
1
1

Dr. George Karraz, Ph. D.

Most slides from Course : http://www.comp.dit.ie/bmacnamee

Bresenham Line

Drawing Algorithm,

Circle Drawing &

Polygon Filling

http://www.comp.dit.ie/bmacnamee

3

Contents

In today’s lecture we’ll have a look at:

– Bresenham’s line drawing algorithm

– Line drawing algorithm comparisons

– Circle drawing algorithms

• A simple technique

• The mid-point circle algorithm

– Polygon fill algorithms

– Summary of raster drawing algorithms

4

The Bresenham Line Algorithm

The Bresenham algorithm is

another incremental scan

conversion algorithm

The big advantage of this

algorithm is that it uses only

integer calculations

J a c k B r e s e n h a m

worked for 27 years at

IBM before entering

academia. Bresenham

developed his famous

algorithms at IBM in

t h e e a r l y 1 9 6 0 s

5

The Big Idea

Move across the x axis in unit intervals and

at each step choose between two different y

coordinates

2 3 4 5

2

4

3

5

For example, from

position (2, 3) we

have to choose

between (3, 3) and

(3, 4)

We would like the

point that is closer to

the original line

(xk, yk)

(xk+1, yk)

(xk+1, yk+1)

6

The y coordinate on the mathematical line at

xk+1 is:

Deriving The Bresenham Line Algorithm

At sample position

xk+1 the vertical

separations from the

mathematical line are

labelled dupper and dlower

bxmy k )1(

y

yk

yk+1

xk+1

dlower

dupper

7

8

So, dupper and dlower are given as follows:

and:

We can use these to make a simple decision

about which pixel is closer to the mathematical

line

Deriving The Bresenham Line

Algorithm (cont…)

klower yyd 

kk ybxm )1(

yyd kupper )1(

bxmy kk )1(1

9

This simple decision is based on the difference

between the two pixel positions:

Let’s substitute m with ∆y/∆x where ∆x and

∆y are the differences between the end-points:

Deriving The Bresenham Line

Algorithm (cont…)

122)1(2  byxmdd kkupperlower

)122)1(2()(



 byx

x

y
xddx kkupperlower

)12(222  bxyyxxy kk

cyxxy kk  22

10

So, a decision parameter pk for the kth step

along a line is given by:

The sign of the decision parameter pk is the

same as that of dlower – dupper

If pk is negative, then we choose the lower

pixel, otherwise we choose the upper pixel

Deriving The Bresenham Line

Algorithm (cont…)

cyxxy

ddxp

kk

upperlowerk





22

)(

11

Remember coordinate changes occur along

the x axis in unit steps so we can do

everything with integer calculations

At step k+1 the decision parameter is given

as:

Subtracting pk from this we get:

Deriving The Bresenham Line

Algorithm (cont…)

cyxxyp kkk   111 22

)(2)(2 111 kkkkkk yyxxxypp  

12

But, xk+1 is the same as xk+1 so:

where yk+1 - yk is either 0 or 1 depending on

the sign of pk

The first decision parameter p0 is evaluated

at (x0, y0) is given as:

Deriving The Bresenham Line

Algorithm (cont…)

)(22 11 kkkk yyxypp  

xyp  20

13

The Bresenham Line Algorithm

BRESENHAM’S LINE DRAWING ALGORITHM

(for |m| < 1.0)

1. Input the two line end-points, storing the left end-point

in (x0, y0)

2. Plot the point (x0, y0)

3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx)

and get the first value for the decision parameter as:

4. At each xk along the line, starting at k = 0, perform the

following test. If pk < 0, the next point to plot is

(xk+1, yk) and:

xyp  20

ypp kk  21

14

The Bresenham Line Algorithm (cont…)

ACHTUNG! The algorithm and derivation

above assumes slopes are less than 1. for

other slopes we need to adjust the algorithm

slightly

Otherwise, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

xypp kk  221

15

Bresenham Example

Let’s have a go at this

Let’s plot the line from (20, 10) to (30, 18)

First off calculate all of the constants:

