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Philosophy of PCA

 Introduced by Pearson (1901) and 

Hotelling (1933) to describe the 

variation in a set of multivariate data in 

terms of a set of uncorrelated variables

 We typically have a data matrix of n

observations on p correlated variables 

x1,x2,…xp

 PCA looks for a transformation of the xi

into p new variables yi that are 

uncorrelated



The data matrix

case ht (x1) wt(x2) age(x3) sbp(x4) heart rate (x5)

1 175 1225 25 117 56

2 156 1050 31 122 63

n 202 1350 58 154 67



Reduce dimension

 The simplet way is to keep one 
variable and discard all others: not 
reasonable!

 Wheigt all variable equally: not 
reasonable (unless they have same 
variance)

 Wheigted average based on some 
citerion.

 Which criterion?



Let us write it first

 Looking for a transformation of the data 

matrix X (nxp) such that



Y= T X=1 X1+ 2 X2+..+ p Xp

 Where =(1 , 2 ,.., p)
T is a column vector 

of wheights with

1²+ 2²+..+ p² =1 



One good criterion

 Maximize the variance of the projection of 

the observations on the Y variables

 Find  so that

Var(T X)= T Var(X)  is maximal

 The matrix C=Var(X) is the covariance 

matrix of the Xi variables



Let us see it on a figure

Good Better



Covariance matrix
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And so.. We find that

 The direction of  is given by the 
eigenvector 1 correponding to the 
largest eigenvalue of matrix C

 The second vector that is orthogonal 
(uncorrelated) to the first is the one 
that has the second highest variance 
which comes to be the eignevector 
corresponding to the second 
eigenvalue

 And so on …



So PCA gives

 New variables Yi that are linear 

combination of the original variables 

(xi):

 Yi= ai1x1+ai2x2+…aipxp ; i=1..p

 The new variables Yi are derived in 

decreasing order of importance; 

 they are called ‘principal components’  



Calculating eignevalues and 

eigenvectors

 The eigenvalues i are found by 

solving the equation 

det(C-I)=0

 Eigenvectors are columns of the 

matrix A such that

C=A D AT
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An example

 Let us take two variables with covariance c>0

 C=                  C-I=

det(C-I)=(1- )²-c²

 Solving this we find 1 =1+c

2 =1-c < 1
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and eigenvectors

 Any eigenvector A satisfies the condition 

CA=A

Solving we find
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PCA is sensitive to scale

 If you multiply one variable by a 

scalar you get different results

(can you show it?)

 This is because it uses covariance 

matrix (and not correlation)

 PCA should be applied on data that 

have approximately the same scale 

in each variable



Interpretation of PCA

 The new variables (PCs) have a 
variance equal to their corresponding 
eigenvalue

Var(Yi)= i for all i=1…p

 Small i small variance  data 
change little in the direction of 
component Yi

 The relative variance explained by 

each PC is given by i / i



How many components to keep?

 Enough PCs to have a cumulative  

variance explained by the PCs that is 

>50-70%

 Kaiser criterion: keep PCs with  

eigenvalues >1

 Scree plot: represents the ability of 

PCs to explain de variation in data





Do it graphically



Interpretation of components

 See the wheights of variables in each 

component

 If Y1= 0.89 X1 +0.15X2-0.77X3+0.51X4

 Then X1 and X3 have the highest 

wheights and so are the most 

important variable in the first PC

 See the correlation between variables 

Xi and PCs: circle of correlation



Circle of correlation



Normalized (standardized) PCA

 If variables have very heterogenous 

variances we standardize them 

 The standardized variables Xi* 

Xi*= (Xi-mean)/variance

 The new variables all have the same 

variance (1), so each variable have 

the same wheight.



Application of PCA in Genomics

 PCA is useful for finding new, more 

informative, uncorrelated features; it 

reduces dimensionality by rejecting 

low variance features

 Analysis of expression data

 Analysis of metabolomics data (Ward 

et al., 2003)



However

 PCA is only powerful if the biological 

question is related to the highest 

variance in the dataset

 If not other techniques are more 

useful : Independent Component 

Analysis 

 Introduced by Jutten in 1987
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