INTERIM-2 PRACTICE EXAM

2nd Term 1434-35

P

Introduction to Physics (PHYS-101)

الاختبار التدريبي للدوري الثاني

Maximum Score: 10 (0.5 points / question)

Test Time: 60 min

IMPORTANT: Carefully fill-in your name, student ID number, and section number.

			,	 		
الاسم (باانعربية)			ID#		Sec.	

Simple calculators are allowed but are not crucial for this test. You may need some of the following information.

	_			
$\bar{\mathbf{v}} = \frac{\mathbf{d}}{\mathbf{t}}$	$\bar{\mathbf{v}} = \frac{\mathbf{v_f} + \mathbf{v_i}}{2}$	$v_f = a.t + v_i$ $v_f = g.t (if v_i = 0)$	$d = \frac{1}{2} a.t^2 + v_i.t$ $d = \frac{1}{2} g.t^2$ (if $v_i = 0$)	2^{nd} Law: $F_{\text{net}} = \text{m.a}$ 3^{rd} Law: $F_{\text{A on B}} = F_{\text{B on A}}$
ι	L	ν ₁ – g.t (II ν ₁ – 0)	_ , _ ,	
w = m.g	Free fall: a = g	$V_f = \sqrt{2 \text{ g. h}}$	$R^2 = X^2 + Y^2$	1 m/s = 3.6 km/h
$g = 10 \text{ m/s}^2$	Non-free fall: $a = g - R_{air}/m$	$V_f = \sqrt{2} g. \Pi$	$\tan \theta = Y / X$	$1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$
$1 \mu = 10^{-6}$	$F_{\text{elec}} = k \frac{q_1 \cdot q_2}{d^2};$	Elec. field = $\frac{\text{Force}}{}$	$V = \frac{\text{Electric PE}}{q}$	$V = I.R$; or $I = \frac{V}{R}$
$ e = 1.6 \times 10^{-19} C$	$k = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$	q	v =q	$V = 1.K$, or $1 - \frac{1}{R}$
Number of electrons in q = q / lel	$power = \frac{energy}{time}$	Elec. power = I.V = $I^2.R = V^2 / R$	$\frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$	$R_{\text{series}} = R_1 + R_2 + \cdots$

1. If two equal forces act on a moving cart in opposite directions, we can say about it that:

A	it has acceleration
В	it is in static equilibrium
C	it is in dynamic equilibrium
D	nonzero net force acts on it

2. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

A	same mass and different inertia
В	same inertia and different weight
C	same weight and different density
D	same volume and different mass

3. In the following, check the correct statement:

A	force is a vector, mass is a scalar
В	force is a vector, weight is a scalar
C	mass is a vector, weight is a scalar
D	force is a vector, mass is a vector

4. If air resistance on a falling rock can be neglected, we say that this rock is in:

A	outer space
В	terminal speed
C	slow motion
D	free fall

5. Mass is an object's quantity of:

A	energy
В	matter
C	dimensions
D	momentum

6. If an object's mass decreases while a constant force is applied to it, its acceleration:

A	decreases
В	increases
C	remains constant
D	changes according to volume

7. If an object is in free fall, the distance it travels every seconds is:

A	the same as the previous (السابق) second
В	less than the previous second
С	more than the previous second
D	undefined

8. When a cannon shoots a cannonball, the cannon's recoil (ارتداد) is much slower than the cannonball because:

A	the force on the cannon is much less
В	there is more air resistance
C	the cannon's mass is more distributed (موزع)
D	the mass of the cannon is much greater

9. Adding two perpendicular vectors (\vec{A}) and (\vec{B}) gives a resultant (\vec{R}) with magnitude:

- 10. Newton's 3rd law states that, for two objects X and Y, whenever X exerts a force on Y, then:
- Y exerts double that force on X
- B Y exerts an equal but opposite force on X
- C Y exerts half that force on X
- Y moves in the opposite direction
- 11. A positively charged object is an object with:
- A extra electrons
- B lack (نقص) of protons
- lack of electrons
- extra neutrons
- 12. Normally, an atom's net charge is:
- A negative
- positive
- a vector
- zero
- 13. The SI unit for the electric potential energy is the:
- A joule
- В watt
- C volt
- ampere
- 14. A capacitor has plate-area A and plate-separation d. If it is connected to a battery of potential difference V, the charge that can be stored on its plates is directly proportional to:
 - A and d
 - A and V
- V and d
- D A, V, and d
- 15. Electric energy can be stored in a:
- resistance
- В capacitor
- C switch
- D light bulb

- 16. The following quantities are all scalar, except for:
- electric field

INTERIM-2

PRACTICE EXAM

- B electric current
- C electric charge
- D electric potential
- 17. The electrostatic force equation for two charged objects, q_1 and q_2 , gives a negative result if:
- q_1 repels q_2
- $q_2 = q_1$
- q_1 attracts q_2
- $q_1 = \frac{1}{2} q_2$
- 18. One volt is equal to:
- A ampere/coulomb
- B 1 joule/second
- C ampere/second
- D 1 joule/coulomb
- 19. If resistances $R_1 = 12 \Omega$ and $R_2 = 12 \Omega$ are connected in series, their equivalent resistance is:
- A 24Ω
- B 12Ω
- $C \mid 6 \Omega$
- 3Ω
- 20. When we connect more appliances (أجهزة منزلية) to the same power strip (توصيلة كهربائية) the following happens:
- the total voltage in the strip increases
- B the total current in the strip decreases
- the total current in the strip increases
- D the total voltage in the strip decreases

Answers:

A	3 - 9 - 13 - 16 - 19
В	3-9-13-16-19 5-6-10-14-15
C	1 - 7 - 11 - 17 - 20
D	2 – 4 – 8 – 12 – 18