Offspring are similar to parents, but show variations in traits	inheritance of unique sets of genes from one parent	Offspring are similar to one parent
98.	Sexual reproduction Involves	inheritance of unique sets of genes from parents	Offspring are similar to one parent only	Offspring have no traits from parents	Offspring are similar to one parent

99.	Asexual reproduction	Can proceed via Budding, Fission, and Fragmentation	One parent produces genetically different offspring	Very slow reproduction	Two parent produces genetically identical offspring
100.	Asexual reproduction	Two parent produces genetically identical offspring	One parent produces genetically identical offspring	One parent produces genetically different offspring	Very slow reproduction
101.	Asexual reproduction	Two parent produces genetically identical offspring	Very rapid reproduction	One parent produces genetically different offspring	Very slow reproduction
102.	Prokaryotes are reproduced by	mitosis	meiosis	asexually	budding
103.	Prokaryotes are reproduced by	mitosis	meiosis	Binnary fission	budding
104.	Fertilization is the union of	sperm and ova to form a haploid zygote	sperm and egg to form a diploid zygote	testis and ovary to form a sex organ	sperm and egg to form a sex organ
105.	In sexual reproduction, sperm may be transferred to the female by	Budding	Internal Fertilization	Binary fission	Regeneration
106.	In sexual reproduction, sperm may be transferred to the female by	Budding	External Fertilization	Binary fission	Regeneration
107.	Ineggs and sperm are discharged near each other	Internal Fertilization	Fragmentation	External Fertilization	Binary fission
108.	In sperm is deposited in or near the female reproductive tract	Inter <mark>nal</mark> Fertilization	Fragmentation	External Fertilization	Binary fission
109.	External Fertilization occurs in	Many fish and amphibian species	Mammals and birds	Asexual reproduction	Binary fission
110.	External Fertilization	eggs and sperm are discharged near each other	A type of asexual reproduction	Is done by budding	Is done by fragmentation
111.	Internal Fertilization occurs in	Nearly all terrestrial animals	Mammals and birds	Asexual reproduction	Binary fission
112.	The produces sperms and male hormones	Tests	Liver	Kidney	Ovary
113.	The produces eggs and female hormones	Tests	Liver	Kidney	Ovary
114.	The tests produces sperms which stored and develop further in	Epididymis	Pancreas	Liver	Kidney

115.	The gland contribute to semen production	Ovary	Seminal vesicle	Liver	Pancreas
116.	The gland contribute to semen production	Ovary	Prostate	Liver	Pancreas
117.	The gland contribute to semen production	Ovary	bulbourethral	Liver	Pancreas
118.	The female <mark>vagina</mark>	Receives the penis during sexual intercourse	Is for external fertilization	Receive the egg from ovary	Is the site for egg fertilization
119.	The female vagina	Forms the birth canal	Is for external fertilization	Receive the ova from ovary	Is the site for egg fertilization
120.	Both sexes in humans have	Sepals	A set of gonads where gametes (sperms & ovum) are produced	Petals	Carpels
121.	Both sexes in humans have	Sepals	Ducts for gamete transport	Petals	Carpels
122.	Both sexes in humans have	Sepals	Structures for copulation	Petals	Carpels
123.	Some animals exhibit hermaphroditism	Individual with female reproductive system only	Takes place in mammals	Easier to find a mate for animals less mobile or solitary.	Individual with male reproductive system only
124.	Some animals exhibit hermaphroditism	Individual with female reproductive system only	Takes place in mammals	One individual with male and female reproductive system	Individual with male reproductive system only
125.	Hermaphroditism	One individual with male reproductive system <u>and</u> the other with female reproductive systems	One parent produces genetically identical offspring	Two individuals with male and female reproductive systems	One individuals with male and female reproductive systems
126.	Spermatogenesis (the sperm formation)	Occurs in seminiferous tubules	Is controlled by estrogen	Starts in seminal vesicles	Occurs in follicles
127.	Primary spermatocytes are	Formed inside ovary	Formed by mieosis	Formed by mitosis	formed before birth
128.	Primary spermatocytes are	Formed inside ovary	Formed by mieosis	divide by meiosis I to produce secondary spermatocytes	formed before birth

