Workshop Solutions to Sections 2.1 and $2.2^{(1.1 \& 1.2)}$

1) Find the domain of the function $f(x)=9-x^{2}$.

Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of any polynomial is \mathbb{R}.
3) Find the domain of the function $f(x)=6-2 x$.

Solution:

Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

5) Find the domain of the function $f(x)=x^{2}-2 x-3$.

Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

7) Find the domain of the function $f(x)=5$.

Solution:

Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

9) Find the domain of the function $f(x)=|x-1|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of an absolute value of any polynomial is \mathbb{R}.
11) Find the domain of the function $f(x)=|x|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

13) Find the domain of the function $f(x)=|3 x-6|$.

Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

15) Find the domain of the function

$$
f(x)=\frac{x+2}{x-3}
$$

Solution:
$f(x)$ is defined when $x-3 \neq 0 \Rightarrow x \neq 3$. So,

$$
D_{f}=\mathbb{R} \backslash\{3\}=(-\infty, 3) \cup(3, \infty)
$$

2) Find the range of the function $f(x)=9-x^{2}$. Solution:

$$
R_{f}=(-\infty, 9]
$$

4) Find the range of the function $f(x)=6-2 x$.

Solution:

Since $f(x)$ is a polynomial of degree one (i.e. is of an odd degree), then

$$
R_{f}=\mathbb{R}=(-\infty, \infty)
$$

6) Find the domain of the function $f(x)=1+2 x^{3}-x^{5}$. Solution:
Since $f(x)$ is a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

8) Find the range of the function $f(x)=5$.

Solution:

$$
R_{f}=\{5\}
$$

10) Find the domain of the function $f(x)=|x+5|$. Solution:
Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

12) Find the range of the function $f(x)=|x|$. Solution:

$$
R_{f}=[0, \infty)
$$

Note: The range of an absolute value of any polynomial is always $[0, \infty)$.
14) Find the domain of the function $f(x)=|9-3 x|$.

Solution:

Since $f(x)$ is an absolute value of a polynomial, then

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

16) Find the domain of the function

$$
f(x)=\frac{x-2}{x+3}
$$

Solution:
$f(x)$ is defined when $x+3 \neq 0 \Rightarrow x \neq-3$. So,

$$
D_{f}=\mathbb{R} \backslash\{-3\}=(-\infty,-3) \cup(-3, \infty)
$$

17) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-9}
$$

Solution:
$f(x)$ is defined when $x^{2}-9 \neq 0 \Rightarrow x^{2} \neq 9 \Longrightarrow x \neq \pm 3$. So,

$$
D_{f}=\mathbb{R} \backslash\{-3,3\}=(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

19) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-x-6}
$$

Solution:
$f(x)$ is defined when $x^{2}-x-6 \neq 0$

$$
\Rightarrow(x+2)(x-3) \neq 0 \Rightarrow x \neq-2 \text { or } x \neq 3 . \text { so, }
$$

$$
D_{f}=\mathbb{R} \backslash\{-2,3\}=(-\infty,-2) \cup(-2,3) \cup(3, \infty)
$$

21) Find the domain of the function

$$
f(x)=\sqrt[3]{x-3}
$$

Solution:

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

Note: The domain of an odd root of any polynomial is \mathbb{R}.
23) Find the domain of the function

$$
f(x)=\sqrt{3-x}
$$

Solution:
$f(x)$ is defined when $3-x \geq 0 \Rightarrow-x \geq-3 \Longrightarrow x \leq 3$ because $f(x)$ is an even root. So,

$$
D_{f}=(-\infty, 3]
$$

25) Find the domain of the function

$$
f(x)=\sqrt{-x}
$$

Solution:
$f(x)$ is defined when $-x \geq 0 \Rightarrow x \leq 0$ because $f(x)$ is an even root. So,

$$
D_{f}=(-\infty, 0]
$$

27) Find the domain of the function

$$
f(x)=\sqrt{9-x^{2}}
$$

Solution:
$f(x)$ is defined when $9-x^{2} \geq 0 \Rightarrow-x^{2} \geq-9 \Rightarrow$
$x^{2} \leq 9 \Rightarrow \sqrt{x^{2}} \leq \sqrt{9} \Rightarrow|x| \leq 3 \Rightarrow-3 \leq x \leq 3$.
So,

$$
D_{f}=[-3,3]
$$

29) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{9-x^{2}}}
$$

Solution:
$f(x)$ is defined when $9-x^{2}>0 \Rightarrow-x^{2}>-9$
$\Rightarrow x^{2}<9 \Rightarrow \sqrt{x^{2}}<\sqrt{9} \Rightarrow|x|<3 \Rightarrow-3<x<3$.
So,

$$
D_{f}=(-3,3)
$$

18) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}-5 x+6}
$$

Solution:
$f(x)$ is defined when $x^{2}-5 x+6 \neq 0$

$$
\Rightarrow(x-2)(x-3) \neq 0 \Rightarrow x \neq 2 \text { or } x \neq 3 \text {. So, }
$$

$$
D_{f}=\mathbb{R} \backslash\{2,3\}=(-\infty, 2) \cup(2,3) \cup(3, \infty)
$$

20) Find the domain of the function

$$
f(x)=\frac{x+2}{x^{2}+9}
$$

Solution:
$f(x)$ is defined when $x^{2}+9 \neq 0$ but for any value x the denominator $x^{2}+9$ cannot be 0 . So,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

22) Find the domain of the function

$$
f(x)=\sqrt{x-3}
$$

Solution:
$f(x)$ is defined when $x-3 \geq 0 \Rightarrow x \geq 3$ because $f(x)$ is an even root. So,

$$
D_{f}=[3, \infty)
$$

24) Find the domain of the function

$$
f(x)=\sqrt{x+3}
$$

Solution:
$f(x)$ is defined when $x+3 \geq 0 \Rightarrow x \geq-3$ because $f(x)$ is an even root. So,

$$
D_{f}=[-3, \infty)
$$

26) Find the range of the function

$$
f(x)=\sqrt{-x}
$$

Solution:

$$
R_{f}=[0, \infty)
$$

Note: The range of an even root is always ≥ 0.
28) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{x-3}}
$$

Solution:
$f(x)$ is defined when $x-3>0 \Longrightarrow x>3$. So,

$$
D_{f}=(3, \infty)
$$

30) Find the domain of the function

$$
f(x)=\sqrt{x^{2}-9}
$$

Solution:
$f(x)$ is defined when $x^{2}-9 \geq 0 \Rightarrow x^{2} \geq 9$

$$
\Rightarrow \sqrt{x^{2}} \geq \sqrt{9} \Rightarrow|x| \geq 3 \Rightarrow x \geq 3 \text { or } x \leq-3
$$

So,

$$
D_{f}=(-\infty,-3] \cup[3, \infty)
$$

31) Find the range of the function

$$
f(x)=\sqrt{x^{2}-9}
$$

Solution:

$$
R_{f}=[0, \infty)
$$

33) Find the domain of the function

$$
f(x)=\sqrt{9+x^{2}}
$$

Solution:

$f(x)$ is defined when $9+x^{2} \geq 0$ but it is always true for any value x. So,

$$
D_{f}=\mathbb{R}
$$

35) Find the domain of the function

$$
f(x)=\sqrt[6]{16-x^{2}}
$$

Solution:
$f(x)$ is defined when $16-x^{2} \geq 0 \Rightarrow-x^{2} \geq-16 \Rightarrow$ $x^{2} \leq 16 \Rightarrow \sqrt{x^{2}} \leq \sqrt{16} \Rightarrow|x| \leq 4 \Rightarrow-4 \leq x \leq 4$.
So,

$$
D_{f}=[-4,4]
$$

37) Find the domain of the function

$$
f(x)=\frac{x+|x|}{x}
$$

Solution:
$f(x)$ is defined when $x \neq 0$. So,

$$
D_{f}=\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)
$$

39) Find the domain of the function

$$
f(x)=\frac{2-\sqrt{x}}{\sqrt{x^{2}+1}}
$$

Solution:
$f(x)$ is defined when
1- $x \geq 0 \quad \Longrightarrow \quad D_{\sqrt{x}}=[0, \infty)$
2- $x^{2}+1>0$ but this is always true for all x
$\Rightarrow D_{\sqrt{x^{2}+1}}=\mathbb{R}$.
Hence,

$$
D_{f}=D_{\sqrt{x}} \cap D_{\sqrt{x^{2}+1}}=[0, \infty) \cap \mathbb{R}=[0, \infty)
$$

41) The function $f(x)=3 x^{4}+x^{2}+1$ is a polynomial function.
42) The function $f(x)=-3 x^{2}+7$ is a quadratic function.
43) The function $f(x)=x^{7}$ is a power function.
44) The function $f(x)=\frac{x-3}{x+2}$ is a rational function and we can say it is an algebraic function as well.
45) Find the domain of the function

$$
f(x)=\frac{x+2}{\sqrt{x^{2}-9}}
$$

Solution:
$f(x)$ is defined when $x^{2}-9>0 \Rightarrow x^{2}>9$
$\Rightarrow \sqrt{x^{2}}>\sqrt{9} \Rightarrow|x|>3 \Rightarrow x>3$ or $x<-3$. So,

$$
D_{f}=(-\infty,-3) \cup(3, \infty)
$$

34) Find the domain of the function

$$
f(x)=\sqrt[4]{x^{2}-25}
$$

Solution:
$f(x)$ is defined when $x^{2}-25 \geq 0 \Rightarrow x^{2} \geq 25$
$\Rightarrow \sqrt{x^{2}} \geq \sqrt{25} \Rightarrow|x| \geq 5 \Rightarrow x \geq 5$ or $x \leq-5$.
So,

$$
D_{f}=(-\infty,-5] \cup[5, \infty)
$$

36) Find the range of the function

$$
f(x)=\sqrt{16-x^{2}}
$$

Solution:
We know that $f(x)$ is defined when $16-x^{2} \geq 0$

$$
\begin{gathered}
\Rightarrow-x^{2} \geq-16 \Rightarrow x^{2} \leq 16 \Rightarrow \sqrt{x^{2}} \leq \sqrt{16} \\
\Rightarrow|x| \leq 4 \Rightarrow-4 \leq x \leq 4 . \text { So } \\
D_{f}=[-4,4]
\end{gathered}
$$

Using D_{f} we find the outputs vary from 0 to 4 . Hence, $R_{f}=[0,4]$
38) Find the domain of the function

$$
f(x)=\left\{\begin{aligned}
-\frac{1}{x}, & x<0 \\
x, & x \geq 0
\end{aligned}\right.
$$

Solution:
It is clear from the definition of the function $f(x)$ that

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

40) Find the domain of the function

$$
f(x)=\sqrt{x-1}+\sqrt{x+3}
$$

Solution:

$$
f(x) \text { is defined when }
$$

1- $x-1 \geq 0 \Rightarrow x \geq 1 \Rightarrow D_{\sqrt{x-1}}=[1, \infty)$
2- $x+3 \geq 0 \Rightarrow x \geq-3 \Rightarrow D_{\sqrt{x+3}}=[-3, \infty)$
Hence,

$$
D_{f}=D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}}=[1, \infty) \cap[-3, \infty)=[1, \infty)
$$

42) The function $f(x)=5 x^{3}+x^{2}+7$ is a cubic function.
43) The function $f(x)=2 x+3$ is a linear function.
44) The function $f(x)=\frac{2 x+3}{x^{2}-1}$ is a rational function.
45) The function $f(x)=\sin x$ is a trigonometric function.
46) The function $f(x)=e^{x}$ is a natural exponential function.
47) The function $f(x)=x^{2}+\sqrt{x-2}$ is an algebraic function.
48) The function $f(x)=\log _{3} x$ is a general logarithmic function.
49) The function $f(x)=3 x^{4}+x^{2}+1$ is

Solution:
$f(-x)=3(-x)^{4}+(-x)^{2}+1=3 x^{4}+x^{2}+1=f(x)$
Hence,
$f(x)$ is an even function.
57) The function $f(x)=x^{5}-x$ is

Solution:
$f(-x)=(-x)^{5}-(-x)=-x^{5}+x$

$$
=-\left(x^{5}-x\right)=-f(x)
$$

Hence,
$f(x)$ is an odd function.
59) The function $f(x)=3 x+\frac{2}{\sqrt{x^{2}+9}}$ is

Solution:

$$
\begin{aligned}
f(-x)=3(-x)+\frac{2}{\sqrt{(-x)^{2}+9}} & =-3 x+\frac{2}{\sqrt{x^{2}+9}} \\
& =-\left(3 x-\frac{2}{\sqrt{x^{2}+9}}\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.
61) The function $f(x)=\sqrt{4+x^{2}}$ is

Solution:

$$
f(-x)=\sqrt{4+(-x)^{2}}=\sqrt{4+x^{2}}=f(x)
$$

Hence,
$f(x)$ is an even function.
63) The function $f(x)=\frac{9-x^{2}}{x-2}$ is

Solution:

$$
\begin{aligned}
f(-x)=\frac{9-(-x)^{2}}{(-x)-2} & =\frac{9-x^{2}}{-x-2} \\
& =-\left(\frac{9-x^{2}}{x+2}\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.
65) The function $f(x)=3|x|$ is

Solution:

$$
f(-x)=3|(-x)|=3|x|=f(x)
$$

Hence,
$f(x)$ is an even function.
50) The function $f(x)=3^{x}$ is a general exponential function.
52) The function $f(x)=-3$ is a constant function.
54) The function $f(x)=\ln x$ is a natural logarithmic function.
56) The function $f(x)=9-x^{2}$ is

Solution:

$$
f(-x)=9-(-x)^{2}=9-x^{2}=f(x)
$$

Hence,
$f(x)$ is an even function.
58) The function $f(x)=2-\sqrt[5]{x}$ is

Solution:
$f(-x)=2-\sqrt[5]{(-x)}=2-\sqrt[5]{-x}=2+\sqrt[5]{x}$

$$
=-(-2-\sqrt[5]{x})
$$

Hence,
$f(x)$ is neither even nor odd.
60) The function $f(x)=\frac{3}{\sqrt{x^{2}+9}}$ is

Solution:

$$
f(-x)=\frac{3}{\sqrt{(-x)^{2}+9}}=\frac{3}{\sqrt{x^{2}+9}}=f(x)
$$

Hence,
$f(x)$ is an even function.
62) The function $f(x)=3$ is

Solution:
Since the graph of the constant function 3 is symmetric about the y-axis, then
$f(x)$ is an even function.
64) The function $f(x)=\frac{x^{2}-4}{x^{2}+1}$ is

Solution:

$$
f(-x)=\frac{(-x)^{2}-4}{(-x)^{2}+1}=\frac{x^{2}-4}{x^{2}+1}=f(x)
$$

Hence,
$f(x)$ is an even function.
66) The function $f(x)=x^{-2}$ is

Solution:
$f(x)=x^{-2}=\frac{1}{x^{2}}$

$$
f(-x)=\frac{1}{(-x)^{2}}=\frac{1}{x^{2}}=f(x)
$$

Hence, $f(x)$ is an even function.
67) The function $f(x)=x^{3}-2 x+5$ is

Solution:

$$
\begin{aligned}
f(-x)=(-x)^{3}-2(-x)+5 & =-x^{3}+2 x+5 \\
& =-\left(x^{3}-2 x-5\right)
\end{aligned}
$$

Hence,
$f(x)$ is neither even nor odd.

