Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة في مقر الثيزياء الطبية- المستوى الأول (161-"شض3)

Chapter 3
 Newton's laws of motion

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Hīgher Education
Jazan University
Preparatory Year Deanship

بنك الأسملة في مقر النيزياء الطبية- المستوى الأول (161-كخض3)

Ques. no.	Question
11	Walking on the ground is an example of Newton 'slaw. $\mathbf{A} \mid$ first $\quad \mathbf{B} \mid$ second $\quad \mathbf{C} \mid$ third
12	If one object exerts a force on a second, then the second object exertsforce on the first. A an equal \square B an opposite Can equal but opposite
13	According to Newton's second law of motion, the \qquad the mass of an object, the higher acceleration can be produced. A larger B zero C ${ }^{\text {smaller }}$
14	In Newton's second law, The force is proportional to the acceleration, the proportionality constant is the object's. A force B weight $\mathbf{C} \mid$ mass
15	The acceleration "a" resulted from the force " F " on mass " m " is given by the relation: A) $a=\mathrm{Fm}$ B $\mathrm{F}=\mathrm{a} / \mathrm{m}$ C\|) $a=F / m$
16	If 100 N net force is applied to a 1000 gm-body, the body is accelerated by an acceleration ' a ' equal to. \qquad . ms^{-2}. A 0.1 B 1 C 100
17	A man pushes a 20 kg box with a horizontal force of 50 N . What acceleration will produce? A $0.4 \mathrm{~ms}^{-2}$ B $1 \mathrm{~ms}^{-2}$ C $\mid 2.5 \mathrm{~ms}^{-2}$
18	Equal forces F act on two isolated bodies A and B . When the mass of B is twice that of A . What is the magnitude of the acceleration of A ? A $1 / 4$ that of B \mathbf{B} $1 / 2$ that of B C two times that of B
19	According to Newton's second law of motion, the acceleration of an object is equal to the net force acting on the object divided by its A weight B mass C volume
20	The universal law of gravitation states that: All objects in the universe. \qquad each other. $\mathbf{A} \mid$ repulse B attract $\mathbf{C} \mid$ didn't affect

[^0]Kingdom of Saudi Arabia
Ministry of higher Education Jazan University
Preparatory Year Deanship

المملكة العربية السعودية
وزارة التعليم العالّي
جامـعـــــة جـــازان
عمـادة السنـة التحضبريـة

بنك الأسئلة في مقر النيزياء الطبية- المستوى الأول (161-حّض3)

Question

21 The gravitational forces between two spheres are directed along
A a line connecting their B a line connecting their
centers
C a line out of their actual objects.

22 The universal law of gravitation is referred to as inverse square law because the gravitation force varies as:
A r^{2}
B $1 / \mathrm{r}$
C $1 / r^{2}$

23 Two spheres have gravitational masses m_{1} and m_{2} and their centers are separated by a distance r. If the distance between them becomes half its original value $(1 / 2 r)$, then the force between them will increase \qquad ..
A 2 times
B 4 times
C 6 times

24 The acceleration due to gravity on a planet of radius three that of the earth and mass three times the mass of the earth is equal to.
(g , The acceleration of gravity on the earth).
A 3 g
B $1 / 3 \mathrm{~g}$
C $\begin{aligned} & 1 / 9 \mathrm{~g}\end{aligned}$

25 Find the acceleration due to gravity on a planet has the same mass of the earth and half the radius of the earth? (g_{E}, The acceleration of gravity on the earth).
A $1 / 4 \mathrm{~g}_{\mathrm{E}}$
B $\quad 1 / 2 \mathrm{~g}_{\mathrm{E}}$

C	$4 \mathrm{~g}_{\mathrm{E}}$

26 If the distance between the centers of two masses becomes (1/4) its original value, then the gravitational force between them will
A increase 4 times
B decrease 4 times
$\mathbf{C} \mid$ increase 16 times

27 The gravitational force between two balls of 3 kg mass separated by 10 cm is equal to. .$\left(\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\right)$
A $6 \times 10^{-12} \mathrm{~N}$
B $\quad 6 \times 10^{-9} \mathrm{~N}$
C| $6 \times 10^{-8} \mathrm{~N}$

28 The gravitational force between two objects of 1 kg mass separated by 1 m is equal to. \qquad
A
the gravitational acceleration (g)
B the
(G). gravitational constant
C| ${ }^{1 N}$

