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Contents

In today’s lecture we’ll have a look at:

– Bresenham’s line drawing algorithm

– Line drawing algorithm comparisons

– Circle drawing algorithms

• A simple technique

• The mid-point circle algorithm

– Polygon fill algorithms

– Summary of raster drawing algorithms
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The Bresenham Line Algorithm

The Bresenham algorithm is 

another incremental scan 

conversion algorithm

The big advantage of this 

algorithm is that it uses only 

integer calculations

J a c k B r e s e n h a m

worked for 27 years at

IBM before entering

academia. Bresenham

developed his famous

algorithms at IBM in

t h e e a r l y 1 9 6 0 s
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The Big Idea

Move across the x axis in unit intervals and 

at each step choose between two different y

coordinates

2 3 4 5

2

4

3

5

For example, from 

position (2, 3) we 

have to choose 

between (3, 3) and 

(3, 4)

We would like the 

point that is closer to 

the original line

(xk, yk)

(xk+1, yk)

(xk+1, yk+1)
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The y coordinate on the mathematical line at 

xk+1 is:

Deriving The Bresenham Line Algorithm

At sample position 

xk+1 the vertical 

separations from the 

mathematical line are 

labelled dupper and dlower

bxmy k  )1(

y

yk

yk+1

xk+1

dlower

dupper
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So, dupper and dlower are given as follows:

and:

We can use these to make a simple decision 

about which pixel is closer to the mathematical 

line

Deriving The Bresenham Line 

Algorithm (cont…)

klower yyd 

kk ybxm  )1(

yyd kupper  )1(

bxmy kk  )1(1
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This simple decision is based on the difference 

between the two pixel positions:

Let’s substitute m with ∆y/∆x where ∆x and

∆y are the differences between the end-points:

Deriving The Bresenham Line 

Algorithm (cont…)

122)1(2  byxmdd kkupperlower

)122)1(2()( 



 byx

x

y
xddx kkupperlower

)12(222  bxyyxxy kk

cyxxy kk  22



10

So, a decision parameter pk for the kth step 

along a line is given by:

The sign of the decision parameter pk is the 

same as that of dlower – dupper

If pk is negative, then we choose the lower 

pixel, otherwise we choose the upper pixel

Deriving The Bresenham Line 

Algorithm (cont…)

cyxxy

ddxp

kk

upperlowerk





22

)(



11

Remember coordinate changes occur along 

the x axis in unit steps so we can do 

everything with integer calculations

At step k+1 the decision parameter is given 

as:

Subtracting pk from this we get:

Deriving The Bresenham Line 

Algorithm (cont…)

cyxxyp kkk   111 22

)(2)(2 111 kkkkkk yyxxxypp  
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But, xk+1 is the same as xk+1 so:

where yk+1 - yk is either 0 or 1 depending on 

the sign of pk

The first decision parameter p0 is evaluated 

at (x0, y0) is given as:

Deriving The Bresenham Line 

Algorithm (cont…)

)(22 11 kkkk yyxypp  

xyp  20
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The Bresenham Line Algorithm

BRESENHAM’S LINE DRAWING ALGORITHM

(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point 

in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) 

and get the first value for the decision parameter as:

4. At each xk along the line, starting at k = 0, perform the 

following test. If pk < 0, the next point to plot is 

(xk+1, yk) and:

xyp  20

ypp kk  21
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The Bresenham Line Algorithm (cont…)

ACHTUNG! The algorithm and derivation 

above assumes slopes are less than 1. for 

other slopes we need to adjust the algorithm 

slightly

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

xypp kk  221
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Bresenham Example

Let’s have a go at this

Let’s plot the line from (20, 10) to (30, 18)

First off calculate all of the constants:

– Δx: 10

– Δy: 8

– 2Δy: 16

– 2Δy - 2Δx: -4

Calculate the initial decision parameter p0:

– p0 = 2Δy – Δx = 6
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Bresenham Example (cont…)
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Bresenham Line Algorithm Summary

The Bresenham line algorithm has the 

following advantages:

– An fast incremental algorithm

– Uses only integer calculations

Comparing this to the DDA algorithm, DDA 

has the following problems:

– Accumulation of round-off errors can make 

the pixelated line drift away from what was 

intended

– The rounding operations and floating point 

arithmetic involved are time consuming
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A Simple Circle Drawing Algorithm

The equation for a circle is:

where r is the radius of the circle

So, we can write a simple circle drawing 

algorithm by solving the equation for y at 

unit x intervals using:

222 ryx 

22 xry 
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A Simple Circle Drawing Algorithm 

(cont…)

20020 22

0 y

20120 22

1 y

20220 22

2 y

61920 22

19 y

02020 22

20 y
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A Simple Circle Drawing Algorithm 

(cont…)

However, unsurprisingly this is not a brilliant 
solution!

Firstly, the resulting circle has large gaps 
where the slope approaches the vertical

Secondly, the calculations are not very 
efficient

– The square (multiply) operations

– The square root operation – try really hard to 
avoid these!

