Kingdom of Saudi Arabia Ministry of Higher Education Jazan University Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Chapter 3 Newton's laws of motion

Ques. no.	Question								
1	The A	mass of a body is: the same at different places on Earth	В	a vector quantity	С	measured by meter			
2	Wh	ich of the following is a sc	alar	quantity?					
	A	Force	B	Mass	C	Weight			
3	The	weight of a body is							
	A	The same at different places on the universe.	B	a vector quantity	С	measured by kilogram			
	Ma	ss differs from weight in th	at:						
4	A	all objects have weight but some of them have no mass	B	weight is a vector and mass is not	C	the mass of an object is equal to the weight			
5	The mass of an object that has 490 N-weight is equal to (Considering g=10								
	m/se			INVFRSIT		400 lta			
	Α	4.9 kg	B	49 kg	C	490 kg			
6	The	e weight of an object that 2 m/sac^2	has	a mass of 50 kg is equal t	to	(considering			
	g_>:	400 N	P	420 N	C	490 N			
7	A	cording to Newton's first la		n object in motion	C				
/	A	continues to move with a velocity that is constant in magnitude and direction.	B	continues to move with a velocity that is constant in magnitude but in opposite direction.	С	continues to move with an increasing acceleration and in the same direction.			
8	The	e object is said to be in equi	ilibr	ium if the net force acting	on it	equal to			
	A	The object's weight	B	The object's mass	C	Zero			
9	If 30	00 gram-body is at rest, what	at is	the upward normal force?	(g=	10 ms^{-2})			
	A	0.3 N	B	30 N	C	300 N			
10	At	equilibrium, the upward no	rma	l force on a body is equal t	0				
	A	tensile force	B	its weight	C	friction force			

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
11	Wa	lking on the ground is an e	xam	ple of Newton 's	la	aw.	
	Α	first	B	second	C	third	
12	If o	one object exerts a force on	a se	cond, then the second obje	ct ex	erts	
		force on the first	t. /				
	A	an equal	B	an opposite	C	an equal but opposite	
13	Ac	cording to Newton's secon	d lav	v of motion, the		the mass of an	
	obj	ect, the higher acceleration	can	be produced.	\mathbf{i}		
	A	larger 2000 -	B	zero	C	smaller	
14	In	Newton's second law, The	force	e is proportional to the acco	elera	tion, the	
	pro	portionality constant is the	obje	ect's			
	Α	force	B	weight	C	mass	
15	Th	e acceleration "a" resulted	from	the force "F" on mass "m	" is §	given by the relation:	
	Α) a= Fm	B	F = a / m	C) $a = F / m$	
16	If 1	00 N net force is applied to	5 a 1	000 gm-body, the body is a	accel	lerated by an	
	acc	eleration 'a' equal to		ms ⁻² .	I	100	
	A	0.1	B	1	C	100	
17	Aı	nan pushes a 20 kg box wi	th a l	norizontal force of 50 N. W	Vhat	acceleration will	
	pro	duce?		UNIVEKSII		0.5 -2	
	Α	0.4 ms ⁻²	B	1 ms ⁻²	C	2.5 ms ⁻²	
18	Eq	ual forces F act on two isol	ated	bodies A and B. When the	mas	ss of B is twice that	
	of .	A. What is the magnitude of	of the	e acceleration of A?			
	Α	1/4 that of B	B	1/2 that of B	C	two times that of B	
19	Ac	cording to Newton's second	l law	of motion, the acceleratio	n of	an object is equal to	
	the	net force acting on the obj	ect d	ivided by its	 ~	1	
	Α	weight	B	mass	C	volume	
20	Th	e universal law of gravitation	on st	ates that: All objects in the	uni	verse each	
	oth	er.					
	A	repulse	B	attract	C	didn't affect	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question								
21	The	gravitational forces betwee	en tw	vo spheres are directed alor	ıg				
	٨	a line connecting their	R	a line connecting their	С	a line out of their			
	A	surfaces	D	centers		actual objects.			
22	The universal law of gravitation is referred to as inverse square law because the								
	gra	vitation force varies as:	_		~	1 / 2			
	Α	r ²	B	1/r	C	1/r-			
23	Tw	o spheres have gravitationa	al ma	asses m_1 and m_2 and their c	ente	rs are separated by a			
	dis	tance r. If the distance betw	veen	them becomes half its orig	inal	value $(1/2 r)$, then			
	the	force between them will in	icrea	se					
	A	2 times	B	4 times	C	6 times			
24	The	e acceleration due to gravity	y on	a planet of radius three that	t of	the earth and mass			
	thre	ee times the mass of the ear	th is	equal to		(g, The acceleration			
	of	gravity on the earth).			~	1/0			
	Α	3g	B	1/3g	C	1/9 g			
25	Fin	d the acceleration due to gr	avit	y on a planet has the same	mas	s of the earth and half			
	the	radius of the earth? (g_E, T_E)	he a	cceleration of gravity on the	ne ea	arth).			
	A	1/4 g _E	B	1/2 g _E	C	$4g_{\rm E}$			
26	If t	he distance between the cer	nters	of two masses becomes (1	/4) i	ts original value,			
	the	n the gravitational force be	twee	en them will	Ζ.				
	A	increase 4 times	B	decrease 4 times	C	increase 16 times			
27	The	e gravitational force betwee	en tw	to balls of 3 kg mass separa	ated	by 10 cm is equal			
	to.	(G= $6.67 \times$	< 10 ⁻	11 N m ² kg ⁻²)		Q			
	Α	$6 \times 10^{-12} N$	B	6×10 ⁻⁹ N	C	6×10 ⁻ N			
28	The	e gravitational force betwee	en tw	vo objects of 1 kg mass sep	arate	ed by 1m is equal			
	to								
	Α	the gravitational acceleration (g)	B	the gravitational constant (G).	С	1N			
29	If t	he mass of the earth (M_E) w	vere	doubled $(2M_E)$ and its radi	us (l	R _E) stayed constant.			
	Но	w would your weight chang	ged?	(W _E : your weight on the e	arth)			
	Α	2 W _E	B	$1/2 W_E$	С	$1/4 W_E$			
30	On	the moon $g_m=1.62 \text{ ms}^{-2}$ (g _r	_n is t	he acceleration of gravity	on th	ne moon). An			
20	asr	onaught has a weight of 50	0 N	on the earth. What is his w	eigh	t on the moon? (Use			
	the	acceleration of gravity on	the e	earth, $g = 10 \text{ ms}^{-2}$).					
	Α	51 N	B	61 N	C	81 N			