69) The function $f(x)=7$ is

Solution:

Since the graph of the constant function 7 is symmetric about the y-axis, then
$f(x)$ is an even function.
71) The function $f(x)=\frac{x^{2}-1}{x^{3}+3}$ is

Solution:

$$
f(-x)=\frac{(-x)^{2}-1}{(-x)^{3}+3}=\frac{x^{2}-1}{-x^{3}+3}=-\frac{x^{2}-1}{x^{3}-3}
$$

Hence,
$f(x)$ is neither even nor odd.
73) The function $f(x)=x^{2}$ is increasing on $(0, \infty)$.
75) The function $f(x)=x^{3}$ is increasing on $(-\infty, \infty)$.
77) The function $f(x)=\sqrt{x}$ is increasing on $(0, \infty)$.
79) The function $f(x)=\frac{1}{x}$ is not increasing at all.
68) The function $f(x)=\sqrt[3]{x^{5}}-x^{3}+x$ is

Solution:

$$
\begin{gathered}
f(-x)=\sqrt[3]{(-x)^{5}}-(-x)^{3}+(-x)=-\sqrt[3]{x^{5}}+x^{3}-x \\
=-\left(\sqrt[3]{x^{5}}-x^{3}+x\right)=-f(x)
\end{gathered}
$$

Hence,
$f(x)$ is an odd function.
70) The function $f(x)=\frac{x^{3}-4}{x^{3}+1}$ is

Solution:

$$
f(-x)=\frac{(-x)^{3}-4}{(-x)^{3}+1}=\frac{-x^{3}-4}{-x^{3}+1}=-\frac{x^{3}+4}{-x^{3}+1}
$$

Hence,
$f(x)$ is neither even nor odd.
72) The function $f(x)=x^{6}-4 x^{2}+1$ is Solution:
$f(-x)=(-x)^{6}-4(-x)^{2}+1=x^{6}-4 x^{2}+1=f(x)$
Hence,
$f(x)$ is an even function.
74) The function $f(x)=x^{2}$ is decreasing on $(-\infty, 0)$.
76) The function $f(x)=x^{3}$ is not decreasing at all.
78) The function $f(x)=\sqrt{x}$ is not decreasing at all.
80) The function $f(x)=\frac{1}{x}$ is decreasing on $(-\infty, \infty)-\{0\}$

Workshop Solutions to Sections 2.3 and 2.4(1.3 \& app D)

1) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $(f+g)(x)=$

Solution:

$$
(f+g)(x)=x^{2}+\sqrt{4-x}
$$

2) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $D_{f+g}=$ Solution:
$D_{f}=\mathbb{R}$
$g(x)$ is defined when $4-x \geq 0 \Leftrightarrow x \leq 4$. Thus,
$D_{g}=(-\infty, 4]$
$D_{f+g}=D_{f} \cap D_{g}=\mathbb{R} \cap(-\infty, 4]=(-\infty, 4]$
3) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $(f-g)(x)=$ Solution:

$$
(f-g)(x)=x^{2}-\sqrt{4-x}
$$

4) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $D_{f-g}=$ Solution:
$D_{f}=\mathbb{R}$
$g(x)$ is defined when $4-x \geq 0 \Leftrightarrow x \leq 4$. Thus, $D_{g}=(-\infty, 4]$
$D_{f-g}=D_{f} \cap D_{g}=\mathbb{R} \cap(-\infty, 4]=(-\infty, 4]$
5) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $(f g)(x)=$ Solution:

$$
(f g)(x)=x^{2} \sqrt{4-x}
$$

6) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $D_{f g}=$ Solution:
$D_{f}=\mathbb{R}$
$g(x)$ is defined when $4-x \geq 0 \Leftrightarrow x \leq 4$. Thus, $D_{g}=(-\infty, 4]$
$D_{f g}=D_{f} \cap D_{g}=\mathbb{R} \cap(-\infty, 4]=(-\infty, 4]$
7) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $D_{f \circ g}=$
8) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $(f \circ g)(x)=$

Solution:

$\begin{aligned}(f \circ g)(x) & =f(g(x)) \\ & =f(\sqrt{4-x})=(\sqrt{4-x})^{2}=4-x\end{aligned}$

Solution:

$$
\begin{aligned}
& \begin{aligned}
&(f \circ g)(x)=f(g(x)) \\
& \quad=f(\sqrt{4-x})=(\sqrt{4-x})^{2}=4-x \\
& D_{g}=(-\infty, 4]
\end{aligned} \\
& D_{f(g(x))}=\mathbb{R} \\
& D_{f \circ g}=D_{g} \cap D_{f(g(x))}=(-\infty, 4] \cap \mathbb{R}=(-\infty, 4] \\
& \text { 10) If } f(x)=x^{2} \text { and } g(x)=\sqrt{4-x}, \text { then } D_{g \circ f}=
\end{aligned}
$$

Solution:
$(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=\sqrt{4-x^{2}}$
$D_{f}=\mathbb{R}$
$D_{g(f(x))}=[-2,2]$
$D_{g \circ f}=D_{f} \cap D_{g(f(x))}=\mathbb{R} \cap[-2,2]=[-2,2]$
11) If $f(x)=x^{2}$, then $(f \circ f)(x)=$

Solution:

$\overline{(f \circ f)(x)}=f(f(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{2}=x^{4}$

Solution:

$(f \circ f)(x)=f(f(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{2}=x^{4}$
$D_{f}=\mathbb{R}$
$D_{f(f(x))}=\mathbb{R}$
$D_{f \circ f}=D_{f} \cap D_{f(f(x))}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$
13) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $\left(\frac{f}{g}\right)(x)=$ Solution:

$$
\left(\frac{f}{g}\right)(x)=\frac{x^{2}}{\sqrt{4-x}}
$$

14) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $D_{\frac{f}{g}}=$

Solution:

$$
\left(\frac{f}{g}\right)(x)=\frac{x^{2}}{\sqrt{4-x}}
$$

$D_{f}=\mathbb{R}$
$g(x)$ is defined when $4-x \geq 0 \Leftrightarrow x \leq 4$. Thus, $D_{g}=(-\infty, 4]$

$$
\begin{aligned}
D_{\frac{f}{g}} & =\left\{x \in D_{f} \cap D_{g} \mid g(x) \neq 0\right\} \\
& =\mathbb{R} \cap(-\infty, 4)=(-\infty, 4)
\end{aligned}
$$

15) If $f(x)=x^{2}$ and $g(x)=\sqrt{4-x}$, then $\left(\frac{g}{f}\right)(x)=$ Solution:

$$
\left(\frac{g}{f}\right)(x)=\frac{\sqrt{4-x}}{x^{2}}
$$

Solution:

$$
\left(\frac{g}{f}\right)(x)=\frac{\sqrt{4-x}}{x^{2}}
$$

$D_{f}=\mathbb{R}$
$g(x)$ is defined when $4-x \geq 0 \Leftrightarrow x \leq 4$. Thus,
$D_{g}=(-\infty, 4]$

$$
D_{\frac{g}{f}}=\left\{x \in D_{f} \cap D_{g} \mid f(x) \neq 0\right\}
$$

$$
=\mathbb{R} \backslash\{0\} \cap(-\infty, 4]=(-\infty, 0) \cup(0,4]
$$

17) If $f(x)=9-x^{2}$ and $g(x)=10$, then $(f+g)(x)=$
Solution:

$$
\begin{aligned}
(f+g)(x)=\left(9-x^{2}\right)+(10) & =9-x^{2}+10 \\
& =19-x^{2}
\end{aligned}
$$

19) If $f(x)=9-x^{2}$ and $g(x)=10$, then

$$
(g-f)(x)=
$$

Solution:

$$
(g-f)(x)=(10)-\left(9-x^{2}\right)=10-9+x^{2}
$$

21) If $f(x)=9-x^{2}$ and $g(x)=10$, then $(f \circ g)(x)=$
Solution:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f(10) \\
& =9-10^{2}=9-100=-91
\end{aligned}
$$

23) If $f(x)=9-x^{2}$ and $g(x)=10$, then

$$
(f \circ f)(x)=
$$

Solution:

$$
\begin{aligned}
(f \circ f)(x)= & f(f(x))=f\left(9-x^{2}\right) \\
& =9-\left(9-x^{2}\right)^{2}
\end{aligned}
$$

25) If $f(x)=9-x^{2}, g(x)=\sin x$ and $h(x)=3 x+2$, then $(f \circ g \circ h)(x)=$

Solution:

$$
\begin{aligned}
(f \circ g \circ h)(x) & =f(g(h(x))) \\
& =f(g(3 x+2)) \\
& =f(\sin (3 x+2)) \\
& =9-(\sin (3 x+2))^{2} \\
& =9-\sin ^{2}(3 x+2)
\end{aligned}
$$

27) If $f(x)=\sqrt{25+x^{2}}$ and $g(x)=x^{3}$, then $(f-g)(x)=$
Solution:

$$
(f-g)(x)=\sqrt{25+x^{2}}-x^{3}
$$

29) If $f(x)=\sqrt{25+x^{2}}$ and $g(x)=x^{3}$, then $\left(\frac{f}{g}\right)(x)=$
Solution:

$$
\left(\frac{f}{g}\right)(x)=\frac{\sqrt{25+x^{2}}}{x^{3}}
$$

31) If $f(x)=\sqrt{25+x^{2}}$ and $g(x)=x^{3}$, then $(g \circ f)(x)=$
Solution:

$$
\begin{gathered}
(g \circ f)(x)=g(f(x))=g\left(\sqrt{25+x^{2}}\right)=\left(\sqrt{25+x^{2}}\right)^{3} \\
=\sqrt{\left(25+x^{2}\right)^{3}}
\end{gathered}
$$

33) If $f(x)=\sqrt{x}$ and $g(x)=x-2$, then $(g \circ f)(x)=$ Solution:

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{x}-2
$$

35) If $f(x)=\sqrt{x}$ and $g(x)=x-2$, then $(f g)(x)=$ Solution:

$$
(f g)(x)=(\sqrt{x})(x-2)=(x-2) \sqrt{x}
$$

37) If $f(x)=\sin 5 x$ and $g(x)=x^{2}+3$, then $(g \circ f)(x)=$

Solution:

$$
\begin{aligned}
&(g \circ f)(x)=g(f(x))=g(\sin 5 x)=(\sin 5 x)^{2}+3 \\
&=\sin ^{2} 5 x+3
\end{aligned}
$$

39) If $f(x)=\sqrt{x}$ and $g(x)=\cos x$, then $(g \circ f)(x)=$ Solution:

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x})=\cos \sqrt{x}
$$

41) If $f(x)=x+\frac{1}{x}$ and $g(x)=1-x^{2}$, then $(g \circ f)(x)=$
Solution:

$$
(g \circ f)(x)=g(f(x))=g\left(x+\frac{1}{x}\right)=1-\left(x+\frac{1}{x}\right)^{2}
$$

43) If the graph of the function $f(x)=x^{2}$ is shifted a distance 2 units upwards, then the new graph represented the graph of the function is Solution:

$$
x^{2}+2
$$

45) If the graph of the function $f(x)=x^{2}$ is shifted a distance 2 units to the right, then the new graph represented the graph of the function is Solution:

$$
(x-2)^{2}=x^{2}-4 x+4
$$

28) If $f(x)=\sqrt{25+x^{2}}$ and $g(x)=x^{3}$, then $(f g)(x)=$
Solution:

$$
(f g)(x)=x^{3} \sqrt{25+x^{2}}
$$

30) If $f(x)=\sqrt{25+x^{2}}$ and $g(x)=x^{3}$, then $(f \circ g)(x)=$
Solution:

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f\left(x^{3}\right)=\sqrt{25+\left(x^{3}\right)^{2}} \\
=\sqrt{25+x^{6}}
\end{gathered}
$$

32) If $f(x)=\sqrt{x}$ and $g(x)=x-2$, then $(f \circ g)(x)=$ Solution:

$$
(f \circ g)(x)=f(g(x))=f(x-2)=\sqrt{x-2}
$$

34) If $f(x)=\sqrt{x}$ and $g(x)=x-2$, then $(g \circ g)(x)=$ Solution:

$$
\begin{gathered}
(g \circ g)(x)=g(g(x))=g(x-2)=(x-2)-2 \\
=x-2-2=x-4
\end{gathered}
$$

36) If $f(x)=\sin 5 x$ and $g(x)=x^{2}+3$, then $(f \circ g)(x)=$
Solution:
$(f \circ g)(x)=f(g(x))=f\left(x^{2}+3\right)=\sin 5\left(x^{2}+3\right)$
37) If $f(x)=\sin 5 x$ and $g(x)=x^{2}+3$, then $(f g)(x)=$
Solution:

$$
(f g)(x)=(\sin 5 x)\left(x^{2}+3\right)=\left(x^{2}+3\right) \sin 5 x
$$

40) If $f(x)=x+\frac{1}{x}$ and $g(x)=1-x^{2}$, then $(f \circ g)(x)=$

Solution:

$(f \circ g)(x)=f(g(x))=f\left(1-x^{2}\right)=\left(1-x^{2}\right)+\frac{1}{1-x^{2}}$
42) If $f(x)=x+\frac{1}{x}$ and $g(x)=1-x^{2}$, then $(f g)(x)=$
Solution:

$$
(f g)(x)=\left(x+\frac{1}{x}\right)\left(1-x^{2}\right)
$$

44) If the graph of the function $f(x)=x^{2}$ is shifted a distance 2 units downwards, then the new graph represented the graph of the function is Solution:

$$
x^{2}-2
$$

46) If the graph of the function $f(x)=x^{2}$ is shifted a distance 2 units to the left , then the new graph represented the graph of the function is Solution:

$$
(x+2)^{2}=x^{2}+4 x+4
$$

47) If the graph of the function $f(x)=\cos x$ is stretched vertically by a factor of 2 , then the new graph represented the graph of the function is Solution: $2 \cos x$	48) If the graph of the function $f(x)=\cos x$ is compressed vertically by a factor of $\frac{1}{2}$, then the new graph represented the graph of the function is Solution: $\frac{1}{2} \cos x$
49) If the graph of the function $f(x)=\cos x$ is compressed horizontally by a factor of 2 , then the new graph represented the graph of the function is Solution: $\cos 2 x$	50) If the graph of the function $f(x)=\cos x$ is stretched horizontally by a factor of $\frac{1}{2}$, then the new graph represented the graph of the function is Solution: $\cos \frac{x}{2}$
51) The graph of the function $f(x)=\sqrt{x}$ is reflected about the x-axis if Solution: $f(x)=-\sqrt{x}$	52) The graph of the function $f(x)=\sqrt{x}$ is reflected about the y-axis if Solution: $f(x)=\sqrt{-x}$
53) If the graph of the function $f(x)=e^{x}$ is shifted a distance 2 units upwards, then the new graph represented the graph of the function is Solution: $e^{x}+2$	54) If the graph of the function $f(x)=e^{x}$ is shifted a distance 2 units downwards, then the new graph represented the graph of the function is Solution: $e^{x}-2$
55) If the graph of the function $f(x)=e^{x}$ is shifted a distance 2 units to the right , then the new graph represented the graph of the function is Solution: e^{x-2}	56) If the graph of the function $f(x)=e^{x}$ is shifted a distance 2 units to the left, then the new graph represented the graph of the function is Solution: e^{x+2}
57) $\frac{2 \pi}{3} \mathrm{rad}=\frac{2 \pi}{3} \times \frac{180^{\circ}}{\pi}=120^{\circ}$	58) $\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ}$
59) $\frac{7 \pi}{6} \mathrm{rad}=\frac{7 \pi}{6} \times \frac{180^{\circ}}{\pi}=210^{\circ}$	60) $\frac{3 \pi}{2} \mathrm{rad}=\frac{3 \pi}{2} \times \frac{180^{\circ}}{\pi}=270^{\circ}$
61) $120^{\circ}=120 \times \frac{\pi}{180^{\circ}}=\frac{2 \pi}{3} \mathrm{rad}$	62) $270^{\circ}=270 \times \frac{\pi}{180^{\circ}}=\frac{3 \pi}{2} \mathrm{rad}$
63) $\frac{5 \pi}{12} \mathrm{rad}=\frac{5 \pi}{12} \times \frac{180^{\circ}}{\pi}=75^{\circ}$	64) $\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ} \quad$ (Repeated)
65) $150^{\circ}=150 \times \frac{\pi}{180^{\circ}}=\frac{5 \pi}{6} \mathrm{rad}$	66) $210^{\circ}=210 \times \frac{\pi}{180^{\circ}}=\frac{7 \pi}{6} \mathrm{rad}$
67) $\frac{1}{\sec x}=\cos x$	68) $\frac{1}{\csc x}=\sin x$
69) $\frac{1}{\cot x}=\tan x$	70) $\frac{\sin x}{\cos x}=\tan x$
71) $\frac{\cos x}{\sin x}=\cot x$	
72) If $\cos x=\frac{3}{5}$ and $0<x<\frac{\pi}{2}$, then $\cot x=$ Solution: $\cos x=\frac{3}{5}=\frac{a d j}{h y p}$ Now, we should find the length of the opposite side using the Pythagorean Theorem, so $\begin{aligned} \text { \|opposite\| }=\sqrt{5^{2}-3^{2}} & =\sqrt{25-9}=\sqrt{16}=4 \\ \therefore \cot x & =\frac{1}{\tan x}=\frac{a d j}{o p p}=\frac{3}{4} \end{aligned}$	73) If $\cos x=\frac{3}{5}$ and $0<x<\frac{\pi}{2}$, then $\tan x=$ Solution: $\cos x=\frac{3}{5}=\frac{a d j}{h y p}$ Now, we should find the length of the opposite side using the Pythagorean Theorem, so $\begin{gathered} \text { \|opposite } \mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4 \\ \therefore \tan x=\frac{1}{\cot x}=\frac{o p p}{a d j}=\frac{4}{3} \end{gathered}$

