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CHAPTER 1

Systems of Linear

Linear Equations

Equations and Matrices

1.1 Introduction to Systems of Linear Equations

Recall that in two dimensions a line in a rectangular x y-coordinate system can be repre-
sented by an equation of the form

ax + by = c¢ (a, b not both 0)

and in three dimensions a plane in a rectangular xyz-coordinate system can be repre-
sented by an equation of the form

ax +by+cz=d (a,b,cnotall 0)

These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x;, x5, ..., x, to be one that can be expressed
in the form

a)\x,+ax;+---+apx, =b (1)
where ay, a,, . .., a, and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, we will often use variables without subscripts and write linear
equations as

ax +ay = b (a,,a; not both 0) 2)
ax +ay+ayz =b (ay,ay,aznotall 0) (3)

In the special case where b = 0, Equation (1) has the form

arx); +arx, + -+ dpx, =0 (4)
which is called a homogeneous linear equation in the variables x;, x2, ..., x,.
> EXAMI | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All
variables occur only to the first power and do not appear, for example, as arguments of
trigonometric, logarithmic, or exponential functions. The following are linear equations:
x+3y=7 X; —2x2—3x3+x4 =0
%,\'—_\*4—3::—1 X1+x04+---+x, =1
The following are not linear equations:
x+3y?=4 3x+2y—xy=>5
sinx +y =0 VX +2x+x3=1 4



A finite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x, x,, and x3.

Sx +y=3 4x1 — x7 + 3x3 = —1
2x—y=4 3X1+X2+9X3=—4
A general linear system of m equations in the n unknowns xi, xs, ..., X, can be written
as
anx; +apx; + - +apx, =b
anx; +anx; + -+ + apx, = b
. . . . (7
Ay X + ApaXy + -+ ApaXy = by,
A solution of a linear system in n unknowns xy, Xz, . . ., X, is a sequence of n numbers
$1, 82, ..., 8, for which the substitution
X1 =585, X2=8,..., Xp=23,

makes each equation a true statement. For example, the system in (5) has the solution

and the system in (6) has the solution
x1=1, xx=2, xy=-—1
These solutions can be written more succinctly as
(1,=2) and (1,2,-1)

in which the names of the variables are omitted. This notation allows us Lo interpret
these solutions geometrically as points in two-dimensional and three-dimensional space.
More generally, a solution

X1 =8, Xo=8,..., Xp=35,
of a linear system in n unknowns can be written as
(51,52, ...,5,)

which is called an ordered n-tuple. With this notation it 1s understood that all varnables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.



Linear Systems inTwo and  Linear systems in two unknowns arise in connection with intersections of lines. For
Three Unknowns  example, consider the linear system

ayx + by =c¢
a)x + by = ¢

in which the graphs ol the equations are lines in the xy=plane. Each solution (x, y) ol this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.

In general, we say that a lincar system is consistent il it has at least one solution and
inconsistent if it has no solutions. Thus, a consistent linear systemof two equations in

two unknowns has either one solution or infinitely many solutions—there are no other
possibilities. The same is true for a linear system of three equations in three unknowns
ax + bly +c1z = dl
ax + by + crz =d,
asx + b3y + 3z = ds
in which the graphs of the equations are planes. The solutions of the system, if any,

correspond to points where all three planes intersect, so again we see that there are only
three possibilitiecs—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).
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No solution One solution Infinitely many

solutions
(coincident lines)

» Figure 1.1.1
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Infinitely many solutions
(intersection is a line)

A Figure 1.1.2

Infinitely many solutions
(planes are all coincident;
intersection is a plane)

Infinitely many solutions
(two coincident planes;
intersection is a line)

We will prove later that our observations about the number of solutions of linear
systems of two equations in two unknowns and linecar systems of three equations in
three unknowns actually hold for a// linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are

no other possibilities.

» EXAMPLE 2 A Linear System with One Solution
Solve the linear system

From the second equation we obtain y

x—y=1
2x+y=6

Solution We can eliminate x from the second equation by adding —2 times the first
equation to the second. This yields the simplified system

x—y=1
3y =4

%. and on substituting this value in the first

equation we obtain x = 1 + y = L. Thus, the system has the unique solution
y=3 Yy

— , — 4
X=3 V=3

Geometrically, this means that the lines represented by the equations in the system

intersect at the single point (

lines.

7 4

3 3). We leave it for you to check this by graphing the




» EXAMPLE 3 A Linear System with No Solutions

Solve the linear system
x+ y=4

3x+3y=6

Solution We can eliminate x from the second equation by adding —3 times the first
equation to the second equation. This yields the simplified system

x+y= 4
0=—6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that
they have the same slope but different y-intercepts.

> EXAMPLE 4 A Linear System with Infinitely Many Solutions

Solve the linear system
4x =2y =
l6x —8y =4

Solution We can eliminate x from the second equation by adding —4 times the first
equation to the second. This yields the simplified system

4x =2y =1
0=0

The second equation does not impose any restrictions on x and y and hence can be
omitted. Thus, the solutions of the system are those values of x and y that satisfy the
single equation

4x =2y =1 (8)
Geometrically, this means the lines corresponding to the two equations in the original
system coincide. One way to describe the solution set is to solve this equation for x in
terms of y to obtain x = + + 1y and then assign an arbitrary value f (called a parameter)

to y. This allows us to express the solution by the pair of equations (called parametric
equations)

X = % + %t, y=t
We can obtain specific numerical solutions from these equations by substituting numer-
ical values for the parameter r. For example, 1 = 0 yields the solution ($,0), r =1
yields the solution (2, 1), and t = —1 yields the solution (—;, —1) . You can confirm
that these are solutions by substituting their coordinates into the given equations.



> EXAMPLE 5 A Linear System with Infinitely Many Solutions
Solve the linear system
xX— y+2z= 5
2x—=2y+4z=10
3x=3y+4+6z=15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and
that those values of x, y, and z that satisfy the equation

x—y+2z=35 9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9).
We can do this by first solving this equation for x in terms of y and z, then assigning
arbitrary values r and s (parameters) to these two variables, and then expressing the
solution by the three parametric equations

x=54+r—2s, y=r, z=35

Specific solutions can be obtained by choosing numerical values for the parameters r
and 5. For example, taking r = 1 and s = 0 yields the solution (6, 1,0). <



Augmented Matrices and
Elementary Row Operations

As the number of equations and unknowns in a linear system increases, so does the
complexity of the algebra involved in finding solutions. The required computations can
be made more manageable by simplifying notation and standardizing procedures. For
example, by mentally keeping track of the location of the +s, the x’s, and the =’s in the
linear system

aypxy +apx; +-- -+ ax, = b

ayx, +anx; +---+ awx, =b

A1 X) + AmaXs + -+ AupXy = by,

we can abbreviate the system by writing only the rectangular array of numbers

ay ap - a,, b
ay ax» - Gy b
Am) 2 o Amp bm

This is called the augmented matrix for the system. For example, the augmented matrix
for the system of equations
X1+ x4+2xy=9 1
2x; +4x=3x3=1 15 2 4 =3 1
3x; + 6x; — S5x3 =0 3

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
1s consistent, and 1f so, what its solutions are. Typically, the algebraic operations are:

1. Muluply an equation through by a nonzero constant.
2. Interchange two equations.

3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.

In the following example we will illustrate how to use elementary row operations and
an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply
to understand the computations.



» EXAMPLE 6 Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in
the system, and in the right column we solve the same system by operating on the rows
of the augmented matrix.

x+ y+2z= 1 1 2 9
2x +4y—3z=1 2 4 =3 1
Ix +6y—5z=0 3 6 =5 0
Add =2 times the first equation to the second  Add —2 times the first row to the second to
to obtain obtain
X+ y+2z= 9 1 1 2 9
2y =Tz = =17 0 2 =7 =17
Ix+6y—=52= 0 3 6 =5 0
Add —3 times the first equation to the third to  Add —3 times the first row to the third to obtain
obtain
x+ y+ 2z= 9 11 2 9]
2y — 1z=-17 0o 2 -7 -17
3y — 11z =-27 0 3 —11 =27

Multiply the second equation by % to obtain Multiply the second row by % to obtain

x+ y+ 2z= 9 1 1 2 9
y— 1, _1 1 _u
) 22 =73 0 1 2 2
3y — 11z =-27 | 0 3 —11 =27
Add —3 times the second equation to the third ~ Add —3 times the second row to the third to
to obtain obtain
x+y+2z= 9 12 9
7 17
y-3i=-% I -3 —3
~ 4= 3 0 —+ -]

Multiply the third equation by —2 to obtain Multiply the third row by —2 to obtain

y-f=-1% 0 1 -3 %
z= 3 0 0 1 3



Add —1 times the second equation to the first
to obtain

.
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Add —4 times the third equation to the first
and 7 times the third equation to the second to
obtain

Add —1 times the second row to the first to
obtain

11 35
0 1 -k ¥
0 0 1 3

Add —% times the third row to the first and 7
times the third row to the second to obtain

The solution x = 1, y = 2, z = 3 is now evident. <
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Exercise Set 1.1

1. In each part, determine whether the equation 1s linear 1n x;,
X2, and x

(a) x|+5x2—~/§x5=l (b) x; +3x; + xjx; =2
(¢) xy = =Tx; + 3x3 (d) Jc,'2 + x4+ 8x3 =35

(e) xf/‘5—2x2+x3 =4 (f) mx; — 2x; = 7'

2. In ecach part, determine whether the equation is linear in x
and y.

(a) 22x + /3y =1 (b) 2x'? +3 /3y =1

(c) cos(%)x —4y =log3 (d) Tcosx —4y =0

(e) xy =1 () y+7=x
In each part of Exercises 56, find a linear system in the un-
knowns x;, x3, X3, ..., that corresponds to the given augmented
maltrix.
2 0 0 30 =2 5
5(a) |3 —4 0 (b) | 7 1 4 3
1 1 0 -2 1 7

0 3 -1 -1 —1]
6. (a)

30 1 —4 3

-4 0 4 1 -3
®1 3 0 2 o
0 0 0 -1 =2

In each part of Exercises 7-8, find the augmented matrix for
the linear system.
7. (a) —211 = 6 (b) 611 — X+ 3x=4
3xy, = 8 S5x5 — xy3 =1
9X| =-3
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1.2 Gaussian Elimination

Echelon Forms

In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z
by reducing the augmented matrix to the form

1 0 0 1
01 0 2
00 1 3

from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
isa 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties 1s said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

» EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

1 =2 ]
1 0 0 4 1 0 0 300?3 0 o
0107.010,00006.[00]
0 0 1 -1 0 0 1

0 0 0 0 0

The following matrices are in row echelon form but not reduced row echelon form.

1 4 =3 7 1 10 0 1 2 6 0
0 1 6 2|, 0O 1 0|, 10 O 1 -1 0
0 0 1 5 0 0 0 O 0 0 0 1



= -

(== ]

» EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the *’s, all matrices of the following types
are in row echelon form:

0 1 % % % * * % % =
I % * % I * % x% I % *x =%
01 01 01 00 0 1 % % % % %
00’;*,00’:*,003;,00001*****
* *
0001 0000 0000 FO 000 .
(000000001 %
All matrices of the following types are in reduced row echelon form:
000 100 % 10 % * O 1 000 0
, , 0001 0 %« * 0 *
1 00 01 0 = 01 % =
o010l looi " 1o o0 0 000010 % %0 |-
*
00 1 0000 0000 BEDE -
(000000001 %

P EXAMPLE 3 Unique Solution
Suppose that the augmented matrix for a linear system in the unknowns x;, x,, x3, and
x4 has been reduced by elementary row operations to

1 0o 0 0 3

0 1 0 0 =l

0 0 1 0 0

0 0 0 1 5

This matrix is in reduced row echelon form and corresponds to the equations

X1 = 3
X2 = =]
X3 = 0
X4 = 5
Thus, the system has a unique solution, namely, x; = 3, x; = —1, x5 =0, x4 = 5.

P> EXAMPLE 4 Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by clementary row operations to the given reduced row
echelon form. Solve the system.

1 00 0 ] 0 3 -1 1 =5 ] -
(@0 1 2 0 (WK 1 =4 2 ©j0 0 0 0
0 0 0 1 o0 0 0 0 o 0 0 0

'Y



Solution (a) The equation that corresponds to the last row of the augmented matrix is
Ox +0y+0z=1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is
Ox +0y+0z=0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the
linear system corresponding to the augmented matrix is
x  +3z=-l
y—4z= 2
Since x and y correspond to the leading 1’s in the augmented matrix, we call these
the leading variables. The remaining variables (in this case z) are called free variables.
Solving for the leading variables in terms of the free variables gives
x =—=1=13z
y=2+4z
From these equations we see that the free variable z can be treated as a parameter and

assigned an arbitrary value ¢, which then determines values for x and y. Thus, the
solution set can be represented by the parametric equations

X =wm=]l=3t y=244 z=t

By substituting various values for ¢ in these equations we can obtain various solutions
of the system. For example, setting r = 0 yields the solution

x==1, y=2, z=0
and setting ¢ = 1 yields the solution
x==4, y=6, z=1

Solution (¢) As explained in part (b), we can omit the equations corresponding to the
zero rows, in which case the linear system associated with the augmented matrix consists
of the single equation

x—5Sy+z=4 (1
from which we see that the solution set is a plane in three-dimensional space. Although
(1) is a valid form of the solution set, there are many applications in which it is preferable
to express the solution set in parametric form. We can convert (1) to parametric form
by solving for the leading variable x in terms of the free variables y and z to obtain

x=4+45y—z

From this equation we see that the free variables can be assigned arbitrary values, say
y = 5 and z = t, which then determine the value of x. Thus, the solution set can be
expressed parametrically as

x=4+55—t, y=5, z=1 4 (2)

AR



DEFAINITION 1 Ifalinear system has infinitely many solutions, then a set of parametric
equations from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.

Elimination Methods  We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row cchelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.

0o 0 =2 0 7 12
2 4 =10 6 12 28
2 4 =5 6 =5 -1

Step 1. Locate the leftmost column that does not consist entirely of zeros.

0 0o =2 0 7 12
2 4 =10 6 12 28
2 4 =5 6 =5 =1
t— Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.

2 4 —10 6 12 28

0 0 =2 0 7 12 <« Thefirst and s'c\,nlln! rows in the preceding
malnx were mlerchanged

2 4 -5 6 =5 —1 )

Step 3. If the entry that is now at the top of the column found in Step 1 is @, multiply
the first row by 1/a in order to introduce a leading 1.

1 2 =5 3 6 14

0 0 =2 0 7 12 <« The first row of the preceding matrix was

multiplied by =
2 4 =5 6 =5 —I .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.

1 2 =5 3 6 14

0 0o =2 0 7 12 <«— =2 times the first row of the preceding

matrix was added to the third row
0 0 -] 0 —=17 =29

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

1 2 =5 3 6 14
0 0 =2 0 7 12
0 0 5 0 =17 -29]

1— Leftmost nonzero column

in the submatrix
[ -5 3 6 147
0 1 0 _% —6 <+——— The first row in the submatrix was

multiplied by == to introduce a

5 0 =17 —29_ leading 1

Vo



(= =

o -

1
0
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2 =5
0 1
0 0
2 =5
0 1
0 0
2 =5
0 1
0 0
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3
0
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—6 -« =5 times the first row of the submatrix
was added to the second row of the
1 submatrix to introduce a zero below
- the leading 1
-6 <+——— The top row in the submatrix was
covered, and we returned again to
1 Step 1
L Leftmost nonzero column
in the new submatrix
—6 <«——— The first (and only) row in the new

submatrix was multiplied by 2 to
mtroduce a leading 1

The entire matrix is now in row echelon form. To find the reduced row echelon form we

need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1's.

14

The last matrix is in reduced row echelon form.

2 =5
0 1
0 0
2 =5
0 1
0 0
2 0
0 1
0 0

(9]

S © W S O W (= -

6
0
1

- o o

- o O

1
2

e j times the third row of the preceding
malrix was added to the second row.

<«——— =0 times the third row was added to the
first row.

<«— 5 times the second row was added to the
first row

1
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P EXAMPLE 5 Gauss-Jordan Elimination
Solve by Gauss—Jordan elimination.

Xy 4+ 3x0 — 2xa + 2xs = 0
2x) + 6xy — Sx3— 2x4 + 4xs — 3x5 = —1
Sx3 + 10x4 + 15x6= 5

2x; + 6x3 + 8x4+4xs+ 18xg= 6

Solution The augmented matrix for the system is

3 =2 0 2 0 0
6 =5 =2 4 =3 -l
0O 5 10 0 15 5
6 0 8 4 18 6

N O N -

Adding =2 times the first row to the second and fourth rows gives

1 3 =2 0 2 0 0
0 0 =1 =2 0 =3 =1l
0O 0 5 10 0 15 5
0 0 4 8 0 18 6

Multiplying the second row by —1 and then adding —5 times the new second row to the
third row and —4 times the new second row to the fourth row gives

1 3 =2 0 2 0 0
0 0 1 2 0 3 1
o o o0 o0 o0 0 0

o o o o0 o0 6 2

Interchanging the third and fourth rows and then multiplying the third row of the re=
sulting matrix by % gives the row echelon form

1 3 =2 0 2 0 0
o 0o 1 2 0o 3 1| _
This completes the forward phase since
0 0 0 0 0 1 % there are zeros below the leading 1's
o o o0 o0 o0 0 0

Adding —3 times the third row to the second row and then adding 2 times the second
row of the resulting matrix to the first row yields the reduced row echelon form

1 3 0 - 2 0 0
0 0 1 2 0O 0 0 N
I'his completes the backward phase since
0 0 0 0 0 1 % there are zeros above the leading 1's
0 o o o0 o0 0 0

The corresponding system of equations is

Xy + 3x, + 4x4 + 2x5 =0
X3 + 2x4 =0 (3)
Xg = %

Solving for the leading variables, we obtain

X = —31’2 — 4X4 = ZX5
X3 = —214

1
X = 3

Finally, we express the general solution of the system parametrically by assigning the
free variables x;, x4, and xs arbitrary values 7, s, and ¢, respectively. This yields

x;=-3r—4s —2t, x;=r, XxX3=—25, X4=35, X5=T1, x6=%<



Homogeneous Linear A system of linear equations is said to be homogeneous if the constant terms are all zero;
Systems  that is, the system has the [orm
anx; + apxy; +---+ apx, =0
anx, + anxy +---+ apxp =0

Ami X1 + AmaXs + -+ QupXp =0

Every homogeneous system of linear equations is consistent because all such systems
havex; = 0,x, =0, ..., x, = Oasasolution. This solution is called the trivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

+ The system has only the trivial solution.