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
31	An astronaut weighs 400 N on the earth. What is his weight on the planet Y, which						
	has a radius $R_y = R_E/3$ and a r	nass D	$M_y = M_E / 6?$	C	600 N		
22	A 200 N	D	4000IN	U	000 IN		
32	A piece of gold weights 1 N that on the earth: (the accelet	on ti atio	ne earth. Its weight on the	mo - 1/	on will be		
	gravity on the earth).	auo	in or gravity on the moon	- 1/	o the acceleration of		
	A larger than	B	equal to	С	smaller than		
33	During the horizontal acceleration	tion	, we feel that our weight is				
	A decrease	B	increase	C	the same		
34	During upward acceleration w	ve fe	el our weight is				
	A heavier	B	reduced	C	not changed		
35	When an object is in a free fal	l, its	effective weight is				
	A equal to its mass	В	smaller than its mass	С	zero		
36	An artificial satellite in orbit a	arou	nd the earth is in free fall w	when	it has equals		
	zero.						
	A an effective weight	В	a mass	C	a volume		
37	A person of mass (m) stands of the person if the elevetor i	on a	spring scale in an elevator.	Fin	d the effective weight		
	gravity).	s act	celerating upward at 0.15	g: (g, the acceleration of		
	$\mathbf{A} \mid 0.85 \text{ mg}$	B	1.0 mg	C	1.15 mg		
38	A person of mass (m) stands o	n a s	spring scale in an elevator.	Fine	d the effective weight		
	of the person if the elevator is	s acc	elerating downward at 0.2	25 g	(g, the		
	acceleration of gravity).	Б	1.0		1.25		
	A 0.75	В	1.0	C	1.25		
39	A ball in free fall has acceleration (a) equal to (g), its effective weight equal to						
	A mg	B	2 mg	C	zero		
40	The effective weight (w ^e) of a	pers	son is	-			
			the total forces the		equal to the normal		
	\mathbf{A} equal to (m g)	B	person exerts on a	C	force exerted by the		
			spring scale		person		

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question								
41	Fric	ctional forces in fluids are	calle	d forces.					
	Α	normal	B	tensile	C	viscous			
42	The maximum possible static friction force for an object is								
	A	equals the weight of the object	B	equal to the kinetic friction force	C	smaller than the kinetic friction force			
43	The	e friction is a force that alv	ways	acts tothe mo	otion	of one object sliding			
	on	another.	5		~	1 /			
	Α	follow	B	resist	C	accelerate			
44	A 7:	5-N block is on a flat, horizonta	al surf	face. If the block continues to n	nove	when the horizontal force			
	1=:	30 N. The coefficient of kinetic		on μ_k is equal to					
	Α	0.04	В	0.40	C	2.25			
45	A b rest	block is on a flat, horizont	al su ?	rface, If T=20 N is applie	d an	d the block remain at			
	A	0.05 N	B	0.5 N	С	20 N			
46	The	e kinetic friction force f _k is		the max	kimu	m static friction force			
	f _s (r	nax):							
	A	smaller than	B	equal to	C	greater than			
47	A (50-N block is on a flat, h is an $T = 42$ N is an	noriz	contal surface. If the bloc	k sta	art to slide when the tig friction μ^2			
	Δ	0.40	R	0.50	1 Sta	0.70			
48	The	maximum static force f (max) for an object is independe	ent o	f the			
-10	Δ	object's weight	R	normal force N		contact area			
40	Г л The	coefficient of the kinet	D	iction up is the	COE	efficient of the static			
47	fric	tion μ_s .		μ_k is		include of the state			
	A	equal to	B	greater than	C	smaller than			
50	The	e coefficient of the static	fric	tion μ_s isthe	coef	ficient of the kinetic			
-	fric	tion μ_k .			1				
	A	equal to	B	greater than	C	smaller than			