74) If $\cos x=\frac{3}{5}$ and $0<x<\frac{\pi}{2}$, then $\sin x=$ Solution:
$\cos x=\frac{3}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using
the Pythagorean Theorem, so
|opposite $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$

$$
\therefore \sin x=\frac{o p p}{h y p}=\frac{4}{5}
$$

76) $\sin \left(\frac{5 \pi}{6}\right)=$

Solution:
$\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ}$
So, we deduce now that $\sin \left(\frac{5 \pi}{6}\right)$ is in the second quarter.
$\sin \left(\frac{5 \pi}{6}\right)=\sin \left(150^{\circ}\right)=\sin \left(180^{\circ}-30^{\circ}\right)=\sin \left(30^{\circ}\right)=$
$\sin \pi 6=12$
78) $\tan \left(\frac{5 \pi}{6}\right)=$

Solution:

$\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ}$
So, we deduce now that $\tan \left(\frac{5 \pi}{6}\right)$ is in the second quarter.

$$
\begin{aligned}
\tan \left(\frac{5 \pi}{6}\right)=\tan & \left(150^{\circ}\right)=\tan \left(180^{\circ}-30^{\circ}\right) \\
& =-\tan \left(30^{\circ}\right)=-\tan \left(\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

80) If $\sin x=\frac{2}{3}$ and $0<x<\frac{\pi}{2}$, then $\sec x=$ Solution:
$\sin x=\frac{2}{3}=\frac{o p p}{h y p}$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{3^{2}-2^{2}}=\sqrt{9-4}=\sqrt{5}$
$\therefore \sec x=\frac{1}{\cos x}=\frac{h y p}{a d j}=\frac{3}{\sqrt{5}}$
82) If $\sin x=\frac{3}{4}$ and $0<x<\frac{\pi}{2}$, then $\cos x=$ Solution:
$\sin x=\frac{3}{4}=\frac{o p p}{h y p}$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{4^{2}-3^{2}}=\sqrt{16-9}=\sqrt{7}$
$\therefore \cos x=\frac{a d j}{h y p}=\frac{\sqrt{7}}{4}$
75) If $\cos x=\frac{3}{5}$ and $0<x<\frac{\pi}{2}$, then $\csc x=$ Solution:
$\cos x=\frac{3}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$

$$
\therefore \csc x=\frac{1}{\sin x}=\frac{h y p}{o p p}=\frac{5}{4}
$$

77) $\cos \left(\frac{5 \pi}{6}\right)=$

Solution:
$\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ}$
So, we deduce now that $\cos \left(\frac{5 \pi}{6}\right)$ is in the second quarter.

$$
\cos \left(\frac{5 \pi}{6}\right)=\cos \left(150^{\circ}\right)=\cos \left(180^{\circ}-30^{\circ}\right)
$$

$$
=-\cos \left(30^{\circ}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}
$$

79) $\cot \left(\frac{5 \pi}{6}\right)=$

Solution:

$\frac{5 \pi}{6} \mathrm{rad}=\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=150^{\circ}$
So, we deduce now that $\cot \left(\frac{5 \pi}{6}\right)$ is in the second quarter.

$$
\begin{aligned}
\cot \left(\frac{5 \pi}{6}\right)=\cot & \left(150^{\circ}\right)=\cot \left(180^{\circ}-30^{\circ}\right) \\
& =-\cot \left(30^{\circ}\right)=-\cot \left(\frac{\pi}{6}\right)=-\sqrt{3}
\end{aligned}
$$

81) If $\sin x=\frac{2}{3}$ and $0<x<\frac{\pi}{2}$, then $\csc x=$

Solution:
$\sin x=\frac{2}{3}=\frac{o p p}{h y p}$
Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
|adjacent $\mid=\sqrt{3^{2}-2^{2}}=\sqrt{9-4}=\sqrt{5}$

$$
\therefore \csc x=\frac{1}{\sin x}=\frac{h y p}{o p p}=\frac{3}{2}
$$

83) If $\sin x=\frac{3}{4}$ and $0<x<\frac{\pi}{2}$, then $\cot x=$ Solution:
$\sin x=\frac{3}{4}=\frac{o p p}{h y p}$
Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{4^{2}-3^{2}}=\sqrt{16-9}=\sqrt{7}$

$$
\therefore \cot x=\frac{1}{\tan x}=\frac{a d j}{o p p}=\frac{\sqrt{7}}{3}
$$

84) If $\csc x=-\frac{5}{3}$ and $\frac{3 \pi}{2}<x<2 \pi$, then $\cos x=$ Solution:
$\csc x=\frac{5}{3}=\frac{1}{\sin x}=\frac{h y p}{o p p}$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$

$$
\therefore \cos x=\frac{\text { adj }}{h y p}=\frac{4}{5}
$$

86) If $\csc x=-\frac{5}{3}$ and $\frac{3 \pi}{2}<x<2 \pi$, then $\cot x=$ Solution:
$\csc x=\frac{5}{3}=\frac{1}{\sin x}=\frac{h y p}{o p p}$
Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$

$$
\therefore \cot x=\frac{1}{\tan x}=\frac{a d j}{o p p}=-\frac{4}{3}
$$

88) If $f(x)=\sin x$, then $D_{f}=\mathbb{R}$
89) If $f(x)=\sin x$, then $R_{f}=[-1,1]$
90) If $\csc x=-\frac{5}{3}$ and $\frac{3 \pi}{2}<x<2 \pi$, then $\sec x=$ Solution:
$\csc x=\frac{5}{3}=\frac{1}{\sin x}=\frac{h y p}{o p p}$
Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$
$\therefore \sec x=\frac{1}{\cos x}=\frac{h y p}{a d j}=\frac{5}{4}$
91) If $\csc x=-\frac{5}{3}$ and $\frac{3 \pi}{2}<x<2 \pi$, then $\tan x=$ Solution:
$\csc x=\frac{5}{3}=\frac{1}{\sin x}=\frac{h y p}{o p p}$
Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
|adjacent $\mid=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4$

$$
\therefore \tan x=\frac{1}{\cot x}=\frac{o p p}{a d j}=-\frac{3}{4}
$$

89) If $f(x)=\cos x$, then $D_{f}=\mathbb{R}$
90) If $f(x)=\sin x$, then $R_{f}=[-1,1]$

Workshop Solutions to Section 2.5 (1.5)

How to find the domain and range of the exponential function $f(x)=a^{x}$?
1- If $f(x)=c . a^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(\pm k, \infty)
$$

2- If $f(x)=-c . a^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(-\infty, \pm k)
$$

3- If $f(x)=c . e^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(\pm k, \infty)
$$

4- If $f(x)=-c . e^{ \pm x} \pm k$ where c and k are positive constants, then

$$
D_{f}=\mathbb{R} \quad \text { and } \quad R_{f}=(-\infty, \pm k)
$$

1) Find the domain of the function $f(x)=4^{x}$.

Solution:
From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

3) Find the domain of the function $f(x)=4^{x}-3$.

Solution:

From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

5) Find the domain of the function $f(x)=5-3^{x}$. Solution:
From Step (2) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

7) Find the domain of the function $f(x)=3^{-x}+1$.

Solution:
From Step (1) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

9) Find the domain of the function $f(x)=e^{x}$.

Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

11) Find the domain of the function $f(x)=e^{x}-3$.

Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

13) Find the domain of the function $f(x)=e^{x}+1$. Solution:
From Step (3) above, we deduce that

$$
D_{f}=\mathbb{R}
$$

2) Find the range of the function $f(x)=4^{x}$.

Solution:
From Step (1) above, we deduce that

$$
R_{f}=(0, \infty)
$$

4) Find the range of the function $f(x)=4^{x}-3$.

Solution:

From Step (1) above, we deduce that

$$
R_{f}=(-3, \infty)
$$

6) Find the range of the function $f(x)=5-3^{x}$. Solution:
From Step (2) above, we deduce that

$$
R_{f}=(-\infty, 5)
$$

8) Find the range of the function $f(x)=3^{-x}+1$.

Solution:

From Step (1) above, we deduce that

$$
R_{f}=(1, \infty)
$$

10) Find the range of the function $f(x)=e^{x}$.

Solution:

From Step (3) above, we deduce that

$$
R_{f}=(0, \infty)
$$

12) Find the range of the function $f(x)=e^{x}-3$. Solution:
From Step (3) above, we deduce that

$$
R_{f}=(-3, \infty)
$$

14) Find the domain of the function $f(x)=\frac{1}{1-e^{x}}$. Solution:
$f(x)$ is defined when $1-e^{x} \neq 0$

$$
\begin{gathered}
\Leftrightarrow e^{x} \neq 1 \quad \Leftrightarrow \ln e^{x} \neq \ln 1 \\
\Leftrightarrow \quad x \neq 0 \\
\therefore D_{f}=\mathbb{R} \backslash\{0\}
\end{gathered}
$$

15) Find the domain of the function $f(x)=\frac{1}{1+e^{x}}$.

Solution:

$f(x)$ is defined when $1+e^{x} \neq 0$.
But there is no value of x makes $1+e^{x}=0$. Therefore,

$$
D_{f}=\mathbb{R}
$$

17) If $4^{(x+1)}=8$, then $x=$

Solution:

$$
\begin{gathered}
4^{(x+1)}=8 \\
\left(2^{2}\right)^{(x+1)}=2^{3} \\
2^{2(x+1)}=2^{3} \\
2(x+1)=3 \\
2 x+2=3 \\
2 x=3-2=1 \\
\therefore x=\frac{1}{2}
\end{gathered}
$$

19) If $9^{(x+1)}=27$, then $x=$

Solution:
$9^{(x+1)}=27$
$\left(3^{2}\right)^{(x+1)}=3^{3}$
$3^{2(x+1)}=3^{3}$
$2(x+1)=3$
$2 x+2=3$
$2 x=3-2=1$
$\therefore x=\frac{1}{2}$
21) If $5^{2(x-1)}=125$, then $x=$

Solution:

$$
\begin{gathered}
5^{2(x-1)}=125 \\
5^{2(x-1)}=5^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore x=\frac{5}{2}
\end{gathered}
$$

16) Find the domain of the function $f(x)=\sqrt{1+3^{x}}$. Solution:
$f(x)$ is defined when $1+3^{x} \geq 0$.
But $1+3^{x}>0$ always. Therefore,

$$
D_{f}=\mathbb{R}
$$

18) If $4^{(x-1)}=8$, then $x=$

Solution:

$$
\begin{gathered}
4^{(x-1)}=8 \\
\left(2^{2}\right)^{(x-1)}=2^{3} \\
2^{2(x-1)}=2^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore \quad x=\frac{5}{2}
\end{gathered}
$$

20) If $9^{(x-1)}=27$, then $x=$

Solution:

$$
\begin{gathered}
9^{(x-1)}=27 \\
\left(3^{2}\right)^{(x-1)}=3^{3} \\
3^{2(x-1)}=3^{3} \\
2(x-1)=3 \\
2 x-2=3 \\
2 x=3+2=5 \\
\therefore x=\frac{5}{2}
\end{gathered}
$$

22) If $5^{2(x+1)}=125$, then $x=$

Solution:

$$
\begin{gathered}
5^{2(x+1)}=125 \\
5^{2(x+1)}=5^{3} \\
2(x+1)=3 \\
2 x+2=3 \\
2 x=3-2=1 \\
\therefore x=\frac{1}{2}
\end{gathered}
$$

1) The inverse of the function	2) Find the inverse of the function $f(x)=2 x+3$.

$f=\{(0,3),(-2,1),(3,4),(5,-2),(1,7)\}$ is
Solution:
Let $\quad y=2 x+3$

$$
\begin{aligned}
2 x & =y-3 \\
x & =\frac{y-3}{2}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\frac{x-3}{2}
$$

$\therefore f^{-1}(x)=\frac{x-3}{2}$
3) Find the inverse of the function $f(x)=3-2 x$.

Solution:
Let $y=3-2 x$

$$
\begin{aligned}
2 x & =3-y \\
x & =\frac{3-y}{2}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\frac{3-x}{2}
$$

$\therefore f^{-1}(x)=\frac{3-x}{2}$
5) Find the inverse of the function $f(x)=\sqrt{2 x-3}$.

Solution:
Let $y=\sqrt{2 x-3}$ by squaring both sides

$$
\begin{aligned}
y^{2} & =2 x-3 \\
2 x & =y^{2}+3 \\
x & =\frac{y^{2}+3}{2}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\frac{x^{2}+3}{2}
$$

$$
\therefore f^{-1}(x)=\frac{x^{2}+3}{2}
$$

7) Find the inverse of the function

$$
f(x)=(2 x+3)^{2}, x \in[0, \infty)
$$

Solution:

$$
\text { Let } \quad y=(2 x+3)^{2}
$$

Take the square root for both sides

$$
\begin{aligned}
\sqrt{y} & =2 x+3 \\
2 x & =\sqrt{y}-3 \\
x & =\frac{\sqrt{y}-3}{2}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\frac{\sqrt{x}-3}{2}
$$

$$
\therefore f^{-1}(x)=\frac{\sqrt{x}-3}{2}
$$

9) Find the inverse of the function $f(x)=\frac{x}{x-3}$.

Solution:

Let $y=\frac{x}{x-3}$

$$
\begin{gathered}
y(x-3)=x \\
x y-3 y=x \\
x y-x=3 y \\
x(y-1)=3 y \\
x=\frac{3 y}{y-1}
\end{gathered}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
\begin{aligned}
& y=\frac{3 x}{x-1} \\
& \quad \therefore f^{-1}(x)=\frac{3 x}{x-1}
\end{aligned}
$$

4) Find the inverse of the function $f(x)=3-\frac{x}{2}$.

Solution:

Let $y=3-\frac{x}{2}$

$$
\begin{aligned}
2 y & =6-x \\
x & =6-2 y
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=6-2 x
$$

$$
\therefore f^{-1}(x)=6-2 x
$$

6) Find the inverse of the function $f(x)=\sqrt[3]{3-2 x}$.

Solution:

Let $y=\sqrt[3]{3-2 x}$ by cubing both sides

$$
\begin{aligned}
y^{3} & =3-2 x \\
2 x & =3-y^{3} \\
x & =\frac{3-y^{3}}{2}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
\begin{aligned}
& y=\frac{3-x^{3}}{2} \\
& \quad \therefore f^{-1}(x)=\frac{3-x^{3}}{2}
\end{aligned}
$$

8) Find the inverse of the function $f(x)=-(x-3)^{3}$.

Solution:

Let $\quad y=-(x-3)^{3}$

$$
-y=(x-3)^{3}
$$

Take the cubic root for both sides
$\sqrt[3]{-y}=x-3$
$x=\sqrt[3]{-y}+3$
Now, change x with $y(x \Leftrightarrow y)$

$$
y=\sqrt[3]{-x}+3
$$

$$
\therefore f^{-1}(x)=\sqrt[3]{-x}+3
$$

10) Find the inverse of the function $f(x)=\frac{x-3}{x}$.

