INTRODUCTION TO CHEMISTRY CHEM 101

Lecture Presentation

Chapter 5

Aqueous Solutions and Acids-Bases
 Equilibria

Topic 16

>Chemical Equilibrium

> Le Châtelier's Principle

Chemical Equilibrium: An Introduction

Dynamic Equilibrium is the condition in which the rate of the forward reaction equals the rate of the reverse reaction:

$$
\text { Rate }_{\text {forward }}=\text { Rate }_{\text {reverse }}
$$

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

\checkmark As H_{2} and I_{2} react, their concentrations decrease, which in turn decreases the rate of the forward reaction.
\checkmark At the same time, the concentration of HI increases, increasing the rate of the reverse reaction.
\checkmark At a certain point, the rate of the reverse reaction, $\mathbf{R}_{\mathbf{r}}$ (which has been increasing) equals the rate of the forward reaction, $\mathbf{R}_{\mathbf{f}}$ (which has been decreasing). At that point, dynamic equilibrium is reached.

5.1 The Concept of Dynamic Equilibrium

A reversible reaction

at 0 min

Time \longrightarrow

As concentration of product increases, and concentrations of reactants decrease, rate of forward reaction slows down, and rate of reverse reaction speeds up.

Dynamic equilibrium: Rate of forward reaction $=$ rate of reverse reaction. Concentrations of reactant(s) and product(s) no longer change.

5.1 The Concept of Dynamic Equilibrium

Chemical Equilibrium \neq Equal Concentrations!

At equilibrium, the rates of the forward $\left(\boldsymbol{R}_{\mathrm{f}}\right)$ and reverse $\left(\boldsymbol{R}_{\mathrm{r}}\right)$ reactions are equal:
$\checkmark R_{\mathrm{f}}=R_{\mathrm{r}}$: DOES NOT mean that the concentrations of reactants and products are equal in value!

5.2 The Equilibrium Constant: K_{c} or $K_{e q}$

Equilibrium Constant ($\boldsymbol{K}_{\mathrm{c}}$ or $\boldsymbol{K}_{\text {eq }}$): expresses the relationship between the amounts of products and reactants of a reaction at equilibrium.

Expressing K_{c} or $K_{\text {eq }}$:

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

Where A and B are reactants, C and D are products, and a, b, c, and d are the coefficients in the balanced chemical equation:


```
Notes:
1- Each square bracket [ ... ] means the
concentration:
Example: [A] = molar concentration of "A"
(mol/L).
2- Equilibrium constant ( }\mp@subsup{K}{\textrm{eq}}{}\mathrm{ ) has no units.
```


Expressing Equilibrium Constants $\left(K_{\text {eq }}\right)$ for Chemical Reactions: Example 1

Example: write the equilibrium expression for the reaction:

Notice that the coefficients in the chemical equation become exponents in the equilibrium expression.
\checkmark Therefore, all equations must be balanced first!

Expressing Equilibrium Constants $\left(K_{e q}\right)$ for Chemical Reactions: Example 2

Example: Express the equilibrium constant for the following chemical equation:

$$
\mathrm{CH}_{3} \mathrm{OH}(g) \rightleftharpoons \mathrm{CO}(g)+2 \mathrm{H}_{2}(g)
$$

Answer:

$$
K=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}
$$

Expressing Equilibrium Constants $\left(K_{e q}\right)$ for Chemical Reactions: Exercises

Write the equilibrium constant expression $K_{\text {eq }}$ for the following balanced chemical equations:
a)

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Answer: $K_{e q}=$
b) $\quad 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g)$

Answer: $K_{e q}=$
c)
$2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$

Answer: $K_{e q}=$

5.4 Heterogeneous Equilibria: Reactions Involving Solids or Liquids

> Many chemical reactions involve pure solids or pure liquids as reactants or products.

Consider the reaction: $2 \mathrm{CO}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\left\{\mathrm{CH}^{(s)}\right\}$
A Heterogeneous Equilibrium

$$
2 \mathrm{CO}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\mathrm{C}(s)
$$

5.4 Heterogeneous Equilibria: Reactions Involving Solids or Liquids

> For the previous reaction, we might expect the expression for the equilibrium constant to be:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right][\mathrm{C}]}{[\mathrm{CO}]^{2}} \quad \text { (incorrect) }
$$

The concentration of a solid does not change, because a solid does NOT expand to fill its container. A solid's concentration, therefore, depends only on its density, which is constant.
> The correct equilibrium expression is:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]^{2}} \quad(\text { correct })
$$

Similarly, the concentration of a pure liquid does not change. So, pure liquids are also excluded from the equilibrium expression.

