

Dr. George Karraz, Ph. D.

Computer Vision

Introduction and Overview

Dr. George Karraz, Ph.D.

This presentation is an overview of some of the ideas and techniques to be covered during the course.

Topics

- 1. Image formation
- 2. Point processing and equalization
- 3. Color correction
- 4. The Fourier transform
- 5. Convolution
- 6. Image sampling, warping, and stitching
- 7. Frequency Domain (FD) Filtering
- 8. Spatial filtering
- 9. Noise reduction
- 10. Mathematical morphology
- 11. High dynamic range imaging

1. Image Formation (Quantization)

continuous color input

1. Image Formation (Sampling & Quantization)

1. Image Formation (Digital Image)

•A grid of squares, each of which contains a single color

• each square is called a pixel (for *picture element*)

• Color images have 3 values per pixel; monochrome images have 1 value per pixel.

1. Image Formation (Color Images)

- Are constructed from three intensity maps.
- Each intensity map is projected through a color filter (*e.g., red,* green, or blue, or cyan, magenta, or yellow) to create a monochrome image.
- The intensity maps are overlaid to create a color image.
- Each pixel in a color image is a three element vector

2. Point Processing

- gamma

- brightness

original

+ brightness

+ gamma

histogram mod

- contrast

original

+ contrast

histogram ${{\rm EQ}}_{15}$

requires some knowledge of how we see colors

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

cone density near fovea

#(blue) << #(red) < #(green)

Receptor Spectral Sensitivity

all bands

luminance and chrominance (hue+saturation) are perceived with different resolutions, as are red, green and blue.

luminance

chrominance

Color Balance and Saturation

Uniform changes in color components result in change of tint.

If all G pixel values are multiplied by a > 1 then the image takes a green cast.

Color Transformations

Image aging: a transformation, Φ , that mapped:

4. The Fourier transform

Let I(r,c) be a single-band (intensity) digital image with R rows and C columns. Then, I(r,c) has Fourier representation

$$I \ r, c = \sum_{u=0}^{R-1} \sum_{v=0}^{C-1} \mathfrak{G} \ u, v \ e^{+i2\pi \left(\frac{ur}{R} + \frac{vc}{C}\right)},$$

where
$$\mathfrak{G} \ u, v = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} I(r, c) \ e^{-i2\pi \left(\frac{ur}{R} + \frac{vc}{C}\right)}$$

these complex
exponentials are 2D sinusoids.

are the R x C Fourier coefficients.

4. The Fourier transform

2D Sinusoids:
$$I r, c = \frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} \left(\frac{c}{C} \cos \theta - \frac{r}{R} \sin \theta \right) + \varphi \right] + 1 \right\}$$

... are plane waves with grayscale amplitudes, periods in terms of lengths, ...

 ϕ = phase shift

4. The Fourier transform

2D Sinusoids:

... specific orientations, and phase shifts.

4. The Fourier transform

The Value of a Fourier Coefficient ...

4. The Fourier transform

The Sinusoid from the Fourier Coeff. at (u,v)

The Fourier Transform of an Image

 $\angle[\mathfrak{F}\{I\}]$

4. The Fourier transform

Continuous Fourier Transform

4. The Fourier transform

Discrete Fourier Transform

The discrete Fourier transform assumes a digital image exists on a closed surface, a torus.

Sums of shifted and weighted copies of images or Fourier transforms.

Convolution Property of the Fourier Transform

Let functions f(r,c) and g(r,c) have Fourier Transforms F(u,v) and G(u,v). Then,

$$\mathcal{F}\{f \ast g\} = F \cdot G.$$

Moreover,

$$\mathcal{F}\{f \cdot g\} = F * G.$$

* represents convolutio n

· represents pointwise multiplication

Then, a spatial convolution can be computed by

$$f * g = \mathcal{F}^{-1} \mathcal{H} \cdot G$$

The Fourier Transform of a product equals the convolution of the Fourier Transforms. Similarly, the Fourier Transform of a convolution is the product of the Fourier Transforms

Sampling, Aliasing, & Frequency Convolution

Sampling, Aliasing, & Frequency Convolution

(a) aliased(b) power spectrum(c) unaliased(d) power spectrum

6. Image sampling, warping, and stitching

Resampling

(resizing)

bicubic interpolation

bicubic interpolation

6. Image sampling, warping, and stitching

6. Image sampling, warping, and stitching

7. Frequency Domain (FD) Filtering

Low-pass Filter

Original Image

Power Spectrum

Gaussian LPF

7. Frequency Domain (FD) Filtering

Low-pass Filter

Filtered Image

Filtered Power Spectrum

Original Image

7. Frequency Domain (FD) Filtering

High-pass Filter

Filtered Image

Filtered Power Spectrum

Original Image

8. Spatial Filtering

blurred

original

sharpened

band-pass filter

8. Spatial Filtering

regional

original

zoom

rotational

blurred image

color noise

color-only blur

blurred image

color noise

5x5 Wiener filter

periodic noise

original

frequency tuned filter

Shot Noise or Salt & Pepper Noise

+ shot noise

s&p noise

- shot noise

Nonlinear Filters: the Median

original

s&p noise

median filter

Nonlinear Filters: Min and Maxmin

+ shot noise

min filter

maxmin filter

Nonlinear Filters: Max and Minmax

- shot noise

max filter

min-max

Nonlinear Processing: Binary Morphology

Foreground: white pixels Background: black pixels Cross-hatched pixels are indeterminate.

Nonlinear Processing: Binary Morphology

•Used after opening to grow back pieces of the original image that are connected to the opening.

•Permits the removal of small regions that are disjoint from larger objects without distorting the small features of the large objects.

original

opened

Nonlinear Processing: Grayscale Morphology

Foreground: white pixels Background: black pixels

Cross-hatched pixels are indeterminate.

under exposed

default exposure

over exposed

combined

References

Textbooks

D. Forsyth, J. Ponce Computer Vision – A Modern Approach Prentice Hall, 2002

Computer

Vision

R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004 SECOND EDITION

Multiple View Geometry

in computer vision

Richard Hartley and Andrew Zisserman

-Thumanati