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161 تحض3)

Chapter 4

Statics

Ques. no.				Question		
51	The	e greatest torque is obtained	d wh	en the force is applied		to wrench
	Α	in parallel	B	at angle $\Theta=0^0$	C	at right angle
52	The	e ability of a force to cause	rota	tion is called		
	Α	friction	B	equilibrium	C	torque
53	The	e torques that tend to pr	odu	ce a counter-clockwise	rotat	ion are taken to be
	••••		n			
	A	positive	В	negative	C	zero
54	For	a rigid body to be in rotat	tiona	d equilibrium, the		on it must be
		net force	R	net weight	C	net torque
55	A N	eight W-mg locates at a di	D	ce X from the origin then	the t	orque around the
55	orig	gin is given by		ee A nom the origin, then	uic t	orque around the
	Α	Xm	B	X / W	C	XW
56	For	two vectors A and B, if A	x B	= 0, this means that the an	gel b	between them is equal
	to	JALA				
	A	30	B	90	C	180
57	Tor	que unit may be expressed	in			
	A	N.sec	B	m.sec	C	Nm
58	A c	ouple is a pair of forces wi	th:			
		1 . 1 1		equal magnitudes but		equal magnitudes
	Α	equal magnitudes and the same direction	B	opposite directions	С	but opposite directions acting
		the same direction.		line.		along different lines
59	Tw	o children of weights w ₁ a	nd w	$_2$ are balanced on a board j	pivot	ted about its center, at
	dist	ances x_1 and x_2 , respectivel	y. W	which one of the following $\frac{1}{2}$	ratio	s (x_1/x_2) is correct?
	A	$\frac{\alpha_1}{X_2} = \frac{w_2}{W_1}$	B	$\frac{\alpha_1}{X_2} = \frac{1}{W_1 W_2}$	C	$\frac{\alpha_1}{X_2} = \frac{w_1}{W_2}$
60	Tw	o weights are balanced on	a ho	rizontal meter stick. If the	weig	x = 0 is 20 N and
00	the	pivot is at x=0.6 m. What	is th	ne weight "W" at $x=1$ m. (Neg	lect the weight of the
	stic	k).		-		-
	A	20 N	B	30 N	C	40 N

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question								
61	For	two vectors A and B, if A	x B	= 0.5 AB, this means that	the a	ngle between them is equal			
	A	0°	B	30°	C	60°			
62	If the weight of an object is concentrated at a point, this point is called								
	Α	The center of gravity	В	The geometrical center	C	The effective weight			
63	An	object will hang so that its cente	r of g	gravity isthe poir	nt of s	uspension.			
	Α	on 2000 ~	B	above	C	below			
64	If th	ere are two weights on a weight	less p	plank, the center of gravity is for	und to	be as the following:			
	A	$X = \frac{w_1 x_1 + w_2 x_2}{w_1 + w_2}$	В	$\mathbf{X} = \frac{\mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2}{\mathbf{w}_1 + \mathbf{w}_2}$	C	$X = \frac{w_1 x_1 + w_2 x_2}{w_1 w_2}$			
65	On on i	e of the conditions for the ot must be:	equil	librium of a rigid body is the	ne ne	t torque			
	Α	- ∞	B	$+\infty$	C	Zero			
66	For	a rigid body to be in tran	slati	onal equilibrium, the		on it must be zero.			
	Α	net weight	B	net force	C	net torque			
67	To	rque unit may be expressed	in	TINIVEDCU	W				
	Α	Ns ⁻¹	B	m s ⁻¹	C	N m			
68	Two	weights are balanced on a	hor	izontal meter stick as show	vn in	the figure.			
	w	iat is the value of unknown	wei	gnt w ?	4	1 m			
					0.6 n	n A			
	Α	20 N	B	30 N 20 N	C	40 N W			
69	The	e torques that tend to produ	ice a	clockwise rotation are tak	en to	be			
	Α	zero	B	positive	C	negative			
70	The	e maximum torque is obta	ined	when the force is applie	d at	anglebetween			
	the	torce and the wrench. $0-00^{\circ}$	D	0-45°		0- 20°			
	A	0=90	D	0=43	U	9= 30			