If the mass of the earth $\left(\mathrm{M}_{\mathrm{E}}\right)$ were doubled $\left(2 \mathrm{M}_{\mathrm{E}}\right)$ and its radius $\left(\mathrm{R}_{\mathrm{E}}\right)$ stayed constant. How would your weight changed? (W_{E} : your weight on the earth)
A $2 \mathrm{~W}_{\mathrm{E}}$
B $1 / 2 \mathrm{~W}_{\mathrm{E}}$
C ${ }^{1 / 4} \mathrm{~W}_{\mathrm{E}}$

30 On the moon $\mathrm{g}_{\mathrm{m}}=1.62 \mathrm{~ms}^{-2}\left(\mathrm{~g}_{\mathrm{m}}\right.$ is the acceleration of gravity on the moon). An asronaught has a weight of 500 N on the earth. What is his weight on the moon? (Use the acceleration of gravity on the earth, $g=10 \mathrm{~ms}^{-2}$).
A 51 N
B 61 N
C| 81 N

[^1]Kingdom of Saudi Arabia
Ministry of higher Education Jazan University Preparatory Year Deanship

بنك الأسئلة في مقر النيزياء الطبية- المستوى الأول (161-حّض3)

Ques.

31

Question

An astronaut weighs 400 N on the earth. What is his weight on the planet Y , which has a radius $\mathrm{R}_{\mathrm{y}}=\mathrm{R}_{\mathrm{E}} / 3$ and a mass $\mathrm{M}_{\mathrm{y}}=\mathrm{M}_{\mathrm{E}} / 6$?
A 200 N
B 4000 N

\mathbf{C}	600 N

32 A piece of gold weights 1 N on the earth. Its weight on the moon will be. that on the earth: (the acceleration of gravity on the moon $=1 / 6$ the acceleration of gravity on the earth).
A larger than
B ${ }^{\text {equal to }}$

C	smaller than

33 During the horizontal acceleration, we feel that our weight is.
A decrease
\mathbf{B} increase
$\mathbf{C} \mid$ the same

34 During upward acceleration we feel our weight is
A heavier
$\mathbf{B} \mid$ reduced
C ${ }^{\text {not changed }}$

35 When an object is in a free fall, its effective weight is
A equal to its mass
B \mid smaller than its mass
C ${ }^{\text {zero }}$

36 An artificial satellite in orbit around the earth is in free fall when it has \qquad equals zero.
A an effective weight
B a mass
C ${ }^{\text {a volume }}$

37 A person of mass (m) stands on a spring scale in an elevator. Find the effective weight of the person if the elevator is accelerating upward at 0.15 g ? (g , the acceleration of gravity).
A 0.85 mg
B $\quad 1.0 \mathrm{mg}$

C	1.15 mg

38 A person of mass (m) stands on a spring scale in an elevator. Find the effective weight of the person if the elevator is accelerating downward at 0.25 g
(g , the acceleration of gravity).
A $\mid 0.75$
B 1.0
C| 1.25

39 A ball in free fall has acceleration (a) equal to (g), its effective weight equal to
$\mathbf{A} \mid \mathrm{mg}$
B 2 mg
C ${ }^{\text {zero }}$

40 The effective weight (w^{e}) of a person is
A
equal to (mg)
B person exerts on a spring scale
equal to the normal
C force exerted by the person

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

Que no.	Question				
41	Frictional forces in fluids are called forces.				
42	The maximum possible static friction force for an object is				
43	The friction is a force that always acts to. \qquad .the motion of one object sliding on another. A follow B resist C accelerate				
44	A $75-\mathrm{N}$ block is on a flat, horizontal surface. If the block continues to move when the horizontal force $\mathrm{T}=30 \mathrm{~N}$. The coefficient of kinetic friction μ_{k} is equal to. \qquad A 0.04 \mathbf{B} 0.40 C 2.25				
45	A block is on a flat, horizontal surface, If $\mathrm{T}=20 \mathrm{~N}$ is applied and the block remain at rest, what is the friction force? A 0.05 N B 0.5 N C\| 20 N				
46	The kinetic friction force f_{k} is $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. the maximum static friction force f_{s} (max): A ${ }^{\text {s }}$ smaller than B ${ }^{\text {equal to }}$ C\| $\begin{aligned} & \text { greater than }\end{aligned}$				
47	A $60-\mathrm{N}$ block is on a flat, horizontal surface. If the block start to slide when the horizontal force $\mathrm{T}=42 \mathrm{~N}$ is applied. What is the coefficient of static friction μ_{s} ?				
48	The maximum static force f_{s} (max) for an object is independent of the $\ldots \ldots \ldots \ldots$.				
49	The coefficient of the kinetic friction μ_{k} is.............the coefficient of the static friction μ_{s}.$\begin{array}{\|l\|l\|l\|l\|} \mathbf{A} \mid \text { equal to } & \mathbf{B} \mid \text { greater than } & \mathbf{C} \mid \text { smaller than } \\ \hline \end{array}$				
50	The coefficient of the static friction μ_{s} is. \qquad the coefficient of the kinetic friction μ_{k}. A equal to B greater than C ${ }^{\text {smaller than }}$				