5.4 Heterogeneous Equilibria: Example 1

Express the equilibrium constant K_{c} for the reaction:

$$
\mathrm{CO}_{2}(g)+\underbrace{\mathrm{H}_{2} \mathrm{O}(\ell)}) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
$$

Answer:

Since $\mathrm{H}_{2} \mathrm{O}$ is pure liquid, it is omitted from the equilibrium expression:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}
$$

5.4 Heterogeneous Equilibria: Example 2

Write the equilibrium constant expression K_{c} for the reaction:

Answer:

Since $\mathrm{CaCO}_{3}(s)$ and $\mathrm{CaO}(\mathrm{s})$ are both solids, you omit them from the equilibrium expression:

$$
K_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]
$$

5.4 Heterogeneous Equilibria: Exercises

Write the equilibrium constant expression $K_{\text {eq }}$ for the following reactions:
a) $\quad 2 \mathrm{Na}(s)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{NaBr}(s)$

Answer: $K_{e q}=$
b) $\quad 2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{AlCl}_{3}(s)$

Answer: $K_{e q}=$
c) $\quad \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) \rightleftharpoons 4 \mathrm{PCl}_{3}(l)$

Answer: $K_{e q}=$

Summarizing The Significance of $\left(K_{e q}\right)$ Values

$>$ When $K_{\text {eq }} \gg 1$: Forward reaction is favored (the reaction moves right).
\checkmark The position of equilibrium favors products.
$>$ When $K_{\text {eq }} \ll 1$: Reverse reaction is favored (the reaction moves left).
\checkmark The position of equilibrium favors reactants.
$>$ When $K_{\text {eq }} \approx 1$: Neither direction is favored.
\checkmark Reactants and products are present at equilibrium, i.e. neither reactants nor products are favored.

5.5 Calculating the $K_{\text {eq }}$ from Measured Equilibrium Concentrations

Consider the reaction:
 $$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

Suppose a mixture of $\mathbf{H}_{\mathbf{2}}$ and \mathbf{I}_{2} is allowed to come to equilibrium at $445{ }^{\circ} \mathrm{C}$.
The measured concentrations at equilibrium were:

$$
\left[\mathrm{H}_{2}\right]=0.11 \mathrm{M}, \quad\left[\mathrm{I}_{2}\right]=0.11 \mathrm{M}, \quad[\mathrm{HI}]=0.78 \mathrm{M}
$$

What is the value of the equilibrium constant at this temperature? and predict whether reactants or products will be favored at equilibrium.

Answer:

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.78^{2}}{(0.11) \times(0.11)}=50 \quad \text { (Forward, products are favored) }
$$

5.5 Calculating the $K_{\text {eq }}$ from Measured Equilibrium Concentrations

Example: Determine the $\boldsymbol{K}_{\mathrm{c}}$ value using the following concentrations at equilibrium for the chemical reaction below, and predict whether reactants or products will be favored at equilibrium:

$$
2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)
$$

$[\mathrm{NOCl}]_{\text {eq }}=1.34 \mathrm{M},[\mathrm{NO}]_{\text {eq }}=0.66 \mathrm{M},\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=0.33 \mathrm{M}$

Solution: $\quad K_{\mathrm{c}}=[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right] /[\mathrm{NOCl}]^{2}$

$$
\begin{aligned}
& K_{\mathrm{c}}=\left([0.66]^{2}[0.33]\right) /[1.34]^{2} \\
& K_{\mathrm{c}}=(0.144) /(1.80) \\
& K_{\mathrm{c}}=0.0801 \quad(\text { Reverse, i.e. reactants are favored })
\end{aligned}
$$

Chemical Equilibrium: Assessment

Write the correct expression of the equilibrium constant $\boldsymbol{K}_{\boldsymbol{e q}}$ for each chemical reaction:

1) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{4}(g)$
2) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g)$
3) $2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$
4) $\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{OH}^{-}(a q)$
5) $2 \mathrm{KClO}_{3}(s) \rightleftharpoons 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(\mathrm{~g})$
6) $\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(t) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$
7) $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$
8) $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{COCl}_{2}(g)$

5.6 Le Châtelier's Principle: How a System at Equilibrium Responds to Disturbances

Le Châtelier's Principle: When a chemical system at equilibrium is disturbed (or stressed); the system shifts in a direction that minimizes the disturbance.

In other words, a system at equilibrium tends to maintain equilibrium, it bounces back when disturbed: "Restoring Balance"

5.6 Le Châtelier's Principle: Factors Affecting Equilibrium

We can disturb a system in chemical equilibrium in different ways, including:
\checkmark Changing the concentration of a reactant or a product.
$\checkmark \quad$ Changing the volume (or pressure).

