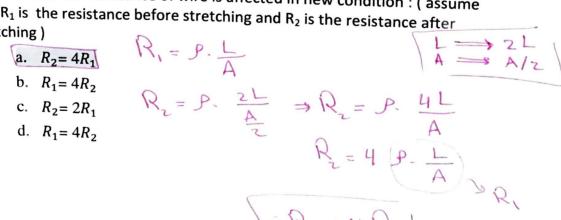
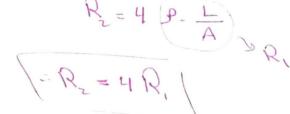


Chapter 8: Current and Resistance

- 1. If the resistance of the a circuit were tripled, then the current through the circuit would be:
 - a. one-third as less
 - b. three times as much
 - c. unchanged
 - d. none of those answers
- 2. If the equivalent resistance value of the circuit = 30Ω . What will the value of the unknown resistance:


If you wish to increase the amount of current in a resistor from 120 mA to


160 mA by changing the 24 V source, what should the new voltage setting $I_1 = 120 \text{ mA} = 0.12 \text{ A}$, $I_2 = 160 \text{ mA} = 0.16 \text{ A}$, $I_3 = 160 \text{ mA} = 0.16 \text{ A}$, $I_4 = 120 \text{ mA} = 0.12 \text{ A}$, $I_5 = 160 \text{ mA} = 0.16 \text{ A}$ I, = 120 mA = 0.12 A , Iz = 160 mA = 0.16 A $V_z = \frac{24 \times 0.16}{0.12}$ b. 24 V c. 40 V $R = \frac{V_1}{T} = \frac{24}{0.12} = 200 R$ · V2 = R. I2 = (200)(0.16) = 32 Volt = 32 volt d. 10 V

- 4. If a test instrument detects a value which is higher than normal current, it could means:
 - a. Resistance has decreases
 - b. Resistance has increased
 - c. voltage has increased

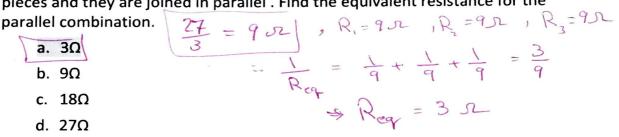
d. a and d

5. The area of cross section of wire becomes half when its length is stretched to double . How the resistance of wire is affected in new condition : (assume that R₁ is the resistance before stretching and R₂ is the resistance after stretching)

at is a largest and similarest total resistants and

combination of four coils of resistance 4Ω , 8Ω , 12Ω , 24Ω (series)

a. largest resistance = 480, smallest = 20 largest 12 = 448 + 12 4 24 = 481

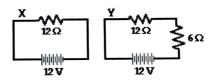

b. largest resistance = 16Ω , smallest = $1/2\Omega$

smallest R = 1 + 1 + 1 + 1 = 21

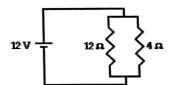
c. largest resistance = 4.8Ω , smallest = 0.2Ω

d. none of those answers

7. A wire of uniform thickness with a resistance of 27Ω is cut into three equal pieces and they are joined in parallel . Find the equivalent resistance for the



8. Compare circuit X and Y below. Each is powered by a 12V battery. The voltage drop across the 12Ω resistor in circuit Y is ____ the voltage drop across the single resistor in X.


- a. smaller than
- b. larger than

d. 27Ω

- c. the same as
- d. No answer is correct

9. A 12-V ba ery , a 12Ω resistor and a 4Ω resistor are connected as shown. The current in the 12Ω resistor is _ that in the 4-ohm resistor. I (12s2) = 1 Amp

- a. 1/3
- b. 1/2
- c. 2/3
- I(42) = 3 Amp
- : I(12.8) = = = I(4.8) d. the same as

10. Resistances of 2Ω , 4Ω , and 6Ω and a 24V emf device are all in series. The poten al di erence across the 2Ω resistor is:

- a. 4V
 - b. 24V
- c. 2V

d. 12V

- Reg = R,+ R2+123
 - = 2+4+6=12
- I = V = 24 = 2 Amp

$$V(2n) = IR_1$$

= 2(2) = 4 Volt

Chapter 8: Current and Resistance

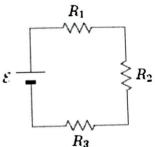
- 11. Four 20Ω resistors are connected in parallel and the combination is connected to a 20V emf device. The current in any one of the resistors is:

 - b. 4A

- c. 20A
- d. 40A

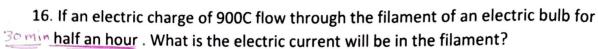
$$I = \frac{V}{Rear} = \frac{20}{5} = 4A$$

(For each resistance) $\leftarrow I(202) = 1 Amp$


- 12. A total resistance of 3Ω is to be produced by combining an unknown resistor R with a 12Ω resistor. What is the value of R and how is it to be connected to the 12Ω resistor?

a.
$$4\Omega$$
, parallel
b. 2.4Ω , parallel

- c. 4Ω , series
- 12R = 3R + 36
- d. 2.4Ω , series
- 12R-3R = 36 ⇒ 9R=36 ⇒ R=4R
- 13. A Nichrome wire is 1m long and 1×10^{-6} m² in cross-sectional area. When connected to a potential di erence of 2V, a current of 4A exists in the wire.


The resistivity of this Nichrome is:
$$R = \frac{V}{T} = \frac{2}{4} = 0.5 \Omega$$

- a. $5 \times 10^{-7} \Omega \cdot m$ b. $4 \times 10^{-7} \,\Omega \cdot m$
- $P = R \cdot A$
- c. $8 \times 10^{-7} \,\Omega \cdot m$
- d. $2 \times 10^{-7} \Omega \cdot m$
- =0.5 (1x106) = 5x1072.m
- 14. In the diagram $R_1 > R_2 > R_3$. Rank the three resistors according to the current in them, least to greatest.

- a. 1, 2, 3
- b. 3, 2, 1
- c. 1, 3, 2
- d. All are the same
- 15. Calculate the value of the resistance which must be connected to a 15Ω resistor to provide an equivalent resistance of 6Ω
 - a. 15Ω
 - b. 10Ω
- $\frac{15R}{15+R}=6$
- c. 6Ω
- d. 30Ω
- 15 R = 6 R 4 90

Chapter 8: Current and Resistance

17. 0.9V potential difference is applied across 1.5m length of tungsten wire that has across sec $\,$ onal of $0.6mm^2$. What is the current in the wire? (the resistivity of tungsten is $5.6 \times 10^{-8} \Omega \cdot m$)

$$5.6 \times 10^{-8} \quad (1.5)$$

 $AI = \frac{\Delta Q}{\Delta T} = \frac{900}{30 \times 10} = 0.5 \text{ Amp}$

many electrons strike the tube screen every 40s?

a.
$$0.75 \times 10^{13}$$
 electron

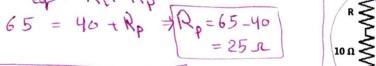
b.
$$7.5 \times 10^{15}$$
 electron

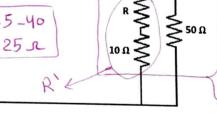
$$\Delta Q = I \cdot \Delta t$$

= $(30 \times 10^{-6})(40) = 1.2 \times 10^{-3}$

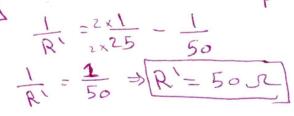
c.
$$750 \times 10^{17}$$
 electron

d.
$$0.075 \times 10^{12}$$
 electron


$$N = \frac{\Delta Q}{q_0} = \frac{1.2 \times 10^3}{1.6 \times 10^{19}} = 7.5 \times 10$$
 electron


19. The equivalent resistance between terminals a and b in the gure below is 65Ω . Calculate the value of the resistor R. $R_{eq} = R_i + R_p$

 $\frac{1}{25} = \frac{1}{R_0} = \frac{1}{50} + \frac{1}{R_1}$



$$d.~10\,\Omega.$$

- 20. Resistance of a conductor depends upon $\frac{1}{25}$
 - a. Nature of conductor
 - b. length of conductor
 - c. Area of cross section of conductor
 - d. All of the previous

$$R' = 10 + R$$

$$50 = 10 + R \Rightarrow R = 40 \text{ R}$$