[^2]Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Chapter 4 Statics

Ques. no.	Question		
51	The greatest torque is obtained when the force is applied to wrench \mathbf{A} in parallel B at angle $\Theta=0^{0}$ C at right angle		
52	The ability of a force to cause rotation is called...................... A friction B equilibrium torque		
53	The torques that tend to produce a counter-clockwise rotation are taken to be A positive B negative C\| zero		
54	For a rigid body to be in rotational equilibrium, the \qquad on it must be zero. A net force B \mid net weight \mathbf{C} net torque		
55	a weight $\mathrm{W}=\mathrm{mg}$ locates at a distance X from the origin, then the torque around the origin is given by. A Xm B X / W C ${ }^{\text {X W W }}$		
56	For two vectors A and B , if $\mathrm{A} \times \mathrm{B}=0$, this means that the angel between them is equal to................ A 30 B 90 C 180		
57	Torque unit may be expressed in. A N.sec B m.sec Nm		
58			
59	Two children of weights w_{1} and w_{2} are balanced on a board pivoted about its center, at distances x_{1} andx x_{2}, respectively. Which one of the following ratios $\left(x_{1} / x_{2}\right)$ is correct? A $\left\lvert\, \frac{\mathrm{X}_{1}}{\mathrm{X}_{2}}=\frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}}\right.$ B $\left\lvert\, \frac{\mathrm{X}_{1}}{\mathrm{X}_{2}}=\frac{1}{\mathrm{~W}_{1} \mathrm{~W}_{2}}\right.$ C $\left\lvert\, \frac{\mathrm{X}_{1}}{\mathrm{X}_{2}}=\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}\right.$		
60	Two weights are balanced on a horizontal meter stick. If the weight at $x=0$ is 20 N and the pivot is at $x=0.6 \mathrm{~m}$. What is the weight " W " at $x=1 \mathrm{~m}$. (Neglect the weight of the stick). A 20 N B 30 N C ${ }^{40 \mathrm{~N}}$		

[^3]Kingdom of Saudi Arabia
Ministry of Higher Education Jazall Universiity
Preparatory Year Deanship

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Ques.
no.

Question

61 For two vectors A and B , if $\mathrm{A} \times \mathrm{B}=0.5 \mathrm{AB}$, this means that the angle between them is equal to..
A 0°
B 30°
C ${ }^{60} 0^{\circ}$

62 If the weight of an object is concentrated at a point, this point is called
A The center of gravity
\mathbf{B} The geometrical center
\mathbf{C} The effective weight

63 An object will hang so that its center of gravity is the point of suspension.
A on
B above
C

64 If there are two weights on a weightless plank, the center of gravity is found to be as the following:
$\mathbf{A} \left\lvert\, \mathrm{X}=\frac{\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}}{\mathrm{w}_{1}+\mathrm{w}_{2}}\right.$
B $X=\frac{w_{1} x_{1}-w_{2} x_{2}}{w_{1}+w_{2}}$
C $\left\lvert\, X=\frac{w_{1} x_{1}+w_{2} x_{2}}{w_{1} w_{2}}\right.$

65 One of the conditions for the equilibrium of a rigid body is the net torque on it must be:
A ${ }_{-\infty}$
B ${ }_{+\infty}$
C

66 For a rigid body to be in translational equilibrium, the .on it must be zero.
A
net weight
\mathbf{B} net force
\mathbf{C} net torque
67 Torque unit may be expressed in.
A Ns^{-1}
B $\mathrm{m} \mathrm{s}^{-1}$
C ${ }^{\mathrm{Nm}}$

68 Two weights are balanced on a horizontal meter stick as shown in the figure. What is the value of unknown weight "W"?

69 The torques that tend to produce a clockwise rotation are taken to be
A zero
B positive
C| negative

70 The maximum torque is obtained when the force is applied at angle. \qquad the force and the wrench.
A $\theta=90^{\circ}$
B
$\theta=45^{\circ}$
C $\theta=30^{\circ}$
M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of higher Education Jazan University
Preparatory Year Deanship