* The system has infinitely many solutions in addition to the trivial solution.

» EXAMPLE 6 A Homogeneous System

Use Gauss—Jordan elimination to solve the homogeneous linear system

X; + 3x; — 2x3 + 2x5 =0
2x; + 6x3 — S5x3 — 2x4 4+ 4xs— 3x=0 @
Sxy + 10xy4 + 15x¢ =
2xy + 6x, + 8x4 + 4xs+ 18x5 =0

The augmented matrix for the given homogeneous system is

1 3 =2 0 2 0 0
2 6 =5 =2 4 =3 0
0 0 5 10 0 15 0
2 6 0 8 4 18 0
the reduced row echelon form of (5) 18
(1 3 0 4 2 0 0]
00 1 2 0 00
00 0 0 0 1 0
000 000 0
The corresponding system of equations is
X|+3X2 +4X4+2X5 =0
X3+ 2x4 =0
X — 0
Solving for the leading variables, we obtain
X = —3X2 —4X4 —2x5
X3 = —2x4 (7)

X5=0

If we now assign the free variables x5, x4, and xs arbitrary values r, s, and t, respectively,
then we can express the solution set parametrically as

Xy =-=3r—4s =2, xo=r, x3=-25, Xa=5, x5=1, x5=0

Note that the trivial solution results whenr = s =t = 0.



THEOREM 1.2.2 A homogeneous linear system with more unknowns than equations has
infinitely many solutions.

Gaussian Elimination and
Back-Substitution
> EXAMPLE 7 Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

1 3 =2 0 2 0 0

0 0 1 2 0 3 1

o 0o o o0 0 1 3

o o0 o O o0 0 0

To solve the corresponding system of equations

X1+3XZ—2I3 +2X5 =10
X3 + 2X4 + 3X(, =1
Xg = %

we proceed as follows:

Step 1. Solve the equations for the leading variables,

x; = —3x5 + 2x3 — 2x5

x3=1—2xs —3x¢

Xg = %

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x5 = % into the second cquation yiclds

X = —3)(3 + 2X3 — ZX5

X3 = —2Xx4
Xg = %

Substituting x3 = —2x4 into the first equation yields
X = —3X2 — 4X4 — 2x5
X3 = —ZX4
X = %

Step 3. Assign arbitrary values to the free variables, if any.
If we now assign x,, x4, and xs the arbitrary values r, s, and t, respectively, the
general solution is given by the formulas

X, ==3r—4s—2t, xo=vr, x3=-28, xX4=25, Xs=I, x6=%

This agrees with the solution obtained in Example 5.

14



» EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the un-
knowns xy, x5, x3, and xs. These matrices are all in row echelon form but not reduced row
echelon form. Discuss the existence and uniqueness of solutions to the corresponding
linear systems

(a)

(= = R

-3
1
0
0

7 2 5 1 =3 7 2 5 1 =3 7 2 5
2 —4 1 0 1 2 —4 1 0 1 2 —4 1
e 9o ®lo 0o 1 6 9ol 9 0 1 6 9
0 0 1 0 0 0 0 0 0O 0 0 1 0

Solution (a) The last row corresponds to the equation
0x; + Ox2 + 0x3 + Oxg = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation
Ox; 4+ 0xy 4+ 0x3 + 0xs =0

which has no effect on the solution set. In the remaining three equations the variables
X1, X2, and x3 correspond to leading 1’s and hence are leading variables. The variable x4
1s a free variable. With a little algebra, the leading variables can be expressed in terms
of the free variable, and the free variable can be assigned an arbitrary value. Thus, the
system must have infinitely many solutions.

Solution (¢) The last row corresponds to the equation
x4 =0

which gives us a numerical value for xs. If we substitute this value into the third equation,
namely,

X3+ 6x4 =9

we obtain x3 = 9. You should now be able to see that if we continue this process and
substitute the known values of x5 and x4 into the equation corresponding to the second
row, we will obtain a unique numerical value for x,; and if, finally, we substitute the
known values of x4, x3, and x; into the equation corresponding to the first row, we will
produce a unique numerical value for x;. Thus, the system has a unique solution. <
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Exercise Set 1.2

In Exercises 1-2, determine whether the matrix 1s in row ech-
clon form, reduced row echelon form, both, or neither.

<

1.(a) (O (c)

oo O
(=
S - O

1
(b) |0
0

S - O
S < <

(1 0 3 1
(d) ] (e)

o O O N
S O = O
(==
S - o O

) [0 0 (2)

2.(a) [0 1 0 (b) (c)

O -
N - O
S © O
SO
oo W
=

(d [0 1 1 (c)

SO
(=R == 8
-0 W

N

1
1
® 1,

S O N

4 5

7 1 3 1 =2 0 1
0 0 1 (g)[o 0 1—2]
0000 0

In Excercises 58, solve the lincar system by Gaussian climi=
nation.

7. x— y+2z— w=-—I

2x+ y—2z—2w=-2

—x+2y—4z+ w= 1

3x —3w=-3

In Exercises 1314, determine whether the homogencous sys-
tem has nontrivial solutions by inspection (without pencil and
paper).
13. 2x; — 3x, +4x:— x; =0

Txi+ x2—8x:+9x, =0

2 4+ 8x 4+ x3— x4=0
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1.3 Matrices and Matrix Operations

DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the entries in the matrix.

> EXAMPLE 1 Examples of Matrices
Some examples of matrices are

1 2 e w =2 :
3 0f, 2 1 0 =3, )0 1 1 | [] [4] <
3
-1 4 0 0 0

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) 1t contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 x 2). In a size description,
the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes 1 x 4, 3 x 3, 2 x 1, and
1 x 1, respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
1s called a column vector (or a column matrix). The fifth matrix in that example 1s both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantitics; thus we might write

21 7 % b c
A‘[34z] °'C_[de f]

When discussing matrices, it iscommon to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.

The entry that occurs in row i and column j of a matrix A will be denoted by a;;.
Thus a general 3 x 4 matrix might be written as

ay dap as dyg
A= |ay an a3 ax
as a4z ax dn
and a general m x n matrix as
ap  dp 0 A
dyy  dAxn - Ay
A=| 7 . . ()

Amy Qm2 - 0mp



When a compact notation is desired, the preceding matrix can be written as
[aiijxn or [aijJ

the first notation being used when it 1s important in the discussion to know the size,
and the second when the size need not be emphasized. Usually, we will match the letter
denoting a matrix with the letter denoting its entries; thus, for a matrix B we would
generally use b;; for the entry in row i and column j, and for a matrix C we would use
the notation ¢;;.

The entry in row i and column j of a matrix A is also commonly denoted by the
symbol (A);;. Thus, for matrix (1) above, we have

(A)i; = ajj

2 =3
a=[ )
we have (A)“ — 2, (A)12 — —3, (A)21 = 7, and (A);z = 0.
Row and column vectors are of special importance, and it is common practice o
denote them by boldface lowercase letters rather than capital letters. For such matrices,

double subscripting of the entries is unnecessary. Thus a general 1 x n row vector a and
a general m x 1 column vector b would be written as

and for the matrix

b,
b,
a=[a a -+ a,] and b= | |
b
A matrix A with n rows and n columns 1s called a square matrix of order n, and the
shaded entries ayy, as, . . ., @,, In (2) are said to be on the main diagonal of A.
ay a2 -+ dn

ay axp -+ any

(2

apl dap2 - dpn

Yy



Operations on Matrices

DEFAINITION 2 Two matrices are defined to be egual if they have the same size and
their corresponding entries are equal.

P EXAMPLE 2 Equality of Matrices

Consider the matrices

2 1 2 1 210
A‘[3 x]' B_[3 5]’ C‘[s 4 o]

If x = 5, then A = B, but for all other values of x the matrices A and B are not equal,
since not all of their corresponding entries are equal. There is no value of x for which
A = C since A and C have different sizes. <

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A — B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if A = [a;;] and B = [b;;] have the same size, then

(A + B)ij = (A)j + (B)ij = a;j +b;j and (A — B);; = (A)y; — (B)ij = aij — by;

P EXAMPLE 3 Addition and Subtraction
Consider the matrices

2 1 0 3 —4 3 5 1 11
A=|-I o 2 4|, B=| 2 2 0 -=1|, C= [2 2]
4 =2 7 0 3 2 —4 5
Then
=2 4 5 4 6 =2 =5 2
A+ B= 1 2 2 3) and A—=B=|—-3 -2 2 5
7 0 3 5 1 —4 11 =5

The expressions A + C, B+ C, A — C, and B — C are undefined. <«

DEFINITION 4 If A is any matrix and c is any scalar, then the product c A is the matrix
obtained by multiplying each entry of the matrix A by ¢. The matrix cA is said to be
a scalar multiple of A.

In matrix notation, if A = [a;;], then
(cA)jj = c(A)ij = cayj

P EXAMPLE 4 Scalar Multiples
For the matrices

2 3 4 0 2 7 9 —6 3
A=[1 3 1]’ B=[—1 3 —5]’ C=[3 0 12]
we have

4 6 8 0 =2 =7
2A=[2 6 2]‘ (_1)B=[1 -3 5]’

It is common practice to denote (—1)B by —B. <

Y¢
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DEFINITION 5 If A is an m x r matrix and B is an » x n matrix, then the product
AB is the m x n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.

» EXAMPLE 5 Multiplying Matrices
Consider the matrices

. 4 1 4 3
A=y ¢ o] B=lo -1 3
2 7 5 2

Since Ai1sa 2 x 3 matrix and B is a 3 x 4 matrix, the product AB isa 2 x 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.

4 1 4 3

IR
26000, 5 5 o] |DUee]

(2-4)+(6-3)+(0-5)=26

The entry in row 1 and column 4 of AB 1s computed as follows:

4 1 4

A L | O00m
26 0ll) T, 1 LT IO0O0O0

(1-)+Q-1)+(4-2) =13

The computations for the remaining entries are

1-H+2-00+4-2)= 12

a-H-2-N+@-7= 27

(1-49+@2-3)+@-5 = 30 AB:[lz 27 30 13:|<
2-4+6-00+(0-2)= 8 8 —4 26 12
2-D=6-1)+(0-7)=-4

2-3)+@6-1)+(0-2)= 12



A\l

A B AB
m X r r X n = m X n
Inside |
Qutside

P> EXAMPLE 6 Determining Whether a Product Is Defined
Suppose that A, B, and C are matrices with the following sizes:

A B C
3 x4 4x7 7x3

Then by (3), AB isdefined andisa 3 x 7 matrix; BC isdefined andisa4 x 3 matrix; and
CAisdefinedandisa7 x 4 matrix. The products AC, C B, and BA are all undefined.

In general, if A = [a;;]isanm x r matrix and B = [b;;] isanr x n matrix, then, as
illustrated by the shading in the following display,

ay  app - ayp

ayy] axp - ay |[bun b2 -+ by - by
: : : by by - by - by,
: : : J ]

AB = . . . .

a1 a2 - Qir . . s : )

- . : byy byy - brj <o+ by
| ml dm2 - dmr

the entry (AB);; in row i and column j of AB is given by
(AB);j = aj\byj + ainbyj + aisbsj + - - + ai, by (5)

Formula (5) is called the row-column rule for matrix multiplication.



Matrix Form of a Linear ~ Matrix multiplication has an important application to systems of linear equations. Con=
Systern  sider a system of m linear equations in n unknowns:

anx; + apxy +---+ apx, = by

axnx; + anx; +---+ ayx, = b,

A1 X1 + @uaXz + -+ QupXy = by,

Since two matrices are equal if and only if their corresponding entries are equal, we can
replace the m equations in this system by the single matrix equation

anx) + apxy 4o+ apx, b
anXxy + anxy +---+ anX, by
A1 Xy + A2 X2+t Amn Xy by,

The m x 1 matrix on the left side of this equation can be written as a product to give

an  ap - oay | [x by
ay  an - ay || X b,
Am Am? e Amn Xn bm

If we designate these matrices by A, x, and b, respectively, then we can replace the original
system of m equations in n unknowns by the single matrix equation
Ax=b

The matrix A in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus
the augmented matrix is

ay aa - ap | b

ay  ap - ay | b
[Ab] =] . . . .

A Q2 e Amn hm

Transpose of a Matrix

DEFINITION 7 If A is any m x n matrix, then the transpose of A, denoted by A7, is
defined to be the n x m matrix that results by interchanging the rows and columns
of A; that is, the first column of A7 is the first row of A, the second column of A” is
the second row of A, and so forth.

P EXAMPLE 11 Some Transposes
The following are some examples of matrices and their transposes.

ay ap a3y apg 2 3
A=|ay apn a3y ayl|, B=|1 4|, C=[1 3 5], D=I[4]
ay axp axy ay 5 6

ay az as

AT _ |92 a2 an BT — 21
a;y dyy dxyy ' 3 4 6

g G4 Ay

Yv



Observe that not only are the columns of A7 the rows of A, but the rows of A7 are
the columns of A. Thus the entry in row i and column j of A7 is the entry in row j and
column i of A; that is,

(A7) = (A (14)

Note the reversal of the subscripts.

In the special case where A is a square matrix, the transpose of A can be obtained
by interchanging entries that are symmetrically positioned about the main diagonal. In
(15) we see that AT can also be obtained by “reflecting” A about its main diagonal.

1 =2 4 S NN 1 3 =5
/' A:' /'f:\
A= 3 7 0|->| 3 2 0| >4aT=|=2 7 8 (15)
-5 8 6 =5 ® 6 4 0 6

T

Interchange entries that are
symmetrically positioned
about the main diagonal

Trace of a Matrix DEFINITION 8 If A isa square matrix, then the trace of A, denoted by tr(A), is defined

to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A is not a square matrix.

» EXAMPLE 12 Trace

The following are examples of matrices and their traces.

—1 2 7 0
ay apz apg 3 5 _8 4
A= |ay an an|, B= 1 s 7 _3

as axyp an

tr(A) = ay +axn +asx tr(B)=—1+5+7+0=11 <

YA



Exercise Set 1.3
In Exercises 1=2, suppose that A, B, C, D, and E are matrices
with the following sizes:
A B C D E
(4 x 5) (4 x 5) (5x2) (4 x 2) (5x4)

In cach part, determine whether the given matrix expression is
defined. For those that are defined, give the size of the resulting

matrix.
2. (a) CD7 (b) DC

(¢) B'D+ ED

(¢c) BC —3D
(d) D'(BE) (f) BA" +D

In Exercises 3—6, use the following matrices to compute the
indicated expression if it is defined.

30 -
4 =1 1 4 2
a=i-1 2, B=[ | C=[ ]
0 2 31 5
11 -
1 5 2 T 6 1 3
D=|—=1 0 1|, E=|—-1 1 2
3 2 4 41 3
3.(a) D+ E (b) D—E (c) 5A
(d) —=7C (¢) 2B—C (f) 4E — 2D
(g) —3(D+2E) (h)A—A (i) tr(D)
(j) tr(D —3E) (k) 4 r(7B) (1) tr(A)

6. (a) 2D —E)A
(€) (—AC)T 4+ 5D7
(e) BI(CCT — ATA)

In Exercises 23-24, solve the matrix equation for a, b, c,

and d.

= [_al a-::-b]:[

(b) (4B)C + 2B
(d) (BAT =20)7
(fy D'ET —(ED)"

4 d— 2(:]

d+ 2 =2

AR



1.4 Inverses; Algebraic Properties of Matnces

Prop(’m(’s of Matr/x
Addition and Scalar
Multiplication

THEOREM 1.4.1 Properties of Matrix Arithmetic

The fo]lowmg lhcorcm lists the bamc algcbralc properties of the matrix operations.

