Chapter 7

Quantum Theory and the Electronic Structure of Atoms

Dr. Dalal Alezi dalezi@kau.edu.sa

04/11/2018

Chapter 7 Quantum Theory and the Electronic Structure of Atoms

Wave properties and equations (λ, υ, E) $c = \lambda \times \nu$ $E = hc/\lambda$

Calculate the Energy of the electron in principal energy level $E_n = -R_H (\frac{1}{n^2})$ Calculate the Energy emitted or absorbed $\Delta E = R_H [\frac{1}{n_i^2} - \frac{1}{n_f^2}]$

Quantum Numbers (n, l, m_l, m_s) Electron Configuration: Aufbau Principle Hund's Rule Pauli Exclusion Principal What is the wavelength of radiation (in nm) that has a frequency of $9.0 \times 10^{13} \text{ s}^{-1} (\text{Hz})$? (c = $3 \times 10^8 \text{ m/s}$)

 $c = \lambda x v$

 $3 \times 10^8 \text{ m/s} = \lambda \text{ x } 9.0 \times 10^{13} \text{ s}^{-1}$

 $\lambda = \frac{3 \times 10^8}{9.0 \times 10^{13}}$

 $\lambda = 3.33 \times 10^{-6} \text{m}$ $\lambda = 3.33 \times 10^{-6} \times 10^{9} = 3.33 \times 10^{3} \text{nm}$ Calculate the frequency of visible light having a wavelength of 699 nm?

$$c = \lambda x v$$

$$v = \frac{3 \times 10^8}{6.99 \times 10^{-7}}$$

$$v = 4.3 \times 10^{14} s^{-1}$$

What is the energy in joules of one photon of UV radiation with a wavelength 10 nm? (c= 3×10^8 m/s; h = 6.626×10^{-34} J.s)

 $E = hc/\lambda$

 $E = 3 \times 10^8 \times 6.626 \times 10^{-34} / 1 \times 10^{-8}$

$$E = 1.98 \times 10^{-17} \text{ J}$$

What is the energy of electron state in level with n=4?

$$E_n = -R_H \left(\frac{1}{n^2}\right)$$
$$E_n = -2.18x10^{-18} \left(\frac{1}{4^2}\right)$$

$$E_n = -1.36 \times 10^{-19} \text{ J}$$

What is a likely energy level for a hydrogen atom with E_n = -6.053 X 10⁻²⁰ J? (constant R_H = 2.179 X 10⁻¹⁸ J)

$$E_n = -R_H \left(\frac{1}{n^2}\right)$$

 $n^2 = -R_H / E_n$

 $n^2 = (-2.179 \times 10^{-18} \text{ J})/(-6.053 \times 10^{-20} \text{ J})$

 $n^2 = 35.999$

n = 6

Because the value of n is an integer, 6 is the likely energy level of this photon.

The electron in a hydrogen atom is in the n = 2 state. When it drops to the ground state a photon is emitted. What is the wavelength of the photon?

$$\Delta E = R_H \left[\frac{1}{n_i^2} - \frac{1}{n_f^2} \right]$$
$$\Delta E = 2.18 \times 10^{-18} J \left[\frac{1}{2^2} - \frac{1}{1^2} \right]$$
$$\Delta E = -1.632 \times 10^{-18} J$$
$$E = hc/\lambda$$
$$\lambda = hc/E = 6.63 \times 10^{-34} * 3 \times 10^8 / 1.632 \times 10^{-18}$$
$$\lambda = 1.22 \times 10^{-7} \text{ m} = 122 \text{ nm}$$

How much energy must the atom absorb to move an electron from n =1 to n = 5?

$$\Delta \mathsf{E} = R_H \left[\frac{1}{n_i^2} - \frac{1}{n_f^2}\right]$$
$$\Delta \mathsf{E} = 2.18 \times 10^{-18} J \left[\frac{1}{1^2} - \frac{1}{5^2}\right]$$

