Taibah University / جامعة طيبة

Introduction to Physics (PHYS-101)

IMPORTANT: Carefully fill-in your name, student ID number, and section number.

الاسمر)	

ID \#

Sec.

Simple calculators are allowed but are not crucial for this test. You may need some of the following information.

$\overline{\mathrm{v}}=\frac{\mathrm{d}}{\mathrm{t}}$	$\overline{\mathrm{v}}=\frac{\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}}{2}$	$\begin{gathered} \mathrm{v}_{\mathrm{f}}=\text { a.t }+\mathrm{v}_{\mathrm{i}} \\ \mathrm{v}_{\mathrm{f}}=\text { g.t }\left(\text { if } \mathrm{v}_{\mathrm{i}}=0\right) \end{gathered}$	$\begin{gathered} d=1 / 2 \text { a.t } \mathrm{t}^{2}+\mathrm{v}_{\mathrm{i}} \cdot \mathrm{t} \\ \left.\mathrm{~d}=1 / 2 \mathrm{~g} \cdot \mathrm{t}^{2} \quad \text { if } \mathrm{v}_{\mathrm{i}}=0\right) \end{gathered}$	$\begin{gathered} 2^{\text {nd }} \text { Law: } F_{\text {net }}=m \cdot \mathrm{a} \\ 3^{\text {rd }} \text { Law: } F_{A \text { on } B}=F_{\text {Bon } A} \end{gathered}$
$\begin{gathered} \mathrm{w}=\mathrm{m} \cdot \mathrm{~g} \\ \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} \end{gathered}$	Free fall: $\mathrm{a}=\mathrm{g}$ Non-free fall: $\mathrm{a}=\mathrm{g}-\mathrm{R}_{\text {air }} / \mathrm{m}$	$\mathrm{V}_{\mathrm{f}}=\sqrt{2 \mathrm{~g} . \mathrm{h}}$	$\begin{gathered} \mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2} \\ \tan \theta=\mathrm{Y} / \mathrm{X} \end{gathered}$	$\begin{gathered} 1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h} \\ 1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J} \end{gathered}$
$\begin{gathered} 1 \mu=10^{-6} \\ \|\mathrm{e}\|=1.6 \times 10^{-19} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{F}_{\text {elec }}=\mathrm{k} \frac{\mathrm{q}_{1} \cdot \mathrm{q}_{2}}{\mathrm{~d}^{2}} ; \\ \mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \end{gathered}$	Elec. field $=\frac{\text { Force }}{\mathrm{q}}$	$\mathrm{V}=\frac{\text { Electric PE }}{\mathrm{q}}$	$V=I . R ;$ or $I=\frac{V}{R}$
Number of electrons in $q=q / e l$	$\text { power }=\frac{\text { energy }}{\text { time }}$	$\begin{gathered} \text { Elec. power }=\mathrm{I} \cdot \mathrm{~V}= \\ \mathrm{I}^{2} \cdot \mathrm{R}=\mathrm{V}^{2} / \mathrm{R} \end{gathered}$	$\frac{1}{\mathrm{R}_{\text {parallel }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots$	$\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots$

1. If two equal forces act on a moving cart in opposite directions, we can say about it that:

A	it has acceleration
B	it is in static equilibrium
C	it is in dynamic equilibrium
D	nonzero net force acts on it

2. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

A	same mass and different inertia
B	same inertia and different weight
C	same weight and different density
D	same volume and different mass

3. In the following, check the correct statement:

A	force is a vector, mass is a scalar
B	force is a vector, weight is a scalar
C	mass is a vector, weight is a scalar
D	force is a vector, mass is a vector

4. If air resistance on a falling rock can be neglected, we say that this rock is in:

A	outer space
B	terminal speed
C	slow motion
D	free fall

5. Mass is an object's quantity of:

A	energy
B	matter
C	dimensions
D	momentum

6. If an object's mass decreases while a constant force is applied to it, its acceleration:

A	decreases
B	increases
C	remains constant
D	changes according to volume

7. If an object is in free fall, the distance it travels every seconds is:

A	the same as the previous (السابق) second
B	less than the previous second
C	more than the previous second
D	undefined

8. When a cannon shoots a cannonball, the cannon's recoil (ارتداد) is much slower than the cannonball because:

A	the force on the cannon is much less
B	there is more air resistance
C	the cannon's mass is more distributed (موز)
D	the mass of the cannon is much greater

9. Adding two perpendicular vectors (\vec{A}) and (\vec{B}) gives a resultant $(\overrightarrow{\mathrm{R}})$ with magnitude:

A	$R=\sqrt{A^{2}+B^{2}}$	
B	$R=A^{2}+B^{2}$	
C	$R=\sqrt{A+B}$	
D	$R=1 / \sqrt{A^{2}+B^{2}}$	

10. Newton's $3^{\text {rd }}$ law states that, for two objects X and Y, whenever X exerts a force on Y, then:

A	Y exerts double that force on X
B	Y exerts an equal but opposite force on X
C	Y exerts half that force on X
D	Y moves in the opposite direction

11. A positively charged object is an object with:

A	extra electrons
B	lack (نص⿱) of protons
C	lack of electrons
D	extra neutrons

12. Normally, an atom's net charge is:

A	negative
B	positive
C	a vector
D	zero

13. The SI unit for the electric potential energy is the:

A	joule
B	watt
C	volt
D	ampere

14. A capacitor has plate-area A and plate-separation d. If it is connected to a battery of potential difference V , the charge that can be stored on its plates is directly proportional to:

A	A and d
B	A and V
C	V and d
D	A, V, and d

15. Electric energy can be stored in a:

A	resistance
B	capacitor
C	switch
D	light bulb

16. The following quantities are all scalar, except for:

A	electric field
B	electric current
C	electric charge
D	electric potential

17. The electrostatic force equation for two charged objects, q_{1} and q_{2}, gives a negative result if:

A	q_{1} repels q_{2}
B	$q_{2}=q_{1}$
C	q_{1} attracts q_{2}
D	$q_{1}=1 / 2 q_{2}$

18. One volt is equal to:

A	ampere/coulomb
B	1 joule/second
C	ampere/second
D	1 joule/coulomb

19. If resistances $R_{1}=12 \Omega$ and $R_{2}=12 \Omega$ are connected in series, their equivalent resistance is:

A	24Ω
B	12Ω
C	6Ω
D	3Ω

20. When we connect more appliances (أجهزة منزلية) to the same power strip (توصبلة كهربائية) the following happens:

A	the total voltage in the strip increases
B	the total current in the strip decreases
C	the total current in the strip increases
D	the total voltage in the strip decreases

Answers:	
A	$3-9-13-16-19$
B	$5-6-10-14-15$
C	$1-7-11-17-20$
D	$2-4-8-12-18$