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid

A+B=B+A
A+(B+C)=
A(BC) = (AB)C

A(B+C) = AB + AC
(B+C)A=BA+CA
A(B—C)=AB — AC
(B—C)A=BA—-CA
a(B+C)=aB +aC
a(B—C)=aB —aC
(a+ b)C = aC + bC
(a—b)C =aC —bC
a(bC) = (ab)C

a(BC) =

(a)
(b)
()
(d)
(e)
(f)
(g)
(h)
(1)
()
(k)
()
(m)

[Commutative law for matrix addition]

(A + B) + C [Associative law for matrix addition]

[Associative law for matrix multiplication]
[Left distributive law]
[Right distributive law]

(aB)C = B(aC)

> EXAMPLE 1 Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

2

4 3
4|, B= .
| 2 1

1
A=13
0
Then
1 2 8 5
AB=1|3 4 [4 3:|= 20 13
0 1 e 2 1
Thus -
8 5
(AB)C =120 13
2 1
and
1 2
ABC)= |3 4
0 1

|2 3]

4 me—[* 3 9_
an 2 12 37T
18 15]
HEEEE:
2 3|7 )
4 3
] 18 15
10 9
43]:4639
S 4 3

s0 (AB)C = A(BC), as guaranteed by Theorem 1.4.1(¢c).

|

10 9
4 3

]



Properties of Matrix Do not let Theorem 1.4.1 lull you into believing that a// laws of real arithmetic carry over
Multiplication  to matrix arithmetic. For example, you know that in real arithmetic it is always true that
ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,

however, the equality of AB and BA can fail for three possible reasons:

1. AB may be defined and BA may not (for example, if Ais2 x 3and Bis3 x 4).

2. AB and BA may both be defined, but they may have different sizes (for example, if
Ais2x3and Bis3 x 2).

3. AB and BA may both be defined and have the same size, but the two products may
be different (as illustrated in the next example).

» EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices
-1 0 1 2
A= B =
[ 2 3] @ [3 0]

aB =" 72| and Ba=[ ®°
o4 =3 0

Multiplying gives

Thus, AB # BA. <

Zero Matrices A matrix whose entries are all zero is called a zero matrix. Some examples are

0
000

0 0 0000 0

[00]‘000'[0000]‘0‘[0]
000 0

We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote the m x n zero matrix by O« -
It should be evident that if A and () are matrices with the same size, then

A+0=0+A=A

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the
numerical equationa +0=04a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

THEOREM 1,4.2 Properties of Zero Matrices

If ¢ is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

@ A+0=0+A=A

b) A—0=A
() A—A=A+(—A)=0
(d) 0A=0

() IfcA=0,thenc=00rA=0.

AR



Since we know that the commutative law of real arithmetic is not valid in matrix
arithmetic, it should not be surprising that there are other rules that fail as well. For
example, consider the following two laws of real arithmetic:

* Ifab = acand a # 0, then b = ¢. [The cancellation law]
« Ifab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

P EXAMPLE 3 Failure of the Cancellation Law
Consider the matrices

A_01 8_11 C_zs
1o 2/ 13 4 |3 4

We leave it for you to confirm that

3 4

AB = AC =
6 8

Although A # 0, canceling A from both sides of the equation AB = AC would lead
to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in
general, for matrix multiplication (though there may be particular cases where it 1s true).

P> EXAMPLE 4 A Zero Product with Nonzero Factors

Here are two matrices for which AB = 0, but A # 0 and B # 0:
0 1 3 7

] — 4
A02’BOO

Identity Matrices A square matrix with 1's on the main diagonal and zeros elsewhere is called an identity

matrix. Some examples are

{ o 1 00
(11, [O l]' 0 1 0f,
0 01

An identity matrix is denoted by the letter 7. If it is important to emphasize the size, we
will write I,, for the n x n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 x 3 matrix A on each side by an identity matrix. Multiplying
on the right by the 3 x 3 identity matrix yields

1 0 0

Al = [an a 013] 01 0f= [an a an] —A
a ay a a a a
21 22 23 0 0 1 21 22 23

e

0 0
1 0
0 1
0

(=]
- O O O

0

and multiplying on the left by the 2 x 2 identity matrix yields

1 0)fa ap a a a a
LA — noa 3| _[en e an] _
0 1)[lan an axn ay ap axp

vy



The same result holds in general; that is, if A is any m x n matrix, then
AL, =A and I,A=A

Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equationa -1 =1-a = a.

As the next theorem shows, identity matrices arise naturally in studying reduced row
echelon forms of square matrices.

THEOREM 1.4.3 If R is the reduced row echelon form of ann x n matrix A, then either
R has a row of zeros or R is the identity matrix I,.

Inverse of a Matrix

DEFAINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I, then A is said to be invertible (or nonsingular) and
B 1s called an inverse of A. If no such matrix B can be found, then A is said to be
singular.

Remark The relationship AB = BA = [ is not changed by interchanging A and B, so if A is
invertible and B 1s an inverse of A, then 1t is also true that B 1s invertible, and A 1s an inverse of
B. Thus, when

AB=BA =1

we say that A and B are inverses of one another.

P EXAMPLE 5 An Invertible Matrix

Let 5 3 5
=5 5
.4:[_I 3] and Bz[] 2|
Then
[ 2 =5][3 5] [1 O]
AB=1_, 3][1 2= lo 1] 7!
[3 5 2 =51 [1 0]
BA__l 2][—1 3] Lo l__I

Thus, A and B are invertible and each is an inverse of the other.
Properties of Inverses

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then B = C.

AAT =1 and A7'A =1

Yy



THEOREM 1.4.5 The matrix

A=l d]

is invertible if and only if ad — bc # 0, in which case the inverse is given by the formula
1 d —b
A” = —— 2
ad — bc [—c a] )

» EXAMPLE 7 Calculating the Inverse of a 2 x 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

6 1 -1 2
(a)Az[s 2] (b)Az[ 3 —6]

Solution (a) The determinant of A is det(A) = (6)(2) — (1)(5) = 7, which is nonzero.
Thus, A is invertible, and its inverse is

eI

7

[P ] [

Aoy A
—

We leave it for you to confirm that AA™' = A™'A =1,

Solution (b) The matrix is not invertible since det(A) = (=1)(=6) — (2)(3) = 0.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is
invertible and

(AB)—I - B—l A—l

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that

(ABY(B~™'A™) = (B™'A™)(AB) =1
But
(ABY(B7'A ™) = A(BB DA = AIA™ = AA~ = 1
and similarly, (B~'A7")(AB) = 1. «

A product of any number of invertible matrices is invertible, and the inverse of the product
is the product of the inverses in the reverse order.

P EXAMPLE 9 The Inverse of a Product

Consider the matrices
A= 1 2 B= 3 2
o3 2 2

We leave it for you to show that

7 6 _ 4 =3
AB=[9 8], (AB)'=|:_% 1]

2
and also that

e B B e [ R

Thus, (AB)™" = B~ A~ as guaranteed by Theorem 1.4.6. <

4 —3]
9 7
2 2

(=[]

Ye



Powers of a Matrix  If A is a square matrix, then we define the nonnegative integer powers of A to be
A’=1T1 and A" =AA.---A [nfactors]
and if A is invertible, then we define the negative integer powers of A to be

A7 =AY =A7'A7" . A7 (nfactors)

ATAS = Ar+s and (Ar): = A"

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:
(@) A~'isinvertible and (A=")~! = A.

(b) A" is invertible and (A")™' = A" = (A~")".

(c) kA is invertible for any nonzero scalar k, and (kA)™" = k~'A~".

» EXAMPLE 10 Properties of Exponents
Let A and A~! be the matrices in Example 9; that is,

_ (12 o [ 3 =2
A—[l 3] and A _[—l 1]

A=Y — (A=) — 3 =21 3 =2][ 3 =21 [ 41 =30
=@ =100 = = 1T es
A3_121212_1|3o
Sl 3 31 3] [15 41

s0, as expected from Theorem 1.4.7(b),

-t 1 41 =307 [ 41 =301
(4°) T (11)(41) = (30)(15) [—15 11]_[—15 11]_(A )




Matrix Polynomials If A is a square matrix, say n x n, and if

p(xX)=ap+ax +ax* + - + apx™

is any polynomial, then we define the n x n matrix p(A) to be
P(A) = agl + a1A + a,A* + - - + @, A" (3)

where [ is the n x n identity matrix; that is, p(A) is obtained by substituting A for x
and replacing the constant term ag by the matrix ag /. An expression of form (3) 1s called
a matrix polynomial in A.

» EXAMPLE 12 A Matrix Polynomial
Find p(A) for

, -1 2
= X - — 3 —
p(x)=x 2x and A [ 0 3]

Solution
p(A) = A =2A =31

O R A BN
R R S P

or more briefly, p(A) = 0. 4

A
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Properties of the Transpose

THEOREM 1.4.8 If the sizes of the matrices are such that the stated operations can be
performed, then:

(@ (AHT =4

) (A+ B = AT + BT
(¢) (A—B)T = AT — BT
(d) (kA" =kAT

(e) (AB)" = B'AT

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and
(AT)—I — (A—I)T

Proof We can establish the invertibility and obtain the formula at the same time by
showing that

ATA™YT = (A~YAT =1

But from part (¢) of Theorem 1.4.8 and the fact that I7 = I, we have
ATAYT = (A=A = 1T =1
(A=)TAT = (AA=Y) = 1T =1

which completes the proof.



Exercise Set 1.4
In Exercises 5=8, use Theorem 1.4.5 to compute the inverse of
the matnix.

o[

10. Find the inverse of
cost sinf
—sinfl  cost
In Exercises 15=18, use the given information to find A.

-3 -1
=1
R

-1 2
-1 _
oo =[7 ]

In Exercises 21-22, compute p(A) for the given matrix A and
the following polynomials.
(@) p(x) =x—2
(b) p(x) =2x —x + 1
(€) px) =x>—2x +1

3 |1 2 0
was) ] nas

YA



1.5 Elementary Matrices and a Method for Finding A™

In Section 1.1 we defined three elementary row operations on a matrix A:

1. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant ¢ times one row to another.

It should be evident that if we let B be the matrix that results from A by performing one

of the operations in this list, then the matrix A can be recovered from B by performing
the corresponding operation in the following list:

1. Multply the same row by 1/c.
2. Interchange the same two rows.

3. If B resulted by adding ¢ times row r; of A to row r;, then add —c times r; to r;.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

DEFINITION 2 A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.

THEOREM 1.5.17 Row Operations by Matrix Multiplication

If the elementary matrix E results from performing a certain row operation on I, and
if Aisanm x n matrix, then the product EA is the matrix that results when this same
row operation is performed on A.

THEOREM 1.5.2 Every elementary matrix is invertible, and the inverse is also an ele-
mentary matrix.

Equivalence Theorem

THEOREM 1.5.3 Equivalent Statements

If Ais ann x n matrix, then the following statements are equivalent, that is, all true or
all false.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.

4



A Method for Inverting
Matrices

Inversion Algorithm To find the inverse of an invertible matrix A, find a sequence of
elementary row operations that reduces A to the identity and then perform that same
sequence of operations on I, to obtain A~

» EXAMPLE 4 Using Row Operations to Find A~
Find the inverse of

1 2 3
A=12 5 3
1 0 8
The computations are as follows:
12 3 10 0]
2 5 3 0 1 0
10 8] 0 o0 1]
12 3 10 0]
() 1 =3 -2 1 1] - We added =2 times the first
row to the seccond and —1 times
0 =2 5 —1 0 1 the first row to the third.

0 1 =3 -2 1 0 <«— Weadded 2 times the
second row to the third

0 1 =3 -2 1 0 <+—— We multiplied the
third row by =1,

1] 1 0 13 —5 -3 <«——— We added 3 times the third
row to the second and =3 times
0 0 1 5 =2 -1 the third row to the first

0 1 0 13 —5 =3 < We added =2 times the
sccond row to the first.
0 0 5 -2 -1}
Thus, )
—40 16 9
AT'=] 13 =5 -3| «




» EXAMPLE 5 Showing That a Matrix Is Not Invertible
Consider the matrix

1 6 4
A= 2 4 -1
-1 2 5

1 6 4| 1 0 0

2 4 =1 0 1 0
-1 2 5| 0 0 1]

1 6 4| 1 0 0]

0 _8 _9 _2 1 0 - We added =2 times the first
0 8 9] 1 0 1] e ot o 20 the Gl
1 6 4| 1 0 0]

0 8 5|2 1 0f - Wesetiorons

0 0 0|—=1 1 1

Since we have obtained a row of zeros on the left side, A is not invertible.

€



Exercise Set 1.5

In Exercises 13—18, use the inversion algorithm to find the in=
verse of the matrix (if the inverse exists).

10 1

13. 11
11 0
00 2 0
10 0 1

Blo -1 3 o
2 1 5 =3

In Exercises 19-20, find the inverse of each of the following
4 x 4 matrices, where k,, k2, k3, k4, and k are all nonzero.

kk 0 0 0
ky 0 0
19. (a) 0 k 0

0 0 0 Kk



1.6 More on Linear Systems and Invertible Matrices

Number of Solutions of a
Linear System

THEOREM 1.6.1 A system of linear equations has zero, one, or infinitely many solutions.
There are no other possibilities.

Solving Linear Systems by
Matrix Inversion

THEOREM 1.6.2 If A is an invertible n x n matrix, then for each n x 1 matrix b, the
system of equations AX = b has exactly one solution, namely, x = A™"b.

Proof Since A(A='b) = b, it follows that x = A~'b is a solution of Ax = b. To show
that this is the only solution, we will assume that xq 1s an arbitrary solution and then
show that xy must be the solution A~b.

If xg is any solution of Ax = b, then Axy = b. Multiplying both sides of this equa-

tion by A~!, we obtain xg = A~'b. «

» EXAMPLE 1 Solution of a Linear System Using A~"
Consider the system of linear equations
X1+ 2x24+3x3= 5
2x) + 5x7 + 3x3= 3
X + 8x3 =17

In matrix form this system can be written as Ax = b, where

&y

1 2 3 X1 5
A=12 5 3|, x=|x2|, b=] 3
I 0 8 X3 17
In Example 4 of the preceding section, we showed that A is invertible and
—40 16 9
A7V =| 13 =5 -3
5 =2 -1
By Theorem 1.6.2, the solution of the system is
—-40 16 9 5 |
x=A""b=| 13 =5 =3|| 3|=|-1I
5 =2 =1 17 2

orx;=1,x==-lx3=2 <



Linear Systems with a
Common Coefficient Matrix

» EXAMPLE 2 Solving Two Linear Systems at Once
Solve the systems

(@) x1+2x;+3x3=4 (b) x4+ 2x3 + 3x3= 1
2x; + 5x, +3x35=5 2x; + 5x, +3x5= 6
X +8x3 =9 X + 8x3 = —6

Solution The two systems have the same coefficient matrix. If we augment this co-

efficient matrix with the columns of constants on the right sides of these systems, we
obtain

2
1

1 2
5

0

o0 W W

e

1
6
—6

Reducing this matrix to reduce_d row echelon form yield_s (verify)

1 0 o 1| 2
0 1 o o]| 1
0 0 1| 1]=1

It follows from the last two columns that the solution of system (a) is x; = 1, x5 = 0,
x3 = 1 and the solution of system (b)isx; =2, x; = 1, x5 =—1.
Properties of Invertible

Matrices

THEOREM 1.6.3 Let A be a square matrix.
(a) If B is a square matrix satisfying BA = I, then B = A~
(b) If B is a square matrix satisfying AB = I, then B = A™".

Equivalence Theorem

THEOREM 1.6.4 Equivalent Statements

If A is ann x n matrix, then the following are equivalent.
(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢)  The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.
() Ax = bis consistent for everv n x 1 matrix b.

(/) Ax = b has exactly one solution for every n x | matrix b.
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Exercise Set 1.6

In Exercises 1-8, solve the system by inverting the coefficient
matrix and using Theorem 1.6.2.

S. x+y+ z= 3
x+y—4z=10
—4x+y+ z= 0
8. x4 2x; + 3x3 = b,
2X|+512+SX3=b2
3x|+5x2+8x3=b3
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1.7 Diagonal, Triangular, and Symmetric Matrices

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal
matrix. Here are some examples:

1 00 6 0 0 0
2 0 0 —4 0 0 0 0
., 10 1 0f, )
0 =5 00 I 0 0 0 0 0 0
o o o0 8

A general n x n diagonal matrix D can be written as

d 0 --- 0
0 d -~ 0

ml B . (1
0 0 - d,

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in
this case the inverse of (1) is

1/dy, 0 .- 0
0 1/d>, --- 0

D™ = : /:2 . @
0 0 ... 1/d,

You can verify that this 1s so by multiplying (1) and (2).
Powers of diagonal matrices are easy to compute; we leave it for you to verify that if
D is the diagonal matrix (1) and k is a positive integer, then

i 0 - 0
0 d¥ .. 0
pk=1|. ° . (3)
0 0 ... d
> EXAMPLE 1 Inverses and Powers of Diagonal Matrices
If
1 0 0
A=|0 =3 0
0o 0 2
then
1 0 0 1 0 0 1 0 0
AT =10 =3 0, AT=)0 =243 0|, AT=|0 —55 0
0 0 3 0 0 32 0 0 -



Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a square matrix in which all the entries below the main diagonal are zero
is called upper triangular. A matrix that is cither upper triangular or lower triangular is
called triangular.

P EXAMPLE 2 Upper and Lower Triangular Matrices

aiy ai2 a3 aig ap 0 0 0
0 axn axn axn ayg an 0 0 <
0 0 a3 axu a3 ayp ayp 0
0 0 0 a4 aq) ag as3 as

T f

A genceral 4 x 4 upper A general 4 x 4 lower
triangular matrix triangular matrix

Properties of Triangular
Matrices

THEOREM 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose
of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product of
upper triangular matrices is upper triangular.

(¢c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular.

1A%
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Symmetric Matrices  ["oeanmon1 A square matrix A is said to be symmetric if A = AT .