 ΔE = 2.093 x 10⁻¹⁸ J

Quantum Numbers

Name	Symbol	Allowed Values	Property				
Principal	n	positive integers 1,2,3	Orbital size and energy level				
Secondary (Angular momentum)	1	Integers from 0 to (n-1)	Orbital shape (sublevels/subshells)				
Magnetic	m,	Integers -/ to +/	Orbital orientation				
Spin	m _s	$+\frac{1}{2}$ or $-\frac{1}{2}$	Electron spin Direction				

Quantum Numbers

How many orbitals are in (n=4)	How many orbitals are in (I =3)	How many electron are (n=2)				
For certain value of (n)	For certain value of (I)	For certain value of (n)				
there are (n ²) No. of orbitals	there are (2 +1) No. of orbitals	there are (2n ²) No. of electrons				
4 ² = 16 orbitals	2 × 3 + 1 = 7 orbitals	$2 \times 2^2 = 8$ electrons				

List the values of n, l, m_l, for orbitals in the 3d subshell

List the values of n, l, m_l, for orbitals in the 2S subshell

List the values of 1 in n=3.

I =0,1,2

List the values of m_l in l=1.

m_l= -1, 0,1

Which one of the following sets of quantum numbers is not possible?

What is the maximum number of electrons in an atom that can have the following set of quantum numbers? n = 3 1 = 2 ml = -2 ms = +1/2

Answer: 1

Filling Rules for Electron Orbitals

Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for.

Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions.

Hund's Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results.

*Aufbau is German for "building up"