Changing the temperature.

The Effect of Concentration Change on Equilibrium

Consider this reaction in chemical equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

Suppose we disturb the equilibrium by adding NO_{2} to the equilibrium mixture, What happens? According to Le Châtelier's principle, the system will shift in a direction to minimize the disturbance. The reaction goes to the left side (it proceeds in the reverse direction)

The Effect of Concentration Change on Equilibrium: Example

On the other hand, what happens if we add more $\mathrm{N}_{2} \mathrm{O}_{4}$? In this case, the reaction shifts to the right side (it proceeds in the forward direction), consuming some of the added $\mathrm{N}_{2} \mathrm{O}_{4}$ and bringing its concentration back down (restoring equilibrium)

```
Add N}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{4}{
    N2}\mp@subsup{\textrm{O}}{4}{}(g)\rightleftharpoons2\mp@subsup{\textrm{NO}}{2}{}(g
Reaction shifts right.
```

Important Note: adding or removing solid (s) or pure liquid ($)$ substances does NOT affect the equilibrium position - Because their concentrations are not changed!
$>$ Example: $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
In this reaction, increasing or decreasing CaCO_{3} or (CaO) will not cause any change to the equilibrium.
> Exercise: In the following reaction, what would be the effect of adding more $\mathrm{H}_{2} \mathrm{O}$?

$$
4 \mathrm{HCl}(a q)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cl}_{2}(g)
$$

Answer: No Effect.

The Effect of Volume (or Pressure) Change on Equilibrium

> An increase in pressure (or a decrease in volume) will cause the system to shift to the side with the fewest gas moles.
> A decrease in pressure (or a increase in volume) will cause the system to shift to the side with the most gas moles.

Note: changing pressure or volume does NOT affect the equilibrium in reactions with no gases included (either in reactants, products, or in both) - because only gases are compressible.

The Effect of Volume (or Pressure) Change on Equilibrium: Example

Le Châtelier's Principle: Changing Pressure

The Effect of Volume (or Pressure) Change on Equilibrium: Examples

1- Indicate weather the formation or the decomposition of MgCO_{3} would occur faster if the overall pressure is increased:

$$
\begin{aligned}
M g C O_{3(s)} & \rightleftharpoons M g O_{(s)}+C O_{2(g)} \\
0 \text { moles of gase } & \rightleftharpoons 1 \text { mole of gase }
\end{aligned}
$$

Answer: The reverse reaction is favored (shifts left), meaning that the formation of MgCO_{3} will occur faster than its decomposition.

2- In which direction will the reaction shift if the pressure is decreased:

$$
\begin{aligned}
2 N O C l_{(g)} & \rightleftharpoons 2 N O_{(g)}+C l_{2(g)} \\
2 \text { moles of gase } & \rightleftharpoons 3 \text { mole of gase }
\end{aligned}
$$

Answer: The reaction will shift towards products, i.e. favors forward reaction (shifts right).

3- Predict the effect of reducing pressure on the amount of HBr produced:

$$
\begin{aligned}
H_{2(g)}+B r_{2(g)} & \rightleftharpoons 2 H B r_{(g)} \\
2 \text { moles of gase } & \rightleftharpoons 2 \text { moles of gase }
\end{aligned}
$$

Answer: No effect (because equal moles of gases are present on both sides).

The Effect of Temperature Change on Equilibrium

If the temperature at equilibrium changes, the system should shift in the direction to counter that change, so if the temperature at equilibrium increases that tends to decrease the temperature and vice versa.

Exothermic Reaction emits heat ($\Delta \mathrm{H}=-$). We can think of heat as a "product":

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}+\text { heat } \quad(\Delta \mathrm{H}=-)
$$

Endothermic Reaction absorbs heat ($\Delta \mathrm{H}=+$). We can think of heat as a "reactant":

$$
\mathrm{A}+\mathrm{B}+\text { heat } \rightleftharpoons \mathrm{C}+\mathrm{D} \quad(\Delta \mathrm{H}=+)
$$

The Effect of Temperature Change on Equilibrium: Exam ple

> At constant pressure, raising the temperature of an exothermic reaction (think of this as adding heat), causes the reaction to shift left.