P EXAMPLE 4 Symmetric Matrices
The following matrices are symmetric, since each is equal to its own transpose (verify).

d 0 0 0
1 4 5
7 =3 0 44 0 0
[—3 5j|‘ 4 (3) of. 0 0 di 0 n
0 0 0 dy

THEOREM 1.7.2 If A and B are symmetric matrices with the same size, and if k is any
scalar, then:

(@) AT is symmetric.
(b)) A+ Band A — B are symmelric.
(¢c) kA is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To
see why this is so, let A and B be symmetric matrices with the same size. Then it follows
from part (e) of Theorem 1.4.8 and the symmetry of A and B that

(AB)" = BTAT = BA

Thus, (AB)” = AB if and only if AB = BA, that is, if and only if A and B commute. In
summary, we have the following result.

THEOREM 1.7.3 The product of two symmetric matrices is symmetric if and only if the
matrices commute.

» EXAMPLE 5 Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not
symmetric, and the second shows a product of symmetric matrices that is symmetric. We
conclude that the factors in the first equation do not commute, but those in the second
equation do. We leave it for you to verify that this is so.

B R
e R
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Invertibility of Symmetric
Matrices

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A~ is symmetric.

Proof Assume that A i1s symmetric and invertible. From Theorem 1.4.9 and the fact
that A = AT, we have ‘
(A—])T — (A7 )—l — A—l

which proves that A=! is symmetric.

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A= is symmetric.

Proof Assume that A is symmetric and invertible. From Theorem 1.4.9 and the fact
that A = AT, we have ‘
(A—I)T — (AT )—l — A—l

which proves that A=! is symmetric.

Products AA” and ATA
are Symmetric

(AATYT = (AT)TAT = AAT and (ATA)T = AT(AT)T = A7A

P EXAMPLE 6 The Product of a Matrix and lts Transpose Is Symmetric
Let A be the 2 x 3 matrix
At 2 4
3 0 =5

Then _ _
1 3 { 2 & 10 =2 -—11
ATA=1-=-2 0 3 o0 —5|= -2 4 -8
4 =5 —11 -8 41
i 13
AAT — 1 =2 4 5 ol 21 =17
13 0 =5 T l=17 34
— 4 -5 -

Observe that ATA and AA” are symmetric as expected.

THEOREM 1.2.5 If A is an invertible matrix, then AAT and A"A are also invertible.



Exercise Set 1.7
In Excrcises 7-10, find A%, A=, and A~* (where k is any inte=
ger) by inspection.

—6 0 0
8 A=| 0 3 0
0 0 5

In Exercises 13—14, compute the indicated quantity.

1000
1410
1o —1

In Exercises 19-22, determine by inspection whether the ma=-
trix 1s invertible.
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CHAPTER 2

Determinants

2.1 Determinants by Cofactor Expansion

Recall from Theorem 1.4.5 that the 2 x 2 matrix

a b
A —
c d
is invertible if and only if ad — bc¢ # 0 and that the expression ad — bc 1s called the
determinant of the matrix A. Recall also that this determinant is denoted by writing

a b

det(A) =ad — bc or = ad — bc (1)

C

and that the inverse of A can be expressed in terms of the determinant as

. 1 d —b ,
A7 = (2)
det(A) | —c a

'H -y J Y Y.y,
Minors and Cofactors

DEFINITION 1 If A 1s a square matrix, then the minor of entry a;; is denoted by M;;
and is defined to be the determinant of the submatrix that remains after the ith row
and jth column are deleted from A. The number (—1)"*/ M;; is denoted by C;; and
is called the cofactor of entry a;;.

> Finding Minors and Cofactors
Let

3 1 —4

A=1]2 5 6

1 - 8

The minor of entry a;; is

3 ] —4 "
Myu=12 5 6| =" — 16
4 8
| 4 8

The cofactor of a;; 1s
Ci = (=D)""My = My, =16



Similarly, the minor of entry as; 1s

3 —4
My = |2 6 :‘

The cofactor of as; 1s
Cy = (=1 My = —M3 = —26 4
Remark Notethataminor M;; and its corresponding cofactor C;; are either the same or negatives

of each other and that the relating sign (—1)'*/ is either +1 or —1 in accordance with the pattern
in the “checkerboard” array

— —

+ =+ =+
- = 4 -
+ - + - +

For example,
Chn=M;, Cy=-=My, Cpn=Mny
» EXAMPLE 2 Cofactor Expansions of a 2 x 2 Matrix

The checkerboard pattern for a 2 x 2 matrix A = [a;;] 1s
-
- +
Ch=M, =ay Cpp=—M) =—ay
Cy = =My = —ap Cyp =My =ay

We leave it for you to use Formula (3) to verify that det(A) can be expressed in terms of
cofactors in the following four ways:

so that

ay dapa
det(A) =
a an
=a;Cy +a2Cr2

(6)

=ayCy + anCxn
=ayCy +aCy
=a;Cp +anCxn

Each of the last four cquations is called a cofactor expansion of det(A). In cach cofactor
expansion the entries and cofactors all come from the same row or same column of A.

For example, in the first equation the entries and cofactors all come from the first row of
A, in the second they all come from the second row of A, in the third they all come from
the first column of A, and in the fourth they all come from the second column of A. <

oy
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Definition of a General
Determinant

THEOREM 2.1.1 If A is an n x n matrix, then regardless of which row or column of A
is chosen, the number obtained by multiplying the entries in that row or column by the
corresponding cofactors and adding the resulting products is always the same.

DEFINITION 2 If A is an n x n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That 1s,

det(A) =a1,-C1j-+-az,-C2,-+--~+a,,,-C,U- (7)
[cofactor expansion along the jth column)

and
det(A) = a;1Ci)y + aiCia + - - + ainCiyy (8)

[cofactor expansion along the ith row|

P> EXAMPLE 3 Cofactor Expansion Along the First Row
Find the determinant of the matrix

301 0
A=|-2 -4 3
5 4 =2

by cofactor expansion along the first row.

Solution
3 1 0
—4 3 -2 3 -2 =4
det(A) = |—2 —4 3 =3| |—1| |+0| |
5 4 - 4 2 5 2 5 4

= 3(=4) = (I)(=11) 4+ 0 = —1

» EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the
first column of A.

Solution
3 1 0
—4 3 1 0 1 0
det(A) = |=2 =4 3 =3| |_(_2)| |+5| |
5 4 - 4 =2 4 =2 4 3

=3(—4) — (=2)(=2) +5(33) = —1
This agrees with the result obtained in Example 3.
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P EXAMPLE 5 Smart Choice of Row or Column
If A is the 4 x 4 matrix

1 0 0 =1
A= 3 1 2 2
1 0 =2 1
2 0 0 1

then to find det(A) it will be easiest to use cofactor expansion along the second column,
since it has the most zeros:

1 0 -1
det(A) =1-|1 =2 1
2 0 1

For the 3 x 3 determinant, it will be easiest to use cofactor expansion along its second
column, since it has the most zeros:

1 =1
—1.=2.
det(A) 2 |2 l|
==2(1+2)
= —6

» EXAMPLE 6 Determinant of a Lower Triangular Matrix

The following computation shows that the determinant of a4 x 4 lower triangular matrix
is the product of its diagonal entries. Each part of the computation uses a cofactor
expansion along the first row.

ap 0 0 0

an 0 0
ay ap 0 0
=ayl|an a0
ay; axn ayn 0
Az As3  Aay
As) A4 A4y daz
asy 0
=anaxn

asy  Agq
= ananas|as| = anananas 4
THEOREM 2.1.2 If A is an n x n triangular matrix (upper triangular, lower trian=

gular, or diagonal), then det(A) is the product of the entries on the main diagonal of
the matrix; that is, det(A) = aj @z - - - @uy.
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A Useful Technique for
Evaluating2 x 2 and 3 x 3
Determinants

P EXAMPLE 7 ATechnique for Evaluating 2 x 2 and 3 x 3 Determinants

3 1

4 -2 =:]>§;:[/\= (3)(=2)=(1)4) =-10
1 2 3
7 -8 9

— [45 + 84 + 96] — [105 — 48 — 72] = 240 <



Exercise Set 2.1

3. Let
4 -1 1
A= 0 0 =3 3
4 1 0 14
4 | 3 2
Find
(a) M13 and Cn. (b) Mz; and Cz;.
(¢) M»; and Cs,. (d) My, and Cs;.

In Exercises 9-14, use the arrow technique to evaluate the de=
terminant.

11. [ 3 5 =7

13. 12 I 5

In Exercises 21-26, evaluate det(A) by a cofactor expansion
along a row or column of your choice.

-3 0 7
2L A=| 2 5 1
| 0 5

kK
2. A=(1 k &
koK

o1



2.2 Evaluating Determinants by Row Reduction

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of
zeros, then det(A) = (.

Proof Since the determinant of A can be found by a cofactor expansion along any row
or column, we can use the row or column of zeros. Thus, ifwelet Cy, Cs, ..., C, denote
the cofactors of A along that row or column, then it follows from Formula (7) or (8) in
Section 2.1 that

det(A)=0-C;+0-C;4+---4+0-C, =0
THEOREM 2.2.2 Let A be a square matrix. Then det(A) = det(AT).

Elementary Row

Operations
Relationship Operation
kay kap  kap dy  dp  dps In the matrix B the first
an  am  an|=klay an axn row of A was multiplied
by k.
as as; as; dy)  dypn  dis
det(B) = k det(A)
az ax an ay;  ap  dp In the matrix B the first and
ay ap apl=—lan an an §ccond rows of A were
7 7 interchanged.
ay dxn Ay ds; d;m  dasxp
det(B) = —det(A)
ay +kay ap+kan ap+kan a,, ap dags In the matrix B a multiple of
as an ars = |ay ap ay| | thesecond Tow of A was
added to the first row.
as) as as; as; daxn daxp
det(B) = det(A)

THEOREM 2.2.3 Let A be ann x n matrix.

(a) If B is the matrix that results when a single row or single column of A is multiplied
by a scalar k, then det(B) = k det(A).

(b) If B is the matrix that results when two rows or two columns of A are interchanged,
then det(B) = — det(A).

(¢) If B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A).

oy
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THEOREM 2.2.5 If A is a square matrix with two proportional rows or two proportional
columns, then det(A) = 0.

» EXAMPLE 2 Proportional Rows or Columns

Each of the following matrices has two proportional rows or columns; thus, each has a
determinant of zero.

1 4 =2 6 =2 5 2
[],—485, <

-2 8
2 —4
Evaluating Determinants

by Row Reduction

» EXAMPLE 3 Using Row Reduction to Evaluate a Determinant
Evaluate det(A) where

0 1 5
A=|3 -6 9
2 6 1

Solution We will reduce A to row echelon form (which is upper triangular) and then
apply Theorem 2.1.2.

0 1 5 3 —6 9
det(A) = |3 —6 9 = —10 1 5 <«— The first and second rows of
A were interchanged.
2 6 1 2 6 1
1 =2 3
= —3 0 1 5 <« A common factor of 3 from
the first row was taken
2 6 1 through the determinant sign
1 =2 3
= =310 1 5 -« =2 tumes the first row was
added to the third row.
0 10 =5
1 =2 3
= =310 1 5 < —10 times the second row
was added to the third row
0 0 =55
1 =2 3
= (—3)(—55) 0 1 5 <« A common factor of =55
from the last row was taken
0 0 1 through the determinant sign

= (=3)(=55)(1) = 165



» EXAMPLE 4 Using Column Operations to Evaluate a Determinant
Compute the determinant of

10 0 3
|2 7 0 6
0 6 3 0
703 1 =5

Solution This determinant could be computed as above by using elementary row oper=
ations to reduce A to row echelon form, but we can put A in lower triangular form in
one step by adding —3 times the first column to the fourth to obtain

1 0 0 0

det(A) = det > 70 = ()(7N(3)(=26) = =546 4
0 6 3 0
7 3 I =26

Cofactor expansion and row or column operations can sometimes be used in com-
bination to provide an ellective method for evaluating determinants. The following
example illustrates this idea.

> EXAMPLE 5 Row Operations and Cofactor Expansion
Evaluate det(A) where

3 05 =2 6
1 2 =1 1
A=l ¢ 1 s
3 7 5 3

Solution By adding suitable multiples of the second row to the remaining rows, we
obtain

0 =1 1 3
1 2 - 1
D=1 o 3 3
0 1 8 0
—1 3
= — 0 3 3 —— (‘n"._|.'.nr expansion along
the first column
1 0
-1 3
= — 0 3 3 < We added the first row to the
third row
0 3
3 3
= - - Cofactor expansion along
( I ) 9 3 the first L,u'.\xfn'.n

=-—18 4

o9



Exercise Set 2.2

In Exercises 914, evaluate the determinant of the matnx
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

In Exercises 1522, evaluate the determinant, given that

a b ¢ d
d e fl=-6 15. 18
g h i a
a+d b+e c+f
18. | —d —e —-f
g h i
atg b+h c+i a b C
19. | d e f 20. | 2d 2e 2f
g h i g+3a h+3b i+3c
—3a —3b —3c
21. d e f

g—4d h—4de i—4f

In Exercises 29-30, show that det(A) = O without directly eval-
uating the determinant.

30. A=

B —

>0
oo~



2.3 Properties of Determinants; Cramer’s Rule

Basic Properties of  Suppose that A and B are n x n matrices and k is any scalar. We begin by considering
Determinants  possible relationships among det(A), det(B), and

det(kA), det(A+ B), and det(AB)

det(kA) = k" det(A) (1

For example,
kay, ka;y kaj ay; ap aps
kay, kay kay|=k |ay an ax
kas, kay; kax; as; ayn a;

Unfortunately, no simple relationship exists among det(A), det(B), and det(A + B).
In particular, det(A + B) will usually not be equal to det(A) + det(B). The following
example illustrates this fact.

» EXAMPLE 1 det(A + B) # det(A) + det(B)

Consider
1 2 31 4 3
A: — " A B:
R RS

We have det(A) = 1, det(B) = 8, and det(A + B) = 23; thus
det(A + B) # det(A) + det(B) 4

Determinant Test for
Invertibility

THEOREM 2.,3,3 A square matrix A is invertible if and only if det(A) # 0.

» EXAMPLE 3 DeterminantTest for Invertibility
Since the first and third rows of

[ ]

A=

PO IS
o —

1
1
2
are proportional, det(A) = 0. Thus A is not invertible. <

We are now ready for the main result concerning products of matrices.

THEOREM 2.3.4 If A and B are square matrices of the same size, then
det(AB) = det(A) det(B)

» EXAMPLE 4 Verifying that det(AB) = det(A) det(B)

Consider the matrices
_ -1 3 _ 2 17
15 8] 13 14

31
A= ,
]
We leave it for you to verify that

det(A) =1, det(B) =—-23, and det(AB) = —-23
Thus det(AB) = det(A) det(B), as guaranteed by Theorem 2.3.4. <



THEOREM 2.3.5 If A is invertible, then
1

det(A)

det(A™") =

Proof Since A™'A = I, it follows that det(A™'A) = det(Z). Therefore, we must have
det(A™") det(A) = 1. Sincedet(A) # 0, the proof can be completed by dividing through
by det(A). <«
Adjoint of a Matrix

P EXAMPLE 5 Entries and Cofactors from Different Rows

Let
3 2 -1
A=]1 6 3
2 =4 0
We leave it for you to verify that the cofactors of A are
Ch=12 Cp=6 Cpy=—16
Cy =4 Cp=2 Cy =16

Cy=12 Cyp=-=10 Cy=16
so, for example, the cofactor expansion of det(A) along the first row is
det(A) =3C;; +2C1 + (=1)Ci3 =36+ 12+ 16 = 64
and along the first column is
det(A) =3C) +Cy +2C5; =36 +4+24 =64

Suppose, however, we multiply the entries in the first row by the corresponding cofactors
from the second row and add the resulting products. The result is

3C +2Cn + (—1)Cyx =124+4—=16=0

Or suppose we multiply the entries in the first column by the corresponding cofactors
from the second column and add the resulting products. The result is again zero since

3C1,4+1Cyn +2C =18+2—-20=0 <«

DEFINITION 1 If Aisany n x n matrix and Cj; is the cofactor of @;;, then the matrix

Ch Cn -+ Cy
Cy Cpn o Gy
Cnl Cn2 e Cnn

is called the matrix of cofactors from A. The transpose of this matrix is called the
adjoint of A and is denoted by adj(A).

1y



» EXAMPLE 6 Adjoint of a 3 x 3 Matrix
Let

3 2 =1
A= 11 6 3
2 =4 0
As noted in Example 5, the cofactors of A are
Cy=12 Cp=6 Ci3 =—16
Cy =4 Cyp =2 Cyy =16

Cy =12 Cs = =10 Cy3 =16

so the matrix of cofactors 1s

12 6 —16
4 2 16
12 —10 16
and the adjoint of A 1s
12 4 12
adj(A) = 6 2 —10| -
—-16 16 16

THEOREM 2.3.6 Inverse of a Matrix Using ks Adjoint
If A is an invertible matrix, then

1
=l .
A7 = @ 9@

P> EXAMPLE 7 Using the Adjoint to Find an Inverse Matrix
Use Formula (6) to find the inverse of the matrix A in Example 6.