المملكة المربية الستعودية
وزارة التعليم العالي
جامعـــــة جـــازان
عمـادة السنـة التحضيريـة

بنك الأسمئلة في مترر النيزياء الطبية- المستوى الأول (161-كخض3)

Ques. no.	Question.			
71	For two vectors A and B , if $\mathrm{A} \times \mathrm{B}=0$, this means that the angel between them is equal to..... $\begin{array}{\|l\|l\|} \hline \mathbf{A} & 30 \\ \hline \end{array}$ \mathbf{B} 90 C\| 0			
72	The minimum torque is obtained when the force is applied to wrench			
73	A cyclist applies a downward force (F) of 200 N to the pedal of his bicycle of length 15 cm . The magnitude of maximum torque equals A 0.075 Nm B 13.33 Nm C 30 Nm			
74	For two vectors A and B , if $\mathrm{A} \times \mathrm{B}=\mathrm{AB}$, this means that the angel between them is equal to. A ${ }^{0}$ B 30° C 90°			
75	If the three balls in the figure are located at 2,3 and from the origin, then the center of gravity is located at. \qquad from this origin A 1.5 m B 3.5 m C $\mathbf{C} 4.5 \mathrm{~m}$			
76	o weights are balanced on a ho What is the value of the unkno A 22.5 N	rizon	al meter stick as shown in eight "W"?	he given figure.
77	A mechanic holds a wrench at 0.2 m from the center of a nut. How large is the force applied to the nut if he pulls at right angles to the wrench with a torque of 40 Nm ?			
78	For a rigid body to be in rotational equilibrium, the \qquad .on it must be zero.			
79	The couple is a pair of forces equal magnitudes but A opposite directions acting at the same line of action	with equal magnitudes but opposite directions acting at different lines of action	different magnitudes but opposite directions acting at different lines of action
80	To be in equilibrium, an obje center of gravity. $\mathbf{A} \mid \text { at }$	(${ }^{\text {b }}$	l hang so that its suspen beside	on point is located \qquad the C above

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Hīgher Education
Jazaln Universiity
Preparatory Year Deanship

بنك الأسـيلة في مقرر الثيزياء الطبية- المستوى الأول (161-كخض3)

Ques. no.	Question
81	In the shown figure, the center of gravity is located at...................m from the point P ?
82	The geometrical center of uniformly symmetric object is located at its.................. A center of mass B effective weight \mathbf{C} center of gravity
83	The maximum torque is obtained when the force is applied at angle. \qquad wrench. A $\theta=90^{\circ}$ B $\theta=45^{\circ}$ C\| $\theta=30^{\circ}$
84	A cyclist applies a downward force (F) of 200 N to the pedal of his bicycle of length 20 cm . The magnitude of maximum torque equals A 4000 Nm B 40 Nm C 1000 Nm
85	For two parallel vectors $\mathrm{A}=5$ and $\mathrm{B}=2.5$, the value of $\mathrm{A} \times \mathrm{B}$ is equal to................... A $\mid 0$ B 0.5 C\| 2
86	If the system in the figure is in rotational equilibrium, where $\mathrm{W}_{1}=25 \mathrm{~N}$ and W_{2} is unknown, what is the value of the normal force N ? A 25 N

[^4]
بكك الأسملة في مقرر الثنزياء الطبية- المستوى الأول (161-خّض3)

Ques. no.	Question				
87	An object will hang so that its point of suspension is locate. .the center of gravity. B above $\mathbf{C} \mid$ below				
88	The center of gravity coincides with the center of mass:				
89	In the formula $\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$, the quantity G :$\mathbf{A}$is used only when earth is one of the two masses$\|\mathbf{B}\|$is a universal gravitational constant\quad Cis greatest at the surface of earth				
90	An object at the surface of earth (at a distance R from the center of earth) weighs 90 N . Its weight at a distance 3 R from the center of earth becomes:				

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazan Universiity
Preparatory Year Deanship