- Example:

> Conversely, lowering the temperature of an exothermic reaction (think of this as removing heat), causes the reaction to shift right.
- Example:

Reaction shifts right. Larger K

Le Châtelier's Principle: Assessment

1. Consider the reaction at equilibrium: $2 \mathrm{KClO}_{3}(s) \rightleftharpoons 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

Predict whether the reaction will shift left, shift right, or remain unchanged upon each disturbance.
a. O_{2} is removed
b. KCl is added
c. KClO_{3} is added
d. O_{2} is added
2. This reaction is endothermic. $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$

Predict the effect (shift right, shift left, or no effect) of increasing and decreasing the reaction temperature.
3. Each reaction is allowed to come to equilibrium and then the volume is changed as indicated. Predict the effect
a. $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$ (volume is increased)
b. $2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g)$ (volume is decreased)
c. $\mathrm{I}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{ICl}(g)$ (volume is decreased)
d. $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)$ (volume is increased)
4. Consider the reaction at equilibrium:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+\text { heat }
$$

Predict whether the reaction will shift left, shift right, or remain unchanged upon each disturbance.
a. adding N_{2}
b. decreasing H_{2}
c. increasing volume
d. increasing pressure
e. cooling down
f. heating up

INTRODUCTION TO CHEMISTRY CHEM 101

The Unified Scientific Track

Lecture Presentation

Chapter 5

Aqueous Solutions

 and Acids-Bases Equilibria
Topic 17

The Nature of Acids \&
Bases

5.7 The Nature of Acids and Bases

General
 Properties of Acids

- Sour taste
- React with "active" metals
- e.g. Al, Zn, Fe, but not Cu, Ag, or Au
- Corrosive
- React with carbonates, producing CO_{2}
- Marble, baking soda, chalk, limestone
$\mathrm{CaCO}_{3}+\mathbf{2 ~ H C l} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- Blue litmus turns red.
- React with bases to form ionic salts:
- Neutralization Reaction

General
Properties of Bases "alkalis"

- Taste bitter
- e.g. Alkaloids = plant product that is alkaline
- Often poisonous
- Solutions feel slippery to touch.
- Gelatinous texture
- Red litmus turns blue.
- React with acids to form ionic salts:
- Neutralization Reaction

Some Common Acids

Table 5.1: Some Common Acids	
Name	Occurrence/Uses (See only, not for memorizing!)
Hydrochloric acid (HCl)	Metal cleaning; main component of stomach acid
Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	Fertilizer; dye and glue; automobile batteries
Nitric acid $\left(\mathrm{HNO}_{3}\right)$	Fertilizer; dye and glue manufacturing
Hydrofluoric acid (HF)	Metal cleaning; glass frosting
Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO} \mathbf{O}_{4}\right)$	Fertilizers, biological buffers, preservatives
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	Plastic \& rubber; active component of vinegar
Citric acid $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}(\mathrm{COOH})_{3}\right]$	Present in citrus food such as lemon and limes
Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO} \mathbf{O}_{3}\right)$	Found in carbonated beverage

Occurrence/Uses of those acids are not for memorizing!

Some Common Bases

Table 5.2 Some Common Bases	
Name	Occurrence/Uses (See only, not for memorizing!)
Sodium hydroxide (NaOH)	Soap and plastic manufacturing
Potassium hydroxide (KOH)	Cotton processing, soap production, batteries
Sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$	Antacid, ingredient of baking soda
Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$	Manufacturing of glass and soap, water softener
Ammonia $\left(\mathrm{NH}_{3}\right)$	Detergent, fertilizer \& fiber production

Occurrence/Uses of those bases are not for memorizing!

5.8 Definitions of Acids and Bases

We will examine three definitions of acids and bases:

$>$ The Arrhenius definition
> The Brønsted-Lowry definition
> The Lewis definition

5.8 Definitions of Acids and Bases: The Arrhenius Definition

The Arrhenius Definition

$>$ Acid: a substance that dissociates (ionizes) to produce H^{+}ions in aqueous solutions.

For example: under the Arrhenius definition HCl is an acid because it produces H^{+}ions in solution:

$$
\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

$>$ Base: a substance that dissociates (ionizes) to produces OH^{-}ions in aqueous solutions.
For example: under the Arrhenius definition NaOH is a base because it produces OH^{-}ions in solution:

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Arrhenius Acid

Arrhenius Base

NaOH

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

The Hydronium Ion: $\mathrm{H}_{3} \mathrm{O}^{+}$

$>$ In aqueous solutions, H^{+}ion attaches itself to $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{H}_{3} \mathrm{O}^{+}$ or "hydronium ion":

$$
\mathrm{H}^{+}+\stackrel{\ddot{\mathrm{O}}}{\ddot{\mathrm{O}}} \mathrm{H} \longrightarrow\left[\begin{array}{c}
\mathrm{H} \\
\mathrm{H}: \ddot{\mathrm{O}}: \mathrm{H}
\end{array}\right]^{+}
$$

Examples:

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathbf{O}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
& \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{HSO}_{4}^{-}(a q)+\mathbf{H}_{3} \mathbf{O}^{+}(a q)
\end{aligned}
$$