Solution We showed in Example S that det(A) = 64. Thus,

12

: o4 o2 [
A-‘=dtm)adj(A):a 6 2 =10)1=| &
¢ —-16 16 16 16

64

(]

2l R Bl
2= 2z 2

(6)



Cramer’s Rule

THEOREM 2.3.7 Cramer’s Rule
If Ax = b is a system of n linear equations in n unknowns such that det(A) # 0, then
the system has a unique solution. This solution is

det(A;) det(A,) det(A,)

X =———, Xn=———, ..., X =

det(A) det(A) det(A)
where A j is the matrix obtained by replacing the entries in the jth column of A by the
entries in the matrix

» EXAMPLE 8 Using Cramer’s Rule to Solve a Linear System
Use Cramer’s rule to solve
X1 + +2x3= 6
=3x; + 4x; + 6x3 = 30
—X; —2x7 +3x3= 8

Solution _ _ _
1 0 2 6 0 2
A=|1-3 4 6|1, A, =130 4 61,
=1 =2 3] | 8 =2 3
1 6 2] 1 0 6
Ay =|=-3 30 6], As=|-3 4 30
| —1 8 3 =1 =2 8
Therefore,
~det(A;))  —40  —10 det(A;) 72 18

X1 X2

T odet(A) T 4 117 T odet(A) T 44 11
det(Ay) 152 38
T odet(A) 44 11

n
J

¢
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THEOREM 2.3.8 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢)  The reduced row echelon form of A is I,.

(d) A can be expressed as a product of elementary matrices.

() Ax = bis consistent for every n x | matrix b.

(f) Ax = b has exactly one solution for every n x | matrix b.

(g) det(A) #0.

Exercise Set 2.3
In Exercises 14, verily that det(kA) = k" det(A).
1 1 1

4. A= |0 2 3[: k=3
0 1 -2

In Exercises 7-14, use determinants to decide whether the given
matrix is invertible.

1 0 -1
12.A=(9 -1 1
8 9 -l

In Exercises 15—18, find the values of k for which the matrix A
is invertible.

16A—k2
T2k

In Exercises 19-23, decide whether the matrix is invertible, and
if so, use the adjoint method to find its inverse.

2 0 3 2 -3 5
200 A= O 3 2 2. A= |0 1 -3
-2 0 —4 0 0 2

In Exercises 24-29, solve by Cramer’s rule, where 1t applies.

29. 3X|— Xs + X_;=4
24.7x1—2x2=3 _x|+7xz—213=1

I+ x2=5 2%, +6x— x3=35
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CHAPTER 4

General Vector Spaces

4.1 Real Vector Spaces

Vector Space Axioms

DEFINITION 1 Let V be anarbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u+ v,
called the sum of w and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object win V an object ku, called the scalar multiple of u by k.
If the following axioms are satisfied by all objects u, v, w in V and all scalars k and
m, then we call V a vector space and we call the objects in V vectors.
1. Ifuandvareobjectsin V, thenu+visin V.
2. utv=v+u
oout(vtw =(utv)+w
4. Thereisan object 0in V, called a zero vector for V, suchthat0 +u=u+ 0 =u
foralluin V.
5. For each u in V, there 1s an object —u in V, called a negative of u, such that
u+ (—u) = (—u) +u = 0.
6. If k1sany scalar and uis any object in V, then kuisin V.
7. k(u+4v) =ku+ kv
8 (k+ m)u=ku+ mu
9. k(mu) = (km)(u)

10, lu=u

I'o Show That a Set with Two Operations Is a Vector Space

Step 1. Identify the set V of objects that will become vectors.

Step 2. ldentily the addition and scalar multiplication operations on V.

Step 3. Verify Axioms | and 6; that 1s, adding two vectors in V produces a vector
in V, and multiplying a vector in V by a scalar also produces a vector in V.
Axiom | is called closure under addition, and Axiom 6 1s called closure under
scalar multiplication.

Step 4. Confirm that Axioms 2, 3,4, 5,7, 8,9, and 10 hold.
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» EXAMPLE 1 The Zero Vector Space
Let V consist of a single object, which we denote by 0, and define

0+0=0 and k0=10

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call
this the zero vector space. 4

Our second example 1s one of the most important of all vector spaces—the familiar
space R". It should not be surprising that the operations on R" satisfy the vector space
axioms because those axioms were based on known properties of operations on R".

» EXAMPLE 2 R"|s aVector Space

Let V = R", and define the vector space operations on V to be the usual operations of
addition and scalar multiplication of n=tuplcs; that is,

utv=(up,uy...,up)+ W, v2,...,0) =@ +v,uy+ vy ..., 0+ vs)
ku= (kuy, kus, ..., kuy,)
Theset V = R" is closed under addition and scalar multiplication because the foregoing

operations produce n-tuples as their end result, and these operations satisfy Axioms 2,
3,4,5,7,8,9, and 10 by virtue of Theorem 3.1.1. <

» EXAMPLE 4 The Vector Space of 2 x 2 Matrices

Let V be the set of 2 x 2 matrices with real entries, and take the vector space operations
on V to be the usual operations of matrix addition and scalar multiplication; that is,

uy  up v U Uy +vn uUp T+ U
utv= + = (1)
Uzy  uUx Uz Uz Uzl + Uzl U+ Ux
u u ku ku
u = k | 12| _ 1 12
U uUp kuz  kux
The set V is closed under addition and scalar multiplication because the foregoing oper-
ations produce 2 x 2 matrices as the end result. Thus, it remains to confirm that Axioms

2,3,4,5,7,8,9,and 10 hold. Some of these are standard properties of matrix operations.
For example, Axiom 2 follows from Theorem 1.4.1(a) since

e [1411 “12] + [Un 012] _ [vll le] + [ull ul2] —riu
Uzy uUx U1 U2 V21 U Uy U
Similarly, Axioms 3, 7, 8, and 9 follow from parts (), (h), (), and (e), respectively, of
that theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 x 2 matrix 0 in V for which
u+0=0-+uforall 2 x 2 matrices in V. We can do this by taking

=0 o
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With this definition,

0 0
0+u— n Uiy up _ Uy up —u
0 0 Usy U Uzy U

and similarly u + 0 = u. To verify that Axiom 5 holds we must show that cach object
uin V has a negative —u in V such that u 4+ (—u) = 0 and (—u) + u = 0. This can be
done by defining the negative of u to be

—uy —up
—n =
—Uuzl —uUx
With this definition,

up o up —uy  —up 0 0
u-+ (—u) = + = =10
Uy Up —U3 —Uxp 0 0

and similarly (—u) + u = 0. Finally, Axiom 10 holds because
Uiy U Uy up
lu=1 [ ] = [ ] =u
U Uz U2

P EXAMPLE 5 The Vector Space of m x n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have
no trouble adapting the argument used in that example to show that the set V of all
m X n matrices with the usual matrix operations of addition and scalar multiplication is
a vector space. We will denote this vector space by the symbol M,,,. Thus, for example,
the vector space in Example 4 is denoted as M»;.
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» EXAMPLE 6 The Vector Space of Real-Valued Functions

Let V be the set of real=valued functions that are defined at each x in the interval (=2, o).
Iff = f(x) and g = g(x) are two functions in V and if k 1s any scalar, then define the
operations of addition and scalar multiplication by

I+ g)(x) = f(x)+ gx) (2)
(kf)(x) = kf(x) (3)

One way to think about these operations is to view the numbers f(x) and g(x) as “com-
ponents™ of f and g at the point x, in which case Equations (2) and (3) state that two
functions are added by adding corresponding components, and a function is multiplied
by a scalar by multiplying each component by that scalar—exactly asin R" and R”. This
idea is illustrated in parts () and (b) of Figure 4.1.2. The set V with these operations is
denoted by the symbol F(—2, 2). We can prove that this 1s a vector space as [ollows:

Axioms 1 and 6: These closure axioms require that if we add two functions that are
defined at each x in the interval (—o¢, o), then sums and scalar multiples of those func-
tions must also be defined at each x in the interval (—2=, =). This follows from Formulas
(2) and (3).

Axiom 4: This axiom requires that there exists a function 0 in F(—2%, =), which when
added to any other function f in F(—=, =) produces f back again as the result. The
function whose value at every point x 1n the interval (—o, =) i1s zero has this property.
Geometrically, the graph of the function 0 is the line that coincides with the x-axis.

Axiom 5: This axiom requires that for each function fin F(—e=, o) there exists a function
—fin F(—=x, =), which when added to f produces the function 0. The function defined
by —f(x) = — f(x) has this property. The graph of —f can be obtained by reflecting the
graph of f about the x-axis (Figure 4.1.2¢).

Axioms 2, 3,7, 8,9, 10: The validity of each of these axioms follows from properties of
real numbers. For example, if f and g are functions in F(—ee, =), then Axiom 2 requires
that f+ g = g + f. This follows from the computation

(f+g)(x) =1(x) +glx) = g(x) +f(x) = (g + D(x)

in which the first and last equalities follow from (2), and the middle equality is a property
of real numbers. We will leave the proofs of the remaining parts as exercises.



> EXAMPLE 7 A Set ThatIs Not a Vector Space

Let V = R? and define addition and scalar multiplication operations as follows: If

u= (u, uy) and v = (v, vy), then define

u+v=(u; + v, uy+ v7)
and if k is any real number, then define
ku = (ku,,0)

For example, ifu = (2,4), v= (=3, 5),and k = 7, then
u+v=(2+(=3),4+5)=(=1,9
ku="Tu=(7-2,0)=(14,0)

The addition operation is the standard one from R?, but the scalar multiplication is not.

In the exercises we will ask you to show that the first nine vector space axioms are satisfied.

However, Axiom 10 fails to hold for certain vectors. For example, ifu = (u, u,) is such

that us # 0, then

lu = 1(uy, uz) = (1-uy,0) = (u,0) #u
Thus, V is not a vector space with the stated operations.

Our final example will be an unusual vector space that we have included to illustrate
how varied vector spaces can be. Since the vectors in this space will be real numbers,
it will be important for you to keep track of which operations are intended as vector
operations and which ones as ordinary operations on real numbers.

> EXAMPLE 8 An UnusualVector Space

Let V be the set of positive real numbers, letu = u and v = v be any vectors (1.¢., positive

real numbers) in V, and let k be any scalar. Define the operations on V to be
U+ v =uv [Vector addition is numerical multiplication. |
ku = u* [ Scalar multiplication is numerical exponentiation. |

Thus, for example, 1 + 1 =1 and (2)(1) = 17 = I—strange indeed, but nevertheless
the set V with these operations satisfies the ten vector space axioms and hence is a vector
space. We will confirm Axioms 4, 5, and 7, and leave the others as exercises.

*  Axiom 4—The zero vector in this space is the number 1 (i.e., 0 = 1) since
ut+l=u-1=u

*  Axiom 5—The negative of a vector u 1s its reciprocal (1.e., —u = 1 /u) since

()
u+—=ul—)=1(=0)
u u

« Axiom T—k(u + v) = (uv)* = u*v* = (ku) + (kv). 4



Some Properties of Vectors

THEOREM 4.1.1 Let V be a vector space, u a vector in V, and k a scalar; then:

(@) Ou=0
(b) k0=0
(© (=Hu=—u

(d) Ifkn =0, thenk =0oru=0.

Proof (a) We can write

Ou + Ou = (0 + 0)u [Axiom 8]
= Ou [ Property of the number 0]
By Axiom 5 the vector Ou has a negative, —Ou. Adding this negative to both sides above

yields
[Ou + Ou] 4+ (—0u) = Ou + (—0u)

or
Ou—+ [Ou + (=Ou)] = Ou+ (=0Ou) [Axiom 3]
Ou+0=10 [Axiom 5]
Ou=0 [Axiom 4]

Proof (¢) To prove that (—1)u = —u, we must show that u + (—1)u = 0. The proof'is
as follows:
u+ (=Du= lu+ (=1)u [Axiom 10]

= (14 (=1))u [Axiom 8]
= Ou [Property of numbers |
=0 [Part (a) of this theorem]

\A



Exercise Set 4.1

1. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations onwu — (1, ;) and v = (v, vy):

u+v={(u +uv,u+uvy), ku= (0, ku,)
(a) Compute u+v and ku for u = (—1,2),v=(3,4), and
k= 3.

(b) In words, explain why V is closed under addition and
scalar multiplication.

(¢) Since addition on V is the standard addition operation on
R?, certain vector space axioms hold for V because they
are known 1o hold for R*. Which axioms are they?

(d) Show that Axioms 7, 8, and 9 hold.

(¢) Show that Axiom 10 fails and hence that V is not a vector
space under the given operations.

2. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations onw = (u;, us) and v = (v, vs):

wdbve(wp v+ Lu v 1), ku= (kuy, kus)
(a) Compute u+ v and ku for u= (0,4), v= (1, —3), and
k=2
(b) Show that (0, 0) £ 0.
(c) Show that (—1, —1) = 0.

(d) Show that Axiom 5 holds by producing an ordered pair
—u such that u + (—u) = 0 foru = (u;. uy).

(e) Find two vector space axioms that fail to hold.

In Exercises 3—12, determine whether each set equipped with
the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

11. The set of all pairs of real numbers of the form (1, x) with the
operations

(Ly+ 1, y)=(0,y+y) and k(1,y)=(1,ky)

\At



4.2 Subspaces

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is a
subspace of V if and only if the following conditions are satisfied

(a) Ifwandv are vectorsin W, thenu+ visin W,
(b) If k is a scalar and w is a vector in W, then ku is in W.

P> EXAMPLE 1 The Zero Subspace

If V is any vector space, and if W = {0} is the subset of V' that consists of the zero vector

only, then W is closed under addition and scalar multiplication since
0+0=0 and k0=0

for any scalar k. We call W the zero subspace of V.

> EXAMPLE 4 A Subset of R? That Is Not a Subspace

Let W be the set of all points (x, y) in R? for which x > 0 and y > 0 (the shaded region
in Figure 4.2.4). This set is not a subspace of R? because it is not closed under scalar
multiplication. For example, v = (1, 1) is a vector in W, but (—=1)v = (=1, —1) is not.

» EXAMPLE 5 Subspaces of M,

We know from Theorem 1.7.2 that the sum of two symmetricn X n matrices is symmetric
and that a scalar multiple of a symmetric n x n matrix is symmetric. Thus, the sct of
symmetric n X n matrices is closed under addition and scalar multiplication and hence
is a subspace of M,,,. Similarly, the sets of upper triangular matrices, lower triangular
matrices, and diagonal matrices are subspaces of M,,,.

» EXAMPLE 6 A Subset of M,, That Is Not a Subspace

The set W of invertible n x n matrices is not a subspace of M,,,,, failing on two counts—it
1s not closed under addition and not closed under scalar multiplication. We will illustrate
this with an example in M5, that you can readily adapt to M,,,. Consider the matrices

1 2 -1 2
U=[2 5] and V=|i_2 5]

The matrix OU is the 2 x 2 zero matrix and hence is not invertible, and the matrix U + V
has a column of zeros so it also is not invertible.

Al



P> EXAMPLE 9 The Subspace of All Polynomials
Recall that a pelynomial is a function that can be expressed in the form

p(x) =ap+ax + -+ apx" (1)

where ag, ay, . .., a, are constants. It is evident that the sum of two polynomials is a
polynomial and that a constant times a polynomial is a polynomial. Thus, the set W ol all
polynomials is closed under addition and scalar multiplication and hence is a subspace
of F(—mx, ). We will denote this space by P..

» EXAMPLE 10 The Subspace of Polynomials of Degree < n

Recall that the degree of a polynomial is the highest power of the variable that occurs with
a nonzero coefficient. Thus, for example, if @, # 01n Formula (1), then that polynomial
has degree n. It is not true that the set W of polynomials with positive degree n is a
subspace of F(—ox, ) because that set is not closed under addition. For example, the
polynomials

14 2x +3x* and 5+ 7x —3x°
both have degree 2, but their sum has degree 1. What is true, however, is that for each

nonnegative integer n the polynomials of degree n or less form a subspace of F(—ce, ).
We will denote this space by P,.

THEOREM 4.2.2 If W\, W,, ..., W, are subspaces of a vector space V, then the inter-

section of these subspaces is also a subspace of V.

A&

Proof Let W be the intersection of the subspaces Wy, Ws, ..., W,. This set is not
empty because each of these subspaces contains the zero vector of V, and hence so does
their intersection. Thus, it remains to show that W is closed under addition and scalar

multiplication.

To prove closure under addition, let u and v be vectors in W. Since W is the inter-
section of Wy, W, ..., W,, it follows that u and v also lie in each of these subspaces.
Moreover, since these subspaces are closed under addition and scalar multiplication, they
also all contain the vectors u + v and ku for every scalar k, and hence so does their inter=

section W. This proves that W is closed under addition and scalar multiplication.

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear

combination of the vectors v, vo, ..., v, in V if w can be expressed in the form
w=kivi +kva + -+ kv, (2)
where ki, ks, .. ., k, are scalars. These scalars are called the coefficients of the linear

combination.




THEOREM 4.2.3 If S = {wi, wa, ..., W, } is a nonempty set of vectors in a vector space
V, then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace of V.

(b) Theset W in part (a) is the “smallest” subspace of V that contains all of the vectors
in S in the sense that any other subspace that contains those vectors contains W.

Proof (a) Let W be the set of all possible linear combinations of the vectors in §. We
must show that W is closed under addition and scalar multiplication. To prove closure
under addition, let
u=cw +cw+---+cw, and v=~kw, +kw,+ - +kw,
be two vectors in W. It follows that their sum can be written as
u+tv=(c;+k)w +(c;+k)ws+ -+ (¢, - k,)w,

which is a linear combination of the vectors in S. Thus, W is closed under addition. We
leave it for you to prove that W is also closed under scalar multiplication and hence is a
subspace of V.