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques.				Question				
<u>по.</u> 71	For	two vectors A and B. if A	хB	= 0, this means that the ar	igel t	between them is equal to		
, 1	Α	30	B	90	C	0		
72	The	e minimum torque is obtaine	ed wł	nen the force is applied		to wrench		
	Α	at angle $\theta = 90^{\circ}$	B	at angle θ =45°	C	at angle $\theta = 180^{\circ}$		
73	A c ma	cyclist applies a downward a gnitude of maximum torque	force equa	(F) of 200 N to the pedal als	of hi	s bicycle of length 15 cm. The		
	Α	0.075 Nm	B	13.33 Nm	C	30 Nm		
74	For to	two vectors A and B, if	A x	B = AB, this means that	t the	angel between them is equal		
	Α	0°	B	30°	C	90°		
75	5 If the three balls in the figure are located at 2,3 and from the origin, then the center of gravity is located atfrom this origin 5 kg $3 kg$ $2 kg0 for minimized at 5 minim$							
	Α	1.5 m	B	3.5 m	C	4.5 m		
76	vo wo Wh	eights are balanced on a hor at is the value of the unknow	izon wn w	tal meter stick as shown in the reight "W"?	the gi 2 5 m	m		
	Α	22.5 N	B	45 N 30 N	C	90 N W		
77	An	nechanic holds a wrench at	0.2 n	n from the center of a nut. H	low 1	arge is the force applied to the		
	nut	$\frac{11}{100}$ N	the D	wrench with a torque of 40 200 N	Nm?	400 N		
78	A For	a rigid hody to be in rotati	D	200 N	U	on it must be zero		
78	A	net force	B	net friction		net torque		
79	The	couple is a pair of forces v	vith .			··· · 1 ···		
	A	equal magnitudes but opposite directions acting at the same line of action	B	equal magnitudes but opposite directions acting at different lines of action	C	different magnitudes but opposite directions acting at different lines of action		
80	To b	e in equilibrium, an objec	t wil	ll hang so that its suspens	ion p	point is located the		
	A cen	at	B	beside	C	above		

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question
81	In the shown figure, the center of gravity is located atm from the point P?
	P 20 kg 10 kg 30 kg
	$\langle \cdot \cdot \rangle \langle \cdot \cdot \rangle \langle \cdot \rangle \rangle$
	A 1.6 m B 2 m C 3 m
82	The geometrical center of uniformly symmetric object is located at its
	Acenter of massBeffective weightCcenter of gravity
83	The maximum torque is obtained when the force is applied at angleto wrench.
	$\mathbf{A} \theta = 90^{\circ} \qquad \qquad \mathbf{B} \theta = 45^{\circ} \qquad \qquad \mathbf{C} \theta = 30^{\circ}$
84	A cyclist applies a downward force (F) of 200 N to the pedal of his bicycle of length 20 cm. The magnitude of maximum torque equals
	A 4000 Nm B 400 Nm C 1000 Nm
85	For two parallel vectors $A = 5$ and $B = 2.5$, the value of A x B is equal to
	$\mathbf{A} \mid 0 \qquad \qquad \mathbf{B} \mid 0.\mathbf{S} \qquad \qquad \mathbf{C} \mid 2$
86	If the system in the figure is in rotational equilibrium, where $W_1 = 25$ N and W_2 is unknown what is the value of the normal force N2
	unknown, what is the value of the normal force iv?
	2 m 1 m
	A 25 N B 50 N 25 N C 75 N W ₂

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques.	Question							
no.	Question							
87	An	object will hang so that its	poi	nt of suspension is locate		the center of		
07	gra	vity.						
	A	at	B	above	C	below		
88	The	e center of gravity coincide	s wi	th the center of mass:				
	A	always	B	if the body has a uniform distribution of mass	С	if the acceleration due to gravity is uniform over the body		
89	In t	he formula $F = Gm_1m_2/r^2$,	the c	Juantity G:				
	A	is used only when earth is one of the two masses	B	is a universal gravitational constant	С	is greatest at the surface of earth		
90	An object at the surface of earth (at a distance R from the center of earth) weighs 90 N. Its weight at a distance 3R from the center of earth becomes:							
	Α	10 N	B	30 N	C	270 N		

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Chapter 11 Thermodynamics

Ques. no.				Question		
91	The	e energy content per unit ma	ss ha	as a unit of	•	
	Α	kJ s ⁻¹	B	kJ litre ⁻¹	Α	kJ g ⁻¹
92	The	e basal metabolic rate is the	rate	of energy consumption for a	l pers	son
	wh	ile				
	Α	sleeping	В	sitting upright	Α	resting but awake
93	Ho	w much internal energy is us tabolic rate per unit mass for	sed b	by a 70-kg man when bicycling -7.6 W/kg^{-1}	ing f	or 2 hours? (the
			R	$\left \begin{array}{c} 957 \\ 4 \\ 1 \end{array} \right $	C	504 4 kI
0.4	A	5050.4 KJ	D	937.4 KJ		JU4.4 KJ
94	Ine	is done	on is and t	the ratio between the rate at he difference in actual and h	t wni basal	n metabolic rates
	Δ	thermal energy	R	mechanical work	C	internal energy
95	Wh	en a gas at a constant pressi	ire P	expands by an amount ΛV	the y	work done by the
95	sys	tem is		expands by an amount 21,	lite	work done by the
	Å	Ρ-ΔV	B	Ρ/ΔV	С	ΡΔV
96	Αg	as does work in an isobaric	proc	tess at $p = 5x10^5$ Pa. If the ir	nitial	volume of the gas is 6
	x 1	0^{-2} m ³ and the final volume	is 2 2	$\times 10^{-2}$ m ³ , the work done on	the g	gas is equal to
	A	20 k J	B	15 k J	C	-20 k J
97	The	e equation of state for an ide	al ga	as is given by		
	Α	PV=nR	B	PV=nKT	С	PV=nRT
98	The	e internal energy of the ideal	gas	depends only on the		
	Α	temperature	B	volume	С	pressure
99	At	constant volume, the heat ac	lded	to a system is equal to		
	A	the heat capacity of the system	B	the work done by the system	С	the change in internal energy of the system
100	If h	eat is added to a system and	l son	ne work is done by the system	m, th	e difference between
		external energy	R	kinetic energy	C	internal energy
		external chergy	D	Amotic chergy		momun onorgy