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Chapter 11 Thermodynamics

Ques. no.	Question		
91	The energy content per unit mass has a unit of...................... A $\mathrm{kJ} \mathrm{s}^{-1}$ B $\mathrm{kJ} \mathrm{litre}^{-1}$ A $\mathrm{kJ} \mathrm{g}^{-1}$		
92	The basal metabolic rate is the rate of energy consumption for a person while.		
93	How much internal energy is used by a 70-kg man when bicycling for 2 hours? (the metabolic rate per unit mass for bicycling $=7.6 \mathrm{Wkg}^{-1}$) 3830.4 kJ B 957.4 kJ		
94	The efficiency of food utilization is the ratio between the rate at which $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$. is done and the difference in actual and basal metabolic rates. thermal energy B mechanical work C internal energy		
95	When a gas at a constant pressure P expands by an amount $\Delta \mathrm{V}$, the work done by the system is. P- ΔV B $\mathrm{P} / \Delta \mathrm{V}$ C\| $\mathrm{P} \Delta \mathrm{V}$		
96	A gas does work in an isobaric process at $\mathrm{p}=5 \times 10^{5} \mathrm{~Pa}$. If the initial volume of the gas is 6 $\times 10^{-2} \mathrm{~m}^{3}$ and the final volume is $2 \times 10^{-2} \mathrm{~m}^{3}$, the work done on the gas is equal to..		
97	The equation of state for an ideal gas is given by........................	al gas is given by............... $\mathbf{B} \mid \mathrm{PV}=\mathrm{nKT}$	$\begin{array}{\|l\|l\|} \mathbf{C} & \mathrm{PV}=\mathrm{nRT} \\ \hline \end{array}$
98	The internal energy of the ideal gas depends only on the		pressure
99	At constant volume, the he A the heat capacity of the system	dded to a system is equal to B the work done by the system	the change in internal energy of the system
100	If heat is added to a system and some work is done by the system, the difference between these quantities is called		

[^5]Kingdom of Saudi Arabia
Ministry of Hīgher Education Jazan University
Preparatory Year Deanship

المملكة المربية الستعودية
وزارة التعليم العالي
جامــــــة جـــازان
عمـادة السنـة التحضيريـة

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

(1) $\begin{gathered}\text { Ques } \\ \text { no. }\end{gathered}$	Question				
101	The change in internal energy of the system when 1500 J of heat leaves it and 400 J of work is done on it is equal to............................ A 1900 J B -1100 J C\|-1900 J				
102	A man consumes 80 liters h^{-1} of oxygen, and the energy equivalent of the oxygen is 20.2 kJ litre ${ }^{-1}$. Calculate the rate of internal energy change? A $400 \mathrm{~kJ} \mathrm{~h}^{-1}$ B $1616 \mathrm{~kJ} \mathrm{~h}^{-1}$ C $3.96 \mathrm{~kJ} \mathrm{~h}^{-1}$				
103	The \qquad is defined as the ratio of the energy released divided by the mass.				
104	The rate of change of internal energy can be measured accurately by observing the rate at which a person uses. \qquad .in converting food into energy and waste materials.$\begin{array}{\|l\|l\|l\|l\|l\|} \mathbf{A} \mid \text { water } & \mathbf{B} & \text { sugar } & \mathbf{C} & \text { oxygen } \\ \hline \end{array}$				
105	The basal metabolic rate per unit mass of 20 year old woman is A $1.2 \mathrm{~W} \mathrm{~kg}^{-1}$ B $1.1 \mathrm{~W} \mathrm{~kg}^{-1}$ C $1.0 \mathrm{~W} \mathrm{~kg}^{-1}$				
106	The change in internal energy of the system when 1500 J of heat enter it and 400 J of work is done on it is equal to............................. A 1900 J \mathbf{B} -1900 J C\| -1100 J				
107	The basal metabolic rate of 60 kg woman is \square A 60 W B 66 W 72 W				
108					
109	At constant volume the work done is \qquad A positive B negative				
110	In an isometric process, there is no change in the..................				

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazall Universiity Preparatory Year Deanship