Proof (b) Let W’ be any subspace of V that contains all of the vectors in S. Since W’
is closed under addition and scalar multiplication, it contains all linear combinations of
the vectors in § and hence contains W. <

The following definition gives some important notation and terminology related to
Theorem 4.2.3.

DEFINITION 3 If S = {w;, w2, ..., w,}1s a nonempty set of vectors in a vector space
V, then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V' generated by S, and we say that the vectors
Wi, W, ..., w, span W. We denote this subspace as

W = span{w;,wy,...,w,} or W =span(S)

» EXAMPLE 11 The Standard Unit Vectors Span R"
Recall that the standard unit vectors in R" are

e, =(1,0,0,...,0), e=(0,1,0,...,0),..., e =(0,0,0,...,1)
These vectors span R" since every vector v = (vy, vs, ..., Uy) In R" can be expressed as
v=uve; + vies + - - - + v,e,
which is a linear combination of ey, e,, . . ., e,. Thus, for example, the vectors
i=(1,0,0), j=1(0,1,0), k=(0,0,1)
span R> since every vector v = (a, b, ¢) in this space can be expressed as

v=(a,b,c)=a(1,0,0)+b(0,1,0) + (0,0, 1) = ai+ bj+ck



A

» EXAMPLE 13 A Spanning Set for P,

The polynomials 1, x, x?, ..., x" span the vector space P, defined in Example 10 since

each polynomial p in P, can be written as
p=ap+ax+---+ax"
which is a linear combination of 1, x, x%, ..., x". We can denote this by writing

P, = span{l,x,x*, ..., x"} <

P EXAMPLE 14 Linear Combinations

Consider the vectorsu = (1,2, —1) and v = (6,4, 2) in R>. Show that w = (9,2, 7) is
a linear combination of u and v and that w' = (4, —1, 8) is not a linear combination of
uandv.

Solution In order for w to be a linear combination of u and v, there must be scalars k;
and k; such that w = kju + kyv; that is,

(9,2,7) = ki (1,2, =1) + k2(6, 4, 2) = (k; + 6ks, 2k; + 4k;, =k; + 2k;)
Equating corresponding components gives
ky + 6k; =9
2k; +4k; =2
—k) +2k; =7
Solving this system using Gaussian elimination yields k; = =3, k, = 2, s0
w = —3u+2v

Similarly, for w’ to be a linear combination of u and v, there must be scalars k; and
k- such that w' = kju + k,v; that 1s,

(4,—1,8) = ki(1,2,—1) + k2(6, 4, 2) = (ky + 6k», 2k) + 4k, —k; + 2k>)

Equating corresponding components gives

k + 6ky = 4
2%k, + dky = —1
—ky + 2k, = 8

This system of equations is inconsistent (verify), so no such scalars k; and k; exist.
Consequently, w' is not a linear combination of uand v.
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» EXAMPLE 15 Testing for Spanning
Determine whether the vectors vy = (1,1, 2),v5 = (1,0, 1), and v3 = (2, 1, 3) span the
vector space R*.

Solution We must determine whether an arbitrary vector b = (by, by, b3) in R? can be
expressed as a linear combination

b = kyvi + kavy + k3vs
of the vectors vy, v, and v3. Expressing this equation in terms of components gives
(b1, by, b3) = ki(1,1,2) + ka(1,0, 1) + k3(2, 1, 3)
or

(by, by, by) = (ky + k2 + 2ks, ky + k3, 2ky + kz + 3k3)

or
ki + ky + 2k = by

ky + ky=by
2ky + ko + 3ks = by
Thus, our problem reduces to ascertaining whether this system is consistent for all values
of by, bs, and b3. One way of doing this is to use parts (e) and (g) of Theorem 2.3.8,
which state that the system 1s consistent if and only if its coefficient matrix
11 2
A=11 0 1
21 3
has a nonzero determinant. But this is not the case here since det(A) = 0 (verify), so vy,
v5, and v3 do not span R>. <«

Solution Spaces of
Homogeneous Systems

THEOREM 4.2.4 The solution set of a homogeneous linear system Ax = 0 of m equa=
tions in n unknowns is a subspace of R".

Proof Let W be the solution set of the system. The set W is not empty because it
contains at least the trivial solution x = 0.

To show that W is a subspace of R", we must show that it is closed under addition
and scalar multiplication. To do this, let x; and x, be vectors in W. Since these vectors
arc solutions of Ax = 0, we have

AX] =0 and Ax: =0

It follows from these equations and the distributive property of matrix multiplication
that
AX) 4+ x) =Ax; + Ao =04+0=0

so W is closed under addition. Similarly, if k is any scalar then
A(kx)) = kAx; =k0=0

so W is also closed under scalar multiplication.
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» EXAMPLE 16 Solution Spaces of Homogeneous Systems

In each part, solve the system by any method and then give a geometric description of

the solution set.

1 =2 3 X
(a) |12 —4 6 yl| =
3 =6 911z

© |-3 7 =8||yl=

Solution

(a) The solutions are

from which it follows that

(b)
0
0 (d)
0
x = 2s — 31,

y=s,

=2 3 X 0
4 —6| |z 0
0] MNx 0
0 y|=10
0 Z 0
2=t

x=2y—3z or x—2y+3z=0

This 1s the equation of a plane through the origin that has n = (1, —2,3) as a

normal.

(b) The solutions are

x = —5¢t,

y =t

=t

which are parametric equations for the line through the origin that is parallel to the

vectory = (—5,—1,1).

(¢) Theonlysolutionisx = 0, y = (), z = 0, so the solution space consists of the single

point {0}.

(d) This linear system 1s satisfied by all real values of x, y, and z, so the solution space

is all of R?. «



Exercise Set 4.2

1. Use Theorem 4.2.1 to determine which of the following are
subspaces of R.

(a) All vectors of the form (a, 0, 0).

(b) All vectors of the form (a, 1, 1).

(c) All vectors of the form (a, b, ¢), where b = a + c.

(d) All vectors of the form (a, b, ¢), whereb =a + ¢ + 1.
(e) All vectors of the form (a, b, 0).

2. Use Theorem 4.2.1 to determine which of the following are
subspaces of M,,,,.

(a) The set of all diagonal n x n matrices.

(b) The set of all n x n matrices A such that det(A) = 0.
(c) The set of all n x n matrices A such that tr(A) = 0.
(d) The set of all symmetric n x n matrices.

(e) Theset of all n x n matrices A such that AT = —A.

(f) Thesetofall n x n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of all n x n matrices A such that AB = BA for
some fixed n x n matrix B.

4. Which of the following are subspaces of F(—x, =)?

(a) All functions f in F(—ax, =) for which f(0) = 0.

(b) All functions f in F(—ax, =) for which f(0) = 1.

(¢) All functions f in F(—ax, =) for which f(—x) = f(x).
(d) All polynomals of degree 2.

7. Which of the following are linear combinations of
u=(0,—2,2)andv= (1,3, —1)?

(a) (2,2,2) (b) (0.4,5) (c) (0,0,0)

8. Express the following as linear combinations ofu = (2, 1, 4),
v=(1,—1,3),andw = (3, 2, 5).

(a) (—9,=7,—15) (b) (6,11,6) (c) (0,0,0)

Y4



11.

13.

In each part, determine whether the vectors span R
(a) vi =(2,2,2), v»=1(0,0,3), v. = (0,1, 1)

(b) vi =(2,—1,3), vo=1(4,1,2), vy = (8, —1,8)
Determine whether the following polynomials span P;.

p.=1—x+2x* p,=3+x,
p=5—x+4x? p,=—-2—2x+27
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4,3 Linear Independence

Linear Independence and
Dependence

DEFAINITION 1 If S = {v, v2, ..., v, } 1s a set of two or more vectors in a vector space
V, then S is said to be a linearly independent set if no vector in S can be expressed as

a linear combination of the others. A set that is not linearly independent is said to be
linearly dependent.

THEOREM 4.3.1 A nonempty set S = {v,, Va2, ...,V,} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

kivi+kavao+---+kv, =0
arekl =0,k2=0,...,kr=0‘

» EXAMPLE 1 Linear Independence of the Standard Unit Vectors in R”
The most basic linearly independent set in R" is the set of standard unit vectors

e =(1,0,0,...,0), e=(0,1,0,...,0),..., e =(0,0,0,...,1)
To illustrate this in R?, consider the standard unit vectors

i=(1,0,0), j=(0,1,0), k=(0,0,1)



To prove linear independence we must show that the only coefficients satisfying the vector
equation

kii + kaj + ksk = 0
arc k; = 0, k; = 0, k3 = 0. But this becomes evident by writing this equation in its
component form

(k1. k2, k3) = (0,0, 0)

You should have no trouble adapting this argument to establish the linear independence
of the standard unit vectors in R".

» EXAMPLE 2 Linear Independence in R®

Determine whether the vectors
vi=(1,=2,3), vw=(506,=1), vs=(3,2,1) (2)

are linearly independent or linearly dependent in R*.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

kivi + kava + ksvs =0 (3)

can be satisfied with cocfficients that are not all zero. To see whether this is so, let us
rewrite (3) in the component form

ki(1,—2,3) + ka(5,6,—1) + k3(3,2,1) = (0,0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system
ki + 5k + 3k; =0
—2ky + 6ky + 2ky =0 4)
3ky — ko + k3 =0

Thus, our problem reduces to determining whether this system has nontrivial solutions.
There are various ways to do this; one possibility is to simply solve the system, which
yields

ki =—3t, ky=—12t, ky=t
(we omit the details). This shows that the system has nontrivial solutions and hence
that the vectors are linearly dependent. A second method for establishing the linear
dependence is to take advantage of the fact that the coefficient matrix

1 5 3
A=|-=-2 6 2
3 =l 1

is square and compute its determinant. We leave it for you to show that det(A) = 0 from
which 1t follows that (4) has nontrivial solutions by parts (b) and (g) of Theorem 2.3.8.

Because we have established that the vectors vy, v,, and v; in (2) are linearly depen-
dent, we know that at least one of them is a linecar combination of the others. We leave
it for you to confirm, for example, that

1 1
Vi = 3"1 -+ 5"2

AY



» EXAMPLE 3 Linear Independence in R*
Determine whether the vectors

vl =(]92’2V_|)‘ v2=(4,9)99 _4)1 v3=(5?8!9? _5)

in R* are linearly dependent or linearly independent.

Solution The linear independence or linear dependence of these vectors is determined

by whether there exist nontrivial solutions of the vector equation
kyvi + kavy + kava =0

or, equivalently, of

ki(1,2,2,=1) + k2(4,9,9, —4) + ka(5, 8,9, =5) = (0,0, 0,0)

Equating corresponding components on the two sides yields the homogeneous linear

system
k) +4ky +5ky =0
2k; +%k; +8k3; =0
2ky +9ky + 93 =0
—kl —4k2 — 5k3 =0
We leave it for you to show that this system has only the trivial solution

ky =0, k=0, k3=0

from which you can conclude that vy, v5, and v are linearly independent.

» EXAMPLE 4 AnlImportant Lineary Independent Set in P,

Show that the polynomials

1, x, x%,..., x"

form a linearly independent set in P,.

Solution For convenience, let us denote the polynomials as

p=1 p=x, p=x,..., p=x"

We must show that the only coefficients satisfying the vector equation
agpy + a\py + axp; + - +axp, =0

are
ag=a,=a,=---=a, =10
But (5) is equivalent to the statement that

ag+ ayx +ayx’ + -+ ax" =0

(3

(6)

for all x in (—=¢, ), so we must show that this is true if and only if each coefficient in
(6) is zero. ‘To see that this is so, recall from algebra that a nonzero polynomial of degree
n has at most n distinct roots. That being the case, each coellicient in (6) must be zero,
for otherwise the left side of the equation would be a nonzero polynomial with infinitely

many roots. Thus, (5) has only the trivial solution. <



» EXAMPLE 5 Linear Independence of Polynomials
Determine whether the polynomials

pp=1=-x, p = 5+ 3x — 2x2, py =1 +3x —x*
are linearly dependent or linearly independent in P;.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

kip, + kap, + k3p; =0 (7)
can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (7) in its polynomial form

(1 =x)+k(5+3x—2x) + ks(1+3x —x*) =0 (8)
or, equivalently, as
(ky + Sk + k3) + (—ky + 3ka + 3k3)x + (—2ks —k3)x* =0
Since this equation must be satisfied by all x in (—2, =), cach coellicient must be zero
(as explained in the previous example). Thus, the linear dependence or independence
of the given polynomials hinges on whether the following lincar system has a nontrivial

solution:
ki + S5ks + k3 =0

—ky + 3ky + 3k; =0 9)
—2ky— k3y=0
We leave it for you to show that this linear system has nontrivial solutions either by
solving it directly or by showing that the coefficient matrix has determinant zero. Thus,
the set {p;, p,, p;} 1s linearly dependent. <
Sets with One or Two
Vectors

THEOREM 4.,3.2
(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not (.

(¢) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.

THEOREM 4.3.3 Let S = {vy,Va, ..., V,} beasetof vectorsin R". If r > n, then S is
linearly dependent.

A&
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Exercise Set 4.3

1. Explain why the following form linearly dependent sets of vec-
tors. (Solve this problem by inspection.)

(a) u; = (—1,2,4)and w, = (5, —10, —=20) in R’
(b) uy = (3,—=1), u; = (4,5), u3 = (—4,7) in R?

©p=3—2x+x’andp, =6—4x +2x* m P,

(d) A = S Hade=| > M
=1 2 o™ T2 o|MM®

2. In cach part, determine whether the vectors are hnearly inde-
pendent or are lincarly dependent in R,

(a) (_39()'4)‘ (5»_1'2)) (l- lv 3)

4. In each part, determine whether the vectors are linearly inde-
pendent or are hnearly dependent in P;.

(a) 2 —x +4x%, 3+ 6x + 2x?, 2+ 10x —4x?
(b) 14 3x +3x%, x +4x% 5+6x +3x% 7+ 2x —x?

5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

()'10 1 2 o 1]

Vool |2 ) 2 | MR
10 0 0 0 1 0 0 0]
0 0 0 00 0 01 0

10. (a) Show that the vectorsv; = (1,2,3,4), v, = (0, 1,0, —1),
and v; = (1, 3, 3, 3) form a linearly dependent set in R*.

(b) Express cach vector in part (a) as a hinear combination of
the other two.
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4,4 Coordinates and Basis

Coordinate Systems in
Linear Algebra

DEFINITION 1 If S = {v;, v, ..., v} is a set of vectors in a finite=dimensional vector
space V, then S is called a basis for V if:

(a) S spans V.
(b) S is linearly independent.

P EXAMPLE 1 The Standard Basis for R"
Recall from Example 11 of Section 4.2 that the standard unit vectors
e =1(1,0,0,...,0), e=(0,1,0,...,0),..., e, =1(0,0,0,...,1)

span R" and from Example 1 of Section 4.3 that they are linearly independent. Thus,
they form a basis for R" that we call the standard basis for R". In particular,

i=(1,0,0), i=(,1,0), k=(0,0,1)

is the standard basis for R°.

P> EXAMPLE 2 The Standard Basis for P,
Show that § = {1, x, x%, ..., x"} is a basis for the vector space P, of polynomials of
degree n or less.

Solution We must show that the polynomials in § are linearly independent and span
P,. Let us denote these polynomials by

p=1, p=x, p=x*..., p,=x"

We showed in Example 13 of Section 4.2 that these vectors span P, and in Example 4
of Section 4.3 that they are linearly independent. Thus, they form a basis for P, that we
call the standard basis for P, .

» EXAMPLE 3 Another Basis for R®
Show that the vectorsv; = (1,2, 1), v» = (2,9, 0), and v; = (3, 3, 4) form a basis for R>.

Solution We must show that these vectors are linearly independent and span R3. To
prove linear independence we must show that the vector equation

vy +eva+ vy =0 (1)
has only the trivial solution; and to prove that the vectors span R we must show that
every vector b = (by, by, b3) in R® can be expressed as

civy + vy +c3v3=Dh (2)

By equating corresponding components on the two sides, these two equations can be
expressed as the lincar systems

¢+ 2c5 4+ 3¢35=0 ¢y + 2¢y + 3¢5 = by
2c; +9¢; +3¢c3 =0 and 2¢; 4+ 9¢; + 33 =by (3)
C] + 4¢3 =0 C + 4cy = b



» EXAMPLE 4 The Standard Basis for M,
Show that the matrices

1 0 0 1
oo

form a basis for the vector space M5, of 2 x 2 matrices.

0
1

0

]l

Solution We must show that the matrices are linearly independent and span M»,. To
prove linear independence we must show that the equation

oM, + oMy + csMy 4+ caMs =0 4)

has only the trivial solution, where 0 is the 2 x 2 zero matrix; and to prove that the
matrices span M»; we must show that every 2 x 2 matrix

[

c d
oM, +c .My, +-csMy+caMy = B
The matrix forms of Equations (4) and (5) are

0
0

0
1

can be expressed as

(&)

10 01 0 0 0 0] [0 0
C‘[o o]+cz_0 0]+C3[1 0]+C“[0 1]=[0 0]
and )
10 01 0 0 0 0] [a b
C‘[o 0]“2 0 0]“’[1 0]“"[0 l]=[c d]

which can be rewritten as

o al=lo o] = |

Since the first equation has only the trivial solution

) (ST &)

Cy €y

J=

the matrices are linearly independent, and since the second equation has the solution

a b
3 €4 ¢ d

Cl=C =0Cy=c¢cq4 =0

co=a, c;=>b, cs=c, cs=d

the matrices span M»,. This proves that the matrices M, M5, M3, M. form a basis for
M,,. More generally, the mn different matrices whose entries are zero except for a single
entry of 1 form a basis for M,,, called the standard basis for M,,. 4

P EXAMPLE 5 An Infinite-Dimensional Vector Space

Show that the vector space of P. of all polynomials with real coefficients is infinite-
dimensional by showing that it has no finite spanning set.

