Chapter 7

Quantum Theory and the Electronic Structure of Atoms

Dr. Dalal Alezi
dalezi@kau.edu.sa

> 04/11/2018

Chapter 7

Quantum Theory and the Electronic Structure of Atoms

Wave
properties and equations

$$
\begin{aligned}
& (\lambda, v, E) \\
& c=\lambda \times v \\
& E=h c / \lambda
\end{aligned}
$$

Calculate the Energy of the electron in principal energy level

$$
E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right)
$$

Calculate the Energy emitted or absorbed $\Delta \mathrm{E}=R_{H}\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right]$

Electron
Configuration:
Aufbau
Principle
Hund's Rule
Pauli Exclusion
Principal

What is the wavelength of radiation (in nm) that has a frequency of $9.0 \times 10^{13} \mathrm{~s}^{-1}(\mathrm{~Hz})$? ($\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

$$
c=\lambda x v
$$

$$
\begin{gathered}
3 \times 10^{8} \mathrm{~m} / \mathrm{s}=\lambda \times 9.0 \times 10^{13} \mathrm{~s}^{-1} \\
\lambda=\frac{3 \times 10^{8}}{9.0 \times 10^{13}} \\
\lambda=3.33 \times 10^{-6} \mathrm{~m} \\
\lambda=3.33 \times 10^{-6} \times 10^{9}=3.33 \times 10^{3} \mathrm{~nm}
\end{gathered}
$$

Calculate the frequency of visible light having a wavelength of 699 nm ?

$$
\begin{gathered}
c=\lambda \times v \\
v=\frac{3 \times 10^{8}}{6.99 \times 10^{-7}} \\
v=4.3 \times 10^{14} \mathrm{~s}^{-1}
\end{gathered}
$$

What is the energy in joules of one photon of UV radiation with a wavelength 10 nm ? ($\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$)

$$
\begin{gathered}
\mathrm{E}=\mathrm{hc} / \lambda \\
\mathrm{E}=3 \times 10^{8} \times 6.626 \times 10^{-34} / 1 \times 10^{-8} \\
E=1.98 \times 10^{-17} \mathrm{~J}
\end{gathered}
$$

What is the energy of electron state in level with $n=4$?

$$
\begin{aligned}
& E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right) \\
& E_{n}=-2.18 \times 10^{-18}\left(\frac{1}{4^{2}}\right)
\end{aligned}
$$

$$
E_{n}=-1.36 \times 10^{-19} \mathrm{~J}
$$

What is a likely energy level for a hydrogen atom with $E_{n}=-6.053 \times 10^{-20} \mathrm{~J}$? (constant $\mathrm{R}_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J}$)

$$
E_{n}=-R_{H}\left(\frac{1}{n^{2}}\right)
$$

$$
\begin{aligned}
& n^{2}=-R_{H} / E_{n} \\
& \mathrm{n}^{2}=\left(-2.179 \times 10^{-18} \mathrm{~J}\right) /\left(-6.053 \times 10^{-20} \mathrm{~J}\right) \\
& \mathrm{n}^{2}=35.999 \\
& \mathrm{n}=6
\end{aligned}
$$

Because the value of n is an integer, 6 is the likely energy level of this photon.

The electron in a hydrogen atom is in the $\mathrm{n}=2$ state. When it drops to the ground state a photon is emitted. What is the wavelength of the photon?

$$
\begin{gathered}
\Delta \mathrm{E}=R_{H}\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right] \\
\Delta \mathrm{E}=2.18 \times 10^{-18} \mathrm{~J}\left[\frac{1}{2^{2}}-\frac{1}{1^{2}}\right] \\
\Delta \mathrm{E}=-1.632 \times 10^{-18} \mathrm{~J} \\
\mathrm{E}=\mathrm{hc} / \lambda \\
\lambda=\mathrm{hc} / \mathrm{E}=6.63 \times 10^{-34} * 3 \times 10^{8} / 1.632 \times 10^{-18} \\
\lambda=1.22 \times 10^{-7} \mathrm{~m}=122 \mathrm{~nm}
\end{gathered}
$$

How much energy must the atom absorb to move an electron from $n=1$ to $n=5$?

$$
\begin{aligned}
& \Delta \mathrm{E}=R_{H}\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right] \\
& \Delta \mathrm{E}=2.18 \times 10^{-18} J\left[\frac{1}{1^{2}}-\frac{1}{5^{2}}\right] \\
& \Delta \mathrm{E}=2.093 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Quantum Numbers