Chapter 12

Thermal properties of matter

Ques.	Question Ques.					
111	Theis the ratio between the heat transferred to temperature change.A \mid work					
112	For ideal monatomic gas, the difference $\mathrm{c}_{\mathrm{P}}-\mathrm{c}_{\mathrm{V}}$ is equal to........... A $5 / 2 \mathrm{R}$ B R C $3 / 2 \mathrm{R}$					
113	For ideal monatomic gas, the molar heat capacity at constant volume C_{v} is equal to. A $1 / 2 \mathrm{R}$ B $3 / 2 \mathrm{R}$ C\| $5 / 2 \mathrm{R}$					
114	For ideal monatomic gas, the molar heat capacity at constant pressure C_{P} can be written as.. A $\mathrm{C}_{\mathrm{v}}+2 \mathrm{R}$ B $\mathrm{C}_{\mathrm{v}}+\mathrm{R}$ C $\mathrm{C}_{\mathrm{v}}-\mathrm{R}$					
115	For ideal monatomic gas, the molar heat capacity at constant pressure C_{p} is equal to. A R B 3/2R C $5 / 2 \mathrm{R}$					
116						
117	The calorimeter is used to measure					
118	At constant volume, the heat added is equal to the$\begin{array}{\|l\|l\|l\|l\|l} \mathbf{A} & \text { heat capacity } & \mathbf{B} \left\lvert\, \begin{array}{l} \text { The change of internal } \\ \text { energy } \end{array}\right. & \mathbf{C} \left\lvert\, \begin{array}{l} \text { specific heat } \\ \text { capacity } \end{array}\right. \\ \hline \end{array}$					
11	The ratio of the molar heat capacity of an ideal gas at constant volume C_{v} to its molar heat capacity at constant pressure C_{p} (i.e $\mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\mathrm{p}}$) for monatomic gases is equal to..					
20	The heat capacity is measured by using.					

[^6]Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة في مقرر الثيزياء الطبية- المستوى الأول (161-تخض3)

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة في مقر الثيزياء الطبية- المستوى الأول (161-يخض3)

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazan Universiity Preparatory Year Deanship

المملكة المربية الستعودية
وزارة التعليم العالي
جامـعــــة جــــازان
عمـادة السنـة التحضيريـة

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Ques. no.	Question.				
141	In a room of $29^{\circ} \mathrm{C}$ temperature, a naked resting person of $1.5 \mathrm{~m}^{2}$ surface area and has a skin temperature of $37^{\circ} \mathrm{C}$, the rate of heat loss by convection is equal to. (using $\mathrm{q}=7.1 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$). A 1.69 W B 56.8 W C\| 85.20 W				
142	Transfer of heat by convection ca A $\mathbf{H}=\mathbf{e} \boldsymbol{\sigma} \mathbf{A ~ T}^{4}$	can	be described by $\mathbf{H}=\mathbf{q} \mathbf{A} \Delta \mathbf{T}$	C	ation: $\mathbf{H}=\mathbf{e} \boldsymbol{\sigma} \mathbf{A} \mathbf{T}$
143	Transfer of heat by radiation can A $\mathbf{H}=\mathbf{e} \boldsymbol{\sigma} \mathbf{A ~ T}^{4}$	be	described by the $\mathrm{H}=\mathrm{kA} \frac{\Delta \mathrm{~T}}{\mathrm{~L}}$	C	on: $\mathbf{H}=\mathbf{q} \mathbf{A} \Delta \mathbf{T}$
144	The transfer of heat by. \qquad does not require the presence of any medium (solid, liquid and gas). A conduction B \mid radiation C\| convection				
145	Stefan's law describes the fact that the rate of heat loss through radiation is proportional to the \qquad .power of the temperature. A first B second $\mathbf{C} \mid$ fourth				
146	32. The object of 345 K temperature at the surface has the wave length of maximum radiation $\lambda_{\text {max }}$ equals to........... (Wien's displacement constant $\mathrm{B}=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$)				
147	The rate at which heat energy radiates, H , from a surface of area A and temperature T is proportional to \qquad A $\mathrm{A} \Delta \mathrm{T}$ B $\mid \mathrm{A} \Delta \mathrm{T}^{4}$ C\| AT^{4}				
148	The star of 6000 K temperature at the surface. What is the wavelength $\left(\lambda_{\max }\right)$ at which the radiation is most intense? (Wien's displacement constant $\mathrm{B}=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$)				
149	The emitted radiation from the human body is most intense at the wavelength ($\lambda_{\max }$) in the range of spectrum. A ultraviolet \mathbf{B} infrared C $\begin{aligned} & \text { visible }\end{aligned}$				
150	What is the rate of heat loss due to radiation for a motor car of 350 k surface temperature and $0.5 \mathrm{~m}^{2}$ surface area? (Using $\mathrm{e}=1$ and $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{k}^{-4}$)				

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazaln Universiity Preparatory Year Deanship

