

الجلسة الامتحانية لمادة الرياضيات

يتضمن أبحاث النهايات و الاشتقاق و التابع اللوغاريتمي و التابع الأسي و التكامل

إعداد المدرس عدي الخميس

السؤال الرابع:

وفق $]1,+\infty[$ وفق على المجال $]1,+\infty[$ وفق $f(x) = \frac{2x + \cos x}{x-1}$

- . x > 1 لَيًا يكن $\frac{2x-1}{x-1} \le f(x) \le \frac{2x+1}{x-1}$ لَيًا يكن (1
 - . $+\infty$ عند f استنتج نهایة (2

السؤال الخامس:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = \frac{2}{2 - \cos x}$$

- . أثبت أنّ f محدود
- $\lim_{x \to +\infty} \frac{2x^2}{2 \cos x}$ (2)

السؤال السادس:

ليكن f التابع المعرّف على $\{-1,2\}$ وفق

$$f(x) = \frac{3x^2 + 6x}{x^2 - x - 2}$$

التي تحقّق c ، b ، a التي تحقّق (1

$$x \in I$$
 أياً تكن $f(x) = a + \frac{b}{x+1} + \frac{c}{x-2}$

. $\int_0^1 f(x) dx$ احسب قيمة التكامل (2

السؤال السابع:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = \sqrt{x^2 + 2x + 4}$$

- $\left(x^2+2x+4\right)$ احسب و اكتب ثلاثي الحدود $\lim_{x\to +\infty}f\left(x\right)$ (1) احسب بالصيغة القانونية .
 - ا احسب $\lim_{x \to +\infty} \left[f(x) (x+1) \right]$ و استنتج وجود مقارب (2 . + ∞ مائل Δ للخط C للتابع f في جوار
 - . C و الخط Δ ادرس الوضع النسبي للمقارب (3

السؤال الأول :

ليكن f التابع المعرّف على $\{-3\}$ وفق $f(x) = \frac{-2x+1}{x+3}$

- ال جد $\lim_{x \to +\infty} f(x)$ عدداً A يحقّق الشرط : إذا كان $\lim_{x \to +\infty} f(x)$.] -2.05, -1.95 في المجال f(x) كان |x|
- . x بدلالة f(f(x)) بدلالة المبعد كتابة بدلالة f(f(x)) بدلالة (2
 - f عين التابع المشتق f للتابع f للتابع (3) عين التابع $k\left(x\right)=\frac{-2\ln x+1}{\ln x+3}$
- $I=]-rac{\pi}{2},rac{\pi}{2}$ نرمز بالرمز g إلى التابع المعرّف على g (x) =f ($\sin x$) وفق g (x) =f ($\sin x$) . I على g اشتقاقي على I ثم احسب g المعرّف على g المعرف المعرف
 - 1 اكتب معادلة لمماس C في النقطة التي فاصلتها f . f (1.2) و احسب قيمة تقريبية لـــ (f
 - هل يقبل C مماساً موازياً للمستقيم الذي معادلته 3x-2y=0

السؤال الثاني :

ليكن f التابع المعرّف على \mathbb{R} وفق $f\left(x\right)=3\sin^{2}x+4\cos^{3}x$

- . دوراً له 2π دوراً له f زوجی و دوري يقبل f دوراً له f
- $f'(x) = 6\cos x \sin x (1 2\cos x)$ (2) مثبت أنّ عند كل عدد حقيقي x

السؤال الثالث:

ليكن C الخط البياني للتابع f المعرّف على C وفق $f\left(x\right) = \frac{-x^2 - 4x + \sin x}{x}$

أثبت أنّ المستقيم Δ الذي معادلته y=-x-4 مقارب مائل للخط $\pm\infty$ بجوار C

. $]0,\pi[$ المجال Δ على المجال C و مقاربه Δ على المجال

الجلسة الامتحانية

السؤال الثامن:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = x + \sqrt{4x^2 + 1}$$

- . $\lim_{x \to -\infty} [f(x) + x]$ ثم $\lim_{x \to -\infty} f(x)$ احسب (1
- يجاد Δ يُطلب إيجاد C يقبل مستقيم مقارب مائل Δ يُطلب إيجاد معادلته .
 - . Δ ادرس الوضع النسبي للخط C و المقارب (3

السؤال التاسع:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = \begin{cases} \frac{1 - \sqrt{x^2 + 1}}{x} & ; x \neq 0 \\ m & ; x = 0 \end{cases}$$

ما قيمة m التي تجعل التابع f مستمراً على m

السؤال العاشر:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = \begin{cases} \frac{x \sin x}{1 - \cos x} & \text{; } x \neq 0 \\ 2 & \text{; } x = 0 \end{cases}$$

. أثبت أنّ التابع f مستمر عند الصفر

السؤال الحادي عشر:

x يرمز E(x) إلى الجزء الصحيح للعدد الحقيقي

ليكن
$$f$$
 التابع المعرّف على $[\frac{1}{2},2]$ وفق

$$f(x) = \frac{(x-1)E(x)}{x}$$

- . (E(x) ولا تحوي E(x) عن اكتب و بعبارة مستقلة عن الاتحوي (1
 - ب $[\frac{1}{2},2]$ هل f مستمر على المجال (2
 - $\lim_{x \to +\infty} f(x) \quad |$

السؤال الثاني عشر:

ليكن C الخط البياني للتابع f المعرّف على $\frac{d}{dx}$ وفق $f(x) = \frac{ax+b}{x^2+1}$