– Δx: 10

– Δy: 8

– 2Δy: 16

– 2Δy - 2Δx: -4

Calculate the initial decision parameter p0:

– p0 = 2Δy – Δx = 6

16

Bresenham Example (cont…)

17

16

15

14

13

12

11

10

18

292726252423222120 28 30

k pk (xk+1,yk+1)

0

1

2

3

4

5

6

7

8

9

17

Bresenham Line Algorithm Summary

The Bresenham line algorithm has the

following advantages:

– An fast incremental algorithm

– Uses only integer calculations

Comparing this to the DDA algorithm, DDA

has the following problems:

– Accumulation of round-off errors can make

the pixelated line drift away from what was

intended

– The rounding operations and floating point

arithmetic involved are time consuming

18

A Simple Circle Drawing Algorithm

The equation for a circle is:

where r is the radius of the circle

So, we can write a simple circle drawing

algorithm by solving the equation for y at

unit x intervals using:

222 ryx 

22 xry 

19

A Simple Circle Drawing Algorithm

(cont…)

20020 22

0 y

20120 22

1 y

20220 22

2 y

61920 22

19 y

02020 22

20 y

20

A Simple Circle Drawing Algorithm

(cont…)

However, unsurprisingly this is not a brilliant
solution!

Firstly, the resulting circle has large gaps
where the slope approaches the vertical

Secondly, the calculations are not very
efficient

– The square (multiply) operations

– The square root operation – try really hard to
avoid these!

We need a more efficient, more accurate
solution

21

Eight-Way Symmetry

The first thing we can notice to make our circle

drawing algorithm more efficient is that circles

centred at (0, 0) have eight-way symmetry

(x, y)

(y, x)

(y, -x)

(x, -y)(-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2

R

22

23

Mid-Point Circle Algorithm

Similarly to the case with lines,

there is an incremental

algorithm for drawing circles –

the mid-point circle algorithm

In the mid-point circle algorithm

we use eight-way symmetry so

only ever calculate the points

for the top right eighth of a

circle, and then use symmetry

to get the rest of the points

The mid-point circle

a l g o r i t h m w a s

developed by Jack

Bresenham, who we

heard about earlier.

24

Mid-Point Circle Algorithm (cont…)

(xk+1, yk)

(xk+1, yk-1)

(xk, yk)

Assume that we have

just plotted point (xk, yk)

The next point is a

choice between (xk+1, yk)

and (xk+1, yk-1)

We would like to choose

the point that is nearest to

the actual circle

So how do we make this choice?

25

26

Mid-Point Circle Algorithm (cont…)

Let’s re-jig the equation of the circle slightly
to give us:

The equation evaluates as follows:

By evaluating this function at the midpoint
between the candidate pixels we can make
our decision

222),(ryxyxfcirc 















,0

,0

,0

),(yxfcirc

boundary circle theinside is),(if yx

boundary circle on the is),(if yx

boundary circle theoutside is),(if yx

27

Mid-Point Circle Algorithm (cont…)

Assuming we have just plotted the pixel at

(xk,yk) so we need to choose between

(xk+1,yk) and (xk+1,yk-1)

Our decision variable can be defined as:

If pk < 0 the midpoint is inside the circle and

the pixel at yk is closer to the circle

Otherwise the midpoint is outside and yk-1 is
closer

222)
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck





28

Mid-Point Circle Algorithm (cont…)

To ensure things are as efficient as possible
we can do all of our calculations
incrementally

First consider:

or:

where yk+1 is either yk or yk-1 depending on

the sign of pk

 

  2
2

1

2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck









1)()()1(2 1

22

11   kkkkkkk yyyyxpp

29

Mid-Point Circle Algorithm (cont…)

The first decision variable is given as:

Then if pk < 0 then the next decision variable

is given as:

If pk > 0 then the decision variable is:

r

rr

rfp circ







4
5

)
2

1(1

)
2

1,1(

22

0

12 11   kkk xpp

1212 11   kkkk yxpp

30

The Mid-Point Circle Algorithm

MID-POINT CIRCLE ALGORITHM

• Input radius r and circle centre (xc, yc), then set the

coordinates for the first point on the circumference of a

circle centred on the origin as:

• Calculate the initial value of the decision parameter as:

• Starting with k = 0 at each position xk, perform the

following test. If pk < 0, the next point along the circle

centred on (0, 0) is (xk+1, yk) and:

),0(),(00 ryx 

rp 
4

5
0

12 11   kkk xpp

31

The Mid-Point Circle Algorithm (cont…)

Otherwise the next point along the circle is (xk+1, yk-1)

and:

4. Determine symmetry points in the other seven octants

5. Move each calculated pixel position (x, y) onto the

circular path centred at (xc, yc) to plot the coordinate

values:

6. Repeat steps 3 to 5 until x >= y

111 212   kkkk yxpp

cxxx  cyyy 

32

Mid-Point Circle Algorithm Example

To see the mid-point circle algorithm in

action lets use it to draw a circle centred at

(0,0) with radius 10

33

Mid-Point Circle Algorithm Example

(cont…)

9

7

6

5

4

3

2

1

0

8

976543210 8 10

10 k pk (xk+1,yk+1) 2xk+1 2yk+1

0

1

2

3

4

5

6

34

Mid-Point Circle Algorithm

Summary

The key insights in the mid-point circle

algorithm are:

– Eight-way symmetry can hugely reduce the

work in drawing a circle

– Moving in unit steps along the x axis at each

point along the circle’s edge we need to

choose between two possible y coordinates

35

Filling Polygons

So we can figure out how to draw lines and

circles

How do we go about drawing polygons?

We use an incremental algorithm known as

the scan-line algorithm

36

Scan-Line Polygon Fill Algorithm

2

4

6

8

10 Scan Line

0
2 4 6 8 10 12 14 16

37

Scan-Line Polygon Fill Algorithm

The basic scan-line algorithm is as follows:

– Find the intersections of the scan line with all

edges of the polygon

– Sort the intersections by increasing x

coordinate

– Fill in all pixels between pairs of intersections

that lie interior to the polygon

38

Scan-Line Polygon Fill Algorithm

(cont…)

39

Line Drawing Summary

Over the last couple of lectures we have

looked at the idea of scan converting lines

The key thing to remember is this has to be

FAST

For lines we have either DDA or Bresenham

For circles the mid-point algorithm

40

Mid-Point Circle Algorithm (cont…)

6

2 3 41

5

4

3

41

Mid-Point Circle Algorithm (cont…)

M

6

2 3 41

5

4

3

42

Mid-Point Circle Algorithm (cont…)

M

6

2 3 41

5

4

3

43

Blank Grid

	Slide 1
	Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling
	Contents
	The Bresenham Line Algorithm
	The Big Idea
	Deriving The Bresenham Line Algorithm
	Slide 7
	Deriving The Bresenham Line Algorithm (cont…)
	Deriving The Bresenham Line Algorithm (cont…)
	Deriving The Bresenham Line Algorithm (cont…)
	Deriving The Bresenham Line Algorithm (cont…)
	Deriving The Bresenham Line Algorithm (cont…)
	The Bresenham Line Algorithm
	The Bresenham Line Algorithm (cont…)
	Bresenham Example
	Bresenham Example (cont…)
	Bresenham Line Algorithm Summary
	A Simple Circle Drawing Algorithm
	A Simple Circle Drawing Algorithm (cont…)
	A Simple Circle Drawing Algorithm (cont…)
	Eight-Way Symmetry
	Slide 22
	Mid-Point Circle Algorithm
	Mid-Point Circle Algorithm (cont…)
	Slide 25
	Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm (cont…)
	The Mid-Point Circle Algorithm
	The Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm Example
	Mid-Point Circle Algorithm Example (cont…)
	Mid-Point Circle Algorithm Summary
	Filling Polygons
	Scan-Line Polygon Fill Algorithm
	Scan-Line Polygon Fill Algorithm
	Scan-Line Polygon Fill Algorithm (cont…)
	Line Drawing Summary
	Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm (cont…)
	Mid-Point Circle Algorithm (cont…)
	Blank Grid

