
Lecture 5

Loops & Arrays

Dr. Mohammad Ahmad

Loop analogy (roundabout)

Loop

Exiting a Loop

Ninja Cat

Repetition Statements

• Repetition statements allow us to execute a

statement multiple times

• Often they are referred to as loops

• C has three kinds of repetition statements:

 the while loop

 the do loop

 the for loop

• The programmer should choose the right kind of

loop for the situation

There are three loop constructs in C

• do-while loop (or do loop for short)

• while loop

• for loop

• Loops = repetition statements

Logic of an if statement

condition

evaluated

statement

true
false

Logic of a do Loop

true

condition

evaluated

statement

false

The do Statement

• A do statement has the following syntax:

do

{

statement;

}

while (condition);

• The statement is executed once initially, and then

the condition is evaluated

• The statement is executed repeatedly until the

condition becomes false

The do Statement

• An example of a do loop:

• The body of a do loop is executed at least once

int count = 0;

do

{

count++;

printf(“%d\n”, count);

} while (count < 5);

Example: Fixing Bad Keyboard Input

• Write a program that refuses to accept a negative

number as an input.

• The program must keep asking the user to enter a

value until he/she enters a positive number.

• How can we do this?

Logic of a while Loop

statement

true false

condition

evaluated

The while Statement

• A while statement has the following syntax:

while (condition)

statement;

• If the condition is true, the statement is

executed

• Then the condition is evaluated again, and if it is

still true, the statement is executed again

• The statement is executed repeatedly until the

condition becomes false

The while Statement

• An example of a while statement:

int count = 1;

while (count <= 5)

{

printf (“%d\n”, count);

count++;

}

• If the condition of a while loop is false initially, the

statement is never executed

• Therefore, the body of a while loop will execute

zero or more times

The while Statement

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum

• A sentinel value is a special input value that

represents the end of input

• A loop can also be used for input validation,

making a program more robust

Comparing while and do

statement

true false

condition

evaluated

The while Loop

true

condition

evaluated

statement

false

The do Loop

Logic of a for loop

statement

true

condition

evaluated

false

increment

initialization

The for Statement

• A for statement has the following syntax:

for (initialization ; condition ; increment)

statement;

The initialization

is executed once

before the loop begins

The statement is

executed until the
condition becomes false

The increment portion is executed at

the end of each iteration

The for Statement

• A for loop is functionally equivalent to the

following while loop structure:

initialization;

while (condition)

{

statement;

increment;

}

The for Statement

• An example of a for loop:

for (int count=1; count <= 5; count++)

printf (“%d\n”, count);

• The initialization section can be used to declare a

variable

• Like a while loop, the condition of a for loop is

tested prior to executing the loop body

• Therefore, the body of a for loop will execute zero

or more times

The for Statement

• The increment section can perform any calculation

• A for loop is well suited for executing statements

a specific number of times that can be calculated

or determined in advance

Int num;

for (num=100; num > 0; num -= 5)

printf (“%d\n”, num);

The for Statement

• Each expression in the header of a for loop is

optional

• If the initialization is left out, no initialization is

performed

• If the condition is left out, it is always considered

to be true, and therefore creates an infinite loop

• If the increment is left out, no increment operation

is performed

Infinite Loops

• The body of a while loop eventually must make

the condition false

• If not, it is called an infinite loop, which will

execute until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a

program to ensure that your loops will terminate

normally

Infinite Loops

• An example of an infinite loop:

int count = 1;

while (count <= 25)

{

printf (“%d\n”, count);

count = count - 1;

}

• This loop will continue executing until interrupted

(Control-C) or until an underflow error occurs

Nested Loops

• Similar to nested if statements, loops can be

nested as well

• That is, the body of a loop can contain another

loop

• For each iteration of the outer loop, the inner loop

iterates completely

Nested Loops

• How many times will the string "Here" be printed?

count1 = 1;

while (count1 <= 10)

{

count2 = 1;

while (count2 <= 20)

{

printf ("Here");

count2++;

}

count1++;

} 10 * 20 = 200

Analogy for Nested Loops

Analogy for Nested Loops

Inner Loop

Outer Loop

Example: Stars

• Write a program that prints the following

*

**

Example: Multiplication Table

Problem:

Read 10 numbers from the keyboard and store them

Problem:

Read 10 numbers from the keyboard and store them

// solution #1

int a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

printf(“Enter a number: “);

scanf(“ %d”, &a0);

printf(“Enter a number: “);

scanf(“ %d”, &a1);

//…

printf(“Enter a number: “);

scanf(“ %d”, &a9);

Arrays

• Arrays are C data types that help us organize large

amounts of information

Arrays

• An array is an ordered list of values

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of size N is indexed from zero to N-1

scores

The entire array

has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

An array with 8 elements of type double

Problem:

Read 10 numbers from the keyboard and store them

// solution #2

int a[10]; // use an array

for(i=0; i< 10; i++)

{

printf(“Enter a number: “);

scanf(“ %d”, &a[i]);

}

Arrays

• A particular value in an array is referenced using
the array name followed by the index in brackets

• For example, the expression

scores[2]

refers to the value 94 (the 3rd value in the array)

• That expression represents a place to store a
single integer and can be used wherever an
integer variable can be used

Arrays

• For example, an array element can be assigned a
value, printed, or used in a calculation:

scores[2] = 89;

scores[first] = scores[first] + 2;

mean = (scores[0] + scores[1])/2;

printf ("Top = %d“, scores[5]);

Arrays

• The values held in an array are called array

elements

• An array stores multiple values of the same type –

the element type

• The element type can be a primitive type

• Therefore, we can create an array of integers, an
array of floats, an array of doubles.

Arrays

• Another way to depict the scores array:

scores 79

87

94

82

67

98

87

81

74

91

Declaring Arrays

• It is possible to initialize an array when it is

declared:

float prices[3] = {1.0, 2.1, 2.0};

• Or to initialize it later:

int a[6];

a[0]=3;

a[1]=6;

Declaring Arrays

• Declaring an array of characters of size 3:

char letters[3] = {„a‟, „b‟, „c‟};

• Or we can skip the 3 and leave it to the compiler to

estimate the size of the array:

char letters[] = {„a‟, „b‟, „c‟};

For loops and arrays

#define N 10

int a[N];

int i;

…

for(i=0; i < N; i++)

printf(“%d\n”, a[i]);

for(i=0; i <= N; i++) // this is an error

printf(“%d\n”, a[i]); // out of bounds

For loops and arrays

#define N 10

int a[N+1];

int i;

…

for(i=0; i <= N; i++)

printf(“%d\n”, a[i]);

Problem:

Input 10 student IDs and their

corresponding grades (A through F). Then

find out the number of As, and print the

names of the students that got an A.

Comparing Float Values

• You should rarely use the equality operator (==)

when comparing two floating point values (float

or double)

• Two floating point values are equal only if their

underlying binary representations match exactly

• Computations often result in slight differences that

may be irrelevant

• In many situations, you might consider two

floating point numbers to be "close enough" even

if they aren't exactly equal

Comparing Float Values

• To determine the equality of two floats, you may

want to use the following technique:

if (fabs(f1 - f2) < TOLERANCE)

printf ("Essentially equal");

• If the difference between the two floating point

values is less than the tolerance, they are

considered to be equal

• The tolerance could be set to any appropriate

level, such as 0.000001

Comparing Characters

• As we've discussed, C character data is based on

the ASCII character set

• ASCII establishes a particular numeric value for

each character, and therefore an ordering

• We can use relational operators on character data

based on this ordering

• For example, the character '+' is less than the

character 'J' because it comes before it in the

ASCII character set