129.	Secondary spermatocytes are	Formed inside ovary	Formed by Mitosis	divide by meiosis II to produce spermatids	formed before birth
130.	Oogenesis (the formation of egg)	Is controlled by bulbourethral	Starts in seminal vesicles	Occurs in follicles in ovary	Regulated by prostate hormone
131.	Oogenesis (the formation of egg)	Is controlled by bulbourethral	Starts in seminal vesicles	Begins before birth as diploid cells start meiosis and stop	Regulated by prostate hormone
132.	Corpus luteum secretes estrogen & progesterone hormones which	Stimulate hypothalamus , increasing FSH and LH secretion	Stimulate ovary to produce new egg	Stimulate endometrium to thicken	Stimulate endometrium to become thin
133.	Corpus luteum secretes estrogen & progesterone hormones which	Stimulate hypothalamus increasing FSH and LH secretion	Stimulate ovary to produce new egg	Prepare the uterus for implantation of the embryo	Stimulate endometrium to become thin
134.	Corpus luteum secretes estrogen & progesterone hormones which	Stimulate hypothalamus, increasing FSH and LH secretion	Stimulate ovary to produce new egg	inhibit hypothalamus , reducing FSH and LH secretion	Stimulate endometrium to become thin
135.	If female <mark>egg</mark> is <mark>fertilized</mark>	Drop of LH shut down corpus luteum and its hormones	Menstruation is triggered	Embryo release hormone that maintain uterine lining	Hypothalamus and pituitary inhibits development a new follicles
136.	If fe <mark>male egg</mark> is <mark>fertilized</mark>	Drop of LH shut down corpus luteum and its hormones	Menstruation is triggered	Menstruation is not occur	Hypothalamus and pituitary inhibits development a new follicles
137.	If female egg is not fertilized	Hypothalamus and pituitary <u>inhibits</u> development a new follicles	Embryo release hormone that maintain uterine lining	Menstruation is not occur	Menstruation is triggered
138.	If female <mark>egg</mark> is <mark>not fertilized</mark>	Hypothalamus and pituitary inhibits development a new follicles	Embryo release hormone that maintain uterine lining	Menstruation is not occur	Drop of LH shut down corpus luteum and its hormones
139.	If female <mark>egg</mark> is <mark>not fertilized</mark>	Hypothalamus and pituitary <u>inhibits</u> development a new follicles	Embryo release hormone that maintain uterine lining	Menstruation is not occur	Hypothalamus and pituitary <u>stimulate</u> development a new follicles

140.	Menstrual Cycles Occur about everydays	29	28.	21	26
141.	Sperm are adapted to reach and fertilize an egg via	Less mitochondria provide ATP for tail movements	Cubical shape moves more easily through fluids	Many mitochondria provide ATP for tail movements	Head contains a diploid nucleus
142.	Cleavage	Embryo is getting larger	is a slow series of cell divisions	Produces a ball of cell called gastrula	Produces a ball of cell called blastula
143.	Gastrula produces an embryo with	a four-layers	a two-layers	a three-layers	a one-layers
144.	sister chromatids	Containing identical DNA molecules	Containing different DNA molecules	Separated in cytokinesis stage	are joined at a narrow region called the telomere
145.	sister chromatids	are joined at a narrow region called the centromere	Containing different DNA molecules	Separated in cytokinesis stage	are joined at a narrow region called the telomere
146.	sister chromatids	Separated in anaphase stage	Containing different DNA molecules	Separated in cytokinesis stage	are joined at a narrow region called the telomere
147.	Eukaryotic Cell Division includes	Binary fission	Mitosis	budding	fragmentation
148.	Eukaryotic Cell Division includes	Binary fission	meiosis	budding	fragmentation
149.	Eukaryotic Cell Division includes	Binary fission	produces two identical cells from one cell	budding	fragmentation
150.	Cytoplasmic division	Is called	Is called	Is called	Is called
		cytokinesis Overlaps with	cytogenesis Is called	anaphase Is called	prometaphase Is called
151.	Cytoplasmic division	telophase	cytogenesis	anaphase	prometaphase
152.	Synapsis	Anaphase of meiosis I	Metaphase of mitosis	Metaphase of meiosis I	Prophase of meiosis I
153.	Tetrad	Anaphase of meiosis I	Metaphase of mitosis	Metaphase of meiosis I	Prophase of meiosis I
154.	Crossing over occurs during	Metaphase of meiosis II	meiosis II	Prophase of meiosis I	Metaphase of meiosis I
155.	Sister chromatids separate during_	metaphase	meiosis I	meiosis II	telophase
156.	homologous chromosomes separate during_	mitosis	meiosis I	meiosis II	telophase