Solution:

Let $y=\frac{x-3}{x}$

$$
\begin{aligned}
x y & =x-3 \\
x y-x & =-3 \\
x(y-1) & =-3 \\
x & =\frac{-3}{y-1}=-\frac{3}{y-1}=\frac{3}{-(y-1)}=\frac{3}{1-y}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
\begin{aligned}
y=\frac{3}{1-x} & \\
& \therefore f^{-1}(x)=\frac{3}{1-x}
\end{aligned}
$$

11) Find the inverse of the function $f(x)=\frac{x+2}{x-3}$.

Solution:

Let $y=\frac{x+2}{x-3}$

$$
\begin{aligned}
y(x-3) & =x+2 \\
x y-3 y & =x+2 \\
x y-x & =3 y+2 \\
x(y-1) & =3 y+2 \\
x & =\frac{3 y+2}{y-1}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
\begin{aligned}
& y=\frac{3 x+2}{x-1} \\
& \quad \therefore \quad f^{-1}(x)=\frac{3 x+2}{x-1}
\end{aligned}
$$

13) Find the inverse of the function $f(x)=\sqrt[3]{x^{5}}$. Solution:
Let $y=\sqrt[3]{x^{5}}$

$$
\begin{aligned}
& y=x^{\frac{5}{3}} \\
& y^{\frac{3}{5}}=\left(x^{\frac{5}{3}}\right)^{\frac{3}{5}} \\
& x=\sqrt[5]{y^{3}}
\end{aligned}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\sqrt[5]{x^{3}}
$$

$$
\therefore f^{-1}(x)=\sqrt[5]{x^{3}}
$$

15) Find the inverse of the function $f(x)=\sqrt[3]{\frac{x+2}{5}}$.

Solution:

Let $y=\sqrt[3]{\frac{x+2}{5}}$ by cubing both sides

$$
\begin{gathered}
y^{3}=\frac{x+2}{5} \\
5 y^{3}=x+2 \\
x=5 y^{3}-2
\end{gathered}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=5 x^{3}-2
$$

$$
\text { 18) } \begin{aligned}
\therefore \log _{2} 64-f^{-1}(x) & =5 x^{3}-2 \\
\log _{2} 32+\log _{2} 2 & =\log _{2} \frac{64 \times 2}{32} \\
& =\log _{2} 4=\log _{2} 2^{2} \\
& =2 \log _{2} 2 \\
& =2 \times 1=2
\end{aligned}
$$

OR
$\log _{2} 64-\log _{2} 32+\log _{2} 2=\log _{2} 2^{6}-\log _{2} 2^{5}+\log _{2} 2$

$$
=6-5+1=2
$$

20) $\log _{3} 54-\log _{3} 2=\log _{3} \frac{54}{2}$

$$
=\log _{3} 27=\log _{3} 3^{3}=3
$$

22) If $\ln (x+3)=5$, then $x=$

Solution:

$$
\begin{aligned}
\ln (x+3) & =5 \\
e^{\ln (x+3)} & =e^{5} \\
x+3 & =e^{5} \\
x & =e^{5}-3
\end{aligned}
$$

12) Find the inverse of the function $f(x)=\sqrt{x}+5$.

Solution:

Let $\quad y=\sqrt{x}+5$
$\sqrt{x}=y-5$ by squaring both sides
$x=(y-5)^{2}$
Now, change x with $y(x \Leftrightarrow y)$

$$
y=(x-5)^{2}
$$

$$
\therefore f^{-1}(x)=(x-5)^{2}
$$

14) Find the inverse of the function $f(x)=2 x^{3}-5$.

Solution:

Let $\quad y=2 x^{3}-5$

$$
2 x^{3}=y+5
$$

$x^{3}=\frac{y+5}{2} \quad$ take the cubic root for both sides

$$
x=\sqrt[3]{\frac{y+5}{2}}
$$

Now, change x with $y(x \Leftrightarrow y)$

$$
y=\sqrt[3]{\frac{x+5}{2}}
$$

16) Evaluate

$$
\therefore f^{-1}(x)=\sqrt[3]{\frac{x+5}{2}}
$$

Solution:

$$
2^{\log _{2}(5 x+3)}
$$

$$
2^{\log _{2}(5 x+3)}=5 x+3
$$

17) Evaluate

$$
\log _{2} 2^{(5 x+3)}
$$

Solution:

$$
\log _{2} 2^{(5 x+3)}=5 x+3
$$

19) $\log _{3} 27-\log _{3} 81+5 \log _{3} 3=\log _{3} \frac{27 \times 3^{5}}{81}$

$$
\begin{aligned}
& =\log _{3} 81=\log _{3} 3^{4} \\
& =4 \log _{3} 3 \\
& =4 \times 1=4
\end{aligned}
$$

OR
$\log _{3} 27-\log _{3} 81+5 \log _{3}=\log _{3} 3^{3}-\log _{3} 3^{4}+5 \times 1$
21) If $\log _{2}(6+2 x)=1$, then $x=$

Solution:

$$
\begin{aligned}
\log _{2}(6+2 x) & =1 \\
2^{\log _{2}(6+2 x)} & =2^{1} \\
6+2 x & =2 \\
2 x & =2-6=-4 \\
x & =-2 \\
\text { 23) If } \ln (x)=5, & \text { then } x=
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\ln (x) & =5 \\
e^{\ln (x)} & =e^{5} \\
x & =e^{5}
\end{aligned}
$$

24) If $e^{(2 x-3)}=5$, then $x=$ Solution:	25) $\log _{3} 2=\frac{\ln 2}{\ln 3}$
$\begin{aligned} \ln e^{(2 x-3)} & =\ln 5 \\ 2 x-3 & =\ln 5 \\ 2 x & =\ln 5+3 \\ x & =\frac{\ln 5+3}{2} \end{aligned}$	$\text { 26) } \begin{aligned} \log 25+\log 4 & =\log (25 \times 4) \\ & =\log 100=\log 10^{2} \\ & =2 \end{aligned}$
$\text { 27) } \begin{aligned} \log _{3} 18-\log _{3} 6 & =\log _{3} \frac{18}{6} \\ & =\log _{3} 3 \\ & =1 \end{aligned}$	$\text { 28) } \begin{aligned} \log _{2} 6-\log _{2} 15 & +\log _{2} 20=\log _{2} \frac{6 \times 20}{15} \\ & =\log _{2} 8=\log _{2} 2^{3} \\ & =3 \end{aligned}$
29) $e^{3 \ln 2}=e^{\ln 2^{3}}=2^{3}=8$	31) Find the inverse of the function $f(x)=5+\ln x$. Solution:
30) If $3^{2-x}=6$, then $x=$ Solution: $\begin{aligned} & 3^{2-x}=6 \\ & \log _{3} 3^{2-x}=\log _{3} 6 \\ & 2-x=\log _{3} 6 \\ & x=2-\log _{3} 6=2-\log _{3}(3 \times 2) \\ &=2-\left(\log _{3} 3+\log _{3} 2\right)=2-\left(1+\log _{3} 2\right) \\ &=2-1-\log _{3} 2 \\ &=1-\log _{3} 2 \end{aligned}$	$\text { Let } \begin{aligned} y & =5+\ln x \\ \ln x & =y-5 \\ e^{\ln x} & =e^{y-5} \\ x & =e^{y-5} \end{aligned}$ Now, change x with $y(x \Leftrightarrow y)$ $\begin{aligned} y=e^{x-5} & \therefore f^{-1}(x)=e^{x-5} \end{aligned}$
32) Find the domain of the function $f(x)=\sin ^{-1}(3 x+5)$ Solution: We know that the domain of $\sin ^{-1}(x)$ is $[-1,1]$. So, $\begin{gathered} -1 \leq 3 x+5 \leq 1 \\ -6 \leq 3 x \leq-4 \\ -2 \leq x \leq-\frac{4}{3} \\ \therefore \quad D_{f}=\left[-2,-\frac{4}{3}\right] \end{gathered}$	33) Find the domain of the function $f(x)=\cos ^{-1}(3 x-5)$ Solution: We know that the domain of $\cos ^{-1}(x)$ is $[-1,1]$. So, $\begin{gathered} -1 \leq 3 x-5 \leq 1 \\ 4 \leq 3 x \leq 6 \\ \frac{4}{3} \leq x \leq 2 \\ \therefore \quad D_{f}=\left[\frac{4}{3}, 2\right] \end{gathered}$
34) Find the domain of the function $f(x)=2 \sin ^{-1}(x)+1$ Solution: We know that the domain of $\sin ^{-1}(x)$ is $[-1,1]$. So, $\therefore \quad D_{f}=[-1,1]$	

Before proceeding to the questions 35-55, we should be aware of the following well-known right triangles:

35) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$

Solution:

Let $\theta=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

$$
\sin \theta=\frac{\sqrt{3}}{2}
$$

Use the $30^{\circ}-60^{\circ}$ right triangle to find θ. Thus,

$$
\theta=\frac{\pi}{3}
$$

37) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=$

Solution:
Let $\theta=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
$\tan \theta=\frac{1}{\sqrt{3}}$
Use the $30^{\circ}-60^{\circ}$ right triangle to find θ. Thus,
$\theta=\frac{\pi}{6}$
39) If $\alpha=\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)$, then $\tan \alpha=$

Solution:

$$
\alpha=\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)
$$

$\cos \alpha=\frac{3}{\sqrt{13}}=\frac{a d j}{h y p}$

Now, we should find the length of the opposite side using the Pythagorean Theorem, so

$$
\begin{gathered}
\mid \text { opposite } \mid=\sqrt{(\sqrt{13})^{2}-3^{2}}=\sqrt{13-9}=\sqrt{4}=2 \\
\therefore \tan \alpha=\frac{o p p}{a d j}=\frac{2}{3}
\end{gathered}
$$

36) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=$

Solution:
Let $\theta=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

$$
\sin \theta=\frac{\sqrt{3}}{2}
$$

Use the $30^{\circ}-60^{\circ}$ right triangle to find θ. Thus,

$$
\theta=\frac{\pi}{3}
$$

38) $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=$

Solution:

Let $\theta=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$\sin \theta=\frac{1}{\sqrt{2}}$
Use the $45^{\circ}-45^{\circ}$ right triangle to find θ. Thus,

$$
\theta=\frac{\pi}{4}
$$

40) If $\alpha=\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)$, then $\csc \alpha=$

Solution:

$$
\alpha=\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)
$$

$\cos \alpha=\frac{3}{\sqrt{13}}=\frac{a d j}{\text { hyp }}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{(\sqrt{13})^{2}-3^{2}}=\sqrt{13-9}=\sqrt{4}=2$
$\therefore \csc \alpha=\frac{1}{\sin \alpha}=\frac{h y p}{o p p}=\frac{\sqrt{13}}{2}$
41) If $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$, then $\csc \alpha=$ Solution:

$$
\alpha=\cos ^{-1}\left(\frac{4}{5}\right)
$$

$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$

Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$

$$
\therefore \csc \alpha=\frac{1}{\sin \alpha}=\frac{h y p}{o p p}=\frac{5}{3}
$$

43) If $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$, then $\tan \alpha=$

Solution:

$$
\alpha=\cos ^{-1}\left(\frac{4}{5}\right)
$$

$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$
$\therefore \tan \alpha=\frac{1}{\cot \alpha}=\frac{o p p}{a d j}=\frac{3}{4}$
45) $\sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=$

Solution:

Let $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$
$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$
$\therefore \sin \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=\sin (\alpha)=\frac{o p p}{h y p}=\frac{3}{5}$
47) $\sin \left(2 \sin ^{-1}\left(\frac{2}{5}\right)\right)=$

Solution:

Let $\alpha=\sin ^{-1}\left(\frac{2}{5}\right)$
$\sin \alpha=\frac{2}{5}=\frac{o p p}{h y p}$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{5^{2}-2^{2}}=\sqrt{25-4}=\sqrt{21}$

$$
\sin \left(2 \sin ^{-1}\left(\frac{2}{5}\right)\right)=\sin (2 \alpha)
$$

Now, use the identity $\sin (2 x)=2 \sin x \cdot \cos x$. Thus,

$$
\begin{aligned}
\sin \left(2 \sin ^{-1}\left(\frac{2}{5}\right)\right) & =\sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha) \\
& =2 \times \frac{2}{5} \times \frac{\sqrt{21}}{5}=\frac{4 \sqrt{21}}{25}
\end{aligned}
$$

49) $\sin \left(\tan ^{-1} x\right)=$

Solution:
Let $\alpha=\tan ^{-1} x$
$\tan \alpha=x=\frac{o p p}{a d j}$
Now, we should find the length of the hypotenuse side using the Pythagorean Theorem, so
\mid hypotenuse $\mid=\sqrt{x^{2}+1^{2}}=\sqrt{x^{2}+1}$

$$
\sin \left(\tan ^{-1} x\right)=\sin (\alpha)=\frac{o p p}{h y p}=\frac{x}{\sqrt{x^{2}+1}}
$$

42) If $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$, then $\cot \alpha=$

Solution:
$\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$.
$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$

$$
\therefore \cot \alpha=\frac{1}{\tan \alpha}=\frac{a d j}{o p p}=\frac{4}{3}
$$

44) If $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$, then $\sin \alpha=$

Solution:

$$
\alpha=\cos ^{-1}\left(\frac{4}{5}\right)
$$

$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
|opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$

$$
\therefore \sin \alpha=\frac{o p p}{h y p}=\frac{3}{5}
$$

46) $\tan \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=$

Solution:

Let $\alpha=\cos ^{-1}\left(\frac{4}{5}\right)$
$\cos \alpha=\frac{4}{5}=\frac{a d j}{h y p}$
Now, we should find the length of the opposite side using the Pythagorean Theorem, so
\mid opposite $\mid=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$

$$
\therefore \tan \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=\tan (\alpha)=\frac{o p p}{a d j}=\frac{3}{4}
$$

48) $\cos \left(\tan ^{-1} x\right)=$

Solution:

Let $\alpha=\tan ^{-1} x$

$\tan \alpha=x=\frac{o p p}{a d j}$

Now, we should find the length of the hypotenuse side using the Pythagorean Theorem, so
\mid hypotenuse $\mid=\sqrt{x^{2}+1^{2}}=\sqrt{x^{2}+1}$

$$
\cos \left(\tan ^{-1} x\right)=\cos (\alpha)=\frac{a d j}{h y p}=\frac{1}{\sqrt{x^{2}+1}}
$$

50) $\csc \left(\tan ^{-1} x\right)=$

Solution:

Let $\alpha=\tan ^{-1} x$
$\tan \alpha=x=\frac{o p p}{a d j}$
Now, we should find the length of the hypotenuse side using the Pythagorean Theorem, so
\mid hypotenuse $\mid=\sqrt{x^{2}+1^{2}}=\sqrt{x^{2}+1}$
$\csc \left(\tan ^{-1} x\right)=\csc (\alpha)=\frac{1}{\sin \alpha}=\frac{h y p}{o p p}=\frac{\sqrt{x^{2}+1}}{x}$
51) $\sec \left(\tan ^{-1} x\right)=$
Solution:
Let $\alpha=\tan ^{-1} x$
$\quad \tan \alpha=x=\frac{o p p}{a d j}$
Now, we should find the length of the hypotenuse side
using the Pythagorean Theorem, so
|hypotenuse $=\sqrt{x^{2}+1^{2}}=\sqrt{x^{2}+1}$
$\sec \left(\tan ^{-1} x\right)=\sec (\alpha)=\frac{1}{\cos \alpha}=\frac{h y p}{a d j}=\frac{\sqrt{x^{2}+1}}{1}=\sqrt{x^{2}+1}$
52) $\sec \left(\sin ^{-1} \frac{x}{3}\right)=$

Solution:
Let $\alpha=\sin ^{-1} \frac{x}{3}$

$$
\sin \alpha=\frac{x}{3}=\frac{o p p}{h y p}
$$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{3^{2}-x^{2}}=\sqrt{9-x^{2}}$

$$
\begin{aligned}
& \sec \left(\sin ^{-1} \frac{x}{3}\right)=\sec (\alpha)=\frac{1}{\cos \alpha}=\frac{h y p}{a d j}=\frac{3}{\sqrt{9-x^{2}}} \\
& \text { 54) } \tan \left(\sin ^{-1} \frac{x}{3}\right)=
\end{aligned}
$$