عيّن a و d إذا علمت أنّ الخط c يقبل مماساً a معادلته y=x-1 في النقطة y=x-1

السؤال الثالث عشر:

ليكن C الخط البياني للتابع f المعرّف على C وفق $f\left(x\right)=x\,\sqrt{x\left(2-x\right)}$

- ادرس قابلیة اشتقاق التابع f عند x=2 و فسر النتیجة x=1
 - ادرس تغیّرات f و نظّم جدولاً بها (2)
 - $\cdot \, \, C$ ارسم المماسات و ارسم (3

السؤال الرابع عشر:

ليكن f التابع المعرّف على $\mathbb R$ وفق

$$f(x) = \frac{x+2}{|x|+1}$$

ادرس قابلية اشتقاق التابع f عند الصفر من اليسار ثم اكتب معادلة لنصف المماس من اليسار لخطه البياني في النقطة $A\left(0,2\right)$.

السؤال الخامس عشر :

وفق \mathbb{R} هو الخط البياني للتابع f المعرّف على C $f(x) = ax^3 + bx^2 + 1$

. منه $A\left(1,2\right)$ عيّن a و d لكي يقبل C مماساً أفقياً في النقطة a

السؤال السادس عشر:

ليكن f التابع المعرّف على $\mathbb{R}\setminus\{1\}$ وفق

$$f(x) = \frac{1}{1 - x}$$

أثبت بالتدريج أنّ المشتق من المرتبة n يُعطى بالصيغة

$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$$
 ; $(x \neq 1)$

الجلسة الامتحانية

السؤال السابع عشر:

هو الخط البياني للتابع f المعرّف على $\mathbb{R}\setminus\{-1\}$ وفق C

$$f(x) = \frac{2x^2 + x + 7}{x + 1}$$

بالشكل f بالشكل c ، b ، a بالشكل (1

$$f(x) = ax + b + \frac{c}{x+1}$$

- مقارب y=2x-1 معادلته d مقارب رأث المستقيم d مقارب مائل للخط . C
 - d ادرس الوضع النسبي بين الخط d و المقارب (3
 - I(-1,-3) مركز تناظر للخط I(-1,-3) مركز مثاطر الخط 4

السؤال الثامن عشر:

- ليكن C الخط البياني للتابع f المعرف على C وفق $f(x) = \sqrt{4x^2 4x + 3}$
 - $a = \lim_{x \to -\infty} \frac{f(x)}{x}$ و $\lim_{x \to -\infty} f(x)$ احسب (1) $b = \lim_{x \to -\infty} (f(x) - ax)$ و
- Δ استنتج أنّ الخط C يقبل مستقيماً مقارباً مائلاً Δ في جوار ∞ يُطلب إيجاد معادلة له .
 - . C ادرس الوضع النسبي للمقارب Δ و الخط

السؤال التاسع عشر :

حل المعادلات و المتراجحات الآتية:

- $\bullet \ e^{2x+1} < e^{-x^2+4}$
- $e^{2x} e^x 6 = 0$
- $\bullet \quad e^x + 4e^{-x} \le 5$
- $\bullet \ e^{-2x} 7e^{-x} + 6 = 0$
- $\bullet \quad 4^x + 2^{x+1} 3 = 0$
- $\bullet \quad e^{2x} 3e^{x+1} + 2e^2 = 0$
- $\bullet \quad e^x + \frac{e}{e^x} = 1 + e$

- $\frac{e^{-x}-1}{e^x-1}=-2$
- $\ln(x^2-4) \le \ln(-3x)$
- $\ln\left(1+\frac{2}{x}\right) \ge \ln x$
- $\ln(x^2-3x) \ge 2\ln(6-x)$
- $\ln 3 \le \ln (5-x) + \ln (x-1)$
- $(\ln x)^2 = 16$
- $(\ln x)^2 2\ln x 3 \ge 0$
- $\ln |2x + 3| + \ln |x 1| = 2 \ln |x|$

السؤال العشرون:

- x > -1 أياً يكن $\ln(1+x) \le x$ أياً أيث (1
- x > 0 أياً يكن $\ln(x) \le x 1$ أياً يكن (2

السؤال الحادى و العشرون :

- للحل C علا المعادلة التفاضلية y'+5y=0 و الخط (1-2,1) يمر من النقطة A(-2,1)
- الذي حل المعادلة التفاضلية f الإ عين حلها f الذي حل المعادلة التفاضلية f الذي حقق f الذي عين حلها f الذي عين حلها f الذي عين حلها f الذي المعادلة التفاضلية التفاضلية f الذي عين حلها f الذي عين حلي المعادلة الذي عين حلي الدي عين حلي الدي عين الد
- و ميل المماس في y'+2y=0 على المماس في $\frac{1}{2}$. للحل يساوي $\frac{1}{2}$ من الخط C للحل يساوي $\frac{1}{2}$

السؤال الثاني و العشرون :