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
101	The change in internal energy of the system when 1500 J of heat leaves it and 400 J of						
	WOI	k is done on it is equal to	·/.				
	Α	1900 J	В	-1100 J	C	-1900 J	
102	An	han consumes 80 liters h^{-1} o	f oxy	gen, and the energy equival	lent o	of the oxygen is 20.2	
	kJ I	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	ntern	al energy change?		0.0 < 1.7.1	
	Α	400 kJ h 2000	В	1616 kJ h	C	3.96 kJ h ⁻¹	
103	The	eis define	d as	the ratio of the energy release	sed c	livided by the mass.	
	A	energy consumed	B	energy content per unit	С	energy equivalent of	
104	The	rate of change of internal e	nerg	v can be measured accurate	lv by	observing the rate at	
101	whi	ch a person uses		in converting food in	nto e	nergy and waste	
	mat	erials.					
	A	water	В	sugar	C	oxygen	
105	The	basal metabolic rate per un	it ma	ass of 20 year old woman is			
	A	1.2 W kg ⁻¹	B	1.1 W kg ⁻¹	C	1.0 W kg ⁻¹	
106	The	change in internal energy c	of the	e system when 1500 J of hea	nt ent	er it and 400 J of	
	WOI	k is done on it is equal to					
	Α	1900 J	В	-1900 J	C	-1100 J	
107	The	basal metabolic rate of 60 l	kg w	oman is			
	A	60 W	B	66 W	С	72 W	
108		is the rate of ene	ergy	consumption while resting	g but	t awake.	
	A	heat transfer rate	B	Basal metabolic rate	С	Metabolic rate	
109	Ato	constant volume the work	done	e is			
	A	positive	B	negative	C	zero	
110	In a	in isometric process, there	is n	o change in the			
	Α	temperature	B	pressure.	C	volume	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Chapter 12

Thermal properties of matter

Ques.				Question Ques.			
no.		2000					
111	Theis the ratio between the heat transferred to temperature change.						
	A	work	B	heat capacity	С	internal energy	
112	For	ideal monatomic gas, the d	iffere	ence c _P -c _V is equal to			
	A	5/2 R	B	R	С	3/2 R	
113	For	ideal monatomic gas, the m	nolar	heat capacity at constant vo	olume	e C _v is equal	
	to						
	Α	1/2 R	В	3/2 R	C	5/2 R	
114	For	ideal monatomic gas, the m	nolar	heat capacity at constant pr	essui	re C _P can be written	
	as						
	Α	$C_v + 2R$	В	$C_v + R$	С	$C_v - R$	
115	For	ideal monatomic gas, the m	ıolar	heat capacity at constant pr	essui	re C _p is equal	
	to		D	2/2.D		5 (2)	
	Α	R	В	3/2 R	C	5/2 R	
116	The	specific heat capacity, c, is	equa	al to the heat capacity, C, di	vide	d by	
	A	The temperature different, $\Delta \Box$	B	The number of moles, n	С	The mass of one mole, M	
117	The	e calorimeter is used to meas	sure				
	A	The thermal energy	B	The temperature	С	The heat capacity	
118	At constant volume, the heat added is equal to the						
	A	heat capacity	B	The change of internal energy	С	specific heat capacity	
119	The	e ratio of the molar heat capa	acity	of an ideal gas at constant v	olur	ne C_v to its molar heat	
	cap	acity at constant pressure C	, (i.e	C_v / C_p) for monatomic ga	ses i	s equal to	
	A	1.00	B	0. 60	C	1.66	
120	The	heat capacity is measured l	by us	ing			
	Α	Thermometer	B	calorimeter	C	parometer	