Name	Symbol	Allowed Values	Property
Principal	n	positive integers $1,2,3 \ldots$	Orbital size and energy level
Secondary (Angular momentum)	$/$	Integers from 0 to $(\mathrm{n}-1)$	Orbital shape (sublevels/subshells)
Magnetic	$\mathrm{m}_{/}$	Integers $-/$to $+/$	Orbital orientation
Spin	m_{s}	$+1 / 2$ or $-1 / 2$	Electron spin Direction

Quantum Numbers

How many orbitals are in $(n=4)$	How many orbitals are in $(I=3)$	How many electron are $(n=2)$
For certain value of (n)	For certain value of (I)	For certain value of (n)
there are $\left(n^{2}\right)$ No. of orbitals	there are $(2 I+1)$ No. of orbitals	there are $\left(2 n^{2}\right)$ No. of electrons
$4^{2}=16$ orbitals	$2 \times 3+1=7$ orbitals	$2 \times 2^{2}=8$ electrons

List the values of n, I, m_{1}, for orbitals in the $3 d$ subshell

$$
n=3 \quad l=2 \quad m l=-2,-1,0,1,2
$$

List the values of n, I, m_{1}, for orbitals in the $2 S$ subshell

$$
\mathrm{n}=2 \quad \mathrm{l}=0 \quad \mathrm{ml}=0
$$

List the values of 1 in $n=3$.
$I=0,1,2$

List the values of m_{1} in $l=1$.
$m_{1}=-1,0,1$

Which one of the following sets of quantum numbers is not possible?

	n	1	$\mathrm{~m}_{1}$	$\mathrm{~m}_{\mathrm{s}}$
A)	1	0	0	$+1 / 2$
B)	2	0	0	$-1 / 2$
C)	3	2	-2	$-1 / 2$
D)	2	0	1	$+1 / 2$

What is the maximum number of electrons in an atom that can have the following set of quantum numbers?
$\mathrm{n}=3 \quad \mathrm{l}=2 \quad \mathrm{ml}=-2 \quad \mathrm{~ms}=+1 / 2$

Answer: 1

Filling Rules for Electron Orbitals

Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom
 have been accounted for.

Pauli Exclusion Principle: An orbital can hold a maximum of two electrons.

To occupy the same orbital, two electrons must spin in opposite directions.

Hund's Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results.

*Aufbau is German for "building up"

Classification of Elements According to the

What is the electron configuration of Si ?

From the periodic table $\rightarrow 14 \mathrm{e}$

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
(OR)
[Ne] $3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$

Lave ir iva ${ }^{\circ} \mathrm{mm}$

What is the electron configuration of Mo ?
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{4}$
d orbital exception (The Stability of Half Filled \& Filled d Orbitals)
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1} 4 d^{5}$
$[K r] 5 s^{1} 4 d^{5}$

Determine the group, period and the block of the following
${ }^{12} \mathrm{Mg}$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}
$$

Period 3
group 2A (alkaline earth metal)
block S, representative element (main group elements)

Determine the group, period and the block of the following ${ }^{27} \mathrm{Co}$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}
$$

Period 4
group (2+7) 9B
block d, Transition element

How many unpaired electrons does Sc (scandium) have? Is it paramagnetic or diamagnetic ?
$\mathrm{Sc} \rightarrow 21 \mathrm{e}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
$[\operatorname{Ar}] 4 s^{2} 3 d^{1}$

1 unpaired electron \therefore paramagnetic

How many unpaired electrons does Na^{+}have? Is it paramagnetic or diamagnetic ?

$$
\begin{aligned}
& \mathrm{Na} \rightarrow 11 \mathrm{e} \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}
\end{aligned}
$$

$$
\mathrm{Na}^{+} \rightarrow 10 \mathrm{e}
$$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{\theta}
$$

No unpaired electron $\quad \therefore$ diamagnetic

How many unpaired electrons does Fe^{2+} have? Is it paramagnetic or diamagnetic ?

$$
\begin{aligned}
& \mathrm{Fe} \rightarrow 26 \mathrm{e} \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6} \\
& {[\mathrm{Ar}] 4 s^{2} 3 d^{6}}
\end{aligned}
$$

$$
\mathrm{Fe}^{2+} \rightarrow 24 \mathrm{e}
$$

$$
[\mathrm{Ar}] 4 s^{\theta} 3 d^{6}
$$

$$
4 \text { unpaired electron } \quad \therefore \text { Paramagnetic }
$$

Which diagram show a violation (break) Aufbau principle, Hund's rule or Pauli exclusion principle?

Pauli exclusion principle

Hund's rule

Aufbau principle (building up)