- $f\left(x\right)=e^{x}-1$ ليكن f التابع المعرّف على \mathbb{R} وفق $f\left(x\right)=e^{x}$
 - . $\lim_{x\to 0}\frac{e^x-1}{x}$ احسب f'(0) ، f(0) ،
- $f\left(x
 ight)=\cos x$ وفق \mathbb{R} والتابع المعرّف على •
- $\lim_{x \to \frac{\pi}{3}} \frac{\cos x \frac{1}{2}}{x \frac{\pi}{3}}$ احسب $f'(\frac{\pi}{3})$ ، $f(\frac{\pi}{3})$
- $f\left(x
 ight)=\ln\left(1+x^{2}
 ight)$ وفق \mathbb{R} وفق التابع المعرّف على
 - . $\lim_{x\to 0}\frac{\ln\left(1+x^{\,2}\right)}{x}$ و استنتج f '(0) ، f (0) احسب

الجلسة الامتحانية

السؤال الثالث و العشرون :

و و g تابعان معرفان على $\mathbb R$ وفق f

$$f(x) = x - 1 + e^{x}$$
, $g(x) = \frac{2x}{x^{2} + 1}$

- معادلة و معادلة المبدأ ثم اكتب معادلة C_{g} متماسان في المبدأ ثم اكتب معادلة المماس المشترك d
 - . $J = \int_0^1 g(x) dx$, $I = \int_0^1 f(x) dx$ (2)

السؤال الرابع و العشرون :

$$\lim_{x \to +\infty} \left(\frac{x+3}{x-1} \right)^{\frac{x}{2}} \quad \lim_{x \to 1} (2-x)^{\frac{3}{x-1}} \quad \text{ where } 1$$

السؤال الخامس و العشرون :

احسب التكاملات الآتية:

$$I_{1} = \int_{0}^{2} |x^{2} - 1| dx \qquad I_{9} = \int_{0}^{1} \frac{1}{x^{2} - x - 2} dx$$

$$I_{2} = \int_{0}^{\pi/2} \cos^{2} x \, dx \qquad I_{9} = \int_{0}^{\pi/2} \sin^{4} x \, dx$$

$$I_{3} = \int_{3\pi/2}^{2\pi} \sqrt{2 - 2\cos x} \, dx \qquad I_{10} = \int_{0}^{1} \frac{1}{1 + e^{x}} dx$$

$$I_{4} = \int_{0}^{1} \left(e^{2x} - e^{-2x}\right) dx \qquad I_{11} = \int_{1}^{e} x \ln x \, dx$$

$$I_5 = \int_0^{\pi/2} \sqrt{1 - \sin^2 x} \, dx \qquad I_{12} = \int_0^1 \frac{x}{e^x} dx$$

$$I_6 = \int_{\pi/6}^{\pi/3} \tan x \, dx$$
 $I_{13} = \int_{0}^{\pi} x \cos x \, dx$

$$I_7 = \int_{\pi/4}^{\pi/2} \cot x \, dx \qquad I_{14} = \int_{0}^{\pi/3} x \sin 3x \, dx$$

$$I_8 = \int_{-2}^{-1} \frac{2x - 1}{x - 1} dx \qquad I_{15} = \int_{0}^{\pi/4} \frac{\cos x - \sin x}{\cos x + \sin x} dx$$

$$I_{8} = \int_{1}^{2} \frac{2x - 1}{x^{2} + x} dx \qquad I_{16} = \int_{0}^{\ln 2} \frac{e^{2x} - 1}{e^{2x} + 1} dx$$

السؤال السابع و العشرون :

- يكن \mathbb{R} الخط البياني للتابع f المعرف على C وفق $f\left(x\right)=\ln\left(2+e^{x}\right)$
- . $x \in \mathbb{R}$ ایاً تکن $f(x) = x + \ln(1 + 2e^{-x})$ ایاً تکن (1

• $f(x) = \frac{x+1}{x^2-4}$, $I =]-\infty, -2[$

• $f(x) = \ln x$, $I =]0, +\infty[$

- Δ مقاربین أحدهما أفقي و الآخر مائل C مقادلة لكل منهما .
 - . Δ و C ادرس الوضع النسبي بين (3
 - f (\mathbb{R}) أثبت أنّ f متزايد تماماً ثم احسب (4

السؤال الثامن و العشرون :

ليكن C الخط البياني للتابع f المعرف على C وفق $f(x) = x + 2 + x e^x$

- $-\infty$ بجوار Δ مقارباً مائلاً Δ بجوار $I_2=\int\limits_0^{\pi/2}\cos^2x\ dx$. C مقارباً مائلاً Δ بجوار Δ
- xx ' و Δ و C احسب مساحة السطح المحصور بين x=0 و x=0 و المستقيمين x=0

السؤال التاسع و العشرون :

ليكن C الخط البياني للتابع f المعرف على $\mathbb R$ وفق

$$f(x) = x - 1 + \frac{4}{e^x + 1}$$

- $-\infty$ بجوار C مقارب مائل للخط C بجوار $\Delta:y=x+3$. ثم ادرس الوضع النسبي بين C و C
- . yy ' معادلة المماس T للخط وي نقطة تقاطعه مع (2

السؤال الثلاثون:

- $f(x) = x x \ln\left(1 + \frac{1}{x}\right)$ وفق $f(x) = 0, +\infty$ عرف علی ا
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to 0} f(x)$ جد (1
- $+\infty$ بجوار C مقارب مائل للخط C بجوار $\Delta:y=x-1$ و ادرس الوضع النسبي بين C و ادرس الوضع النسبي بين

السؤال السادس و العشرون:

: I على F للتابع f على ا

- $f(x) = x \cos x$, $I = \mathbb{R}$
- $f(x) = x^2 \ln x$, $I =]0, +\infty[$

السؤال الحادي و الثلاثون :