Solution:
Let $\alpha=\sin ^{-1} \frac{x}{3}$

$$
\sin \alpha=\frac{x}{3}=\frac{o p p}{h y p}
$$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{3^{2}-x^{2}}=\sqrt{9-x^{2}}$

$$
\tan \left(\sin ^{-1} \frac{x}{3}\right)=\tan (\alpha)=\frac{1}{\cot \alpha}=\frac{o p p}{a d j}=\frac{x}{\sqrt{9-x^{2}}}
$$

55) $\cos \left(\sin ^{-1} \frac{x}{3}\right)=$

Solution:
Let $\alpha=\sin ^{-1} \frac{x}{3}$

$$
\sin \alpha=\frac{x}{3}=\frac{o p p}{h y p}
$$

Now, we should find the length of the adjacent side using the Pythagorean Theorem, so
\mid adjacent $\mid=\sqrt{3^{2}-x^{2}}=\sqrt{9-x^{2}}$

$$
\cos \left(\sin ^{-1} \frac{x}{3}\right)=\cos (\alpha)=\frac{a d j}{h y p}=\frac{\sqrt{9-x^{2}}}{3}
$$

1) $\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=\infty
$$

3) $\lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{+}$, then $x>3 \Rightarrow x-3>0$

$$
\therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-2}{x-3}=-\infty
$$

5) $\lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{+}$, then $x>-3 \Rightarrow x+3>0$

$$
\therefore \lim _{x \rightarrow-3^{+}} \frac{2}{x+3}=\infty
$$

7) $\lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=$

Solution:
If $x \rightarrow 2^{+}$, then $x>2 \Rightarrow x-2>0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=\infty
$$

9) $\lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\Rightarrow 1-x>0 \text { and }(x+2)^{2}>0
$$

$$
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
$$

11) $\lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=$

Solution:
If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{gathered}
\Rightarrow \quad x-1<0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{gathered}
$$

13) $\lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{+}$, then $x^{2}>4$

$$
\begin{gathered}
\Rightarrow x^{2}-4>0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{gathered}
$$

2) $\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=$

Solution:

If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=-\infty
$$

4) $\lim _{x \rightarrow 3^{-}} \frac{-2}{x-3}=$

Solution:
If $x \rightarrow 3^{-}$, then $x<3 \Rightarrow x-3<0$

$$
\therefore \quad \lim _{x \rightarrow 3^{-}} \frac{2}{x-3}=\infty
$$

6) $\lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=$

Solution:

If $x \rightarrow-3^{-}$, then $x<-3 \Rightarrow x+3<0$

$$
\therefore \lim _{x \rightarrow-3^{-}} \frac{2}{x+3}=-\infty
$$

8) $\lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=$

Solution:

If $x \rightarrow 2^{-}$, then $x<2 \Rightarrow x-2<0$ and $3 x-1>0$

$$
\therefore \lim _{x \rightarrow 2^{-}} \frac{3 x-1}{x-2}=-\infty
$$

10) $\lim _{x \rightarrow-2^{-}} \frac{1-x}{(x+2)^{2}}=$

Solution:

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{gathered}
\Rightarrow \quad 1-x>0 \text { and }(x+2)^{2}>0 \\
\therefore \lim _{x \rightarrow-2^{+}} \frac{1-x}{(x+2)^{2}}=\infty
\end{gathered}
$$

12) $\lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=$

Solution:

$$
\begin{aligned}
& \text { If } x \rightarrow-2^{-} \text {, then } x<-2 \\
& \qquad \quad x-1<0 \text { and }(x+2)^{2}>0 \\
& \therefore \quad \lim _{x \rightarrow-2^{-}} \frac{x-1}{(x+2)^{2}}=-\infty
\end{aligned}
$$

14) $\lim _{x \rightarrow 2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow 2^{-}$, then $x^{2}<4$

$$
\begin{gathered}
\Rightarrow x^{2}-4<0 \text { and } 6 x-1>0 \\
\therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{gathered}
$$

15) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-4}=$

Solution:

If $x \rightarrow-2^{+}$, then $x^{2}<4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4<0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=\infty
\end{aligned}
$$

17) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{-}$, then $x<-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2<0 \text { and } 6 x-1<0 \\
& \quad \therefore \lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

19) $\lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{+}$, then $x>3$

$$
\begin{aligned}
& \Rightarrow x-3>0, x+2>0 \text { and }-1<0 \\
& \therefore \quad \lim _{x \rightarrow 3^{+}} \frac{-1}{x^{2}-x-6}=-\infty
\end{aligned}
$$

21) $\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{+}} \tan x=-\infty
$$

23) The vertical asymptote of $f(x)=\frac{1-x}{2 x+1}$ is

Solution:
We see that the function $f(x)$ is not defined when
$2 x+1=0 \Rightarrow x=-\frac{1}{2}$. Since

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{+}} \frac{1-x}{2 x+1}=\infty
$$

and

$$
\lim _{x \rightarrow\left(-\frac{1}{2}\right)^{-}} \frac{1-x}{2 x+1}=-\infty
$$

then, $x=-\frac{1}{2}$ is a vertical asymptote.
16) $\lim _{x \rightarrow-2^{-}} \frac{6 x-1}{x^{2}-4}=$

Solution:
If $x \rightarrow-2^{-}$, then $x^{2}>4$

$$
\begin{aligned}
& \Rightarrow x^{2}-4>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow 2^{+}} \frac{6 x-1}{x^{2}-4}=-\infty
\end{aligned}
$$

18) $\lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{6 x-1}{x^{2}-x-6}=\frac{6 x-1}{(x-3)(x+2)}
$$

If $x \rightarrow-2^{+}$, then $x>-2$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and } 6 x-1<0 \\
& \quad \therefore \quad \lim _{x \rightarrow-2^{+}} \frac{6 x-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

20) $\lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=$

Solution:

$$
f(x)=\frac{-1}{x^{2}-x-6}=\frac{-1}{(x-3)(x+2)}
$$

If $x \rightarrow 3^{-}$, then $x<3$

$$
\begin{aligned}
& \Rightarrow x-3<0, x+2>0 \text { and }-1<0 \\
& \quad \therefore \lim _{x \rightarrow 3^{-}} \frac{-1}{x^{2}-x-6}=\infty
\end{aligned}
$$

22) $\lim _{x \rightarrow(\pi / 2)} \tan x=$

Solution:

$$
\lim _{x \rightarrow(\pi / 2)^{-}} \tan x=\infty
$$

24) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-4}$ is

Solution:
We see that the function $f(x)$ is not defined when $x^{2}-4=0 \Rightarrow x= \pm 2$. Since

$$
\lim _{x \rightarrow 2^{+}} \frac{3-x}{x^{2}-4}=\infty, \quad \lim _{x \rightarrow 2^{-}} \frac{3-x}{x^{2}-4}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-4}=-\infty, \quad \lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-4}=\infty
$$

then, $x= \pm 2$ are vertical asymptotes.
25) The vertical asymptote of $f(x)=\frac{3-x}{x^{2}-x-6}$ is

Solution:

$$
\begin{gathered}
f(x)=\frac{3-x}{x^{2}-x-6}=\frac{3-x}{(x-3)(x+2)}=\frac{-(x-3)}{(x-3)(x+2)} \\
=-\frac{1}{x+2}
\end{gathered}
$$

We see that the function $f(x)$ is not defined when

$$
x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0
$$

$\Rightarrow x=3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow 3} \frac{3-x}{(x-3)(x+2)} \\
& \quad=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-3)(x+2)}=\lim _{x \rightarrow 3} \frac{-1}{x+2}=-\frac{1}{5}
\end{aligned}
$$

then, $x=3$ is a removable discontinuity.

$$
\lim _{x \rightarrow-2^{+}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{+}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

and

$$
\lim _{x \rightarrow-2^{-}} \frac{3-x}{x^{2}-x-6}=\lim _{x \rightarrow-2^{-}} \frac{3-x}{(x-3)(x+2)}=-\infty
$$

then, $x=-2$ is a vertical asymptote only.
27) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+5 x+6}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+5 x+6}=\frac{x-7}{(x+3)(x+2)}
$$

We see that the function $f(x)$ is not defined when $x+3=0$ or $x+2=0 \Rightarrow x=-3$ or $x=-2$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{(x+3)(x+2)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{(x+3)(x+2)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{+}} \frac{x-7}{(x+3)(x+2)}=-\infty \\
& \lim _{x \rightarrow-2^{-}} \frac{x-7}{x^{2}+5 x+6}=\lim _{x \rightarrow-2^{-}} \frac{x-7}{(x+3)(x+2)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=-2$ are vertical asymptotes.
29) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}-3 x}$ is Solution:

$$
f(x)=\frac{x-7}{x^{2}-3 x}=\frac{x-7}{x(x-3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x-3=0 \Rightarrow x=0$ or $x=3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{+}} \frac{x-7}{x(x-3)}=-\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 3^{-}} \frac{x-7}{x(x-3)}=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x-3)}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}-3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x-3)}=-\infty
\end{aligned}
$$

then, $x=3$ and $x=0$ are vertical asymptotes.
26) The vertical asymptote of $f(x)=\frac{7-x}{x^{2}-5 x+6}$ is Solution:

$$
f(x)=\frac{7-x}{x^{2}-5 x+6}=\frac{7-x}{(x-3)(x-2)}
$$

We see that the function $f(x)$ is not defined when $x-3=0$ or $x-2=0 \Rightarrow x=3$ or $x=2$.
Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{7-x}{(x-3)(x-2)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{7-x}{(x-3)(x-2)}=-\infty
\end{aligned}
$$ and

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{7-x}{(x-3)(x-2)}=-\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{7-x}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{7-x}{(x-3)(x-2)}=\infty
\end{aligned}
$$

then, $x=3$ and $x=2$ are vertical asymptotes.
28) The vertical asymptote of $f(x)=\frac{x-7}{x^{2}+3 x}$ is

Solution:

$$
f(x)=\frac{x-7}{x^{2}+3 x}=\frac{x-7}{x(x+3)}
$$

We see that the function $f(x)$ is not defined when $x=0$ or $x+3=0 \Rightarrow x=0$ or $x=-3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow-3^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{+}} \frac{x-7}{x(x+3)}=\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow-3^{-}} \frac{x-7}{x(x+3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{x-7}{x(x+3)}=-\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{x-7}{x^{2}+3 x}=\lim _{x \rightarrow 0^{-}} \frac{x-7}{x(x+3)}=\infty
\end{aligned}
$$

then, $x=-3$ and $x=0$ are vertical asymptotes.
30) The vertical asymptotes of $f(x)=\frac{2 x^{2}+1}{x^{2}-9}$ are Solution:

$$
f(x)=\frac{2 x^{2}+1}{x^{2}-9}=\frac{2 x^{2}+1}{(x+3)(x-3)}
$$

We see that the function $f(x)$ is not defined when $x^{2}-9=0 \Rightarrow x= \pm 3$. Since

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty \\
& \lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{2 x^{2}+1}{(x+3)(x-3)}=-\infty \\
& \lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{x^{2}-9}=\lim _{x \rightarrow-3^{-}} \frac{2 x^{2}+1}{(x+3)(x-3)}=\infty
\end{aligned}
$$

then, $x= \pm 3$ are vertical asymptotes.
31) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous at $a=2$ because
$1-f(2)=\frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$2-\lim _{x \rightarrow 3^{-}} \frac{x+1}{x^{2}-9}=\lim _{x \rightarrow 2} \frac{(2)+1}{(2)^{2}-9}=\frac{3}{-5}=-\frac{3}{5}$
$3-\quad \lim _{x \rightarrow 2} \frac{x+1}{x^{2}-9}=f(2)$
OR
We know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{2\} \in D_{f}$.
Note: Any function is continuous on its domain.
34) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous on its domain which is $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$.
36) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, \\ 5, x=0 \\ 5,\end{array}\right.$ is discontinuous at $a=0$ because
1- $f(0)=5$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x) \neq f(0)$
38) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 1, & x=1\end{array}\right.$ is continuous at $a=1$ because
1- $f(1)=1$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x)=f(1)$
40) The function $f(x)=\left\{\begin{array}{ll}2 x+3, & x>2 \\ 3 x+1, & x \leq 2\end{array}\right.$ is continuous at $a=2$ because
1- $f(2)=3(2)+1=7$
2- $\lim _{x \rightarrow 2^{+}}(2 x+3)=2(2)+3=7$
$\lim _{x \rightarrow 2^{-}}(3 x+1)=3(2)+1=7$
$\therefore \lim _{x \rightarrow 2} f(x)=7$
3- $\lim _{x \rightarrow 2} f(x)=f(2)$
42) The function $f(x)=\sqrt{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4 \geq 0 \Rightarrow x^{2} \geq 4 \Rightarrow \sqrt{x^{2}} \geq \sqrt{4} \\
& \Rightarrow|x| \geq 2 \quad \Leftrightarrow \quad x \geq 2 \text { or } x \leq-2
\end{aligned}
$$

Hence,
$D_{f}=(-\infty,-2] \cup[2, \infty)$.
44) The function $f(x)=\frac{x+3}{\sqrt{4-x^{2}}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
4-x^{2}>0 \Rightarrow-x^{2}>-4 \Rightarrow x^{2}<4
$$

$\Rightarrow \sqrt{x^{2}}<\sqrt{4} \Rightarrow|x|<2 \Leftrightarrow-2<x<2$
Hence,

$$
D_{f}=(-2,2) .
$$

32) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at $a= \pm 3$ because we know that $D_{f}=\mathbb{R} \backslash\{ \pm 3\}$, so $\{ \pm 3\} \notin D_{f}$.
33) The function $f(x)=\frac{x+1}{x^{2}-9}$ is discontinuous at ± 3 because $\{ \pm 3\} \notin D_{f}$.
34) The function $f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, x \neq 0 \\ 3,\end{array}\right.$ is continuous at $a=0$ because
1- $f(0)=3$
2- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}=3 \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=3(1)=3$
3- $\lim _{x \rightarrow 0} f(x)=f(0)$
35) The function $f(x)=\left\{\begin{array}{cc}\frac{2 x^{2}-3 x+1}{x-1}, & x \neq 1 \\ 7 & , x=1\end{array}\right.$ is discontinuous at $a=1$ because
1- $f(1)=7$
2- $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(2 x-1)(x-1)}{x-1}=\lim _{x \rightarrow 1}(2 x-1)=1$
3- $\lim _{x \rightarrow 1} f(x) \neq f(1)$
36) The function $f(x)=\frac{x^{2}-x-2}{x-2}$ is discontinuous at $a=2$ because $\{2\} \notin D_{f}$.
37) The function $f(x)=\frac{x+3}{\sqrt{x^{2}-4}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& x^{2}-4>0 \Rightarrow x^{2}>4 \Rightarrow \sqrt{x^{2}}>\sqrt{4} \\
& \quad \Rightarrow|x|>2
\end{aligned} \Leftrightarrow \quad x>2 \text { or } x<-2
$$

Hence,
$D_{f}=(-\infty,-2) \cup(2, \infty)$.
43) The function $f(x)=\sqrt{4-x^{2}}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
\begin{aligned}
& 4-x^{2} \geq 0 \Rightarrow-x^{2} \geq-4 \Rightarrow x^{2} \leq 4 \\
& \Rightarrow \sqrt{x^{2}} \leq \sqrt{4} \Rightarrow|x| \leq 2 \quad \Leftrightarrow \quad-2 \leq x \leq 2
\end{aligned}
$$

Hence,

$$
D_{f}=[-2,2] .
$$

45) The function $f(x)=\frac{x+1}{x^{2}-4}$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x^{2}-4 \neq 0 \Rightarrow x^{2} \neq 4 \Rightarrow x \neq \pm 2
$$