Ques no.	Question		
151	The emissivity of the black body is near...............because it is a perfect emitter.		
152	The inner core of the body can be kept warm in a cold environment because body tissues are. C good insulators		
153	What is the rate of heat loss due to radiation for a body of skin temperature of 310 k and surface area of $1.5 \mathrm{~m}^{2}$? (Using e=1 and $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{k}^{-4}$) A $2.64 \times 10^{-5} \mathrm{~W}$ \| B 2.533 W C $\quad 785 \mathrm{~W}$		
154	Insulators have $\ldots \ldots \ldots \ldots \ldots$..........at capacity as compared with that of metals A equal B low C ${ }^{\text {high }}$		
155	The rate of heat loss by radiation has a unit of. A Kelvin B Joule (J) Watt (W)		
156	If 4 kJ of heat are required to increase the temperature of a body by 50 K . The value of heat capacity in Joule/Kelvin is \qquad A 200000 0.08 \mathbf{C} 80		
157	The addition of 90 kJ of heat energy to 0.6 kg metal increases its temperature from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. what is the specific heat capacity of this metal in $\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$? A 7.5 \mathbf{B} 2.7 \mathbf{C} 0.133		
158	The transfer of heat by the motion of the fluid itself is called. \qquad A conduction B convection \mathbf{C} radiation		
159	The unit of Stefan's constant, σ, is A $\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ B $\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$		
160	In the equation $\mathbf{H}=\mathbf{q} \mathbf{A} \Delta \mathbf{\Delta T}, \mathrm{q}$ is called$\mathbf{A} \begin{aligned} & \text { Convective heat } \\ & \text { transfer constant }\end{aligned}$		

[^7]Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Chapter 23 Wave Properties of Light

Ques. no.	Question Ques.				
161	In the total internal reflection, the critical angle φ_{c} can be determined from the equation................, where n_{1} and n_{2} the indices of first and second medium, respectively. A $\varphi_{\mathrm{c}}=\sin ^{-1}\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)$ (B $\varphi_{\mathrm{c}}=\sin ^{-1}\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)$ $\mathbf{C} \mid \varphi_{\mathrm{c}}=\sin \left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)$				
162	In the total internal reflection, the critical angle can be found from Snell's law by setting the \sin of the angle of refraction $(\sin \varphi)$ equal A 0 B 1 C\| 90				
163	If the ray is incident from air to a glass, it refracted and goes from the glass to air again, the angle of emerge equal A the critical angle B the angle of incidence C the angle of reflection				
164	In comparing two media, the one with the largeris said to be optically denser. A refractive index B wavelength C frequency				
165	In a material medium, the velocity of light depends on the frequency of the wave, but it is neverthe velocity of light in a vacuum smaller than \mathbf{C} equal				
166	The refractive index of a medium must beone. A greater than B smaller than C equal to				
167	Light travels in a vacuum going into glass with a refractive index ($\mathrm{n}=1.7$). What is the velocity of light in the glass? (The speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$)				
168	Light with a wavelength of 700 nm in air ($\mathrm{n}_{1}=1$) enters a glass ($\mathrm{n}_{2}=1.6$). What is the wavelength in the glass? A 535.5 nm \mathbf{B} 437.5 nm \mathbf{C} 1120 nm				
169	When light strikes a surface such as a sheet of paper with random irregularities, the reflected light travels in all directions, this is called.				
170	A ray bends the normal when it enters an optically denser medium.				r medium. parallel to

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazall Universiity
Preparatory Year Deanship

المملكة المربية الستعودية
وزارة التعليم العالي
جامعـــــة جـــازان
عمـادة السنـة التحضيريـة