We need a more efficient, more accurate 
solution
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Eight-Way Symmetry

The first thing we can notice to make our circle 

drawing algorithm more efficient is that circles 

centred at (0, 0) have eight-way symmetry

(x, y)

(y, x)

(y, -x)

(x, -y)(-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2

R
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Mid-Point Circle Algorithm

Similarly to the case with lines, 

there is an incremental 

algorithm for drawing circles –

the mid-point circle algorithm

In the mid-point circle algorithm 

we use eight-way symmetry so 

only ever calculate the points 

for the top right eighth of a 

circle, and then use symmetry 

to get the rest of the points

The mid-point circle

a l g o r i t h m w a s

developed by Jack

Bresenham, who we

heard about earlier.
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Mid-Point Circle Algorithm (cont…)

(xk+1, yk)

(xk+1, yk-1)

(xk, yk)

Assume that we have 

just plotted point (xk, yk)

The next point is a 

choice between (xk+1, yk) 

and (xk+1, yk-1)

We would like to choose 

the point that is nearest to 

the actual circle

So how do we make this choice?
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Mid-Point Circle Algorithm (cont…)

Let’s re-jig the equation of the circle slightly 
to give us:

The equation evaluates as follows:

By evaluating this function at the midpoint 
between the candidate pixels we can make 
our decision

222),( ryxyxfcirc 















 

,0

,0

,0

 ),( yxfcirc

boundary circle  theinside is ),( if yx

boundary circle on the is ),( if yx

boundary circle  theoutside is ),( if yx
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Mid-Point Circle Algorithm (cont…)

Assuming we have just plotted the pixel at 

(xk,yk) so we need to choose between 

(xk+1,yk) and (xk+1,yk-1)

Our decision variable can be defined as:

If pk < 0 the midpoint is inside the circle and 

the pixel at yk is closer to the circle

Otherwise the midpoint is outside and yk-1 is 
closer

222 )
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck




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Mid-Point Circle Algorithm (cont…)

To ensure things are as efficient as possible 
we can do all of our calculations 
incrementally

First consider:

or:

where yk+1 is either yk or yk-1 depending on 

the sign of pk

 

  2
2

1

2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck









1)()()1(2 1

22

11   kkkkkkk yyyyxpp
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Mid-Point Circle Algorithm (cont…)

The first decision variable is given as:

Then if pk < 0 then the next decision variable 

is given as:

If pk > 0 then the decision variable is:

r

rr

rfp circ







4
5

)
2

1(1

)
2

1,1(

22

0

12 11   kkk xpp

1212 11   kkkk yxpp
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The Mid-Point Circle Algorithm

MID-POINT CIRCLE ALGORITHM

• Input radius r and circle centre (xc, yc), then set the 

coordinates for the first point on the circumference of a 

circle centred on the origin as:

• Calculate the initial value of the decision parameter as:

• Starting with k = 0 at each position xk, perform the 

following test. If pk < 0, the next point along the circle 

centred on (0, 0) is (xk+1, yk) and:

),0(),( 00 ryx 

rp 
4

5
0

12 11   kkk xpp
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The Mid-Point Circle Algorithm (cont…)

Otherwise the next point along the circle is (xk+1, yk-1)

and:

4. Determine symmetry points in the other seven octants

5. Move each calculated pixel position (x, y) onto the 

circular path centred at (xc, yc) to plot the coordinate 

values:

6. Repeat steps 3 to 5 until x >= y

111 212   kkkk yxpp

cxxx  cyyy 
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Mid-Point Circle Algorithm Example

To see the mid-point circle algorithm in 

action lets use it to draw a circle centred at 

(0,0) with radius 10
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Mid-Point Circle Algorithm Example 

(cont…)
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Mid-Point Circle Algorithm 

Summary

The key insights in the mid-point circle 

algorithm are:

– Eight-way symmetry can hugely reduce the 

work in drawing a circle

– Moving in unit steps along the x axis at each 

point along the circle’s edge we need to 

choose between two possible y coordinates
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Filling Polygons

So we can figure out how to draw lines and 

circles

How do we go about drawing polygons?

We use an incremental algorithm known as 

the scan-line algorithm
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Scan-Line Polygon Fill Algorithm

2

4

6

8

10 Scan Line

0
2 4 6 8 10 12 14 16
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Scan-Line Polygon Fill Algorithm

The basic scan-line algorithm is as follows:

– Find the intersections of the scan line with all 

edges of the polygon

– Sort the intersections by increasing x 

coordinate

– Fill in all pixels between pairs of intersections 

that lie interior to the polygon
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Scan-Line Polygon Fill Algorithm 

(cont…)
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Line Drawing Summary

Over the last couple of lectures we have 

looked at the idea of scan converting lines

The key thing to remember is this has to be 

FAST

For lines we have either DDA or Bresenham

For circles the mid-point algorithm
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Mid-Point Circle Algorithm (cont…)

6

2 3 41

5

4
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Mid-Point Circle Algorithm (cont…)

M
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2 3 41
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Mid-Point Circle Algorithm (cont…)
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