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question.						
121	The specific heat capacity can be given as						
	Α	$1/m \Delta Q \Delta T$	B	$\Delta Q / m \Delta T$	C	m $\Delta Q / \Delta T$	
122	The	e ratio of the heat added to 1	mol	e of a substance to the temp	eratu	are change is called	
	the		-				
	Α	specific heat capacity	В	internal energy	C	molar heat capacity	
123	The	e transition from one phase t	o an	other is called			
	A	Phase diagram	B	phase change	С	critical point	
124	Me	tals havespe	cific	heat capacity as compared	with	that of insulators.	
	A	equal	В	low	С	high	
125		point is the p	oint	at which the three phases an	e ex	isted together	
	A	freezing	В	triple	С	melting	
126		point is the p	oint	at which a kilogram of liqu	id an	d kilogram of gas	
	hav	e the same volume and the c	listir	nction between the two phas	es va	anishes	
	Α	freezing	В	triple	C	critical	
127	The	e transition from solid to liqu	uid p	hase is called			
	A	vaporization	B	melting	С	sublimation	
128	The	e transition from liquid to so	lid p	hase is called			
	A	condensation	B	melting	С	freezing	
129	The	e transition from liquid to ga	s ph	ase is called			
	A	vaporization	B	melting	С	condensation	
130	The	e transition from gas to liqui	d ph	ase is called			
	A	vaporization	B	condensation	С	melting	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
131	The transition from solid to gas phase is called						
	A	deposition	B	sublimation	C	vaporization	
132	The	transition from gas to solid	l to p	hase is called			
	A	deposition	В	vaporization	С	sublimation	
133	How much a heat is required to melt 100 g of ice at 0 $^{\circ}$ C (L _f = 333 kJ kg ⁻¹)?						
	Α	333 kJ ZOOO —	B	33.3 kJ	С	3.33 kJ	
134	The	eis the energy	absc	orbed or liberated in phase c	hang	je	
	A	heat energy	B	latent heat	C	internal energy	
135	Tra	nsfer of heat by conduction	can	be described by the following	ng re	lation:	
	A	$\mathbf{H} = \mathbf{e}\boldsymbol{\sigma}\mathbf{A}\mathbf{T}^4$	B	$\mathbf{H} = \mathbf{k} \mathbf{A} \frac{\mathbf{\Delta} \mathbf{T}}{\mathbf{L}}$	С	$\mathbf{H} = \mathbf{q} \mathbf{A} \Delta \mathbf{T}$	
136	The	rate of heat loss by conduc	tion	has a unit of			
	A	Kelven	B	Joule (J)	C	Watt (W)	
137	The	ermal conductivity constant,	k, h	as the unit of		. /	
	A	m K ⁻¹	B	$W m^{-2} K^{-1}$	C	$W m^{-1} K^{-1}$	
138	The	e transfer of heat from one p	lace	to another by the actual mov	veme	ent of material is	
	call	ed					
	Α	conduction	B	convection	C	absorption	
139	In a	warm room, a naked perso	n has	s a skin temperature of 35°C	. If t	he room temperature	
	is 2	9 °C and the surface area is $7.1 \text{ W/m}^2 \text{K}$	1.5 1	m ² . What is the rate of heat 1	loss	due to convection?	
	(q=	/.1 W/M K)	Б	52 0 W	C	62 0 W	
	A	42.0 W	D	33.9 W	U	05.9 W	
140	The	e rate of heat loss by convec	tion	has a unit of	I	1	
	A	Kelvin	B	$W m^{-2} K^{-1}$	C	Watt (W)	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question.						
141	In a room of 29 °C temperature, a naked resting person of 1.5 m ² surface area and has a						
	skii (usi	in temperature of 37 °C, the r $a=7.1 \text{ Wm}^{-2}\text{K}^{-1}$	ate c	of heat loss by convection is	equa	al to	
	A	1.69 W	В	56.8 W	C	85.20 W	
142	Tra	nsfer of heat by convection	can l	be described by the followir	ng rel	lation:	
	A	$\mathbf{H} = \mathbf{e} \mathbf{\sigma} \mathbf{A} \mathbf{T}^4$	B	$H = q A \Delta T$	С	$H = e \sigma A T$	
143	Tra	nsfer of heat by radiation ca	ın be	described by the following	relat	ion:	
	A	$\mathbf{H} = \mathbf{e}\boldsymbol{\sigma}\mathbf{A}\mathbf{T}^4$	B	$H = k A \frac{\Delta T}{L}$	С	$\mathbf{H} = \mathbf{q} \mathbf{A} \Delta \mathbf{T}$	
144	The	e transfer of heat by		does not require the preser	nce o	f any medium (solid,	
	nqu A	conduction	R	radiation	C	convection	
1/15	A Ste	fan's law describes the fact	D that t	the rate of heat loss through	radi	ation is proportional to	
143	the		tem	perature.	Taul	ation is proportional to	
	A	first	B	second	C	fourth	
146	32. 1	The object of 345 K tempera	ature	at the surface has the wave	leng	th of maximum	
	r (W	radiation λ_{max} equals to	 R =	$2.808 \times 10^{-3} \text{ m K}$			
	Δ	1.19×10^5 m	R	$84 \times 10^{-7} \text{ m}$	C	84×10^{-4} m	
147	The	e rate at which heat energy r	adiat	es. H. from a surface of are	a A a	and temperature T is	
17/	pro	portional to					
	A	A ΔT	B	$A \Delta T^4$	C	$A T^4$	
148	The star of 6000 K temperature at the surface. What is the wavelength (λ_{max}) at which the						
	radi	iation is most intense? (Wi	en's	displacement constant $B = 2$	2.898	$8 \times 10^{-3} \text{ m K}$	
	A	9.66 ×10 ° m	В	4.83 ×10 ′ m	C	$1.04 \times 10^{5} \text{ m}$	
149	The	e emitted radiation from the	hum	an body is most intense at th	he wa	avelength (λ_{max}) in the	
	A	ultraviolet	B	infrared	C	visible	
150	Wh	at is the rate of heat loss du	e to 1	adiation for a motor car of 3	350 k	surface temperature	
	and	0.5 m^2 surface area ? (Usi	ng e	=1 and σ =5.67 x 10 ⁻⁸ Wm ⁻²	κ ⁻⁴)	Ť	
	A	9.92 x10 ⁻⁶ W	B	3.47 x10 ⁻³ W	C	425.4 W	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
151	The emissivity of the black body is nearbecause it is a perfect emitter.						
	A	-1	B	0	C	1	
152	The	e inner core of the body can	be k	ept warm in a cold environn	nent	because body tissues	
	are.						
	A	good conductor	B	poor conductors	C	good insulators	
153	Wh	at is the rate of heat loss due 51.5 m^{22} (Using	e to r	radiation for a body of skin to $-5.67 - 10^{-8} W_{m} + 21^{-4}$	temp	erature of 310 k and	
	suri	face area of 1.5 m ? (Using	e=1 a	and $\sigma = 5.67 \times 10^{\circ} \text{ Wm K}$	X	7	
	Α	2.64 x10 ⁻³ W	B	2.533 W	C	785 W	
154	Insu	alators havehe	at ca	pacity as compared with the	at of	metals	
	A	equal	B	low	С	high	
155	The rate of heat loss by radiation has a unit of						
	A	Kelvin	B	Joule (J)	С	Watt (W)	
156	If 4	kJ of heat are required to	incre	ease the temperature of a	body	y by 50 K. The value	
	of h	leat capacity in Joule/Kelv	in is		1		
	A	200000	B	0.08	C	80	
157	The	e addition of 90 kJ of heat e	energ	gy to 0.6 kg metal increase	es its	temperature from	
	20°	C to 40° C. what is the spe	ecific	heat capacity of this meta	ıl in l	kJ kg ⁻¹ K ⁻¹ ?	
	Α	7.5 JAL F	B	2.7	C	0.133	
158	The	e transfer of heat by the m	otior	n of the fluid itself is called			
	A	conduction	B	convection	C	radiation	
159	The	e unit of Stefan's constant, c	, is .				
	A	$W m^{-1} K^{-1}$	B	$W m^{-2} K^{-4}$	C	$W m^{-2} K^{-1}$	
160	In t	he equation H = q A Δ T , q	is ca	lled			
		Convective heat				thermal	
	A	transfer constant	B	rate of heat loss	C	conductivity	
						constant	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Chapter 23 Wave Properties of Light