Solution 1f there were a finite spanning set, say S = {p;, p», . . ., p,}, then the degrees
of the polynomials in § would have a maximum value, say n; and this in turn would
imply that any linear combination of the polynomials in S would have degree at most n.
Thus, there would be no way to express the polynomial x"** as a linear combination of
the polynomials in §, contradicting the fact that the vectors in S span P..

Coordinates Relative to a
Basis

AY
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THEOREM 4.4.7 Uniqueness of Basis Representation

If S = {vi,va, ..., v} is a basis for a vector space V, then every vector vin V can be
expressed in the formv = cvy + ¢av2 + - -+ + €V, in exactly one way.

Proof Since S spans V, it follows from the definition of a spanning set that every vector
in V is expressible as a linear combination of the vectors in S. To see that there is only
one way to express a vector as a linear combination of the vectors in §, suppose that
some vector v can be written as

v=cvi+cva 4o+ cpvy
and also as

V:k1V| +k2V2 +--- +k,,v,,
Subtracting the second equation from the first gives

0=(c;—ki)vi+ (2 —ka)va + - -+ (e — kn)Vn

Since the right side of this equation is a linear combination of vectors in S, the linear
independence of S implies that

C|—k1=0, Cz—kz=0,..., Cn—k,,=0

that is,
ca=k, ca=ky..., Ca=kn
Thus, the two expressions for v are the same.

DEFAINITION 2 If S = {v;, v2, ..., V,} 1s a basis for a vector space V, and
v=cCiV1+ Va4 -4 CpVp

is the expression for a vector v in terms of the basis S, then the scalars ¢y, ¢a, ..., Cx
are called the coordinates of v relative to the basis S. The vector (¢y, ¢s, ..., ¢,) In

R" constructed [rom these coordinates 1s called the coordinate vector of v relative to
§; it is denoted by

(V)s = (c1,¢2, ..., ¢y) (6)

P EXAMPLE 7 Coordinates Relative to the Standard Basis for R”

In the special case where V = R" and § is the standard basis, the coordinate vector (v)g
and the vector v are the same; that is,

v=(¥)s

For example, in R the representation of a vector v = (a, b, ¢) as a linear combination
of the vectors in the standard basis S = {i, j, k} is

v=ai+bj+ck

so the coordinate vector relative to this basis is (v)s = (a, b, ¢), which is the same as the
vector v.
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P EXAMPLE 8 Coordinate Vectors Relative to Standard Bases
(a) Find the coordinate vector for the polynomial

P(x) = Co+ C1X + C2x* + - - - + X"

relative to the standard basis for the vector space P,.

s=[0 ]

relative to the standard basis for M;.

(b) Find the coordinate vector of

Solution (a) The given formula for p(x) expresses this polynomial as a lincar combina-
tion of the standard basis vectors S = {1, x, x?, ..., x"}. Thus, the coordinate vector
for p relative to S is

(p)s = (co. €1, €2, ..., Cp)

Solution (b) We showed in Example 4 that the representation of a vector
a b
B =
<
as a linear combination of the standard basis vectors is
a b 1 0 0 1 0 0 0 0
B= = b
[e d] “[o 0]* [0 0]”[1 0]”[0 .]

so the coordinate vector of B relative to S is

(B)s = (a,b,c,d)

» EXAMPLE 9 Coordinates in R®
(a) We showed in Example 3 that the vectors

=121, =290, vv=(3,3,4

form a basis for R?. Find the coordinate vector of v = (5, —1, 9) relative to the
basis § = {V]. va, V3}.
(b) Find the vector vin R? whose coordinate vector relative to S is (v)s = (=1, 3, 2).

Solution (a) To find (v)g we must first express v as a linear combination of the vectors
in S; that i1s, we must find values of ¢;, ¢», and ¢3 such that
V = C1V] + C2¥2 + C3V2
or, in terms of components,
(5,=1,9) =c1(1,2,1) +¢2(2,9,0) + ¢3(3,3, 4)
Equating corresponding components gives
ca+2c+3¢3= 5
2¢; 4+ 9¢; + 3¢y = —1
) +4cy= 9
Solving this system we obtain ¢; = 1, ¢; = —1, ¢3 = 2 (verify). Therefore,
Ws=(1,-1,2)
Solution (b) Using the definition of (v) s, we obtain

V= (—])Vl + 3V2 -+ 2"3
= (=1)(1,2,1)+3(2,9,0) + 2(3,3,4) = (11,31,7) 4



Exercise Set 4.4
1. Use the method of Example 3 to show that the following set

of vectors forms a basis for R?.
{2, 1), 3,0}

2. Use the method of Example 3 to show that the following set
of vectors forms a basis for R*.

[(3,1,—4),(2,5,6), (1,4,8)}
3. Show that the following polynomials form a basis for P,.

241, x*—1, 2x-—1
6. Show that the following matrices form a basis for My,

1 1 1 -1 0 -1 1 0
[l 1]’ [0 0]' [1 0]’ [0 0]

11. Find the coordinate vector of w relative to the basis

S = {uy, w} for R

(@) uy =(2,—4), u = (3,8); w=(1,1)

(b) uy = (1, 1), w, = (0,2); w=(a,b)
14. Find the coordinate vector of p relative to the basis

S ={p,,p-. py} for P.

(@Qp=4—3x+x%p=1p =x, p =x’

by p=2—x+xp=1l+x p=1+x" p=x+x
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4.5 Dimension

Number of Vectors in a
Basis

THEOREM 4.,5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

THEOREM 4.5.2 Let V be an n=dimensional vector space, and let {vy, va, ..., v,} be
any basis.

(a) If asetinV has more than n vectors, then it is linearly dependent.
(b) If asetinV has fewer than n vectors, then it does not span V.

DEFINITION 1 The dimension of a finite-dimensional vector space V' is denoted by
dim(V) and 1s defined to be the number of vectors in a basis for V. In addition, the
zero vectlor space 1s defined to have dimension zero.

» EXAMPLE 1 Dimensions of Some Familiar Vector Spaces
dim(R") =n | The standard basis has n vectors. ]
dim(P,) = n + 1 [Thestandard basis has n 4 1 vectors. |
dim(M,,,,) = mn |The standard basis has mn vectors. |

» EXAMPLE 2 Dimension of Span(S)

If S = {v1, v2, ..., v,} thenevery vector in span(S) is expressible as a linear combination
of the vectors in S. Thus, if the vectors in § are linearly independent, they automatically
form a basis for span(S), from which we can conclude that

dim[span{v{, vy, ..., v, }] =7r
In words, the dimension of the space spanned by a linearly independent set of vectors is

equal to the number of vectors in that set.

P EXAMPLE 3 Dimension of a Solution Space
Find a basis for and the dimension of the solution space of the homogeneous system

Xy + 3x5 — 2x3 + 2xs =0
2x; 4+ 6x73 — Sx3— 2x4 +4x5— 3x=0
Sxy + 10x4 + 15x¢ =0

2x; + 6x; + 8x4 + 4xs + 18x =0

Solution In Example 6 of Section 1.2 we found the solution of this system to be
X = ==3r mmds =2t Xxy=7r, X3= =25, Xqa=25, Xs=1, x5=0
which can be written in vector form as

(x1, X2, X3, Xa, X5, Xg) = (=3r —4s = 2t,r, =2s,5,1,0)
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or, alternatively, as
(x1, X2, X3, X2, X5, Xg) = r(—=3,1,0,0,0,0) +5s(—4,0,—2,1,0,0) + #(—2,0,0,0,1,0)
This shows that the vectors

v =(=3,1,0,0,0,0), v, =(—4,0,-2,1,0,0), v;=1(-2,0,0,0,1,0)

span the solution space. We leave it for you to check that these vectors are linearly
independent by showing that none of them is a linear combination of the other two (but
see the remark that follows). Thus, the solution space has dimension 3.

THEOREM 4.5.32 Plus/Minus Theorem
Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S U {v} that results by inserting v into S is still linearly
independent.

(b) If v is a vector in S that is expressible as a linear combination of other vectors
in S, and if S — {v} denotes the set obtained by removing v from S, then S and
S — {v} span the same space; that is,

span(S) = span(S — {v})

P> EXAMPLE 4 Applying the Plus/Minus Theorem

Show thatp, = 1 —x?, p, = 2 —x?, and p, = x° are linearly independent vectors.

Solution Theset S = {p,, p,} is linearly independent since neither vector in § is a scalar
multiple of the other. Since the vector p; cannot be expressed as a linear combination
of the vectors in § (why?), it can be adjoined to S to produce a linearly independent set
SU{ps} = (p1.p2sp3). 4

THEOREM 4.,5.4 Let V be an n-dimensional vector space, and let S be a set in V
with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

» EXAMPLE 5 Bases by Inspection
(a) Explain why the vectors v; = (—3, 7) and v, = (5, 5) form a basis for R?.

(b) Explain why the vectors v; = (2,0, —1), v, = (4,0,7),and v = (—1, 1,4) forma
basis for R,

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form
a linearly independent set in the two-dimensional space R?, and hence they form a basis
by Theorem 4.5.4.

Solution(b) The vectorsv; and v, forma linearly independent set in the xz=plane (why?).
The vector vy 1s outside of the xz-plane, so the set {vy, v4, v3} isalso linecarly independent.
Since R* is three-dimensional, Theorem 4.5.4 implies that {v;, v,, v3} is a basis for the
vector space R*. <



THEOREM 4.5.5 Let S be a finite set of vectors in a finite=dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

THEOREM 4,5.6 If W is a subspace of a finite=dimensional vector space V, then:
(a) W is finite-dimensional.

(h) dim(W) < dim(V).
(¢) W =V ifandonly if dim(W) = dim(V).

ay



Exercise Set 4.5

In Exercises 1-6, find a basis for the solution space of the ho-
mogeneous linear system, and find the dimension of that space.

1. Xy 4+ x;— x35=0
—2x1—x3+2x3:0
—X + x3=10

7. In each part, find a basis for the given subspace of R*, and
state its dimension.
(a) The plane 3x — 2y 5z = 0.
(b) The plane x — y = 0.
(c) Thelinex =2ty = —t,z = 4t.
(d) All vectors of the form (a, b, ¢), where b = a + c.
11. (a) Show that the set W of all polynomials in P, such that
p(1) = 01s a subspace of P.
(b) Make a conjecture about the dimension of W.
(¢) Confirm your conjecture by finding a basis for W,
14. Let {v;, v5, v3} be a basis for a vector space V. Show that
{u;, w5, us} 1s also a basis, where u; = v;, u; = v; + v,, and
u; — ¥y + vy 4 v
18. Find a basis for the subspace of R* that is spanned by the
vectors

vi=(1,1,1,1), v»=1(2,2,2,0), v;=1(0,0,0,3),
vy = (3,3,3,4)

q¢
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4.6 Change of Basis
Coordinate Maps If'S = {v, v2,...,v,}1s a basis for a finite-dimensional vector space V, and 1f
(V)S -_— (Cl) CZy LN Cn)

is the coordinate vector of v relative to S, then, asillustrated in Figure 4.4.6, the mapping

v— (V)g (1)

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space R". We call (1) the coordinate map
relative to S from V to R". In this section we will find it convenient to express coordinate
vectors in the matrix form
€l
2

s = | . )

Cn
where the square brackets emphasize the matrix notation (Figure 4.6.1).

Change of Basis

The Change-of-Basis Problem If v is a vector in a finite=dimensional vector space V,
and 1l ' we change the basis for V from a basis B to a basis B’, how are the coordinate
vectors [v]p and [v]p related?

For simplicity, we will solve this problem for two-dimensional spaces. The solution
for n-dimensional spaces is similar. Let

B = {u,wm} and B’ = {u}, v}

be the old and new bases, respectively. We will need the coordinate vectors for the new
basis vectors relative to the old basis. Suppose they are

[ma=ﬁ]aml%b=ﬁ] (3)

u), = au; + bu,

That s,

(4)

u, = cup + dwy
Now let v be any vector in V, and let

vl = | ¥ 5
Vlp = [kz] (5)

be the new coordinate vector, so that

v = kju| + ko) (6)
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In order to find the old coordinates of v, we must express v in terms of the old basis B.
To do this, we substitute (4) into (6). This yields

v = ky(au; + buy) + ky(cuy + duy)

or
v = (kyja + kyouy + (kb + kyd)u,
Thus, the old coordinate vector for v is

[] - k|a+k2C
VIB= kb + kod

which, by using (5), can be written as

_|a ¢ kl_ac
[Vln—b dl | = b leln'

This equation states that the old coordinate vector [v] g results when we multiply the new
coordinate vector [v]p on the left by the matrix

P = a ¢
b d
Since the columns of this matrix are the coordinates of the new basis vectors relative to
the old basis [see (3)], we have the following solution of the change-of-basis problem.

Solution of the Change-of-Basis Problem If we change the basis for a vector space V
from an old basis B = {u;, u;, ..., u,} toanew basis B' = {u}, v}, ..., u}, then for
each vector v in V, the old coordinate vector [v]z 1s related to the new coordinate
vector [v] g by the equation

[vlp = P[v]p (7)
where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors ol P are

[“ll]Bv [ullev ey [u;,]B (8)

Transition Matrices

The matrix P in Equation (7) is called the transition matrix from B’ to B. For emphasis,
we will often denote it by Pg_, 5. It follows from (8) that this matrix can be expressed
in terms of its column vectors as

Py .p=[[uls|[W5)p | | [u,]s] ©)

Similarly, the transition matrix from B to B’ can be expressed in terms of its column
vectors as

Ppop = [[mls | [wls |- | [uls] (10)



The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.

» EXAMPLE 1 Finding Transition Matrices
Consider the bases B = {u;, up} and B’ = {u[, u;} for R%, where

w = (1,0, wm=(01), u,=(,1), uw=(21)
(a) Find the transition matrix Pg_, g from B’ to B.

(b) Find the transition matrix Pg_, 5 from B to B'.

Solution (a) Here the old basis vectors are u} and u; and the new basis vectors are u
and u;. We want to find the coordinate matrices of the old basis vectors u} and u), relative
to the new basis vectors u; and u,. To do this, observe that

u, =u +w

w, = 2u; +uwy
from which it follows that

1 2

[vi]p = [l] and [u}]p = [1]
o _[1 2
B'—+B — [1 ]]

Solution (b) Here the old basis vectors are u; and u; and the new basis vectors are u|
and u;. Asin part (a), we want to find the coordinate matrices of the old basis vectors
u; and ) relative to the new basis vectors u; and u;. To do this, observe that

and hence that

u = —u) +u
w = 2u) —u

{from which it follows that

-1 2
(w]p = [ I] and [w]p = [_]]

-1 2
, = -«
Pp.p [ ) —l]

and hence that

v



Suppose now that B and B’ are bases for a finite=dimensional vector space V. Since
multiplication by Pp_, p maps coordinate vectors relative to the basis B’ into coordinate
vectors relative to a basis B, and Pg., 5 maps coordinate vectors relative to B into
coordinate vectors relative to B', it follows that for every vector vin V we have

[vlg = Pp_glvlp (11)
[vlpg = Pp.plvlp (12)

P> EXAMPLE 2 Computing Coordinate Vectors
Let B and B’ be the bases in Example 1. Use an appropriate formula to find [v]p given

that
il [ 3]
B —vg 5

Solution To find [v]p we need to make the transition from B’ to B. It follows from
Formula (11) and part (a) of Example 1 that

1 2]1[-3 7
[VIR:PB'*”[v]"':[l 1][ 5]:[2] h

Invertibility of Transition If B and B’ are bases for a finite-dimensional vector space V, then

Matrice
rees (Pg—p)(Pg—p) = Pp_.p

aA

because multiplication by the product ( Pg.—. g )( P ') first maps the B-coordinates of a
vector into its B'-coordinates, and then maps those B'-coordinates back into the original
B-coordinates. Since the neteffect of the two operations is to leave cach coordinate vector

unchanged, we are led to conclude that Pp_, p must be the identity matrix, that is,

(Ppp)(Ppop)=1

THEOREM 4.6.1 If P is the transition matrix from a basis B’ to a basis B for a finite-
dimensional vector space V, then P is invertible and P~" is the transition matrix from

Bt B

An Efficient Method for
Computing Transition
Matrices for R"

A Procedure for Computing Py._, »
Step 1. Form the matrix [B" | B].

Step 2. Use elementary row operations to reduce the matrix in Step 1 to reduced row
echelon [orm.

Step 3. The resulting matrix will be [/ | Pg_. p'].
Step 4. Extract the matrix Pg_, g from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

- - row operations
[new basis | old basis) —

[7 | transition from old to new] (14)

(13)
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» EXAMPLE 3 Example 1 Revisited

In Example 1 we considered the bases B = {u;, w;} and B’ = {u!, u}} for R?, where

u = (1,0, wm=(0,1), u =1, uwy=(1

(a) Use Formula (14) to find the transition matrix from B’ to B.
(b) Use Formula (14) to find the transition matrix from B to B'.

