

Dr. George Karraz, Ph. D.

Dr. George Karraz, Ph. D.

Philosophy of PCA

- Introduced by Pearson (1901) and Hotelling (1933) to describe the variation in a set of multivariate data in terms of a set of uncorrelated variables
- We typically have a data matrix of n observations on p correlated variables $x_{1}, x_{2}, \ldots x_{p}$
- PCA looks for a transformation of the x_{i} into p new variables y_{i} that are uncorrelated

The data matrix

case	ht $\left(\mathbf{x}_{1}\right)$	$\mathbf{w t}\left(\mathbf{x}_{2}\right)$	age $\left(\mathbf{x}_{3}\right)$	$\mathbf{s b p}\left(\mathbf{x}_{4}\right)$	heart rate
1	175	1225	25	117	56
2	156	1050	31	122	63
n	202	1350	58	154	67

Reduce dimension

- The simplet way is to keep one variable and discard all others: not reasonable!
- Wheigt all variable equally: not reasonable (unless they have same variance)
- Wheigted average based on some citerion.
- Which criterion?

Let us write it first

- Looking for a transformation of the data matrix $\mathbf{X}(n \times p)$ such that

$$
Y=\boldsymbol{\delta}^{T} \boldsymbol{X}=\delta_{1} X_{1}+\delta_{2} X_{2}+. .+\delta_{p} X_{p}
$$

- Where $\boldsymbol{\delta}=\left(\delta_{1}, \delta_{2}, . ., \delta_{p}\right)^{T}$ is a column vector of wheights with

$$
\delta_{1}^{2}+\delta_{2}^{2}+. .+\delta_{p}^{2}=1
$$

One good criterion

- Maximize the variance of the projection of the observations on the Y variables
- Find δ so that

$$
\operatorname{Var}\left(\boldsymbol{\delta}^{T} \mathbf{X}\right)=\boldsymbol{\delta}^{T} \operatorname{Var}(\mathbf{X}) \boldsymbol{\delta} \quad \text { is maximal }
$$

- The matrix $\mathbf{C}=\mathbf{V a r}(\mathbf{X})$ is the covariance matrix of the X_{i} variables

Let us see it on a figure

Better

Covariance matrix

$$
\mathrm{C}=\left(\begin{array}{l}
v\left(x_{1}\right) c\left(x_{1}, x_{2}\right) \ldots \ldots . c\left(x_{1}, x_{p}\right) \\
c\left(x_{1}, x_{2}\right) v\left(x_{2}\right) \ldots \ldots c\left(x_{2}, x_{p}\right) \\
\\
c\left(x_{1}, x_{p}\right) c\left(x_{2}, x_{p}\right) \ldots \ldots \ldots v\left(x_{p}\right)
\end{array}\right)
$$

And so.. We find that

- The direction of δ is given by the eigenvector γ_{1} correponding to the largest eigenvalue of matrix \mathbf{C}
- The second vector that is orthogonal (uncorrelated) to the first is the one that has the second highest variance which comes to be the eignevector corresponding to the second eigenvalue
- And so on ...

So PCA gives

- New variables Y_{i} that are linear combination of the original variables $\left(x_{i}\right)$:
- $Y_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i p} x_{p} ; i=1 . . p$
- The new variables Y_{i} are derived in decreasing order of importance;
- they are called 'principal components'

Calculating eignevalues and eigenvectors

- The eigenvalues λ_{i} are found by solving the equation

$$
\operatorname{det}(C-\lambda I)=0
$$

- Eigenvectors are columns of the matrix A such that

$$
\mathrm{C}=\mathrm{AD} \mathrm{~A} \mathrm{~A}^{\mathrm{T}}
$$

- Where

An example

- Let us take two variables with covariance $c>0$

$$
\mathbf{C}=\left(\begin{array}{ll}
1 & c \\
c & 1
\end{array}\right) \quad \mathbf{C}-\lambda \mathbf{I}=\left(\begin{array}{rr}
1-\lambda & c \\
c & 1-\lambda
\end{array}\right)
$$

$$
\operatorname{det}(\mathbf{C}-\lambda \boldsymbol{I})=(1-\lambda)^{2}-\mathrm{C}^{2}
$$

- Solving this we find $\lambda_{1}=1+\mathrm{c}$

$$
\lambda_{2}=1-\mathrm{c}<\lambda_{1}
$$

and eigenvectors

- Any eigenvector A satisfies the condition

$$
\mathbf{C A}=\lambda \mathrm{A}
$$

$\mathrm{A}=\binom{a_{1}}{a_{2}} \quad \mathrm{CA}=\left(\begin{array}{ll}1 & c \\ c & 1\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{a_{1}+c a_{2}}{c a_{1}+a_{2}}=\binom{\lambda a_{1}}{\lambda a_{2}}$
Solving we find $A_{1}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} . A_{2}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$

PCA is sensitive to scale

- If you multiply one variable by a scalar you get different results
(can you show it?)
- This is because it uses covariance matrix (and not correlation)
- PCA should be applied on data that have approximately the same scale in each variable

Interpretation of PCA

- The new variables (PCs) have a variance equal to their corresponding eigenvalue

$$
\operatorname{Var}\left(Y_{i}\right)=\lambda_{i} \text { for all } i=1 \ldots p
$$

- Small $\lambda_{i} \Leftrightarrow$ small variance \Leftrightarrow data change little in the direction of component Y_{i}
- The relative variance explained by each PC is given by $\lambda_{i} / \Sigma \lambda_{i}$

How many components to keep?

- Enough PCs to have a cumulative variance explained by the PCs that is >50-70\%
- Kaiser criterion: keep PCs with eigenvalues >1
- Scree plot: represents the ability of PCs to explain de variation in data

Scree Plot

Component Number

Do it graphically

Interpretation of components

- See the wheights of variables in each component
- If $Y_{1}=0.89 X_{1}+0.15 X_{2}-0.77 X_{3}+0.51 X_{4}$
- Then X_{1} and X_{3} have the highest wheights and so are the most important variable in the first PC
- See the correlation between variables X_{i} and PCs: circle of correlation

Circle of correlation

Normalized (standardized) PCA

- If variables have very heterogenous variances we standardize them
- The standardized variables $\mathrm{X}_{\mathrm{i}}{ }^{*}$

$$
X_{i}^{*}=\left(X_{i}-\text { mean }\right) / \sqrt{\text { variance }}
$$

- The new variables all have the same variance (1), so each variable have the same wheight.

Application of PCA in Genomics

- PCA is useful for finding new, more informative, uncorrelated features; it reduces dimensionality by rejecting low variance features
- Analysis of expression data
- Analysis of metabolomics data (Ward et al., 2003)

However

- PCA is only powerful if the biological question is related to the highest variance in the dataset
- If not other techniques are more useful : Independent Component Analysis
- Introduced by Jutten in 1987