الجلسة الامتحانية

ليكن
$$f$$
 التابع المعرّف على $-\infty,0$ التابع المعرّف على $f(x)=x+1+2\ln\left(\frac{x}{x-1}\right)$

- ارس الخط C ثم ادرس $\Delta: y = x + 1$ ثم ادرس $\Delta: y = x + 1$ ثم ادرس الوضع النسبى بين C و C
 - . ادرس تغیّرات f و نظّم جدولاً بها (2
 - \cdot C ارسم Δ ثم ارسم (3
 - 4) استنتج رسم ' C الخط البياني للتابع

$$g(x) = -1 - x + 2\ln\left(\frac{x-1}{x}\right)$$

السؤال الثاني و الثلاثون :

 \mathbb{R} أثبت أنّ للمعادلة α α المعادلة α α حلاً وحيداً α في α ثم بيّن أنّ $\alpha \in]-1,0[$

السؤال الثالث و الثلاثون :

هو الخط البياني للتابع f المعرّف على [0,3] وفق C

$$f(x) = x\sqrt{3-x}$$

عندما يدور C دورة كاملة حول محور الفواصل فإنه يولّد مجسماً دورانياً S .

- 1) ما طبيعة مقطع هذا المجسم بمستوٍ عمودي على محور الفواصل و يمر بالنقطة I(x,0) ؟
- V عيّن $A\left(x\right)$ مساحة هذا المقطع بدلالة x ثم استنتج (2 حجم المجسم S .

السؤال الرابع و الثلاثون :

ليكن f التابع المعرّف على $0,+\infty$ وفق

$$f(x) = x + \ln(x+1) - \ln(x)$$

- . + ∞ بجوار C مقارب مائل للخط $\Delta: y = x$ آثبت أنّ
 - . Δ ادرس الوضع النسبي بين الخط C و المقارب (2

السؤال الخامس و الثلاثون :

$$P(x) = 2x^3 + 5x^2 + x - 2$$
 ليكن كثير الحدود

$$P\left(x\right)=\left(x+1\right)Q\left(x\right)$$
 اتحقّق أنّ $P\left(-1\right)=0$ واستنتج أنّ و

- . $P(x) \le 0$ حل المتراجحة (2
- $2 \ln x + \ln(2x+5) \le \ln(2-x)$ استنتج حلول المتراجحة (3

السؤال السادس و الثلاثون :

نفترض وجود تابع f معرّف على $\mathbb R$ و يحقّق

$$|f(x)+3| \le \frac{3+E(x)}{x^2+1}$$

. $+\infty$ عند f جد نهایة

السؤال السابع و الثلاثون :

نفترض وجود تابع f معرّف على $]0,+\infty[$ و يحقّق

$$\left| f(x) + 2 \right| \le \frac{2 + \sin x}{x^2}$$

- . x > 0 أياً كانت $\lim_{x \to +\infty} \frac{2 + \sin x}{x^2}$ جد (1
 - $+\infty$ عند f عند f

السؤال الثامن و الثلاثون :

- $\frac{1}{2}\ln(2x) = \ln(3-x) \ln\sqrt{x+1}$ حل في \mathbb{R} المعادلة
 - : x > 1 أثبت صحة المتراجحة أياً كانت •

$$\ln(x-1) < 2\ln x - 1$$

- $x \in \mathbb{R}$ أياً يكن $e^x \ge x + 1$ أن أثبت أن •
- $J = \int_{0}^{\pi/2} \frac{\cos x}{1 + 2\sin x} dx \quad \text{if } I = \int_{0}^{\pi/2} \frac{\sin 2x}{1 + 2\sin x} dx \quad \bullet$

I احسب I ثم I+J و استنتج

السؤال التاسع و الثلاثون :

 $f\left(x\right)\!=\!\sqrt{x}\,\ln(1\!+\!x)$ وفق وأ.+ ∞ و على على التابع المعرّف على f

- . أثبت أنّ f اشتقاقي عند الصفر f
- . f' ثم استنج مجموعة تعریف f'(x) جد (2
- $g\left(x\right)=\sqrt{\cos x}\,\ln(1+\cos x)$ استنتج مشتق التابع (3 .]0, $\frac{\pi}{2}$

الجلسة الامتحانية

المدرس عدي الغميس

السؤال الأربعون :

 $f\left(x
ight)=2x-\sqrt{x^{2}+5}$ ليكن f التابع المعرّف على $\mathbb R$ وفق

- . ادرس تغیّرات التابع f و نظّم جدولاً بها (1
-]1,2[مثبت أنّ المعادلة α على حل وحيد α في المجال (2) مثبت أنّ المعادلة α جبرياً .
 - $g(x) = 2\sin x \sqrt{\sin^2 x + 5}$ استنتج مشتق (3

السؤال الحادي و الأربعون :

ليكن f التابع المعرّف على $I=]1,+\infty$ وفق $f\left(x\right)=\frac{1}{x-1}-\sqrt{x}$

- . I على ادرس تغيّرات f على (1
- lpha استنتج أنّ للمعادلة a (x) = 0 جذراً وحيداً (a) استنتج أنّ للمعادلة .]1,2[

السؤال الثاني و الأربعون :

ليكن f التابع المعرّف على $I=]0,+\infty[$ وفق $f\left(x\right)=\frac{x^3+4-4\cos x}{x^2}$

- $\lim_{x \to 0^+} f(x) \rightleftharpoons (1$
- ر مقارب مائل y=x مقارب مائل (2) أثبت أنّ المستقيم Δ الذي معادلته λ في جوار λ في جوار λ و ادرس وضعه النسبي .