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

(Que	Question ${ }_{\text {Ques. }}$		
171	A beam of light is incident from air $\left(n_{1}=1\right)$ on water $\left(n_{2}=4 / 3\right)$ at angle of incidence $=$ 30°, the angle of refraction is . A 25^{0} B 22^{0} C 20^{0}		
17	What fraction of light intensity is reflected (R) when light is normally incident in air $\left(\mathrm{n}_{1}=1\right)$ on a glass $\left(\mathrm{n}_{2}=1.73\right)$? A 0.04 B 0.07 C 0.14		
173	If the reflectance (R) of a surface is 0.08 , its transmittance (T) will be $\ldots \ldots .$. .		
174	The critical angle between glass $(\mathrm{n}=1.5)$ and water $(\mathrm{n}=1.33)$ is equal to		
175	In diffuse reflection, the reflected light travels in......$\begin{array}{l\|l\|l\|l\|l\|l} \mathbf{A} & \text { all directions } & \mathbf{B} & \text { a particular direction } & \mathbf{C} & \text { a parallel direction } \\ \hline \hline \end{array}$		
17	If λ_{1} and λ_{2} are the wavelengths of a light wave in media with refractive indices n_{1} and n_{2} respectively, λ_{2} is equal to: A $\lambda_{2}=\left(n_{2} / n_{1}\right) \lambda_{1}$ B $\lambda_{2}=\left(n_{1} / n_{2}\right) \lambda_{1}$ C\| $\lambda_{2}=\left(\mathrm{n}_{2} . \mathrm{n} 1\right) \lambda_{1}$		
177	The wavelength of a beam of lightwhen it goes from diamond ($\mathrm{n}=2.417$) into glass ($\mathrm{n}=1.5$) A increases B decreases C remains constant		
178	The frequency of light wave is determined by its \qquad and is unaffected by the medium.$\begin{array}{\|l\|l\|l\|l\|l} \mathbf{A} & \text { velocity } & \mathbf{B} & \text { source } & \mathbf{C} \\ \text { refractive index } \\ \hline \hline \end{array}$		
179	If the index of refraction is 2, the speed of light v istimes the speed in vacuum c. A quarter B half \mathbf{C} double		
180	At grazing incidence ($\phi=90^{\circ}$), the reflectance R is equal to $\ldots \ldots \ldots$.		

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Higher Education Jazan University
Preparatory Year Deanship

المملكة العربية السعودية
وزارة التعليم العالثي
جامــــــة جـــازان
عمـادة السنـة التتضضيريـة

بنك الأسئلة في مقر الثيزياء الطبية- المستوى الأول (161-يّض3)

Chapter 24
 Mirrors, Lenses and Human Eye

M. Abo-Elmagd, PhD.

Kingdom of Saudi Arabia
Ministry of Hīgher Education Jazan University
Preparatory Year Deanship

بنك الأسشلة في مقر النيزياء الطبية- المستوى الأول (161-تخض3)

Ques. no.	Question
191	To correct the defect of myopia, a . lens is used A cylindrical \mathbf{B} diverging C converging
192	A nearsighted person has a far point $\left(\mathrm{x}_{\mathrm{f}}\right) 1 \mathrm{~m}$ from the eye with accommodation power equal to 4 . What is his near point $\left(x_{n}\right)$ from the eye? $(D=0.02 \mathrm{~m})$ A 0.16 m B $\quad 0.20 \mathrm{~m}$ C $\mid 0.25 \mathrm{~m}$
193	A nearsighted man has a far point at a distance of 3 m . What power glasses does he require to correct the vision? A -0.33 diopters B +0.33 diopters \mathbf{C} -3.66 diopters
194	A woman has her near point 1.56 m from her eyes. What power glasses does she require to bring her near point to 0.25 m from her eyes? +1.36 diopter A - 3.36 diopter B +3.36 diopter $\mathbf{C} \mid+1.36 \text { diopter }$
195	The far point for a person with normal vision is. \qquad A 25 cm B 0
196	The power of lenses and mirrors has a unit of diopter, which has a dimension of $\mathbf{A}\|\mathrm{m} \quad \mathbf{B}\| \mathrm{cm}^{-1} \quad\|\mathbf{C}\| \mathrm{m}^{-1}$
197	What is the power of a concave mirror has a radius of curvature equal to 20 cm ? A 20 diopter B 10 diopter C 5 diopter
198	A lens has the object distance equal to 25 cm when the image distance equal to 100 cm . what is the focal length of this lens? A 5 cm B $\mid 20 \mathrm{~cm}$ C\| 25 cm
199	Find the accommodation power (A) for a farsighted woman has a near point (x_{n}) equal to 0.4 m and far point (x_{f}) equal to 2 m ? ($\mathrm{D}=0.02 \mathrm{~m}$) A 1 diopter B $\mid 2$ diopter C $\quad 3$ diopter
200	In far vision, the ciliary muscles are relaxed, and then the power of the eye is becomes \qquad A \qquad B large C ${ }^{\text {small }}$

M. Abo-Elmagd, PhD.

[^0]: M. Abo-Elmagd, PhD.

[^1]: M. Abo-Elmagd, PhD.

[^2]: M. Abo-Elmagd, PhD.

[^3]: M. Abo-Elmagd, PhD.

[^4]: M. Abo-Elmagd, PhD.

[^5]: M. Abo-Elmagd, PhD.

[^6]: M. Abo-Elmagd, PhD.

[^7]: M. Abo-Elmagd, PhD.