Solution (a) Here B’ 1s the old basis and B is the new basis, so

[new basis | old basis] Loyt 2
new bagis nic] —
ew basis | old basis o 111 1

Since the left side is already the identity matrix, no reduction is needed. We see by
inspection that the transition matrix is

1 2
Pp_.p = 11

which agrees with the result in Example 1.

Solution (b) Here B is the old basis and B’ is the new basis, so

1 2(1 0
i< 1 old basis| —
[new basis | old basis| [] | ‘ 0 l]

By reducing this matrix, so the left side becomes the identity, we obtain (verify)

—1 2
1 -1

1 0
0 1

—1 2
Pg .p = I -

which also agrees with the result in Example 1. <

[7 | transition from old to new] = [

so the transition matrix is



Exercise Set 4.6

1. Consider the bases B = {u;,w;} and B’ = {u}, u,} for R?,
where

=[] =[] <[] <[]

(a) Find the transition matrix from B’ to B.
(b) Find the transition matrix from B to B'.

(¢) Compute the coordinate vector [w]g, where

|

and use (12) to compute [w] .
(d) Check your work by computing [w] g directly.

3. Consider the bases B = {u;, u;, u;} and B" = {uf, u}, u}} for
R, where

= (1|, w=]—1[, w=|2

(a) Find the transition matrix B to B'.
(b) Compute the coordinate vector [w]y, where
-5
W= 8
-5
and use (12) to compute [w]p .

(¢) Check your work by computing [w]g directly.



6. Consider the bases B — (p,,p,} and B’ — {q,,q,} for Py,
where

pp=6+3x, pp=104+2x, q=2, q=3+2

(a) Find the transition matrix from B’ to B.
(b) Find the transition matrix from B to B'.

(¢) Compute the coordinate vector [plz, where p = —4 + x,
and use (12) to compute [plg.

(d) Check your work by computing [p]s directly.
9. Let § be the standard basis for R®, and let B = {v;, v5, v}

be the basis in whichv, = (1,2, 1), v, = (2, 5, 0), and
¥y = (3v 3.- 8)

(a) Find the transition matrix Pg_, g by inspection.
(b) Use Formula (14) to find the transition matrx Ps_, 5.
(¢c) Confirm that Py_, s and Pg_,  are inverses of one another.

(d) Letw = (5, =3, 1). Find |[w]z and then use Formula (11)
to compute [w]s.

(¢) Letw = (3, —5,0). Find [w]s and then use Formula (12)
to compute [w]p.



4.7 Row Space, Column Space, and Null Space

Row Space, Column Space,
and Null Space

A

DEFINITION 1 For an m X n matrix

ap ap -0 Ay
as (2 R
A= . .
) Amy -+ Omp
the vectors
rn=[a; apy - apl
n=I[ay an - az]
Iy = [aml Apy amn]

in R” that arc formed from the rows of A are called the row vectors of A, and the
vectors

an a din

an an dop
C = y O = X , y Cp =

Am Am2 [

in R™ formed from the columns of A are called the column vectors of A.

» EXAMPLE 1 Row and Column Vectors of a 2 x 3 Matrix
Let

The row vectors of A are
rp=[2 10 and m=[3 =1 4]

and the column vectors of A are

2 1 0
c1=[3], c2=[_l], and c3=[4] D |

DEFINITION 2 If A i1s an m x n matrix, then the subspace of R" spanned by the
row vectors of A is called the row space of A, and the subspace of R™ spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of R", is called the
null space of A.

THEOREM 4.7.1 A system of linear equations Ax = b is consistent if and only if b is in
the column space of A.



THEOREM 4.7.2 If xq is any solution of a consistent linear system Ax = b, and if
S = {v1, vy, ..., i} is a basis for the null space of A, then every solution of Ax = b can
be expressed in the form

X=X+ Vi +cv2+ -+ Vi (3)

Conversely, for all choices of scalars ¢y, ca, . .., ci, the vector X in this formula is a
solution of Ax = h.

The vector xg in Formula (3) 1s called a particular solution of Ax — b, and the remain=
ing part of the formula is called the general solution of Ax = 0. With this terminology
Theorem 4.7.2 can be rephrased as:

The general solution of a consistent linear system can be expressed as the sum of a partic-
ular solution of that system and the general solution of the corresponding homogeneous
system.

P EXAMPLE 3 General Solution of a Linear System Ax = b
In the concluding subsection of Section 3.4 we compared solutions of the linear systems

X X1
1 3 =2 0 2 0|n 0 1 3 =2 0 2 0]|xn 0
2 6 =5 =2 4 =3|]|x 0 2 6 =5 =2 4 =3|]x -1
o 0o 5 10 o 15||le|Tlol ™ lo o s 10 o 15|75
2 6 0 8 4 18|]x 0 2 6 0 8 4 18|k
X6 X6

and deduced that the general solution x of the nonhomogencous system and the general
solution x; of the corresponding homogeneous system (when written in column-vector
form) are related by

7 [—3r—4s—2] [0 [—3] [—4] [-2
X2 r 0 1 0 0
X3 —2s 0 + 0 + -2 +t 0

- = r )

X4 A 0 0 1 0
Xs t 0 0 0 1
x6] L 1 4 Li L 0] L0 L0

X Xo Xi

Bases for Row Spaces,
Column Spaces, and Null
Spaces

THEOREM 4,7.3 Elementary row operations do not change the null space of a matrix.

THEOREM 4.7.4 Elementary row operations do not change the row space of a matrix.

VoY



P> EXAMPLE 4 Finding a Basis for the Null Space of a Matrix

Find a basis for the null space of the matrix

1 3 =2 0 2 0
2 6 =5 =2 4 =3
A=10 o 5 10 0 15
2 6 0 8 4 18

Solution The null space of A is the solution space of the homogeneous linear system
Ax = 0, which, as shown in Example 3, has the basis

V) = V3 =

THEOREM 4.7.5 If a matrix R is in row echelon form, then the row vectors with the
leading Vs (the nonzero row vectors) form a basis for the row space of R, and the column
vectors with the leading Us of the row vectors form a basis for the column space of R.

» EXAMPLE 5 Bases for the Row and Column Spaces of a Matrix in Row
Echelon Form

Find bases for the row and column spaces of the matrix

1 =2 5 0 3
0O 1 3 0 0
R=1o 0o o 1 o
0O 0 0 0 0

Solution Since the matrix R is in row echelon form, it follows from Theorem 4.7.5 tha:
the vectors

n=[1 =2 5 0 3
n=[0 1 3 0]
=0 0 0 1 0

form a basis for the row space of R, and the vectors

¢ =

oo O -
o - O O

form a basis for the column space of R.



» EXAMPLE 6 Basis for a Row Space by Row Reduction
Find a basis for the row space of the matrix

-1 3 —4 2 =5 —4

Solution Since elementary row operations do not change the row space of a matrix, we
can find a basis for the row space of A by finding a basis for the row space of any row
echelon form of A. Reducing A to row echelon form, we obtain (verify)

1 =3 4 =2 5 4

0 0 1 3 =2 =6
R=

o 0 0 0 1 5

o o0 o 0 0 0

By Theorem 4.7.5, the nonzero row vectors of R form a basis for the row space of R and
hence form a basis for the row space of A. These basis vectors are

n=[ =3 4 =2 5 4
r, =10 0 1 3 =2 =6]
=0 0 0 0 1 5 -«
Basis for the Column
Space of a Matrix

THEOREM 4,7.6 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-
sponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of A if and
only if the corresponding column vectors of B form a basis for the column space
of B.

P EXAMPLE 7 Basis for a Column Space by Row Reduction
Find a basis for the column space of the matrix

-1 3 -4 2 =5 —4
that consists of column vectors of A.
Solution We observed in Example 6 that the matrix

1 =3 4 =2 5 4

0 0 1 3 =2 -6

O 0 0 0 1 5

O 0o 0 0 0 0
is a row echelon form of A. Keeping in mind that A and R can have different column
spaces, we cannot find a basis for the column space of A directly from the
column vectors of R. However, it follows from Theorem 4.7.6(b) that if we can find

a set of column vectors of R that forms a basis for the column space of R, then the
corresponding column vectors of A will form a basis for the column space of A.



Since the first, third, and fifth columns of R contain the leading 1's of the row vectors
the vectors

1] 4 5
, 0 . 1 , -2
¢, = ol c; = ol Cs = |
0] | 0 0
form a basis for the column space of R. Thus, the corresponding column vectors of A,
which are N N
1 - 5
2 9 8
C = 2 , €y = 9 , €5 = 9
-1 | | —4 -5

form a basis for the column space of A.

» EXAMPLE 8 Basis for the Space Spanned by a Set of Vectors

The following vectors span a subspace of R*. Find a subset of these vectors that forms
a basis of this subspace.

1= (l‘ 2! 2: _l)v V2= (_3y _6: _6, 3)1
vi=0(4,9,9 —4), wvi=(=2,-1,-12),
vs =(58,9,=5), vw=(427-4)

Solution If we rewrite these vectors in column form and construct the matrix that has

those vectors as its successive columns, then we obtain the matrix A in Example 7 (verify).
Thus,

span{vy, v, v3, V4, ¥5, s} = col(A)

Proceeding as in that example (and adjusting the notation appropriately), we see that
the vectors vy, v3, and vs form a basis for

Span{vlv V2, V3, V4, Vs, VG} ‘

Problem Given a set of vectors § = {vy,va, ..., v} in R", find a subset of these

vectors that forms a basis for span(S), and express each vector that is not in that basis
as a linear combination of the basis vectors.

» EXAMPLE 10 Basis and Linear Combinations
(a) Find a subset of the vectors
vi=(1,—-2,0,3), wv»=(2,-5,-3,6),
vi=1(0,1,3,0), vi=1(2,—-1,4,=7), vs=1(5-8,1,2)
that forms a basis for the subspace of R spanned by these vectors.

(b) Express each vector not in the basis as a linecar combination of the basis vectors.



Solution (a) We begin by constructing a matrix that has vy, vo, ..., vs as its column
vectors:

12 0 2 5
-2 =5 1 -1 -8 )
0 =3 3 4 1

3 6 0 =7 2
) 1 1 ) )
Vi \ b V3 V4 Vs
The first part of our problem can be solved by finding a basis for the column space of

this matrix. Reducing the matrix to reduced row echelon form and denoting the column
vectors of the resulting matrix by wy, wa, ws, ws, and ws yields

] 0 2 0 1

0 I 0 1
(6)
0 0 0 1 1
0 0 0 0 0
1 () T 1
W, W2 W3 Wiq Ws

The leading I's occur in columns 1, 2, and 4, so by Theorem 4.7.5,
{wy, wa, wa}
is a basis for the column space of (6), and consequently,
{vi, v2, va}
is a basis for the column space of (5).

Solution (b) We will start by expressing w3 and ws as linear combinations of the basis
vectors wy, wa, wy. The simplest way of doing this is to express w; and ws in terms
of basis vectors with smaller subscripts. Accordingly, we will express w3 as a linear
combination of w; and w,. and we will express ws as a linear combination of w;, wy,
and ws. By inspection of (6), these linear combinations are

wy = 2w, — W,
Ws = W) + W2 + Wy
We call these the dependency equations. The corresponding relationships in (5) are
vi =2vy — v,
Vs=V+va+vy 4

YoV



The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

Basis for the Space Spanned by a Set of Vectors

Step 1. Form the matrix A whose columnsare the vectorsintheset S = {v;, va, ..., v}
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by wy, wa, ..., wi.

Step 4. Identify the columns of R that contain the leading 1's. The corresponding
column vectors of A form a basis for span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors wy, wa, ..., W
of R by successively expressing each w; that does not contain a leading 1 of
R as a linear combination of predecessors that do.

Step 6. In cach dependency equation obtained in Step 5, replace the vector w; by the
vectorv; fori =1,2,... k.

This completes the second part of the problem.




Exercise Set 4.7

In Exercises 7-8, find the vector form of the general solution
of the linear system Ax — b, and then use that result to find the
vector form of the general solution of Ax = 0.

(b) X|+2Xz—3X3+ Xs= 4
—2.X| + x> +2I; + x4=-—1
—X|+3X2— 13+2X4= 3

4X| — 7X2 — SX4 =5

13. (a) Use the methods of Examples 6 and 7 to find bases for the
row space and column space of the matrix

1 -2 5 0 3
-2 5 -7 0 —6
—1 3 -2 1 -3
—3 8 —9 1 -9

A=

(b) Use the method of Example 9 to find a basis for the row
space of A that consists entirely of row vectors of A.

In Exercises 14-15, find a basis for the subspace of R* that is
spanned by the given vectors.

14. (1,1,—4,-3), (2,0,2,-2), (2,—1,3,2)

In Exericses 16—17, find a subset of the given vectors that forms
a basis for the space spanned by those vectors, and then express
each vector that 1s not in the basis as a linear combination of the
basis vectors.

16. ¥ = (1.0, 1, l), vV, = (—'3. 3, 7. l),
Vi = (_1‘ 3v 9\ 3), V4 = (_5, 31 5‘ _l)

Y9
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4.8 Rank, Nullity,

Row and Column Spaces In Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the
Have Equal Dimensions matrix

-1 3 =4 2 =5 —4

both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the fol-
lowing theorem.

THEOREM 4.8.1 The row space and the column space of a matrix A have the same
dimension.

Rank and Nullity  The dimensions of the row space, column space, and null space of a matrix are such
important numbers that there is some notation and terminology associated with them.

DEFAINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A); the dimension of the null
space of A is called the nullity of A and is denoted by nullity(A).

P EXAMPLE 1 Rank and Nullity of a 4 x 6 Matrix
Find the rank and nullity of the matrix

-1 2 0 4 5 =3
3 -7 2 0 1 4
A=l 5 s 2 4 6
4 =9 2 —4 —4 7

Solution The reduced row echelon form of A 1s
1 0 —4 =28 =37 13
0 1 =2 =12 -—16 5
0o 0 0 0 0 0
0o 0 0 0 0 0

M

(verify). Since this matrix has two leading I's, its row and column spaces are two-
dimensional and rank(A) = 2. To find the nullity of A, we must find the dimension of
the solution space of the linear system Ax = 0. This system can be solved by reducing
its augmented matrix to reduced row echelon form. The resulting matrix will be iden-
tical to (1), except that it will have an additional last column of zeros, and hence the
corresponding system of equations will be

Xy —4x3 — 28x4 — 37x5 + 13x =0
Xy — 2x3 — 12x4 — 16x5 + 5x4 =0
Solving these equations for the leading variables yields
x; = 4x3 + 28x4 + 37xs — 13x4

(2)
X2 = 2x3 + 12x4 + 16x5 — 5Sxg



from which we obtain the general solution

x; =4r +28s + 37t — 13u
Xy =2r + 125 + 16t — Su

X3 =r
X4 =S5
X5 =1
X =Uu
or in column vector form
EX (4]  [28] [37] [—13]
X5 2 12 16 -5
X3 1 0 0 0
» =r 0 +5 | +1 0 +u 0 (3)
X5 0 0 1 0
_X(,_ _0_ L 0_ 0_ | l_

Because the four vectors on the right side of (3) form a basis for the solution space,
nullity(A) = 4.

» EXAMPLE 2 Maximum Value for Rank

What is the maximum possible rank of an m x n matrix A that is not square?

Solution Since the row vectors of A lie in R" and the column vectors in R™, the row
space of A is at most n-dimensional and the column space 1s at most m-dimensional.
Since the rank of A is the common dimension of its row and column space, it follows
that the rank is at most the smaller of m and n. We denote this by writing

rank(A) < min(m, n)
in which min(m, n) is the minimum of m and n. <

THEOREM 4,8.2 DimensionTheorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n 4)

» EXAMPLE 3 The Sum of Rank and Nullity

The matrix
-1 2 0 4 5 =3
3 =7 2 0 1 4
A=
2 =5 2 4 6 1
4 -9 2 —4 —4 7

has 6 columns, so
rank(A) + nullity(A) = 6
This 1s consistent with Example 1, where we showed that

rank(A) =2 and nullity(A) =4 <
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THEOREM 4.8.8 Equivalent Statements
If Ais ann x n matrix, then the following statements are equivalent.

(a)
(b)
()
(d)
(e)
(N
(%)
(h)
(1)
(N
(k)
()
(m)
(n)
(0)

A is invertible.

Ax = 0 has only the trivial solution.

The reduced row echelon form of A is I,.

A is expressible as a product of elementary matrices.
Ax = b is consistent for every n x | matrix b.

Ax = b has exactly one solution for every n x 1 matrix b.
det(A) # 0.

The column vectors of A are linearly independent.
The row vectors of A are linearly independent.

The column vectors of A span R".

The row vectors of A span R".

The column vectors of A form a basis for R".

The row vectors of A form a basis for R".

A has rank n.

A has nullity 0.



In Exercises 1-2, find the rank and nullity of the matrix A by
reducing it to row echelon form.

12 =11
2 4 =2 2
1. (a) A=
36 —3 3
4 8 —4 4
1 =2 2 3 -1
MA=]-3 6 —1 1 =7
2 -4 5 8 —4
1 0 =2 07
0 —1 =3 1 3
2. (a) A =
-2 -1 -1 3
0 1 3 0 —4
13 13
o 1 1 0
MmA=[-3 0 6 -1
3 4 =2 1
| 2 0 —4 -2