السؤال الثالث و الأربعون :

ليكن f التابع المعرّف على $\mathbb{R}\setminus\{-1,1\}$ وفق $f(x) = \frac{x^3-x+2}{x^2-1}$

- $f(x) = x + \frac{A}{x-1} + \frac{B}{x+1}$ عيّن A و B ليكون (1
- مقارب مائل y=x مقارب مائل Δ الذي معادلته λ مقارب مائل الخط λ في جوار λ
 - $S(\lambda) = \int_{2}^{\lambda} (f(x) y_{\Delta}) dx$ جد (3 نم احسب $S(\lambda)$

السؤال الرابع و الأربعون :

هو الخط البياني للتابع f المعرّف على $]0,+\infty[$ وفق C

$$f(x) = \begin{cases} \frac{x^2}{2} \left(\ln x - \frac{3}{2} \right); x > 0 \\ 0 & ; x = 0 \end{cases}$$

- 1) أثبت أنّ f اشتقاقي عند الصفر و فسّر النتيجة هندسياً .
 - $\lim_{x \to +\infty} f(x) \quad \text{(2)}$
- منه x=1 مماس الخط C في النقطة التي فاصلتها T منه جد معادلة لهذا المماس ثم باستعمال التقريب التآلفي المحلي . f(1.2)

السؤال الخامس و الأربعون :

 $\left(e^x-2\right)$ مع إشارة $\left(e^x-\frac{4}{e^x}\right)$ مع إشارة يتفق إشارة $e^x-\frac{4}{e^x}<0$ مع المتراجحة $e^x-\frac{4}{e^x}<0$

السؤال السادس و الأربعون :

هو الخط البياني للتابع f المعرّف على $\mathbb R$ وفق C

$$f(x) = \exp\left(\frac{1}{2} - x^2\right)$$

- . ادرس تغیّرات f و نظّم جدولاً بها (1
- f "(x) اكتب معادلة المماس لـ C في النقطة التي ينعدم فيها (2

السؤال السابع و الأربعون :

C و ارسم خطه البياني \mathbb{R} و ارسم خطه البياني $f\left(x\right)=x\ 2^{x}$

السؤال الثامن و الأربعون :

 $y'+3y=2e^{-x}$ نتأمّل المعادلة التفاضليّة

. عيّن العدد a ليكون التابع ae^{-x} عيّن العدد عيّن العدد التفاضلية

السؤال الحادي و الخمسون:

: وفق \mathbb{R} وفق البياني للتابع f المعرّف على C

$$f(x) = \frac{1}{2} (e^x - e^{-x})$$

- . بيّن أنّ التابع f فردي f
- . ادرس تغیّرات التابع f و نظّم جدولاً بها (2
- lpha و ليكن lpha و الكن lpha و أثبت أنّ للمعادلة lpha و lpha و الكن lpha
 - . أكتب معادلة المماس T للخط C في المبدأ (4
 - . T و C ادرس الوضع النسبي بين (5
 - . C ارسم T ثم ارسم (6
 - xx و x احسب مساحة السطح المحصور بين x و x المستقيمين x و x و x

السؤال الثاني و الخمسون :

 $]-\infty,-1[\bigcup]1,+\infty[$ الخط البياني للتابع f المعرّف على C

$$f(x) = 2x - 1 - \ln\left(\frac{x+1}{x-1}\right)$$
 : وفق

- . C مقارب مائل للخط $\Delta: y = 2x 1$ بيّن أنّ المستقيم (1
 - . Δ ادرس الوضع النسبي بين الخط C و المقارب (2
 - . ادرس تغیرات التابع f و نظّم جدولاً بها (3
 - رة النقطة f(x)+f(-x)=-2 أثبت أنّ النقطة f(x)+f(-x)=-2 مركز تناظر للخط I(0,-1)
 - . C ارسم في معلم متجانس المستقيم Δ و الخط (5
 - استنتج C_{g} الخط البياني للتابع g المعرّف وفق (6

$$g(x) = -2x + 1 - \ln\left(\frac{x-1}{x+1}\right)$$

السؤال الثالث و الخمسون :

: وفق]0,+ ∞ [وفق الخط البياني للتابع f المعرّف على C

- . ادرس تغیّرات التابع f و نظّم جدولاً بها (1
- x>0 استنتج أنّ $\ln(x) < 2\sqrt{x}$ أياً كانت (2
 - (3) ارسم في معلم متجانس الخط x
- xx ' و x احسب مساحة السطح المحصور بين x و المستقيمين x=e و x=1
- . $f_1(x) = 2(\sqrt{x} 1) \ln(x)$ حيث C_1 مستنج رسم (5

السؤال التاسع و الأربعون :

ليكن f التابع المعرّف على $0,+\infty[$ وفق $f(x)=\ln(e^{2x}-e^x)$

أثبت أنّ f يُكتب بالصيغة (7

$$f(x) = 2x + \ln(1 - e^{-x})$$

- . C مقارب مائل للخط $\Delta: y = 2x$ مقارب مائل الخط (8
 - . C و Δ ادرس الوضع النسبي بين Δ
 - \cdot C و Δ ارسم Δ
 - . $h(x) = e^{f(x)}$ جد مجموعة تعریف عبر (11
- رسم الخط البياني للتابع g حيث g رسم الخط البياني للتابع $g(x) = \ln\left(e^{2x+2} e^{x+1}\right)$