Hence,
$D_{f}=\mathbb{R} \backslash\{ \pm 2\}$
$=(-\infty,-2) \cup(-2,2) \cup(2, \infty)=\{x \in \mathbb{R}: x \neq \pm 2\}$.
46) The function $f(x)=\log _{2}(x+2)$ is continuous on its domain where $f(x)$ is defined, we mean that

$$
x+2>0 \Rightarrow x>-2
$$

Hence,

$$
D_{f}=(-2, \infty) .
$$

48) The function $f(x)=5^{x}$ is continuous on its domain.
Hence,

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

50) The function $f(x)=\sin ^{-1}(3 x-5)$ is continuous on its domain where $f(x)$ is defined, we mean that
$-1 \leq 3 x-5 \leq 1 \Leftrightarrow 4 \leq 3 x \leq 6 \Leftrightarrow \frac{4}{3} \leq x \leq 2$. Hence,

$$
D_{f}=\left[\frac{4}{3}, 2\right] .
$$

52) The number c that makes $f(x)=\left\{\begin{array}{cc}c+x, & x>2 \\ 2 x-c, & x \leq 2\end{array}\right.$ is continuous at $x=2$ is
Solution:
$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow+^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}(c+x) & =\lim _{x \rightarrow 2^{-}}(2 x-c) \\
c+2 & =4-c \\
c+c & =4-2 \\
2 c & =2 \\
c & =1
\end{aligned}
$$

54) The number c that makes
$f(x)=\left\{\begin{array}{cc}\frac{\sin c x}{x}+2 x-1, & x<0 \\ 3 x+4 & , x \geq 0\end{array}\right.$ is continuous at 0 is
Solution:
$\lim _{x \rightarrow 0} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{-}} f(x) \\
\lim _{x \rightarrow 0^{+}}(3 x+4) & =\lim _{x \rightarrow 0^{-}}\left(\frac{\sin c x}{x}+2 x-1\right) \\
3(0)+4 & =c(1)+2(0)-1 \\
4 & =c-1 \\
c & =4+1 \\
c & =5
\end{aligned}
$$

56) The number c that makes $f(x)=\left\{\begin{array}{cc}c^{2} x^{2}-1, & x \leq 3 \\ x+5, & x>3\end{array}\right.$ is continuous at 3 is
Solution:
$\lim _{x \rightarrow 3} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow \mathbf{x}^{-}} f(x) \\
\lim _{x \rightarrow 3^{+}}(x+5) & =\lim _{x \rightarrow 3^{-}}\left(c^{2} x^{2}-1\right) \\
(3)+5 & =c^{2}(3)^{2}-1 \\
8 & =9 c^{2}-1 \\
9 c^{2} & =8+1 \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

47) The function $f(x)=\sqrt{x-1}+\sqrt{x+4}$ is continuous on its domain where $f(x)$ is defined, we mean that $x-1 \geq 0$ and $x+4 \geq 0 \Rightarrow x \geq 1 \cap x \geq-4$
Hence,
$D_{f}=[1, \infty)$.
48) The function $f(x)=e^{x}$ is continuous on its domain.
Hence,
$D_{f}=\mathbb{R}=(-\infty, \infty)$.
49) The function $f(x)=\cos ^{-1}(3 x+5)$ is continuous on its domain where $f(x)$ is defined, we mean that $-1 \leq 3 x+5 \leq 1 \Leftrightarrow-6 \leq 3 x \leq-4 \Leftrightarrow-2 \leq x \leq-\frac{4}{3}$. Hence,

$$
D_{f}=\left[-2,-\frac{4}{3}\right] .
$$

53) The number c that makes
$f(x)=\left\{\begin{aligned} c x^{2}-2 x+1, & x \leq-1 \\ 3 x+2 & , x>-1\end{aligned}\right.$ is continuous at -1 is

Solution:

$$
\lim _{x \rightarrow-1} f(x) \text { exists if }
$$

$$
\begin{aligned}
\lim _{x \rightarrow-^{+}} f(x) & =\lim _{x \rightarrow--^{-}} f(x) \\
\lim _{x \rightarrow-^{+}}(3 x+2) & =\lim _{x \rightarrow 1^{-}}\left(c x^{2}-2 x+1\right) \\
3(-1)+2 & =c(-1)^{2}-2(-1)+1 \\
-1 & =c+3 \\
c & =-1-3 \\
c & =-4
\end{aligned}
$$

55) The value c that makes $f(x)= \begin{cases}c x^{2}+2 x, & x \leq 2 \\ x^{3}-c x, & x>2\end{cases}$ is continuous at 2 is

Solution:

$\lim _{x \rightarrow 2} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right) & =\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right) \\
(2)^{3}-c(2) & =c(2)^{2}+2(2) \\
8-2 c & =4 c+4 \\
-2 c-4 c & =4-8 \\
-6 c & =-4 \\
c & =\frac{-4}{-6} \\
c & =\frac{2}{3}
\end{aligned}
$$

57) The number c that makes $f(x)= \begin{cases}x-2, & x>5 \\ c x-3, & x \leq 5\end{cases}$ is continuous at 5 is

Solution:

$\lim _{x \rightarrow 5} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} f(x) & =\lim _{x \rightarrow 5^{-}} f(x) \\
\lim _{x \rightarrow 5^{+}}(x-2) & =\lim _{x \rightarrow-}(c x-3) \\
(5)-2 & =c(5)-3 \\
3 & =5 c-3 \\
5 c & =3+3 \\
5 c & =6 \\
c & =\frac{6}{5}
\end{aligned}
$$

58) The number c that makes $f(x)= \begin{cases}x+3, & x>-1 \\ 2 x-c, & x \leq-1\end{cases}$ is continuous at -1 is Solution:
$\lim _{x \rightarrow-1} f(x)$ exists if

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow 1^{-}} f(x) \\
\lim _{x \rightarrow-1^{+}}(x+3) & =\lim _{x \rightarrow 1^{-}}(2 x-c) \\
(-1)+3 & =2(-1)-c \\
2 & =-2-c \\
c & =-2-2 \\
c & =-4
\end{aligned}
$$

1) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{-}} f(x)=\lim _{x \rightarrow(-2)^{-}}(2 x+5)=2(-2)+5=-4+5$ $=1$
3) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow-2} f(x)=
$$

Solution:

$\lim _{x \rightarrow-2} f(x)$ does not exist because

$$
\lim _{x \rightarrow(-2)^{-}} f(x) \neq \lim _{x \rightarrow(-2)^{+}} f(x)
$$

5) If $f(x)=\left\{\begin{array}{cr}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

Solution:
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-7 x\right)=(1)^{2}-7(1)=1-7=-6$
7) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 3^{-}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(5)=5$
9) If $f(x)=\left\{\begin{array}{l}\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0\end{array}\right.$ then

$$
\lim _{x \rightarrow 2^{+}} f(x)=
$$

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& =\left\{\begin{array}{l}
\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4
\end{array}\right. \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(\frac{x+3}{x+2}\right)=\frac{(2)+3}{(2)+2}=\frac{5}{4}$
2) If $f(x)=\left\{\begin{array}{ll}2 x+3 ; & x \geq-2 \\ 2 x+5 ; & x<-2\end{array}\right.$ then

$$
\lim _{x \rightarrow(-2)^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow(-2)^{+}} f(x)=\lim _{x \rightarrow(-2)^{+}}(2 x+3)=2(-2)+3=-4+3$ $=-1$
4) If $f(x)=\left\{\begin{aligned} x^{2}-2 x+3 ; & x \geq 3 \\ x^{3}-3 x-12 ; & x<3\end{aligned}\right.$ then

$$
\lim _{x \rightarrow 3} f(x)=
$$

Solution:
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{3}-3 x-12\right)=(3)^{3}-3(3)-12$

$$
=27-9-12=6
$$

$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{2}-2 x+3\right)=(3)^{2}-2(3)+3$
$=9-6+3=6$
$\therefore \lim _{x \rightarrow 3} f(x)=6$
6) If $f(x)=\left\{\begin{array}{cr}x^{2}-7 x ; & x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then

$$
\lim _{x \rightarrow 1^{+}} f(x)=
$$

Solution:
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow+^{+}}(5)=5$
8) If $f(x)=\left\{\begin{array}{cc}x^{2}-7 x ; \quad x<1 \\ 5 ; & 1 \leq x \leq 3 \\ 3 x+1 ; & x>3\end{array}\right.$ then
$\lim _{x \rightarrow 3^{+}} f(x)=$

Solution:

$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(3 x+1)=3(3)+1=9+1=10$
10) If $f(x)=\left\{\begin{array}{l}\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; x^{2}-4<0 \\ \lim _{x \rightarrow 2^{-}} f(x)=\end{array}\right.$ then

Solution:

$f(x)= \begin{cases}\frac{x^{2}+x-6}{x^{2}-4} ; & x^{2}-4>0 \\ \frac{x^{2}+x-6}{4-x^{2}} ; & x^{2}-4<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\frac{x^{2}+x-6}{x^{2}-4} ; x^{2}>4 \\
\frac{x^{2}+x-6}{-\left(x^{2}-4\right)} ; x^{2}<4
\end{array}\right. \\
& = \begin{cases}\frac{(x+3)(x-2)}{(x-2)(x+2)} ;|x|>4 \\
\frac{(x+3)(x-2)}{-(x-2)(x+2)} ;|x|<4\end{cases} \\
& = \begin{cases}\frac{x+3}{x+2} ; & x>2 \text { or } x<-2 \\
-\frac{x+3}{x+2} ; & -2<x<2\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(-\frac{x+3}{x+2}\right)=-\frac{(2)+3}{(2)+2}=-\frac{5}{4}
$$

11)

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=
$$

Solution:
$f(x)=\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}\frac{x-a}{x-a} & ; x-a>0 \\ \frac{-(x-a)}{x-a} ; & x-a<0\end{array}=\left\{\begin{aligned} 1 ; & x>a \\ -1 ; & x<a\end{aligned}\right.\right.$

$$
\therefore \quad \lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{-}} \frac{-(x-a)}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
$$

13)

$$
\lim _{x \rightarrow a} \frac{|x-a|}{x-a}=
$$

Solution:

$\lim _{x \rightarrow a} \frac{|x-a|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}
$$

It is clearly obvious from questions (11) and (12) above.
15)

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} ; & a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{ll}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; & ; a<x
\end{array}=\left\{\begin{array}{r}
-1 ; x<a \\
1 ; \\
x>a
\end{array}\right.\right. \\
& \therefore \\
& \lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{-}}(-1)=-1
\end{aligned}
$$

17)

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=
$$

Solution:

$$
\begin{gathered}
f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}
\frac{x+a}{x+a} ; & x+a>0 \\
\frac{-(x+a)}{x+a} ; & x+a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>-a \\
-1 ; & x<-a
\end{aligned}\right.\right. \\
\therefore \quad \lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{-}}(-1)=-1
\end{gathered}
$$

12)

$$
\lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=
$$

Solution:

$$
\begin{aligned}
f(x) & =\frac{|x-a|}{x-a}=\left\{\begin{array}{ll}
\frac{x-a}{x-a} ; & x-a>0 \\
\frac{-(x-a)}{x-a} ; & x-a<0
\end{array}=\left\{\begin{aligned}
1 ; & x>a \\
-1 ; & x<a
\end{aligned}\right.\right. \\
\therefore & \lim _{x \rightarrow a^{+}} \frac{|x-a|}{x-a}=\lim _{x \rightarrow a^{+}} \frac{(x-a)}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

14)

$$
\lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=
$$

Solution:
$f(x)=\frac{|a-x|}{x-a}= \begin{cases}\frac{a-x}{x-a} & ; a-x>0 \\ \frac{-(a-x)}{x-a} ; & a-x<0\end{cases}$

$$
\begin{aligned}
& \quad=\left\{\begin{array}{l}
\frac{-(x-a)}{x-a} ; a>x \\
\frac{(x-a)}{x-a} ; a<x
\end{array}=\left\{\begin{aligned}
-1 ; & x<a \\
1 ; & x>a
\end{aligned}\right.\right. \\
& \therefore \\
& \quad \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}=\lim _{x \rightarrow a^{+}}(1)=1
\end{aligned}
$$

16)

$$
\lim _{x \rightarrow a} \frac{|a-x|}{x-a}=
$$

Solution:
$\lim _{x \rightarrow a} \frac{|a-x|}{x-a}$ does not exist because

$$
\lim _{x \rightarrow a^{-}} \frac{|a-x|}{x-a} \neq \lim _{x \rightarrow a^{+}} \frac{|a-x|}{x-a}
$$

It is clearly obvious from questions (14) and (15) above.
18)

$$
\lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=
$$

Solution:
$f(x)=\frac{|x+a|}{x+a}=\left\{\begin{array}{ll}\frac{x+a}{x+a} & ; x+a>0 \\ \frac{-(x+a)}{x+a} ; & x+a<0\end{array}=\left\{\begin{aligned} 1 ; & x>-a \\ -1 ; & x<-a\end{aligned}\right.\right.$
$\therefore \quad \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}=\lim _{x \rightarrow(-a)^{+}}(1)=1$
19)

$$
\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}=
$$

Solution:
$\lim _{x \rightarrow-a} \frac{|x+a|}{x+a}$ does not exist because

$$
\lim _{x \rightarrow(-a)^{-}} \frac{|x+a|}{x+a} \neq \lim _{x \rightarrow(-a)^{+}} \frac{|x+a|}{x+a}
$$

It is clearly obvious from questions (17) and (18) above.

$$
\lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$f(x)=\frac{2 x-|x|}{x^{2}+|x|}= \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\ \frac{2 x-(-x)}{x^{2}+(-x)} ; & x<0\end{cases}$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; x>0 \\
\frac{2 x+x}{x^{2}-x} ; & x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{+}} \frac{1}{x+1}=\frac{1}{0+1}=1
$$

22)

$$
\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:
$\lim _{x \rightarrow 0} \frac{2 x-|x|}{x^{2}+|x|}$ does not exist because

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|} \neq \lim _{x \rightarrow 0^{+}} \frac{2 x-|x|}{x^{2}+|x|}
$$

It is clearly obvious from questions (20) and (21) above.
24)

$$
\lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos ^{2} x+2 \cos x-3}{2 \cos ^{2} x-\cos x-1}=\lim _{x \rightarrow 0} \frac{(\cos x+3)(\cos x-1)}{(2 \cos x+1)(\cos x-1)} \\
& \quad=\lim _{x \rightarrow 0} \frac{\cos x+3}{2 \cos x+1}=\frac{\cos (0)+3}{2 \cos (0)+1} \\
& \quad=\frac{1+3}{2(1)+1}=\frac{4}{3}
\end{aligned}
$$

26) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

28) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\sin (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

21)

$$
\lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=
$$

Solution:

$$
\begin{aligned}
f(x)=\frac{2 x-|x|}{x^{2}+|x|} & = \begin{cases}\frac{2 x-(x)}{x^{2}+(x)} ; & x>0 \\
\frac{2 x-(-x)}{x^{2}+(-x)} ; x<0\end{cases} \\
& =\left\{\begin{array}{ll}
\frac{2 x-x}{x^{2}+x} ; & x>0 \\
\frac{2 x+x}{x^{2}-x} ; x<0
\end{array}= \begin{cases}\frac{x}{x^{2}+x} ; & x>0 \\
\frac{3 x}{x^{2}-x} ; & x<0\end{cases} \right. \\
& = \begin{cases}\frac{x}{x(x+1)} ; x>0 \\
\frac{3 x}{x(x-1)} ; x<0\end{cases} \\
& = \begin{cases}\frac{1}{x+1} ; x>0 \\
\frac{3}{x-1} ; & x<0\end{cases}
\end{aligned}
$$

$$
\therefore \quad \lim _{x \rightarrow 0^{-}} \frac{2 x-|x|}{x^{2}+|x|}=\lim _{x \rightarrow 0^{-}} \frac{3}{x-1}=\frac{3}{0-1}=-3
$$

23)

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{\cos ^{2} x-\sin ^{2} x}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{(\cos x-\sin x)(\cos x+\sin x)} \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1}{\cos x+\sin x}=\frac{1}{\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)} \\
&=\frac{1}{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}=\frac{1}{\frac{2}{\sqrt{2}}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