Ques. no.	Question Ques.						
161	In the total internal reflection, the critical angle φ_c can be determined from the equation, where n_1 and n_2 the indices of first and second medium, respectively.						
162	A In t	$\psi_c = \sin((\pi_2 / \pi_1))$	D he.ct	$\psi_c = \sin((\pi_1 / \pi_2))$		$\varphi_c = \sin(\pi_1 / \pi_2)$	
102	the	sin of the angle of refraction	n (sir	(ϕ) equal	5111 5	nen s law by setting	
	Α	0	B		C	90	
163	If t	ne ray is incident from air to	a gl	ass, it refracted and goes fro	om th	e glass to air again,	
	the	angle of emerge equal					
	A	the critical angle	B	the angle of incidence	C	the angle of reflection	
164	In c	comparing two media, the or	ne wi	ith the larger	is s	aid to be optically	
	den	ser.	D			6	
4	A	refractive index	B	wavelength	C	Trequency	
165	In a	er the velocity th	city c eloci	ty of light in a vacuum	iency	of the wave, but it is	
	A	greater than	B	smaller than	C	equal	
166	The	e refractive index of a mediu	ım m	ust beone.			
	Α	greater than	B	smaller than	C	equal to	
167	Lig	ht travels in a vacuum going	g into	glass with a refractive inde	ex (n	=1.7). What is the	
	vel	pocity of light in the glass?	I I	(The speed of light in vac	cuum	$c = 3 \times 10^{\circ} \text{ m s}^{-1}$	
	Α	$2 \times 10^{\circ} \text{ m s}^{-1}$	B	$1.85 \times 10^{\circ} \text{ m s}^{-1}$	C	$1.76 \text{ x } 10^{\circ} \text{ m s}^{-1}$	
168	Light with a wavelength of 700 nm in air $(n_1=1)$ enters a glass $(n_2=1.6)$. What is the						
	way	selength in the glass?	п	127.5	C	1120	
1.60	A	535.5 nm	B	437.5 nm	l C	1120 nm	
169	wn refl	ected light travels in all dire	en as	a sneet of paper with rando	m iri	regularities, the	
	A	specular refraction	B	diffuse refraction	C	diffuse reflection	
170	Ar	ay bends the nor	rmal	when it enters an optically	dens	er medium.	
	A	away from	B	towards	C	parallel to	