السؤال الخمسون :

 $I=]-\infty,1[\bigcup]3,+\infty[$ وفق التابع المعرّف على $f(x)=\ln\left(\frac{x-1}{x-3}\right)$

- A(2,0) مركز تناظر للخط A(2,0) أثبت أنّ النقطة
- 2) جد نهاية f عند أطراف مجموعة تعريفه ، و اكتب معادلة كل مقارب أفقي أو شاقولي .
 - . ادرس تغیرات التابع f و نظّم جدولاً بها (3
 - . 4y + x = 0 اكتب معادلة كل مماس يوازي المستقيم
 - ارسم الخط 5
 - استنتج رسم C' الخط البياني للتابع $G(x) = \ln(x-3) \ln(x-1)$
 - $u_n = f(n)$ معرّفة وفق $\left(u_n\right)_{n\geq 4}$ لتكن (7

 $s_n = u_4 + u_5 + \dots + u_n$ نضع

.
$$s_n = \ln \frac{(n-1)(n-2)}{2}$$
 اُثبت اُنّ

على الطالب مراجعة ما يلي في النهايات و الاشتقاق تدرب/46 ، تدرب/54 ، 61/1 ، 54/17 ، 70/14

109/24 6 94/2

لوغاريتمي و أسي و تكامل 154/3 ، 158/10 ، 154/3 ، 165/3 ، 158/10 ، 154/2 ، 178/25 ، 172/4 (حجم)

حالات المساحة الهامة

السؤال السادس و الخمسون :

 $f\left(x\right)=rac{1}{\left(x-1
ight)^{2}}$ وفق $\mathbb{R}ackslash\{1\}$ على على التابع المعرّف على المعرّف

- $\lim_{x \to 1} f\left(f\left(x\right)\right) \rightleftharpoons (1)$
- $x \in I \setminus \{1\}$ نکن $f(x) > 10^4$ مرکزه 1 يحقّق و (2

السؤال السابع و الخمسون :

 $f\left(x
ight)=\sqrt{x}\,\sin x$ وفق $\left[0,+\infty
ight[$ على المعرّف على المعرّف

- x=0 هل f اشتقاقی عند (1
- $\cdot f$ ' استنتج مجموعة تعریف (2
- . $]0,+\infty[$ على f'(x) احسب (3
- على $g\left(x\right)=\sqrt{\cos x}\,\sin\left(\cos x\right)$ على (4 مشتق التابع $x\in\left]0,\frac{\pi}{2}\right[$ المجال

السؤال الثامن و الخمسون :

 $f\left(x\right)=1+2rac{\ln x}{x}$ وفق $\left[0,+\infty\right[$ على التابع المعرّف على ا

- . ادرس تغیرات التابع f و نظّم جدولاً بها (1
- .]0,1[أثبت أنّ للمعادلة f(x) = 0 حل وحيد في المجال (2
- x=1 اكتب معادلة المماس T للخط C في نقطة فاصلتها (3
 - . C ارسم في معلم واحد المقاربات و المماس T ثم ارسم (4

السؤال التاسع و الخمسون :

 $f(x) = \frac{\ln x}{\sqrt{x}}$ وفق $f(x) = \frac{\ln x}{\sqrt{x}}$ ليكن $f(x) = \frac{\ln x}{\sqrt{x}}$ وفق التابع المعرّف على

- . ادرس تغیّرات التابع f و نظّم جدولاً بها (1
- x=1 اكتب معادلة المماس T للخط لخط في نقطة فاصلتها (2
 - f(1.1) احسب قيمة تقريبية لـ (3.1)
 - . مَيْنه المعادلة f(x) = 0 تقبل حلاً وحيداً ثم عيّنه (4
 - . C ارسم في معلم واحد المقاربات و المماس T ثم ارسم
- و محور الفواصل و C احسب مساحة السطح المحصور بين C و محور الفواصل و $x=e^2$ و x=1
- . $g(x) = \frac{2}{\sqrt{x}} \ln \left(\frac{1}{\sqrt{x}}\right)$ استنتج رسم الخط البياني للتابع (7

السؤال الرابع و الخمسون :

ليكن g التابع المعرّف على $I=]0,+\infty[$ وفق $g\left(x\right)=2x^{2}+1-\ln\left(x\right)$

: وفق I وفق الخط البياني للتابع f المعرّف على f وفق $f\left(x\right)=2x-2+\frac{\ln(x)}{x}$

- . g(x) > 0 أن g و استنتج أنّ
- . C مقارب مائل للخط $\Delta: y = 2x 2$ أثبت أن (2
- . $f'(x) = \frac{g(x)}{x^2}$ أثبت أنّ بتغيّرات $f'(x) = \frac{g(x)}{x^2}$ (4
 - \cdot \cdot ارسم \cdot ثم ارسم \cdot
 - xx' و C احسب مساحة السطح المحصور بين C و x=e و المستقيمين x=e
- Δ و xx ' و C احسب مساحة السطح المحصور بين xx و x=e و المستقيمين x=e و المستقيمين

السؤال الخامس و الخمسون :