Notice: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in aqueous solutions

Acid - Base Neutralization

Neutralization Reaction:

Under the Arrhenius definition, acid and base react together forming (water + salt), neutralizing each other:

Acid + Base $\rightarrow \mathbf{H}_{\mathbf{2}} \mathbf{O}$ + Salt

Examples:

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q) \\
& 2 \mathrm{HNO}_{3}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q) \\
& \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{KOH}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{K}_{2} \mathrm{SO}_{4}(a q)
\end{aligned}
$$

Classifying Acids by The Number of H^{+}

> Monoprotic Acids: contain only one ionizable proton H^{+}:
\checkmark For examples, HCl and HNO_{3} contain only one ionizable proton, each:

$$
\begin{aligned}
& \mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
& \mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
\end{aligned}
$$

> Polyprotic Acids: contain more than one ionizable proton H^{+}and release them sequentially:
\checkmark For example $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a diprotic acid: contains two ionizable protons H^{+}.
\checkmark Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is a triprotic acid: contains three ionizable protons H^{+}.

Strong and Weak Acids and bases: Common Examples

TABLE 5.3 Some Common Acids and Bases

Name of Acid	Formula	Name of Base	Formula
Hydrochloric acid Hydrobromic acid Hydroiodic acid Nitric acid Sulfuric acid Perchloric acid Acetic acid Hydrofluoric acid		Sodium hydroxide Lithium hydroxide Potassium hydroxide Calcium hydroxide Barium hydroxide Ammonia*	NaOH LiOH KOH $\mathrm{Ca}(\mathrm{OH})_{2}$ $\mathrm{Ba}(\mathrm{OH})_{2}$ NH_{3} (weak base) \quad Strong

> Important: Those examples on strong and weak acids and bases are to be carefully memorized!

Definitions of Acids and Bases: The Brønsted-Lowry Definition

Brønsted-Lowry definition of acids and bases: focuses on the
transfer of \mathbf{H}^{+}ion in an acid-base reaction:
$>$ Acid: is a proton $\left(\mathbf{H}^{+}\right)$donor
> Base: is a proton $\left(\mathrm{H}^{+}\right)$acceptor

Definitions of Acids and Bases: The Brønsted - Lowry Definition

Under the Brønsted-Lowry definition, acids (proton donors) and bases (proton acceptors) always occur together:
> Example 1:

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

$\checkmark \mathrm{HCl}=$ acid, donates H^{+}(proton donor)
$\checkmark \mathrm{H}_{2} \mathrm{O}=$ base, accepts H^{+}(proton accepter)
> Example 2:

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$\checkmark \mathrm{NH}_{3}=$ base, accepts H^{+}(proton accepter)
$\checkmark \mathrm{H}_{2} \mathrm{O}=$ acid, donates H^{+}(proton donor)

Note: water in those two examples acted as an acid and as a base!
> A substance that can act as an acid and as a base is called:
"amphoteric substance"

The Brønsted-Lowry Definition: Conjugate Acid - Base Pairs

A conjugate acid-base pair consists of two substances related to each other by the transfer of a proton $\left(\mathrm{H}^{+}\right)$:

Example: $\quad \mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

\checkmark A base accepts a proton and become a conjugate acid
\checkmark An acid donates a proton and become a conjugate base.

The Brønsted-Lowry Definition: Conjugate Acid - Base Pairs

EXAMPLE 5.4 Identifying Brønsted-Lowry Acids and Bases and Their Conjugates

Identify the Brønsted-Lowry acid, the Brønsted-Lowry base, the conjugate acid, and the conjugate base in each reaction.
(a) $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
(b) $\mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)$

SOLUTION

(a) Since $\mathrm{H}_{2} \mathrm{SO}_{4}$ donates a proton to $\mathrm{H}_{2} \mathrm{O}$ in this reaction, it is the acid (proton donor). After $\mathrm{H}_{2} \mathrm{SO}_{4}$ donates the proton, it becomes $\mathrm{HSO}_{4}{ }^{-}$, the conjugate base. Since $\mathrm{H}_{2} \mathrm{O}$ accepts a proton, it is the base (proton acceptor). After $\mathrm{H}_{2} \mathrm{O}$ accepts the proton it becomes $\mathrm{H}_{3} \mathrm{O}^{+}$, the conjugate acid.
(b) Since $\mathrm{H}_{2} \mathrm{O}$ donates a proton to $\mathrm{HCO}_{3}{ }^{-}$in this reaction, it is the acid (proton donor). After $\mathrm{H}_{2} \mathrm{O}$ donates the proton, it becomes OH^{-}, the conjugate base. Since $\mathrm{HCO}_{3}{ }^{-}$accepts a proton, it is the base (proton acceptor). After $\mathrm{HCO}_{3}{ }^{-}$accepts the proton it becomes $\mathrm{H}_{2} \mathrm{CO}_{3}$, the conjugate acid.