	IS ¹												7	5	ε	4_	2	ոՏ ² ոթ ⁶
		$\int_{2A}^{2} V_{2} V_{2}$																
1	$\frac{1}{\mathbf{H}}$	2 2A		from The y	left to value	o righ of n i	t acro ncrea	ss the	e perio	od. nove (down	the	13 3A	14 4A	15 5 A	16 6A	17 7A	2 He 1s ²
2 $\begin{bmatrix} 3\\ Li\\ 2s^2 \end{bmatrix}$ Be group (from top to bottom). 2 $\begin{bmatrix} 3\\ 2s^2 \\ 2s^2$													$2s^22p^5$	10 Ne 2s 2p ⁶				
3	11 Na 3s ¹	12 Mg 3s ²	3 BB	4 4B	5 5B	6 6B	507 1B	8	9 	10	11 1B	12 2B	13 Al 3s ⁻ 3p ¹		$\frac{15}{F}{3s^2,p^3}$	6 3 3s ⁻ 3p ⁴	17 Cl 3s ⁵ 3p ⁵	8 Ar 3s ² 3p ⁶
4	19 K 4s ¹	20 Ca 4s ²	21 Sc 4. ² 3d ¹	$22 \\ Ti \\ 4s^2 3d^2$	$23 \\ V \\ 4s^2 3d^3$	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu 4s ¹ 3d ¹⁰	30 2n 4s•3d ¹⁰	31 Ga 4s 4p1	$32 \\ Ce \\ 4s^2 4p^2$	33 As 4s ² -p ³	34 Sie 4s 4p4	35 Br 4s ⁵ 4p ⁵	86 Kr 4s ² 4p ⁶
5	37 Rb 5s ¹	38 Sr 5s ²	39 Y 5. ² 4 <i>d</i> 1	$40 \\ 2r \\ 5s^24d^2$	$41 \\ Nb \\ 5s^{1}4d^{4}$	42 Mo 5s ¹ 4d ⁵	43 Te 5s ² 4d ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh 5s ¹ 4d ⁸	46 Pd 4d ¹⁰	47 Ag 5s ¹ 4d ¹⁰	-18 Cd 5s-4d ¹⁰	29 In 5s ⁻ 5p ¹	$50 \\ Sn \\ 5s^25p^2$	$5 \\ 5 \\ 5 s^{25} p^{3}$	2 5s 5p4	53 5s [:] 5p ⁵	54 Ke 5s ³ 5p ⁶
6	55 Cs 5s ¹	56 Ba 6s ²	57 La 6. ² 5d ¹	$72 \\ Hf \\ 6s^25d^2$	$73 \\ Ta \\ 6s^25d^3$	$ \begin{matrix} 74 \\ \mathbf{W} \\ 6s^25d^4 \end{matrix} $	75 Re 6s ² 5d ⁵	$76 \\ Os \\ 6s^25d^6$	77 Ir 6s ² 5d ⁷	78 Pt 6s ¹ 5d ⁹	79 Au 6s ¹ 5d ¹⁰	30 Hg 6s [:] 5d ¹⁰	81 7 1 65 ⁻ 6p ¹	82 Pb 6s ² 5p ²	8. Bi 6s ²⁶ p ³	84 Po 6s 6p4	85 A t 6s ⁵ 6p ⁵	86 Rn 6s ^{-6p6}
7	87 Fr 7s ¹	88 Ra 7s ²	89 Ac 7; ² 6d ¹	104 Rf 7 <i>s</i> ² 6 <i>d</i> ²	$105 \\ \textbf{Db} \\ 7s^2 6d^3$	106 Sg 7 <i>s</i> ² 6 <i>d</i> ⁴	107 Bh 7s²6d⁵	108 Hs 7s ² 6d ⁶	$109 \\ Mt \\ 7s^{2}6d^{7}$	110 7s ² 6d ⁸	111 7 <i>s</i> ² 6 <i>d</i> ⁹	112 7s ³ 6d ¹⁰	(113)	14	(115)	116	(117)	118
			4f—		58 Ce	59 Pr 6s ² 4/ ³	60 Nd 6s ² 4f ⁴	61 Pm 6s ² 4/ ⁵	62 Sm 6s ² 4f ⁸	63 Eu 6s ² 4f ⁷	64 Gd 6s ² 4f ⁷ 5d ¹	65 Tb 6s ² 4f ⁹	66 Dy 6s ² 4f ¹⁰	67 Ho 6s ² 4f ¹¹	68 Er 6s ² 4f ¹²	69 Tm 6s ² 4f ¹³	70 Yb 6s ² 4f ¹⁴	71 Lu 6s ² 4f ¹⁴ 5d ¹
			5f—		90 Th 7.264	91 Pa 7 <i>s</i> ² 5 <i>f</i> ² 6 <i>d</i> ³	92 U 7s ² 5f ³ 6d ¹	93 Np 7s ² 5f ⁴ 6d ¹	94 Pu 7 <i>s</i> ² 5 <i>f</i> ⁶	95 Am 7s ² 5f ⁷	96 Cm 7 <i>s</i> ² 5 <i>f</i> ⁷ 6 <i>d</i> ¹	97 Bk 7s ² 5f ⁹	98 Cf 7s ² 5f ¹⁰	99 Es 7s ² 5f ¹¹	100 Fm 7 <i>s</i> ² 5 <i>f</i> ¹²	101 Md 7 <i>s</i> ² 5 <i>f</i> ¹³	102 No 7s ³ 5f ¹⁴	103 Lr 7s ² 5f ¹⁴ 6d ¹

What is the electron configuration of Si?

From the periodic table \rightarrow 14 e

1s² 2s² 2p⁶ 3s² 3p²

(OR)