: وفق \mathbb{R} الخط البياني للتابع f المعرّف على f وفق f (x) = $(2-x)e^x$

- . ادرس تغیّرات التابع f و نظّم جدولاً بها (1
- . عينه \mathbb{R} في α عينه $f\left(x\right)=0$ غينه (2
- . f "(x) معادلة المماس d لـ d في نقطة فاصلتها تعدم (3
 - $\cdot \, \, C$ و d ارسم (4
- . احسب مساحة السطح المحصور بين C و محوري الإحداثيات.
- ور السطح S حول محور الفواصل فإنه يولد مجسماً عندما يدور السطح S حول محور الفواصل فإنه يولد مجسماً دورانياً حجمه S عيّن الأعداد S عيّن الأعداد S عيّن الأعداد S عيّن الأعداد S حتى يكون التابع $F(x) = \left(ax^2 + bx + c\right)e^{2x}$

. V قيمة ، $\left(f\left(x\right) \right) ^{2}$ قيمة تابعاً أصلياً للتابع

- هو حل للمعادلة التفاضلية $y=f\left(x\right)$ أثبت أنّ التابع $y'-y=-e^x$
 - وسم الخط البياني للتابع g حيث (8) استنتج $g(x) = \frac{x+2}{e^x}$

الجلسة الامتحانية

السؤال الستون:

: وفق $\mathbb R$ الخط البياني للتابع f المعرّف على C

$$f(x) = \frac{e^x - 1}{e^x + 1}$$

- \cdot اثبت أنّ fتابع فردي \cdot
- . ادرس تغیّرات fو نظّم جدولاً بها (2
- . O اكتب معادلة المماس T للخط C في المبدأ (3
- 4) ادرس الوضع النسبي بين C و T ثم ارسمهما في معلم واحد.

 - 6) عيّن عبارة التقابل العكسي $f^{-1}(x)$ ثم ارسم خطه البياني.

السؤال الحادي و الستون :

. $\int_0^1 \frac{1}{1+e^x} dx$ شم احسب $\frac{1}{1+e^x} = 1 - \frac{e^x}{1+e^x}$ آثبت أنّ

السؤال الثاني و الستون :

 $f(x) = \frac{x^2}{\left(x-1\right)^2}$ وفق $\mathbb{R}\setminus\{1\}$ التابع المعرّف على

أوجد الأعداد الحقيقيّة a,b,c التي تحقّق (1

 $f(x) = a + \frac{b}{x - 1} + \frac{c}{(x - 1)^2}$ $\cdot \int_{-3}^{0} f(x) dx \quad (2)$

السؤال الثالث و الستون :

السؤال الرابع و الستون :

ليكن f التابع المعرّف على $I=]1,+\infty[$ وفق r+3

$$f(x) = \frac{x+3}{x^2 - 1}$$

عين العددين الحقيقيّين A , B بحيث (1

$$f(x) = \frac{A}{x-1} + \frac{B}{x+1}$$

 $\cdot f$ استنتج تابعاً أصلياً F للتابع (2

السؤال الخامس و الستون :

 $f\left(x
ight)=-2x+x\,e^{-x}$ ليكن f التابع المعرّف على $\mathbb R$ وفق

- مقارب مائل y=-2x مقارب مائل (1 أثبت أنّ المستقيم Δ الذي معادلته $+\infty$ في جوار C في جوار
 - $\int_{1}^{\ln 2} (f(x) y_{\Delta}) dx \quad (2)$

السؤال السادس و الستون:

 $f\left(x
ight)=2x-rac{1}{1+e^{x}}$ وفق \mathbb{R} وفق التابع المعرّف على المعرّف

- الذي معادلته y=2x مقارب مائل Δ الذي معادلته y=2x مقارب مائل الخط C في جوار C ، و ادرس وضعه النسبي
- Δ احسب مساحة السطح المحصور بين الخط C و المستقيم (2 $x=\ln 2$ و المستقيمين x=0

السؤال السابع و الستون:

ليكن f التابع المعرّف على I=]-1,3[وفق

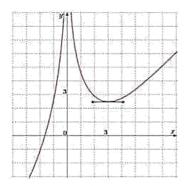
$$f(x) = \ln\left(\frac{x+1}{3-x}\right)$$

- . I أثبت أنّ f اشتقاقى على (1
- 2) ادرس تغيرات ﴿ و نظّم جدولاً بها .
- . أثبت أنّ للمعادلة f(x) = 0 حل وحيد في I ثم عيّنه جبرياً
 - . C مركز تناظر للخط البياني A(1,0) مركز أثبت أنّ النقطة (4
 - $A\left(1,0\right)$ اكتب معادلة المماس T الخط C في النقطة (5) و ادرس وضع C بالنسبة إلى C
 - . C_{f} في معلم متجانس ارسم T ثم ارسم (6

الجلسة الامتحانية

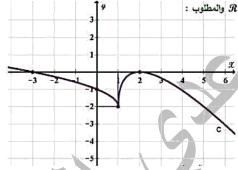
: تابع مُعرَّفٌ على $-\infty$ إلى خطّه البياني $-\infty$ المرسوم في الشكل المجاور المطلوب f

- . علَل إجابتك f علَل إجابتك . (1
- f'(4) و f(4) و f'(2) و f(2) و (2) احسب كلاً من (2
- x = 4 اكتب معادلة المماس للخطّ C_{r} في نقطة منه فاصلتها (3
 - f(x) > 0 ما مجموعة حلول المتراجحة (4
 - - 6) نظم جدو لأ بتغيرات التابع f



1 St. 10

 \mathbb{R}^* نتأمل في الشكل المجاور C القط البياني للتابع f المعرف على \mathbb{R}^*


$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ واستنج معادلة كل مقارب وجذته لـ C .