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question Ques.							
171	Ab	eam of light is incident from	n air	$(n_1 = 1)$ on water $(n_2 = 4/3)$	at ar	ngle of incidence =		
	30°, the angle of refraction is							
	A	250	B	220	C	20°		
172	Wh	at fraction of light intensity	is re	flected (R) when light is not	rmal	ly incident in air		
	(n ₁ =	=1) on a glass $(n_2=1.73)$?			C			
	Α	0.04	В	0.07	C	0.14		
173	If th	ne reflectance (R) of a surface	ce is	0.08, its transmittance (T) v	vill b	e		
	A	0.98	B	0.92	C	0.02		
174	The critical angle between glass (n=1.5) and water (n=1.33) is equal to							
	Α	42.45°	B	62.45°	С	72.45°		
175	In diffuse reflection, the reflected light travels in							
	A	all directions	B	a particular direction	С	a parallel direction		
176	If λ	$_1$ and λ_2 are the wavelengt	hs o	f a light wave in media wit	h re	fractive indices n ₁		
	and	l n ₂ respectively, λ_2 is equa	al to:		I			
	A	$\lambda_2 = (n_2/n_1) \lambda_1$	B	$\lambda_2 = (n_1/n_2) \lambda_1$	C	$\lambda_2 = (n_2 \cdot n_1) \lambda_1$		
177	The	e wavelength of a beam of	light	when it goes fr	om o	liamond (n=2.417)		
	into	o glass (n=1.5)						
	Α	increases	B	decreases	C	remains constant		
178	The frequency of light wave is determined by itsand is unaffected by the							
	mee	dium.	n		a			
	Α	velocity	В	source	C	refractive index		
179	If th	ne index of refraction is 2, the	ne sp	eed of light v istim	es th	e speed in vacuum c.		
	Α	quarter	B	half	C	double		
180	At	grazing incidence ($\phi=90^\circ$), t	he re	eflectance R is equal to				
	A	1	B	100	C	0		

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Chapter 24 Mirrors, Lenses and Human Eye

Ques. no.	Question						
181	The	e accommodation power of t	he eg	ye with agir	ıg.		
	A	increases	B	decreases	C	does not change	
182	The	e near point for a person with	n noi	mal vision is			
	Α	0.02 m	B	0.25 m	C	∞	
183	The	e ability of the eye lens to ad	just	its focal length is called the			
	Α	accommodation.	B	ciliary muscles.	C	persbyopia	
184	In h	ypermetropia, light from an	obje	ect close to the eye is focuse	ed		
	A	in front of retina	B	behind the retina	C	beside the retina	
185	A nearsighted man has a far point at a distance of 2.5 m. What power glasses does he						
	req	uire to correct the vision?					
	Α	+0.4 diopters	В	-0.4 diopters	C	-0.6 diopters	
186	То	correct the defect of hyperm	etro	pia (farsightedness), a		lens is used	
	Α	diverging.	B	bifocal	C	converging	
187	Аp	erson cannot simultaneously	y foc	us on both horizontal and ve	ertic	al lines, this optical	
	def	ect of his eye is called					
	Α	astigmatism	B	presbyopia	C	hypermetropia	
188	A woman has her near point 1 m from her eyes. What power glasses does she require to						
	cor	rect the vision?			1	I	
	Α	-3 diopters	B	+3 diopters	C	-2.5 diopters	
189	Ast	igmatism can be corrected b	y us	ing lenses.			
	Α	convex	B	bifocal	C	cylindrical	
190	То	correct the defect of presby	opia,	a lens is us	ed.		
	Α	cylindrical	B	bifocal	C	biconvex	

Kingdom of Saudi Arabia Ministry of Higher Education Jazan University Preparatory Year Deanship

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء الطبية- المستوى الأول (161-تحض3)

Ques. no.	Question						
191	То	correct the defect of myopia	ı, a	lens is used			
	A	cylindrical	B	diverging	C	converging	
192	An	earsighted person has a far	point	$t(x_f)$ 1 m from the eye with	acco	mmodation power	
	equ	al to 4. What is his near poi	nt (x	n) from the eye? ($D=0.02 \text{ m}$	1)		
	Α	0.16 m	B	0.20 m	C	0.25 m	
193	A n requ	earsighted man has a far po- uire to correct the vision?	int at	t a distance of 3 m. What po	ower	glasses does he	
	A	-0.33 diopters	B	+0.33 diopters	C	-3.66 diopters	
194	A w	voman has her near point 1.	56 m	from her eyes. What power	: glas	sses does she require	
		oring her hear point to 0.25 I		$\frac{1}{2} = \frac{1}{2} = \frac{1}$			
	A	- 3.36 diopter	R	+ 3.36 diopter	C	+ 1.36 diopter	
195	The far point for a person with normal vision is						
	A	25 cm	B	0	C	00	
196	The	power of lenses and mirro	ors h	as a unit of diopter, which	has	a dimension of	
	A	m	B	cm ⁻¹	C	m ⁻¹	
197	Wh	at is the power of a concav	/e m	irror has a radius of curva	ture	equal to 20 cm?	
	A	20 diopter	B	10 diopter	C	5 diopter	
198	Ale	ens has the object distance	equ	al to 25 cm when the imag	ge dis	stance equal to 100	
	cm.	what is the focal length of	this	lens?			
	Α	5cm	B	20cm	C	25cm	
199	Fin	d the accommodation pow	ver (A	A) for a farsighted woman	has	a near point (x _n)	
	equal to 0.4 m and far point (x_f) equal to 2 m? (D= 0.02 m)						
	Α	1 diopter	B	2 diopter	C	3 diopter	
200	In f	ar vision, the ciliary muscl	es a	re relaxed, and then the po	wer	of the eye is	
	bec	comes	_ 1				
	A	zero	B	large	C	small	