		1)	have three	have two	
157.	Haploid cells	Are somatic cell	homologous sets of chromosomes (3n)	homologous sets of chromosomes (2n)	have one set of chromosomes (1n)
158.	Haploid cells	are sex gametes	have two homologous sets of chromosomes (2n)	have two homologous sets of chromosomes (2n)	have three homologous sets of chromosomes (3n)
159.	Diploid cells	are sex gametes	have two homologous sets of chromosomes (2n)	have one set of chromosomes (in)	have three homologous sets of chromosomes (3n)
160.	Somatic cell	receiving one member of each pair from father and from mother	receiving one member of each pair from one parent only	contain haploid number of chromosomes	pairs of heterogenous chromosomes
161.	Somatic cell	have pairs of homologous chromosomes	receiving one member of each pair from one parent only	contain haploid number of chromosomes	pairs of heterogenous chromosomes
162.	Somatic cell	contain diploid number of chromosomes	receiving one member of each pair from one parent only	contain haploid number of chromosomes	pairs of heterogenous chromosomes
163.	Which of following is true in human sex determination system?	XY = male	XO = female	XX= male	ZW= male
164.	Which of following is true in human sex determination system?	XX = female	XO = female	XX= male	ZW= male
165.	Which of following is true in fruit fly sex determination system?	XX= female	XO = female	XX= male	ZW= male
166.	In XY system female human are	XY	ZX	XX	XO
167.	In XY system male human are_	XY	ZX	XX	XO
168.	Which of following is true in grasshoppers sex determination system?	XO = male	XO = female	XX= male	ZW= male
169.	Which of following is true in grasshoppers sex determination system?	XX= female	XO = female	XX= male	ZW= male
170.	In <mark>XO</mark> system <mark>female</mark> insects are	XY	ZX	XX	хо
171.	In XO system male insects are _	XY	ZX	XX	XO
172.	Which of following is true in birds" sex determination system?	ZZ = female	XY = male	ZW= female	ZW= male

173.	Sex determination in <mark>ZW</mark> system <mark>, female</mark> birds are	XY	ZZ	ZW	XX
174.	Sex determination in ZW system male birds are	XY	ZZ	ZW	XX
175.	Which of following is true in bees sex determination system?	Haploid = female	Diploid = male	Triploid = male	Diploid = female
176.	The are the information unit in chromosomes	Genes	allele	loci	phenotype
177.	The is copy of a gene	Genes	allele	loci	phenotype
178.	Alleles are	not responsible for alternative traits	three alternative forms of a gene	have different locus on homologous chromosoes	Two alternative forms of a gene
179.	Alleles are	not responsible for alternative traits	three alternative forms of a gene	have different locus on homologous chromosoes	copy of a gene
180.	A locus is the	Pairs of heterogonous chromosome	Position on the cytoplasm	Separation of chromatids	Position of a gene
181.	Which of the following is Homozygous?	AB	ab	AA	Aa
182.	Which of the following is Homozygous?	AB	ab	aa	Aa
183.	Which of the following is Heterozygous?	aa	ab	AA	Aa
184.	Which of the following is Heterozygous?	Bb	ab	AA	AA
185.	Allele that is not expressed in the heterozygous is	Genotype	Recessive allele	Phenotype	Dominant allele
186.	Allele that is expressed in the heterozygous is	Genotype	Recessive allele	Phenotype	Dominant allele
187.	Allele that is not expressed in the heterozygous is	Genotype	Recessive allele	Phenotype	Dominant allele
188.	Allele that is expressed in the heterozygous is	Genotype	Recessive allele	Phenotype	Dominant allele
189.	The genetic constitution of a trait is called	Recessive allele	Phenotype	Dominant allele	Genotype
190.	The genetic makeup of a trait is called	Recessive allele	Phenotype	Dominant allele	Genotype
191.	The appearance of a trait is called	Recessive allele	Phenotype	Dominant allele	Genotype
192.	Phenotype		The physical traits that appears on an individual		
193.	Genotype		The genetic constitution of a trai	t	

194.	Open circle in human pedigree is symbol for	affected female	normal female	normal male	affected male
195.	The exception of mendel's law are and	Incomplete dominance multiple allele	dominance Recessiveness	Segregation dominance	Recessiveness Segregation
196.	Which of the following is an exception to Mendels Laws?	dominance	Co-dominance	recessiveness	Segregation
197.	Which of the following is an exception to Mendels Laws?	dominance	Incomplete dominance	recessiveness	Segregation
198.	Which of the following is an exception to Mendels Laws?	dominance	multiple alleles	recessiveness	Segregation
199.	Which of the following is an exception to Mendels Laws?	dominance	polygens	recessiveness	Segregation
200.	Which of the following is an exception to Mendels Laws?	dominance	poliotropy	recessiveness	Segregation