5.9 Acid Strength

> A Strong acid: completely ionizes in the solution.
> A Weak acid: partially ionizes in the solution.
\checkmark Example on strong acids: Hydrochloric acid (HCl):

A Strong Acid

5.9 Acid Strength

A 1.0 M HCl solution will have an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of 1.0 M
$\mathrm{HCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(I)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}(a q)$
$1.0 \mathrm{M} \quad 1.0 \mathrm{M}$
we say that 1.0 M HCl solution has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \mathrm{M}$.

TABLE 5.4 Strong Acids

Hydrochloric acid (HCI)
Hydrobromic acid (HBr)
Hydriodic acid (HI)

Nitric acid $\left(\mathrm{HNO}_{3}\right)$
Perchloric acid $\left(\mathrm{HClO}_{4}\right)$
Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ (diprotic)

5.9 Acid Strength

Weak acids: in contrast of $\mathrm{HCl}, \mathrm{HF}$ is an example of a weak acid, one that does not completely ionize in solution:

A Weak Acid
An HF solution contains a lot of intact (unionized) HF molecules; it also contains some $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$ and $\mathrm{F}^{(a q)}$. In other words, a 1.0 M HF solution has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$that is less than 1.0 M because only some of the HF molecules ionize to form $\mathrm{H}_{3} \mathrm{O}^{+}$.

5.9 Acid Strength

TABLE 5.4 Some Weak Acids

Hydrofluoric acid (HF)
Acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$
Formic acid $\left(\mathrm{HCHO}_{2}\right)$

Sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ (diprotic)
Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ (diprotic)
Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ (triprotic)

Two of the weak acids above are diprotic, meaning they have two ionizable protons, and one is triprotic (three ionizable protons).

Notice that: although acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ contains 4 hydrogen atoms in its formula, it's a monoprotic acid, because only one of the four hydrogens is "ionizable"

The pH Scale: A Way to Quantify Acidity and Basicity

The pH scale: is a compact way to specify the acidity of a solution. We define pH as:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \text {or } \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

For example, a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$ has a pH of $-\log 1.0 \times 10^{-3}=-(-3.0)=3.0$ (Acidic)
> In general:

$\mathbf{p H}<7.0$	Solution is acidic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
$\mathbf{p H}=7.0$	Solution is neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\mathbf{p H}>7.0$	Solution is basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Self-Ionization of Water

Self-Ionization of Water:

$$
\mathrm{H}_{2} \mathrm{O}_{(I)} \quad \leftrightarrows \quad \mathrm{H}^{+}(a q)+\mathrm{OH}_{(a q)}^{-}
$$

- Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]$
- The product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$is called: ionic product of water $\left(K_{\mathrm{w}}\right)$:

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times \mathbf{1 0}^{-14}
$$

Example:
In a sample of juice at $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]=4.6 \times 10^{-4} \mathrm{M}$. Find $\left[\mathrm{OH}^{-}\right]$:

$$
\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}}=2.17 \times 10^{-11} \mathrm{M}
$$

The pH Values of Some Common Substances

See only, not for memorizing!

TABLE 5.6 The pH of Some	
Common Substances	
Substance	pH
Gastric juice (human	$1.0-3.0$
\quad stomach)	
Limes	$1.8-2.0$
Lemons	$2.2-2.4$
Plums	$2.8-3.0$
Apples	$2.9-3.3$
Peaches	$3.4-3.6$
Cherries	$3.2-4.0$
Rainwater (unpolluted)	5.6
Human blood	$7.3-7.4$
Egg whites	$7.6-8.0$
Milk of magnesia	10.5
Household ammonia	$10.5-11.5$
4\% NaOH solution	14

Notes

1) Since the $\mathbf{p H}$ scale is a logarithmic scale, a change of $1 \mathbf{p H}$ unit corresponds to a 10 fold change in $\mathrm{H}_{3} \mathrm{O}^{+}$concentration:

- For example, a lime with a $\mathbf{p H}$ of 2.0 is 10 times more acidic than a plum with a $\mathbf{p H}$ of 3.0

2) Highly concentrated acidic solutions can have a negative pH :

- Example: if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2 \mathrm{M} \rightarrow \mathrm{pH}=-\log (2)=-0.3$