25)

$$
\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=
$$

Solution:
$\lim _{x \rightarrow 0}\left(\sin ^{2} x+3 \tan x-4\right)=\sin ^{2}(0)+3 \tan (0)-4$

$$
=0+3(0)-4=-4
$$

27) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{m x}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}=\frac{n}{m}(1)=\frac{n}{m}
$$

29) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{n x}{\tan (m x)}=\frac{n}{m} \lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}=\frac{n}{m}(1)=\frac{n}{m}
$$

30) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

32) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

34)

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (1-\cos x)}{1-\cos x}=1
$$

36)

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{x^{2}}=2 \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \\
& =2\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^{2}=2(1)^{2}=2
\end{aligned}
$$

38)

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2 / 5}}+2\right)=
$$

Solution:

$$
\lim _{x \rightarrow-\infty}\left(\frac{1}{x^{2} / 5}+2\right)=0+2=2
$$

40)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{4 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3-0+0}{9+0+0}=\frac{1}{3}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{\tan (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\tan (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

33) If $m \neq 0$, then

$$
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (n x)}{\sin (m x)}= & \frac{n}{m}\left(\lim _{x \rightarrow 0} \frac{\tan (n x)}{n x}\right)\left(\lim _{x \rightarrow 0} \frac{m x}{\sin (m x)}\right) \\
& =\frac{n}{m}(1)(1)=\frac{n}{m}
\end{aligned}
$$

35)

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)}=1
$$

37)

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}=
$$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \sqrt{\frac{1}{x^{2}}-\frac{3}{x}+4}
\end{gathered}=\sqrt{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}-\frac{3}{x}+4\right)}=\sqrt{0-0+4}
$$

39)

$$
\lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{3}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{0+0}{9+0+0}=0
\end{aligned}
$$

41)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{array}{r}
\lim _{x \rightarrow-\infty} \frac{3 x^{2}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{2}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
\quad=\lim _{x \rightarrow-\infty} \frac{-3+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3+0-0}{-9-0+0}=\frac{1}{3}
\end{array}
$$

42)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$\lim _{x \rightarrow \infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{5}}{x^{2}}-\frac{8 x}{x^{2}}+\frac{15}{x^{2}}}{\frac{9 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{13}{x^{2}}}$

$$
=\lim _{x \rightarrow \infty} \frac{3 x^{3}-\frac{8}{x}+\frac{15}{x^{2}}}{9+\frac{4}{x}-\frac{13}{x^{2}}}=\frac{3(\infty)-0+0}{9+0+0}=\infty
$$

44)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-3 x+7}-x\right) \\
& =\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}-3 x+7}-x\right) \times \frac{\left(\sqrt{x^{2}-3 x+7}+x\right)}{\left(\sqrt{x^{2}-3 x+7}+x\right)}\right] \\
& =\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}-3 x+7\right)-x^{2}}{\sqrt{x^{2}-3 x+7}+x}\right)=\lim _{x \rightarrow \infty}\left(\frac{-3 x+7}{\sqrt{x^{2}-3 x+7}+x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{-3 x}{x}+\frac{7}{x}}{\frac{\sqrt{x^{2}-3 x+7}}{x}+\frac{x}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{\frac{x^{2}}{x^{2}}-\frac{3 x}{x^{2}}+\frac{7}{x^{2}}}+1} \\
& =\lim _{x \rightarrow \infty} \frac{-3+\frac{7}{x}}{\sqrt{1-\frac{3}{x}+\frac{7}{x^{2}}}+1} \\
& \quad=\frac{-3+0}{\sqrt{1-0+0}+1}=\frac{-3}{1+1}=-\frac{3}{2}
\end{aligned}
$$

46)

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty} x^{2}\left(\frac{x^{2}}{x^{2}}-\frac{5 x}{x^{2}}+\frac{4}{x^{2}}\right) \\
& \quad=\lim _{x \rightarrow \infty} x^{2}\left(1-\frac{5}{x}+\frac{4}{x^{2}}\right)=(\infty)^{2}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow \infty}\left(x^{2}-5 x+4\right)=\lim _{x \rightarrow \infty}\left(x^{2}\right)=\infty
$$

43)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{3 x^{5}-8 x+15}{9 x^{2}+4 x-13}=\lim _{x \rightarrow-\infty} \frac{\frac{3 x^{5}}{-x^{2}}-\frac{8 x}{-x^{2}}+\frac{15}{-x^{2}}}{\frac{9 x^{2}}{-x^{2}}+\frac{4 x}{-x^{2}}-\frac{13}{-x^{2}}} \\
& \quad=\lim _{x \rightarrow-\infty} \frac{-3 x^{3}+\frac{8}{x}-\frac{15}{x^{2}}}{-9-\frac{4}{x}+\frac{13}{x^{2}}}=\frac{-3(-\infty)+0-0}{-9-0+0}=-\infty
\end{aligned}
$$

45)

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=
$$

Solution:

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)
$$

$$
=\lim _{x \rightarrow \infty}\left[\left(\sqrt{x^{2}+x}-x\right) \times \frac{\sqrt{x^{2}+x}+x}{\sqrt{x^{2}+x}+x}\right]
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+x\right)-x^{2}}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{2}+x}+x}\right)
$$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}+x}}{x}+\frac{x}{x}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{x}{x^{2}}}+1}
$$

$$
=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x}}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{1+1}
$$

$$
=\frac{1}{2}
$$

47)

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{x^{4}}{x^{4}}-\frac{2 x^{3}}{x^{4}}+\frac{9}{x^{4}}\right) \\
& \quad=\lim _{x \rightarrow-\infty} x^{4}\left(1-\frac{2}{x}+\frac{9}{x^{4}}\right)=(-\infty)^{4}(1-0+0)=\infty
\end{aligned}
$$

OR

$$
\lim _{x \rightarrow-\infty}\left(x^{4}-2 x^{3}+9\right)=\lim _{x \rightarrow-\infty}\left(x^{4}\right)=\infty
$$

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=
$$

Solution:
$\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{3 x^{2}-8}}{-x}+\frac{2}{-x}}{\frac{x}{-x}+\frac{5}{-x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}-8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{3 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{3-\frac{8}{x^{2}}}-\frac{2}{x}}{-1-\frac{5}{x}}=\frac{\sqrt{3-0}-0}{-1-0}=-\sqrt{3}
\end{aligned}
$$

50) The horizontal asymptotes of

$$
f(x)=\frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

Solution:
First, we have to find

$$
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}
$$

It is clear from the previous questions (48) and (49) that

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=\sqrt{3}
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}-8}+2}{x+5}=-\sqrt{3}
$$

Thus, the horizontal asymptotes are

$$
y= \pm \sqrt{3}
$$

52) The horizontal asymptote of

$$
f(x)=\frac{7 x^{2}+5}{3 x^{2}+2}
$$

Solution:
First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{7 x^{2}+5}{3 x^{2}+2} \\
\lim _{x \rightarrow \infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow \infty} \frac{\frac{7 x^{2}}{x^{2}}+\frac{5}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{7+\frac{5}{x^{2}}}{3+\frac{2}{x^{2}}}=\frac{7+0}{3+0}=\frac{7}{3}
\end{gathered}
$$

$\lim _{x \rightarrow-\infty} \frac{7 x^{2}+5}{3 x^{2}+2}=\lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}}{-x^{2}}+\frac{5}{-x^{2}}}{\frac{3 x^{2}}{-x^{2}}+\frac{2}{-x^{2}}}$

$$
=\lim _{x \rightarrow-\infty} \frac{-7-\frac{5}{x^{2}}}{-3-\frac{2}{x^{2}}}=\frac{-7-0}{-3-0}=\frac{7}{3}
$$

Thus, the horizontal asymptote is

$$
y=\frac{7}{3}
$$

53) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{x^{2}+2 x-3}}{2 x+7}
$$

Solution:
First, we have to find

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7} \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{x}}{\frac{2 x}{x}+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{2+\frac{7}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{2+\frac{7}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{2+\frac{7}{x}}=\frac{\sqrt{1+0-0}}{2+0}=\frac{1}{2} \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+2 x-3}}{2 x+7}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{x^{2}+2 x-3}}{-x}}{\frac{2 x}{-x}+\frac{7}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}+2 x-3}{x^{2}}}}{-2-\frac{7}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{1+\frac{2}{x}-\frac{3}{x^{2}}}}{-2-\frac{7}{x}}=\frac{\sqrt{1+0-0}}{-2-0}=-\frac{1}{2}
\end{aligned}
$$

Thus, the horizontal asymptotes are

$$
\text { 55) } \lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} & \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}-8}}{-x}+\frac{3}{-x}}{\frac{x}{-x}+\frac{1}{-x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{4-\frac{8}{x^{2}}}-\frac{3}{x}}{-1-\frac{1}{x}}=\frac{\sqrt{4-0}-0}{-1-0}=-2
\end{aligned}
$$

54) The horizontal asymptote of

$$
f(x)=\frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}
$$

Solution:

First, we have to find

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1} \\
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{2 x-3}}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{7 x}{x^{2}}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{2+\frac{7}{x}-\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{2+0-0}=\frac{0}{2}=0 \\
\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{2 x^{2}+7 x-1}=\lim _{x \rightarrow-\infty} \frac{\sqrt{2 x-3}}{\frac{-x^{2}}{2 x^{2}}+\frac{7 x}{-x^{2}}-\frac{1}{-x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x-3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2 x}{x^{4}}-\frac{3}{x^{4}}}}{2-\frac{7}{x}+\frac{1}{x^{2}}} \\
=\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{2}{x^{3}}-\frac{3}{x^{4}}}}{-2-\frac{7}{x}+\frac{1}{x^{2}}}=\frac{\sqrt{0-0}}{-2-0+0}=\frac{0}{-2}=0
\end{gathered}
$$

Thus, the horizontal asymptote is

$$
y=0
$$

56)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8}+3}{x+1}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}-8}}{x}+\frac{3}{x}}{\frac{x}{x}+\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4 x^{2}-8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}}{x^{2}}-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\sqrt{4-\frac{8}{x^{2}}}+\frac{3}{x}}{1+\frac{1}{x}}=\frac{\sqrt{4-0}+0}{1+0}=2
\end{aligned}
$$

1) If $f(x)$ is a differentiable function, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3) If $f(x)=x^{2}-3$, then $f^{\prime}(x)=$

Solution:

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3\right]-\left[x^{2}-3\right]}{h}
$$

5) If f is a differentiable function at a, then f is a continuous function at a.
6) If $y=x^{4}+5 x^{2}+3$, then $y^{\prime}=$ Solution:

$$
y^{\prime}=4 x^{3}+10 x
$$

9) If $y=x^{-5 / 2}$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=-\frac{5}{2} x^{-\frac{5}{2}-1}=-\frac{5}{2} x^{-7 / 2}
$$

11) If $y=(x-3)(x-2)$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
y=(x-3)(x-2)=x^{2}-5 x+6 \\
y^{\prime}=2 x-5
\end{gathered}
$$

13) If $y=\sqrt{x}(2 x+1)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\sqrt{x}(2 x+1)=2 x \sqrt{x}+\sqrt{x}=2 x^{\frac{3}{2}}+x^{\frac{1}{2}} \\
y^{\prime} & =\left(\frac{3}{2}\right)(2) x^{\frac{3}{2}-1}+\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=3 x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{1}{2}} \\
& =3 \sqrt{x}+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

OR

Use the rule $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$

$$
y^{\prime}=(2)(\sqrt{x})+\left(\frac{1}{2 \sqrt{x}}\right)(2 x+1)=2 \sqrt{x}+\frac{2 x+1}{2 \sqrt{x}}
$$

15) If $y=\frac{x+3}{x-2}$, then $\left.y^{\prime}\right|_{x=4}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}} \\
=\frac{-5}{(x-2)^{2}}=-\frac{5}{(x-2)^{2}} \\
\left.y^{\prime}\right|_{x=4}=-\frac{5}{(4-2)^{2}}=-\frac{5}{4}
\end{gathered}
$$

2) If $f(x)=4 x^{2}$, then $f^{\prime}(x)=$

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-4 x^{2}}{h}
$$

4) If $f(x)=\sqrt{x}, x \geq 0$, then $f^{\prime}(x)=$ Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

6) If f is a continuous function at a, then f is a differentiable function at a.
Solution:

False

8) If $y=x^{4}-5 x^{2}+3$, then $y^{\prime}=$

Solution:

$$
y^{\prime}=4 x^{3}-10 x
$$

10) If $y=\frac{1}{3 x^{3}}+2 \sqrt{x}=\frac{1}{3} x^{-3}+2 x^{1 / 2}$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y^{\prime} & =(-3)\left(\frac{1}{3}\right) x^{-3-1}+\left(\frac{1}{2}\right)(2) x^{\frac{1}{2}-1} \\
& =-x^{-4}+x^{-1 / 2}=-\frac{1}{x^{4}}+\frac{1}{x^{1 / 2}}=-\frac{1}{x^{4}}+\frac{1}{\sqrt{x}}
\end{aligned}
$$

12) If $y=\left(x^{3}+3\right)\left(x^{2}-1\right)$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
y & =\left(x^{3}+3\right)\left(x^{2}-1\right)=x^{5}-x^{3}+3 x^{2}-3 \\
y^{\prime} & =5 x^{4}-3 x^{2}+6 x
\end{aligned}
$$

14) If $y=\frac{x+3}{x-2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x-2)-(x+3)(1)}{(x-2)^{2}}=\frac{x-2-x-3}{(x-2)^{2}}=\frac{-5}{(x-2)^{2}} \\
& =-\frac{5}{(x-2)^{2}}
\end{aligned}
$$

16) If $y=\frac{x-1}{x+2}$, then $y^{\prime}=$

Solution:
Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
y^{\prime}=\frac{(1)(x+2)-(x-1)(1)}{(x+2)^{2}}=\frac{x+2-x+1}{(x+2)^{2}}=\frac{3}{(x+2)^{2}}
$$

17) If $y=\sqrt{3 x^{2}+6 x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}}
$$

19) The tangent line equation to the curve $y=x^{2}+2$ at the point $(1,3)$ is
Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=2 x
$$

Thus, the slope at $x=1$ is

$$
\left.y^{\prime}\right|_{x=1}=2(1)=2
$$

Hence, the tangent line equation passing through the point $(1,3)$ with slope $m=2$ is

$$
\begin{aligned}
y-3 & =2(x-1) \\
y-3 & =2 x-2 \\
y & =2 x-2+3 \\
y & =2 x+1
\end{aligned}
$$

21) The tangent line equation to the curve $y=3 x^{2}-13$ at the point $(2,-1)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=2}=6(2)=12
$$

Hence, the tangent line equation passing through the point $(2,-1)$ with slope $m=12$ is

$$
\begin{aligned}
y-(-1) & =12(x-2) \\
y+1 & =12 x-24 \\
y & =12 x-24-1 \\
y & =12 x-25
\end{aligned}
$$

23) If $y=x e^{x}$, then $y^{\prime}=$

Solution:

Use the rules $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=(1)\left(e^{x}\right)+(x)\left(e^{x}\right)=e^{x}+x e^{x}=e^{x}(1+x)
$$

25) If $x^{2}-y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x-2 y y^{\prime} & =0 \\
-2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{-2 y} \\
y^{\prime} & =\frac{x}{y}
\end{aligned}
$$

27) If $y=\frac{x+1}{x+2}$, then $y^{\prime}=$

Solution:

Use the rule $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
\begin{aligned}
y^{\prime} & =\frac{(1)(x+2)-(x+1)(1)}{(x+2)^{2}}=\frac{x+2-x-1}{(x+2)^{2}} \\
& =\frac{1}{(x+2)^{2}}
\end{aligned}
$$