[Ne] 3s² 3p²

1	Periodic Table of the Elements														18		
Hydrogen	2											13	14	15	16	17	Heium
Li	⁴ Be Berylliun											5 Boron	6 Carbon	7 N Nitrogen	8 O Oxygen	9 Fuorine	10 Ne Hem
6.94 11 Na	901 12 Mg											10.81	12.01 14 Si	14.01 15 P	16.00 16 S	19.00 17 CI	20.18 18 Ar
Sodium 22.99	Magnesium 24.31 20	3 21	4	5 23	6 24	7	8	9 27	10 28	11 29	12 30	Aluninum 26.98 31	Silicon 28.09 32	Phosphoru 30.97 33	s Sulfur 32.06 34	Chlorine 35.45 35	Argon 39.95 36
K Potassium 39.10	Ca Cakium 40.08	Sc Scandium 44.96	Ti Titaniun 47.88	V Vanadium 50.94	Cr Chromiun 51.99	Mn Manganese 54.94	Fe Iron 55.85	Cobat 58.93	Ni Hidael 58.69	Cu Gopper 63.55	Zn 2inc 65.38	Ga Gallium 69.72	Germaniun 72.63	Arsenic 74.92	Se Selenium 78.97	Bromine 79.90	Kryptun 84.80
Batilitation	38 Sr Scontium	³⁹ Ү Үшил		41 Nb	42 Mo	43 Tc Technetium	44 Ru Rutheniun	45 Rh Rhodium	46 Pd Paladium	47 Ag	48 Cd		^{₅₀} Sn	SD Sb	52 Te Telurium	53	54 Xe Xenon
85.47	87.62 56 Ba	88.91 57-71	91.22 72 Hf	92.91 73 Ta	95.95 74 W	98.91 75 Re	101.07 76 OS	102.91	106.42 78 Pt	107.87 79 Au	80 Ha	81 TI	118.71 82 Pb	121.76 83 Bi	127.6 84 Po	126.90 85 At	131.29 86 Rn
Cesium 132.91	Barium 137.33	Lanthanides	Hafnium 178.49	Tantalum 180.95	Tungsten 183.85	Rhenium 186.21	0smiun 190.23	liidium 192.22	Platinum 195.08	Gold 196.97	Mercury 200.59	Thalium 204.38	Lead 207.20	Bismuth 208.98	Polorium [208.98]	Astatine 209.98	Radon 222.02
87 Fr Francium 223.02	88 Ra Radium 226.03	89-103 Actinides	104 Rf Intherfordum	Dubnium	106 Sg Seaborgiun 1266	107 Bh Bohrium 12641	108 Hassium (269)	109 Mt Meitnerium (278)	DS Damstaftur [281]	Roentgeniu	112 Cn Coperniciu (285)	n Nihonium	FI FI Rerovium	Moscovium [289]	116 LV Livernarium (293)	117 TS Temessine [294]	118 Og 0ganesson 12941
		6	7 5	8	50	50 6	1	62	63	64	65	66	67 10	58	60	70 17	
		L		Ce Cerium	Pr	Nd Neodymium P		Sm Samarium	Europiun		Tb Tertsiun	Dy Dysprosium	Ho Holmium	Er Erbium	Tm Thuiun	Yb Ytterbium	
		8	9 9 Ac Actinium	Th	91 Pa Potatinium	Uranium	Np	94 Pu Plutonium	95 Am Americiam	96 Cm (urium	97 Bk Berkelium	98 Cf Californium	99 Es Ensteiriun	Fm Fermiun	101 Md Aendelevium	NO NO Nobeliun	IO3 Lr awrenciam

What is the electron configuration of Mo?

d orbital exception (The Stability of Half Filled & Filled d Orbitals)

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d⁵

[Kr] 5s¹ 4d⁵

Determine the group , period and the block of the following $^{12}\mathrm{Mg}$

1s² 2s² 2p⁶ 3s²

Period 3

group 2A (alkaline earth metal)

block S, representative element (main group elements)

Determine the group , period and the block of the following ²⁷Co

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷

Period 4

group (2+7) 9B

block d, Transition element

How many unpaired electrons does Sc (scandium) have? Is it paramagnetic or diamagnetic?

Sc \rightarrow 21e 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹ [Ar]4s² 3d¹

1 unpaired electron .:. paramagnetic

How many unpaired electrons does Na⁺ have? Is it paramagnetic or diamagnetic ?

 $Na \rightarrow 11e$ $1s^2 2s^2 2p^6 3s^1$

Na⁺ → 10e 1s² 2s² 2p⁶ $3s^{\theta}$

No unpaired electron .:. diamagnetic

How many unpaired electrons does Fe²⁺ have? Is it paramagnetic or diamagnetic?

 $Fe \rightarrow 26 e$ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶ $[Ar]4s^2 3d^6$ $Fe^{2+} \rightarrow 24 e$ [Ar]4s⁰ 3d⁶

4 unpaired electron ∴ Paramagnetic

Which diagram **show a violation (break)** Aufbau principle, Hund's rule or Pauli exclusion principle?

Hund's rule

Aufbau principle (building up)