The pH Scale: рн and рон scales

> As mentioned before, the $\mathbf{p H}$ values are calculated using the equation:

$$
\mathbf{p}^{\mathbf{H}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$>$ There is also a $\mathbf{p O H}$ scale, based on the hydroxide ion concentration $\left[\mathrm{OH}^{-}\right]$with the equation:

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

> For any aqueous solution, $\mathbf{p H}$ and $\mathbf{p O H}$ are related by:

$$
\mathrm{pH}+\mathrm{pOH}=\mathbf{1 4}
$$

The pH Scale: Practice

Example: Calculating pH from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or [OH^{-}]:

Calculate the pH of a solution at $25^{\circ} \mathrm{C}$ and indicate whether the solution is acidic or basic, if:

$$
\begin{array}{ll}
\text { (a) }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-4} \mathrm{M} & \text { (b) }\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-2} \mathrm{M}
\end{array}
$$

Solution:

(a) When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-4} \mathrm{M}$:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}\right]=-\log \left(1.8 \times 10^{-4}\right)=-(-3.74)=3.74$
Since $\mathrm{pH}<7$, the solution is acidic.
(b) When $\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-\mathbf{2}} \mathrm{M}$:
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log \left(1.3 \times 10^{-2}\right)=1.88$
Using $\mathrm{pH}+\mathrm{pOH}=14$, we get $\mathrm{pH}=14-\mathrm{pOH}$
Then: $(14.0)-(1.88)=12.12$
Since $\mathrm{pH}>7$, the solution is basic.

The pH Scale: Practice

EXAMPLE 5.6 Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH

Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration for a solution with a pH of 4.80 .

SOLUTION

To find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pH , start with the equation that defines pH . Substitute the given value of pH and then solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. Since the given pH value is reported to two decimal places, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is written to two significant figures. (Remember that $10^{\log x}=x$. Some calculators use an inv \log key to represent this function.)

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
4.80 & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
-4.80 & =\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
10^{-4.80} & =10^{\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
10^{-4.80} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1.6 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

The pH Scale

5.10 Base Solutions

> A Strong Base is one that completely NaOH . It all has dissociated to form $\mathrm{Na}^{+}{ }_{(a q)}$ and $\mathrm{OH}^{-}{ }_{(a q)}$

$$
\begin{array}{ll}
\text { TABLE 5.7 Strong Bases } & \\
\hline \text { Lithium hydroxide }(\mathrm{LiOH}) & \text { Strontium hydroxide }\left[\mathrm{Sr}(\mathrm{OH})_{2}\right] \\
\text { Sodium hydroxide }(\mathrm{NaOH}) & \text { Calcium hydroxide }\left[\mathrm{Ca}(\mathrm{OH})_{2}\right] \\
\text { Potassium hydroxide }(\mathrm{KOH}) & \text { Barium hydroxide }\left[\mathrm{Ba}(\mathrm{OH})_{2}\right] \\
\hline
\end{array}
$$

5.10 Base Solutions

Bases containing two OH^{-}ions dissociate in one step. For example, $\mathrm{Sr}(\mathrm{OH})_{2}$ dissociates as follows:

$$
\mathrm{Sr}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{Sr}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)
$$

Calculate the pH of $0.011 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$:

$$
\mathrm{Ca}(\mathrm{OH})_{2}(s)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)
$$

- $\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=2 \times 0.011 \mathrm{M}=0.022 \mathrm{M}$

$$
\begin{aligned}
& \mathbf{p O H}=-\log (0.022)=1.66 \\
& \mathbf{p H}=14-\mathbf{p O H}=14-1.66=\mathbf{1 2 . 3 4}
\end{aligned}
$$

- Calculate $\left[\mathrm{H}^{+}\right]$in the solution?

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-12.34}=4.6 \times 10^{-13} \mathrm{M}
$$

5.10 Base Solutions

A Weak Base: a substance that produces OH^{-} by accepting a proton from water (i.e. ionizing water to form OH^{-}).

- Ammonia, for example, ionizes water as follows:

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

\checkmark The common element in most weak bases is a " N atom" with a lone pair of electrons.
\checkmark The lone pair accepts a proton and makes the substance a base.
\checkmark As shown in the reactions of ammonia $\left(\mathrm{NH}_{3}\right)$:

A Weak Base

Buffers (Buffered Solutions)

> Buffers (or buffered solutions) are solutions that resist drastic changes in their pH when small amounts of strong acids or bases are added to them.
\checkmark Buffers contain weak conjugate acid-base pairs.
\checkmark Human blood, for example, is a complex buffered solution that maintain the blood pH at about 7.4.
> Buffers are often prepared by mixing a weak acid (or a weak base) with a salt of that acid or base:
> Examples on buffers (See only, not for memorizing!):

- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$ (weak acid + its salt) $=$ buffer
- $\mathrm{HF}+\mathrm{NaF}$ (weak acid + its salt) $=$ buffer
- $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$ (weak base + its salt) $=$ buffer

5.12 Definitions of Acids and Bases: Lewis Acids and Bases

Lewis defined acids and bases as:
> Lewis acid: electron pair acceptor
> Lewis base: electron pair donor
\checkmark The product of a Lewis acid-base reaction is sometimes called: adduct):
$\underset{\text { Lewis acid }}{\mathrm{BF}_{3}}+\underset{\text { Lewis base }}{: \mathrm{NH}_{3}} \longrightarrow \underset{\text { adduct }}{\mathrm{F}_{3} \mathrm{~B}: \mathrm{NH}_{3}}$
\checkmark A Lewis acid has an empty orbital (or can rearrange electrons to create an empty orbital) that can accept an electron pair.

Important Examples (to be memorized):
\checkmark Lewis acids: $\mathrm{BF}_{3}, \mathrm{AlCl}_{3}$ and CO_{2}
\checkmark Lewis bases: $\mathbf{N H}_{3}, \mathbf{F}^{-}, \mathbf{O H}^{-}$and $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

5.12 Lewis Acids and Bases: Examples

Example 1: NH_{3} (Lewis base) $+\mathrm{BF}_{3}$ (Lewis acid)

5.12 Lewis Acids and Bases: Examples

Example 2: $\mathrm{H}_{2} \mathrm{O}$ (Lewis base) $+\mathrm{CO}_{2}$ (Lewis acid)

Example 3: AICl_{3} (Lewis acid) $+\mathrm{NH}_{3}$ (Lewis base)

Lewis acid

> Lewis base

Assessment

1. For each strong base solution, determine $\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}$, and pOH .
a. 0.15 M NaOH
b. $1.5 \times 10^{-3} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
c. $4.8 \times 10^{-4} \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$
d. $8.7 \times 10^{-5} \mathrm{M} \mathrm{KOH}$
2. Determine the $\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH of a $0.15 \mathrm{M} \mathrm{HCl}(a q)$
3. For each reaction, identify the Brønsted-Lowry acid, the Brønsted-Lowry base, the conjugate acid, and the conjugate base.
a. $\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}{ }^{-}(a q)$
b. $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$
c. $\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}{ }^{-}(a q)$
4. Write the formula for the conjugate base of each acid.
a. HCl
b. $\mathrm{H}_{2} \mathrm{SO}_{3}$
c. HCHO_{2}
d. HF
5. Determine the $\left[\mathrm{OH}^{-}\right]$and pH of a solution that is $0.140 \mathrm{M} \mathrm{HBr}_{(a q)}$
6. Classify each species as either a Lewis acid or a Lewis base.
a. Fe^{3+}
b. BH_{3}
c. NH_{3}
d. F^{-}

Lanthanides 6	$\begin{gathered} \text { Cerium } \\ 140.1 \\ \hline \end{gathered}$		N^{60} Neodymium 144.2	$\stackrel{61}{\mathrm{Pm}}$ Promethium (145)	$\underset{\substack{\text { Samarium } \\ 150.4}}{62}$	$\underset{\substack{\text { Europium } \\ 152.0}}{\mathrm{Eu}^{63}}$	$\underset{\substack{\text { Gadolinium } \\ 157.3}}{\text { G4d }}$	$\underset{\substack{\text { Terbium } \\ 158.9}}{\mathbf{T b}}$		${ }^{67}$ Holmium 164.9	${ }^{68}$ Erbium 167.3	$\underset{\substack{\text { Thulium } \\ 168.9}}{69}$			6
Actinides 7			$\underset{\substack{\text { Uranium } \\ 238.0}}{\mathbf{U 2}}$	$\underset{\substack{\text { Neptunium } \\(237)}}{\stackrel{93}{\mathrm{~Np}}}$	$\begin{gathered} 94 \\ \mathrm{Pu} \end{gathered}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{95}$	$\underset{\substack{\text { Curium } \\(247)}}{96}$	$\stackrel{97}{B k}$ Berkelium (247)	$\underset{\substack{\text { Californium } \\(251)}}{\stackrel{98}{\mathrm{Cf}}}$	$\underset{\substack{\text { Einsteinium } \\(252)}}{\text { ES }}$	$\underset{\substack{\text { Fermium } \\(257)}}{\mathrm{Fm}}$	${ }^{101}{ }^{10}$ Mendelevium (258)	$\stackrel{\substack{102 \\ \text { Nobelium } \\(259)}}{ }$	$\underset{\substack{\text { Lawrencium } \\(262)}}{103}$	7