- f'(3) حب -2
- f(x)=3 ما عدد حلول المعاذلة -3
 - 4- هل النتابع f زوجي؟

: والمطلوب والمعرف على ${\mathcal R}$ والمطلوب المعرف على ${\mathcal R}$ والمطلوب

- $f'(2), f(1), f(0) \Rightarrow 0$
- مل التابع f قابل للاشتقاق عند x=1 ؟ علل إجابتك ϕ
 - آ ما عدد القيم الحدية للتابع f ? حددها واذكر نوعها
 - و $f(\mathfrak{X}) = -1$ ما عدد حلول المعادلة آ
 - f(x) = 0 ? In a set of f(x) = 0?
 - $f(\mathcal{X}) \geq 0$ ما قيم \mathcal{X} التي تحقق G
 - $f'(\mathcal{X}) \geq 0$ وما قيم \mathcal{X} التي تحقق
 - $\mathcal{X}=2$ عند C اكتب معادلة المماس للخط البياني G

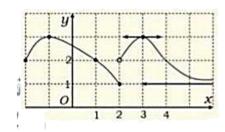
السؤال الثامن و الستون :

x	-∞ -2	1	3 +∞
f '(x)	- 0 +	+	+
f(x)	+∞ → 3 / 5 / +∞		-∞ ∕ 2

- $\lim_{x \to +\infty} f(x) \cdot \lim_{x \to -\infty} f(x) = (1$
- $\lim_{x \to 3^{+}} f(x) \quad \lim_{x \to 3^{-}} f(x)$
- C اكتب معادلة كل مقارب أفقى أو شاقولى للخط C
- ا هل يقبل الخط C مقارباً مائلاً في جوار $+\infty$ علل.
 - 4) دل على القيم الحدية محلياً و بين نوعها .
 - . علل f (1) هل (5
 - f(x) = 0 ما عدد حلول المعادلة (6
 - f(x) = 0 ما عدد حلول المعادلة (7

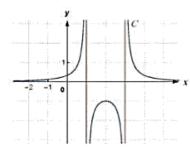
- f'(x) < 0 ما هي مجموعة حلول المتراجحة (8
 - . علل إجابتك بالشتقاقي عند x=1 علل إجابتك (9
 - 10) ما هي صورة المجال]1,3[؟
 - 11) أوجد (12-∞, −2[) أوجد
- . x=-2 عند C عند (12) اكتب معادلة المماس الأفقي للخط
 - 13) ما مجموعة تعريف كل من

$$g(x) = \sqrt{f'(x)}$$
, $h(x) = \ln(f'(x))$


- 14) قارن بين صورتَى 2023 و 2024 .
- $]3,+\infty[$ أثبت أنّ للمعادلة f(x)=0 حلاً وحيداً في المجال أنّ
 - f(x) = 10 ما عدد حلول المعادلة (16
 - $f\left(D_{f}\right)$ و جد D_{f} اُوجد (17
 - $\lim_{x \to -\infty} \frac{1}{f(x)}$ و $\lim_{x \to -\infty} f(f(x))$ اوجد (18)

ليكن C الخط البياني للتابع f المرسوم جانباً والمعرف على المجال C والذي يقبل

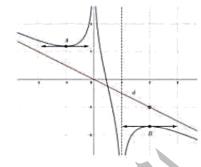
 $+\infty$ المستقيم y=1 مقاربا أفقيا في جوار


- $\lim_{x\to 2^-} f(x)$, $\lim_{x\to 2^+} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} f(f(x))$ جد

 - € جد (3), f'(3), وجد معادلة للمماس عند 3.
 - f دل على القيم الحدية المحلية للتابع $\mathbf{0}$

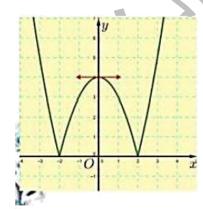
[1] - في الشكل المجاور تمثيل بياني لتابع f والمطلوب :

- f(x) = -2 all the first f(x) = -0
 - $\lim_{\mathcal{X}\to\infty} f(\mathcal{X}), \lim_{\substack{x\to\infty\\ }} f(\mathcal{X}) \xrightarrow{} 0$
- $\mathfrak{X}=2$ واستنتج معادلة المماس في النقطة التي فاصلتها $\mathfrak{X}=2$
 - $\lim_{x\to 2} \frac{f(x)+1}{x-2} \longrightarrow -4$
 - f(]1,3[)-6



التمرين 1 :

تأمل الشكل المرسوم جانبا ,


الذي يمثل الخط البياني للتابع المعرف على $\mathbb{R}\{0,1\}$ والمطلوب:

- $\lim_{x\to-\infty} f(x)$, $\lim_{x\to 1^+} f(x) \to \mathbf{0}$
 - f'(-1) g f'(2) g g
- f'(x) < 0 جد حلول المتراجحة Θ
- d اكتب معادلة المقارب المائل •

تجد جانباً الخط البياني لتابع f معزف على \mathbb{R} والمطلوب:

- f(x) = 2 كم حلا للمعادلة $\mathbf{0}$
- x=0 احسب قيمة المشتق في النقطة التي فاصلتها Q
 - f وفق I=[-2,2] وفق Θ
 - f کم قیمة صغری أو کبری محلیة للتابع Q

