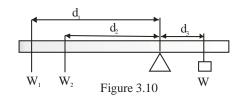
(BMT-222) (October 2016)


Chapter 2 Systems of Lincor Equations and	Introduction to Determinents (Summerry)				
Chapter 3 Systems of Linear Equations and Introduction to Determinants (Summary) Exercises / Section 3.1 (page 84)					
• Solve the following systems of equations graphical	llv				
2x - y = 1 Problem # 1 $2x - y = 1$ Problem # 5 $-x - 3y = 4$	2x + 3y = 2				
Problem # 1. x - y = 2, Problem # 5. 2x + 2y = 5	Problem # 7. $2x + 3y = 2$ $3x + 2y = 1$				
Problem # 1. $2x - y = 1$ x - y = 2, Problem # 5. $-x - 3y = 4$ Problem # 5. $2x + 2y = 5$ 5x - 2y = 9 Problem # 11. $3x + y$ x - 2y	y = 0 y = 20				
(Problems solved in class # 1, 11)	HW : Problem # 5, # 7, # 9				
Exercises / Section					
• Solve the following systems of equations by the me	ethod of addition or subtraction.				
x + y = 4 Problem # 1.	Problem # 5. $3x - 2y = 21$ 4x - 5y = 42				
2x - y = 5					
Problem # 7. $\begin{aligned} 4x - 3y &= -11 \\ 12x + 25y &= 69 \end{aligned}$	Problem # 9. $2x + 2y = 1$ 5x - 5y = 1				
	5				
• Solve the following systems of equations by the metric $2x + y = 1$					
Problem # 15. $2x + y = 1$ x + 3y = 8 Problem # 17.	8x - 10y = -13 x + 2y = 0 Problem # 19. $5x + 2y = 36x + 3y = 2$				
x + 5y = 6					
• Solve the following systems of equations by either	method. Problem # 23. $3x - 2y = 1$ $6x - 4y = 5$				
Problem # 27. $\frac{2}{x} - \frac{3}{y} = 1$ $\frac{3}{x} - \frac{2}{y} = 2$ Problem # 35. $\frac{2w - 3}{4w - 6}$					
(Problems solved in class # 1, 9, 15, 23, 35)	HW : Problem # 5, 7, 17, 19, 27, 37				
Exercises / Section					
• Expand each determinant. Problem # 3. $\begin{vmatrix} -2 \\ 4 \end{vmatrix}$	4 - 8				
Problem # 9. $\begin{vmatrix} -2 & -1 \\ 12 & 5 \end{vmatrix}$ Problem # 13.	$\begin{vmatrix} 32 & 21 \\ -17 & 16 \end{vmatrix}$ Problem # 15. $\begin{vmatrix} 18 & -6 \\ 75 & 0 \end{vmatrix}$				
• Solve the following systems of equations by using	Cramer rule. Problem # 17. $3x + 4y = 1$ $2x + 3y = 4$				
Problem # 25. $\frac{2}{x} - \frac{3}{y} = 7$ Problem # 31 $\frac{1}{x} + \frac{5}{y} = 3$	$F_1 + 2F_2 = 5$ $2F_1 + F_2 = 6$ Problem # 33. $3R_1 + 4R_2 = 20$ $4R_1 + 2R_2 = 15$				
(Problems solved in class # 3, 15, 17, 31)	HW : Problem # 9, 13, 25, 33				

(**Problems** solved in class # 3, 15, 17, 31)

HW: Problem # 9, 13, 25, 33

Exercises / Section 3.4 (page 99-101)

Problem # 1. In figure 3.10 the moment of weight W is 5. The lever balances when $d_1 = 2 ft$ and $d_2 = 1 ft$ and when $d_1 = 1 ft$ and $d_2 = 3 ft$. Determine the weights w_1 and w_2 .

Problem #7. Two resistors connected in series have a combined resistance of 150 Ω . If the resistance of one resistor is 10 Ω less than the other, find the resistance of each.

Problem # 15. The sum of the voltages across two resistors is 55.1 V. It was found that 3 times the first voltage is 9.7 V less than 4 times the second. What are the two voltages?

Problem # 17. Tickets for an industrial exhibit cost \$5.00 for regular admission and \$4.00 for senior citizens. On one day 215 tickets were sold for total intake of \$1050. How many tickets of each type were sold?

Problem # 21. Two machines have a total of 62 moving parts. If one machine has 2 more than 3 times as many moving parts as the other, how many moving parts does each machine have?

Problem # 25. One consultant to a firm charges \$200 per day, and another consultant charges \$250 per day. After 13 days the total charged by the two consultants comes to \$2950. Assuming that only one of the two consultants was called in on any one day, how many days did each one work?

(Problems solved in class # 1, 17)

HW: Problem # 7, # 15, # 25

2 1 2

HW: Problem # 5, 11, 19, 21, 25, 31

Exercises / Section 3.5 (page 103)

• Solve the following systems of equations

Problem # 3.	3x + 2z = -1 $4x - y - 2z = 7$ $x + y = 2$	Problem # 7.	2x - y + 3z = 16 3x + 4y + 2z = 7 5x - 6y + 8z = 47	$\frac{-}{x} - \frac{-}{y} + \frac{-}{z} = 2$ Problem # 11. $-\frac{4}{x} + \frac{5}{y} - \frac{3}{z} = 1$ $\frac{3}{x} - \frac{4}{y} + \frac{1}{z} = 3$
(Drobloms col	\mathbf{v} and \mathbf{v} along $\# 11$			HW: Drohlam # 2

HW: Problem # 3, # 7

(Problems solved in class # 11)

Exercises / Section 3.6 (page 111-114)

	2	-1	3	2	2	3	8		-3	-4	-7	
Problem # 5.	3	0	-5	Problem # 7	-1	3	-2	Problem # 11.	3	0	-6	
	10	5	-10	5	5	-6	-12		10	15	18	

• Solve the system of equation by Cramer's rule: 2x - y + 3z = 16Problem # 19. 3x + 4y + 2z = 7 5x - 6y + 8z = 47Problem # 21 x - 2y - 3z = 1 x - 4y + 2z = 2

Problem # 25 A portion of \$ 5950 was invested at 8 %, another portion at 10 %, and the rest at 12 %. The total interest income was \$ 635. If the sun of the second investment and twice the first investment was \$ 750 more than the third investment, find the amount invested in each rate.

Problem # 27 Three machine parts cost a total of \$ 40. The first part costs as much as the other two together, while the cost of 6 times the second is \$ 2 more than the total cost of the other two. Find the cost of each part.
Problem # 31 Find the currents of the circuits by solving the system of equations given

1100iciii 51	$I I \downarrow I = 0$		
	$I_1 - I_2 + I_3 = 0$		
$ = I_{1} \Omega^{I_{1}} I_{1} I_{2} I_{3} = I_{3} I_{1} \Omega^{I_{2}} I_{3} I_{$	$I_1 + 2I_2 = 10$		
$+$ 2Ω	$-2I_2 - I_3 = -5$		$-I_1 + I_2 + I_3 = 0$
-10^{10} 5^{10} -10^{10}	$2I_2 I_3 - 3$	Problem # 33	$-I_1 - 3I_2 = -10$
			$3I_2 - 5I_3 = -6$

(Problems solved in class # 7, 27, 33).