
Al Sham Private University

Faculty of Informatics Engineering

 جامعة الشام الخاصة

 كلية الهندسة المعلوماتية

 نظم معلومات موزعة
Distributed Information Systems

Lecture 4: Remote invocation

Request-reply protocols & Remote procedure call (RPC)

هسامغاندي . أ: اعداد

Introduction

• This chapter is concerned with how processes (or entities at a higher level of
abstraction such as objects or services) communicate in a distributed system.

• Request-reply protocols represent a pattern on top of message passing and
support the two-way exchange of messages as encountered in client-server
computing.

• The earliest and perhaps the best-known example of a more programmer-
friendly model was the extension of the conventional procedure call model
to distributed systems (the remote procedure call, or RPC, model).

• In the 1990s, the object-based programming model was extended to allow
objects in different processes to communicate with one another by means of
remote method invocation (RMI).

By Eng. Ghandy Hessam 2

Request-reply protocols

By Eng. Ghandy Hessam 3

• In the normal case, request-reply communication is synchronous
because the client process blocks until the reply arrives from the server.

• It can also be reliable because the reply from the server is effectively an
acknowledgement to the client.

• The client-server exchanges are described in the following paragraphs in
terms of the send and receive operations in the Java API for UDP
datagrams, although many current implementations use TCP streams.

 The request-reply protocol:

- The protocol we describe here is based on a three of communication
primitives, doOperation, getRequest and sendReply
- The doOperation method is used by clients to invoke remote operations.

By Eng. Ghandy Hessam 4

By Eng. Ghandy Hessam 5

HTTP: An example of a request-reply protocol

• used by web browser clients to make requests to web servers and to
receive replies from them.

• web servers manage resources implemented in different ways:
• as data – for example the text of an HTML page, an image or the class of an

applet;
• as a program – for example, servlets or PHP or Python programs that run on

the web server.

• Client requests specify a URL that includes the DNS hostname of a
web server and an optional port number on the web server as well as
the identifier of a resource on that server.

• HTTP is a protocol that specifies the messages involved in a request-
reply exchange, the methods, arguments and results, and the rules
for representing (marshalling) them in the messages.

By Eng. Ghandy Hessam 6

• HTTP is implemented over TCP. In the original version of the protocol,
each client/server interaction consisted of the following steps:

• The client requests and the server accepts a connection at the default server
port or at a port specified in the URL.

• The client sends a request message to the server.

• The server sends a reply message to the client.

• The connection is closed.

• Requests and replies are marshalled into messages as ASCII text
strings, but resources can be represented as byte sequences and may
be compressed.

By Eng. Ghandy Hessam 7

HTTP methods

• Each client request specifies the name of a method to be applied to a
resource at the server and the URL of that resource. The reply reports
on the status of the request.

• Requests and replies may also contain resource data, the contents of a
form or the output of a program resource run on the web server.

• The methods include the following:

GET: Requests the resource whose URL is given as its argument. If the
URL refers to data, then the web server replies by returning the data
identified by that URL. If the URL refers to a program, then the web
server runs the program and returns its output to the client.

By Eng. Ghandy Hessam 8

HEAD: This request is identical to GET, but it does not return any data.
However, it does return all the information about the data, such as
the time of last modification, its type or its size.

POST: Specifies the URL of a resource (for example a program) that
can deal with the data supplied in the body of the request. The
processing carried out on the data depends on the function of the
program specified in the URL.

PUT: Requests that the data supplied in the request is stored with the
given URL as its identifier, either as a modification of an existing
resource or as a new resource.

DELETE: The server deletes the resource identified by the given URL.

By Eng. Ghandy Hessam 9

• A Reply message specifies the protocol version, a status code and
‘reason’, some headers and an optional message body

• The status code and reason provide a report on the server’s success

• The header fields are used to pass additional information about the
server or access to the resource For example, if the request requires
authentication.

By Eng. Ghandy Hessam 10

Remote procedure call

By Eng. Ghandy Hessam 11

Programming with interfaces

• Most modern programming languages provide a means of organizing
a program as a set of modules that can communicate with one
another.

• Communication between modules can be by means of procedure
calls between modules or by direct access to the variables in another
module.

• In order to control the possible interactions between modules, an
explicit interface is defined for each module.

• The interface of a module specifies the procedures and the variables
that can be accessed from other modules.

• So long as its interface remains the same, the implementation may be
changed without affecting the users of the module.

By Eng. Ghandy Hessam 12

Interfaces in distributed systems

• In a distributed program, the modules can run in separate processes.
In the client-server model, in particular, each server provides a set of
procedures that are available for use by clients.

• For example, a file server would provide procedures for reading and
writing files.

• The term service interface is used to refer to the specification of the
procedures offered by a server, defining the types of the arguments of
each of the procedures.

• Programmers also do not need to know the programming language or
underlying platform used to implement the service (an important
step towards managing heterogeneity in distributed systems).

By Eng. Ghandy Hessam 13

Interface definition languages

• An RPC mechanism can be integrated with a particular programming
language if it includes an suitable notation for defining interfaces.

• This approach is useful when all the parts of a distributed application
can be written in the same language for local and remote invocation.

• Interface definition languages (IDLs) are designed to allow procedures
implemented in different languages to invoke one another.

• An IDL provides a notation for defining interfaces in which each of the
parameters of an operation may be described as for input or output
in addition to having its type specified.

• The concept of an IDL was initially developed for RPC systems but
applies equally to RMI and also web services.

By Eng. Ghandy Hessam 14

Transparency

• The originators of RPC [1984], aimed to make remote procedure calls
as much like local procedure calls as possible, with no distinction in
syntax between a local and a remote procedure call.

• All the necessary calls to marshalling and message-passing
procedures were hidden from the programmer making the call.

• Although request messages are retransmitted after a timeout, this is
transparent to the caller to make the semantics of remote procedure
calls like that of local procedure calls.

• RPC try hard to offer at least location and access transparency, hiding
the physical location of the (potentially remote) procedure and also
accessing local and remote procedures in the same way.

• Middleware can also offer additional levels of transparency to RPC.

By Eng. Ghandy Hessam 15

Implementation of RPC

• The client that accesses a service includes one stub procedure for
each procedure in the service interface.

• The stub procedure behaves like a local procedure to the client, but
instead of executing the call, it marshals the procedure identifier and
the arguments into a request message, which it sends via its
communication module to the server.

• When the reply message arrives, it unmarshals the results.

• The server process contains a dispatcher together with one server
stub procedure and one service procedure for each procedure in the
service interface.

• The dispatcher selects one of the server stub procedures according to
the procedure identifier in the request message.

By Eng. Ghandy Hessam 16

• The server stub procedure then unmarshals the arguments in the
request message, calls the corresponding service procedure and
marshals the return values for the reply message.

• The service procedures implement the procedures in the service
interface.

• The client and server stub procedures and the dispatcher can be
generated automatically by an interface compiler from the interface
definition of the service.

• RPC is generally implemented over a request-reply protocol.

By Eng. Ghandy Hessam 17

By Eng. Ghandy Hessam 18

Case study: XML-RPC

• we're going to create a server that uses Java to process XML-RPC
messages, and create a Java client to call procedures on that server.

• The Java side of the conversation uses the Apache XML Project's
Apache XML-RPC.

• Download jar package from
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUi
NzMC5NnP

• Use NetBeans IDE to create tow projects (RPC client and RPC
server).

• Put all the .jar file in appropriate path and let us create one client
and one small XML-RPC server using JAVA.

By Eng. Ghandy Hessam 19

https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP
https://drive.google.com/open?id=10IoGC0b1DFPBA18bS19HmRUiNzMC5NnP

By Eng. Ghandy Hessam 20

XML-RPC Client

By Eng. Ghandy Hessam 21

XML-RPC Server

By Eng. Ghandy Hessam 22

XML Request format from Client

By Eng. Ghandy Hessam 23

XML Response format from Server

End of Lecture 4

By Eng. Ghandy Hessam 24