18) If $y=\sqrt{3 x^{2}+6 x}$, then $\left.y^{\prime}\right|_{x=1}=$

Solution:

$$
\begin{gathered}
y^{\prime}=\frac{6 x+6}{2 \sqrt{3 x^{2}+6 x}}=\frac{6(x+1)}{2 \sqrt{3 x^{2}+6 x}}=\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}} \\
\left.y^{\prime}\right|_{x=1}=\frac{3((1)+1)}{\sqrt{3(1)^{2}+6(1)}}=\frac{6}{\sqrt{9}}=\frac{6}{3}=2
\end{gathered}
$$

20) The tangent line equation to the curve $y=\frac{2 x}{x+1}$ at the point $(0,0)$ is

Solution:

First, we have to find the slope of the curve which is

$$
y^{\prime}=\frac{(2)(x+1)-(2 x)(1)}{(x+1)^{2}}=\frac{2 x+2-2 x}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}
$$

Thus, the slope at $x=0$ is

$$
\left.y^{\prime}\right|_{x=0}=\frac{2}{(0+1)^{2}}=2
$$

Hence, the tangent line equation passing through the point $(0,0)$ with slope $m=2$ is

$$
y-0=(2)(x-0)
$$

$$
y=2 x
$$

22) The tangent line equation to the curve

$$
y=3 x^{2}+2 x+5 \text { at the point }(0,5) \text { is }
$$

Solution:
First, we have to find the slope of the curve which is

$$
y^{\prime}=6 x+2
$$

Thus, the slope at $x=2$ is

$$
\left.y^{\prime}\right|_{x=0}=6(0)+2=2
$$

Hence, the tangent line equation passing through the point $(0,5)$ with slope $m=2$ is

$$
\begin{aligned}
y-5 & =2(x-0) \\
y-5 & =2 x \\
y & =2 x+5
\end{aligned}
$$

24) If $y=x-e^{x}$, then $y^{\prime \prime}=$

Solution:
Use the rules $\quad(f-g)^{\prime}=f^{\prime}-g^{\prime}$ and $\quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =1-e^{x} \\
y^{\prime \prime} & =-e^{x}
\end{aligned}
$$

26) If $x^{2}+y^{2}=4$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{2 y} \\
y^{\prime} & =-\frac{x}{y}
\end{aligned}
$$

28) If $y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x$, then $y^{\prime}=$

Solution:

Use the rules

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y=\frac{1}{\sqrt[2]{x^{5}}}+\sec x=x^{-\frac{5}{2}}+\sec x$
$y^{\prime}=\left(-\frac{5}{2}\right) x^{-\frac{5}{2}-1}+\sec x \tan x=-\frac{5}{2} x^{-7 / 2}+\sec x \tan x$
29) If $y=\tan ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$

$$
y^{\prime}=\frac{1}{1+\left(x^{3}\right)^{2}} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{1+x^{6}}
$$

31) If $y=\sec ^{2} x-1$, then $y^{\prime}=$

Solution:
Use the rules $(f-g)^{\prime}=f^{\prime}-g^{\prime}, \quad(u)^{n}=n(u)^{n-1} . u^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u . u^{\prime}$

$$
y^{\prime}=2 \sec x . \sec x \tan x=2 \sec ^{2} x \tan x
$$

33) If $y=x^{\cos x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\cos u)^{\prime}=-\sin u . u^{\prime}$

$$
\begin{gathered}
y=x^{\cos x} \\
\ln y=\ln x^{\cos x} \\
\ln y=\cos x \cdot \ln x \\
\frac{y^{\prime}}{y}=-\sin x \cdot \ln x+\cos x \cdot \frac{1}{x}=-\sin x \cdot \ln x+\frac{\cos x}{x} \\
y^{\prime}=y\left(-\sin x \cdot \ln x+\frac{\cos x}{x}\right) \\
=x^{\cos x}\left(\frac{\cos x}{x}-\sin x \cdot \ln x\right)
\end{gathered}
$$

35) If $y=\frac{5^{x}}{\cot x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime} & =\frac{f^{\prime} g-f g^{\prime}}{g^{2}}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \\
& \text { and }(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime} \\
y^{\prime} & =\frac{\left(5^{x} \ln 5\right)(\cot x)-\left(5^{x}\right)\left(-\csc ^{2} x\right)}{(\cot x)^{2}} \\
& =\frac{5^{x}\left(\ln 5 \cot x+\csc ^{2} x\right)}{\cot ^{2} x}
\end{aligned}
$$

37) If $y=x^{-2} e^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rules $\quad(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(e^{u}\right)=e^{u} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(-2 x^{-3}\right) & \left(e^{\sin x}\right)+\left(x^{-2}\right)\left(e^{\sin x} \cdot \cos x\right) \\
& =-2 x^{-3} e^{\sin x}+x^{-2} \cos x e^{\sin x} \\
& =x^{-3} e^{\sin x}(-2+x \cos x) \\
& =x^{-3} e^{\sin x}(x \cos x-2)
\end{aligned}
$$

39) If $x^{2}+y^{2}=3 x y+7$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =3 y+3 x y^{\prime} \\
2 y y^{\prime}-3 x y^{\prime} & =3 y-2 x \\
y^{\prime}(2 y-3 x) & =3 y-2 x \\
y^{\prime} & =\frac{3 y-2 x}{2 y-3 x}
\end{aligned}
$$

30) If $y=\tan x-x$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
(f-g)^{\prime}=f^{\prime}-g^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=\sec ^{2} x-1
\end{gathered}
$$

32) If $y=x^{\sin x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=x^{\sin x} \\
\ln y=\ln x^{\sin x} \\
\ln y=\sin x \cdot \ln x \\
\frac{y^{\prime}}{y}=\cos x \cdot \ln x+\sin x \cdot \frac{1}{x}=\cos x \cdot \ln x+\frac{\sin x}{x} \\
y^{\prime}=y\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)=x^{\sin x}\left(\cos x \cdot \ln x+\frac{\sin x}{x}\right)
\end{gathered}
$$

34) If $y=\left(2 x^{2}+\csc x\right)^{9}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=9\left(2 x^{2}+\csc x\right)^{8} \cdot(4 x-\csc x \cot x)
$$

36) If $y=e^{2 x}$, then $y^{(6)}=$

Solution:

Use the rule $\quad\left(e^{u}\right)^{\prime}=e^{u} \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =2 e^{2 x} \\
y^{\prime \prime} & =4 e^{2 x} \\
y^{\prime \prime \prime} & =8 e^{2 x} \\
y^{(4)} & =16 e^{2 x} \\
y^{(5)} & =32 e^{2 x} \\
y^{(6)} & =64 e^{2 x}
\end{aligned}
$$

38) If $y=5^{\tan x}$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{gathered}
\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a \cdot u^{\prime} \text { and }(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime} \\
y^{\prime}=5^{\tan x} \cdot \ln 5 \cdot \sec ^{2} x
\end{gathered}
$$

40) If $y=\sin ^{3}(4 x)$, then $y^{(6)}=_{y^{\prime}}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$ and $(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =3 \sin ^{2}(4 x) \cdot \cos (4 x) \cdot(4) \\
& =12 \sin ^{2}(4 x) \cdot \cos (4 x)
\end{aligned}
$$

41) If $y=3^{x} \cot x$, then $y^{\prime}=$

Solution:

Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(a^{u}\right)^{\prime}=a^{u} \cdot \ln a . u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}=\left(3^{x} \cdot \ln 3\right) & (\cot x)+\left(3^{x}\right)\left(-\csc ^{2} x\right) \\
& =3^{x} \ln 3 \cot x-3^{x} \csc ^{2} x \\
& =3^{x}\left(\ln 3 \cot x-\csc ^{2} x\right)
\end{aligned}
$$

43) If $f(x)=\cos x$, then $f^{(45)}(x)=$

Solution:

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\sin x \\
f^{\prime \prime}(x) & =-\cos x \\
f^{\prime \prime \prime}(x) & =\sin x \\
f^{(4)}(x) & =\cos x
\end{aligned}
$$

Note: $f^{(n)}(x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{gathered}
f^{(44)}(x)=\cos x \\
f^{(45)}(x)=-\sin x
\end{gathered}
$$

45) If $y=x^{x}$, then $y^{\prime}=$

Solution:
Use the rule $(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln x^{x} \\
\ln y & =x \ln x \\
\frac{y^{\prime}}{y} & =(1)(\ln x)+(x)\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y} & =\ln x+1 \\
y^{\prime}=y(1+\ln x) & =x^{x}(1+\ln x)
\end{aligned}
$$

47) If $y=\cot ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=-\frac{e^{x}}{1+e^{2 x}}
$$

49) If $y=\sin ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

51) If $y=\cos \left(2 x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(2 x^{3}\right) \cdot\left(6 x^{2}\right)=-6 x^{2} \sin \left(2 x^{3}\right)
$$

42) If $y=\left(2 x^{2}+\sec x\right)^{7}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=7\left(2 x^{2}+\sec x\right)^{6} \cdot(4 x+\sec x \tan x)
$$

44) If $D^{47}(\sin x)=$

Solution:

$$
\begin{aligned}
D(\sin x) & =\cos x \\
D^{2}(\sin x) & =-\sin x \\
D^{3}(\sin x) & =-\cos x \\
D^{4}(\sin x) & =\sin x
\end{aligned}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{44}(\sin x)=\sin x \\
& D^{45}(\sin x)=\cos x \\
& D^{46}(\sin x)=-\sin x \\
& D^{47}(\sin x)=-\cos x
\end{aligned}
$$

46) If $f(x)=\frac{\ln x}{x^{2}}$, then $f^{\prime}(1)=$

Solution:
Use the rules $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad$ and $\quad(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{\left(\frac{1}{x}\right)\left(x^{2}\right)-(\ln x)(2 x)}{\left(x^{2}\right)^{2}}=\frac{x-2 x \ln x}{x^{4}} \\
=\frac{x(1-2 \ln x)}{x^{4}}=\frac{1-2 \ln x}{x^{3}}
\end{array}
$$

$$
\therefore \quad f^{\prime}(1)=\frac{1-2 \ln (1)}{(1)^{3}}=\frac{1-2(0)}{1}=1
$$

48) If $y=\tan ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}} \quad$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x}=\frac{e^{x}}{1+e^{2 x}}
$$

50) If $y=\cos ^{-1}\left(e^{x}\right)$, then $y^{\prime}=$

Solution:

Use the rules $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$ and $\left(e^{u}\right)=e^{u} \cdot u^{\prime}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x}=-\frac{e^{x}}{\sqrt{1-e^{2 x}}}
$$

52) If $y=\csc x \cot x$, then $y^{\prime}=$

Solution:
Use the rules $(f . g)^{\prime}=f^{\prime} g+f g^{\prime}$,
$(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$ and $(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$
$y^{\prime}=(-\csc x \cot x)(\cot x)+(\csc x)\left(-\csc ^{2} x\right)$ $=-\csc x \cot ^{2} x-\csc ^{3} x=-\csc x\left(\cot ^{2} x+\csc ^{2} x\right)$
53) If $y=\sqrt{x^{2}-2 \sec x}$, then $y^{\prime}=$ Solution:
Use the rules

$$
\begin{aligned}
(\sqrt{u})^{\prime} & =\frac{u^{\prime}}{2 \sqrt{u}} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \\
y^{\prime} & =\frac{2 x-2 \sec x \tan x}{2 \sqrt{x^{2}-2 \sec x}}=\frac{2(x-\sec x \tan x)}{2 \sqrt{x^{2}-2 \sec x}} \\
& =\frac{x-\sec x \tan x}{\sqrt{x^{2}-2 \sec x}}
\end{aligned}
$$

55) If $x y+\tan x=2 x^{3}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
{\left[(1)(y)+(x)\left(y^{\prime}\right)\right]+\sec ^{2} x=6 x^{2}+\cos y \cdot y^{\prime}} \\
y+x y^{\prime}+\sec ^{2} x=6 x^{2}+y^{\prime} \cos y \\
x y^{\prime}-y^{\prime} \cos y=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}(x-\cos y)=6 x^{2}-y-\sec ^{2} x \\
y^{\prime}=\frac{6 x^{2}-y-\sec ^{2} x}{x-\cos y}
\end{gathered}
$$

57) If $y=\sin ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:

Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

59) If $y=\sec ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\sec ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$

$$
y^{\prime}=\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=\frac{3}{x \sqrt{x^{6}-1}}
$$

61) If $y=\ln \left(x^{3}-2 \sec x\right)$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x^{3}-2 \sec x} \cdot\left(3 x^{2}-2 \sec x \tan x\right) \\
& =\frac{3 x^{2}-2 \sec x \tan x}{x^{3}-2 \sec x}
\end{aligned}
$$

63) If $y=\ln (\sin x)$, then $y^{\prime}=$

Solution:

Use the rules

$$
\begin{aligned}
& (\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad \text { and } \quad(\sin u)^{\prime}=\cos u \cdot u^{\prime} \\
& y^{\prime}=\frac{1}{\sin x} \cdot(\cos x)=\frac{\cos x}{\sin x}=\cot x
\end{aligned}
$$

54) If $y=\left(3 x^{2}+1\right)^{6}$, then $y^{\prime}=$

Solution:
Use the rule $\quad(u)^{n}=n(u)^{n-1} \cdot u^{\prime}$

$$
y^{\prime}=6\left(3 x^{2}+1\right)^{5} \cdot(6 x)=36 x\left(3 x^{2}+1\right)^{5}
$$

56) If $y=x^{-1} \sec x$, then $y^{\prime}=$

Solution:

Use the rules

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime}= & \left(-x^{-2}\right)(\sec x)+\left(x^{-1}\right)(\sec x \tan x) \\
& =x^{-1} \sec x \tan x-x^{-2} \sec x \\
& =x^{-2} \sec x(x \tan x-1)
\end{aligned}
$$

58) If $y=\cos ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
y^{\prime}=-\frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}} \cdot 3 x^{2}=-\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

60) If $y=\csc ^{-1}\left(x^{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\quad\left(\csc ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
$y^{\prime}=-\frac{1}{x^{3} \sqrt{\left(x^{3}\right)^{2}-1}} \cdot 3 x^{2}=-\frac{3 x^{2}}{x^{3} \sqrt{x^{6}-1}}=-\frac{3}{x \sqrt{x^{6}-1}}$
62) If $y=\ln (\cos x)$, then $y^{\prime}=$

Solution:

Use the rules

$(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\cos x} \cdot(-\sin x)=-\frac{\sin x}{\cos x}=-\tan x
$$

64) If $y=\ln \sqrt{3 x^{2}+5 x}$, then $y^{\prime}=$ Solution:
Use the rules $(\ln u)^{\prime}=\frac{u^{\prime}}{u} \quad$ and $(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
y^{\prime}=\frac{1}{\sqrt{3 x^{2}+5 x}} \cdot\left(\frac{6 x+5}{2 \sqrt{3 x^{2}+5 x}}\right)=\frac{6 x+5}{2\left(3 x^{2}+5 x\right)}
$$

65) If $y=\log _{5}\left(x^{3}-2 \csc x\right)$, then $y^{\prime}=$

Solution:
Use the rules
$\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$ and $(\csc u)^{\prime}=-\csc u \cot u \cdot u^{\prime}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2 \csc x\right)(\ln 5)} \cdot\left[3 x^{2}-2(-\csc x \cot x)\right]
$$

$$
=\frac{3 x^{2}+2 \csc x \cot x}{\left(x^{3}-2 \csc x\right)(\ln 5)}
$$

67) If $y=2 x^{3}-\sin x$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
y^{\prime}=6 x^{2}-\cos x
$$

68) If $y=x^{3} \cos x$, then $y^{\prime}=$

Solution:

Use the rules
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$ and $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\left(3 x^{2}\right)(\cos x)+\left(x^{3}\right)(-\sin x) \\
& =3 x^{2} \cos x-x^{3} \sin x
\end{aligned}
$$

69) If $y=x^{\sqrt{x}}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$

$$
\begin{gathered}
y=x^{\sqrt{x}} \\
\ln y=\ln x \sqrt{x} \\
\ln y=\sqrt{x} \ln x \\
\frac{y^{\prime}}{y}=\left(\frac{1}{2 \sqrt{x}}\right)(\ln x)+(\sqrt{x})\left(\frac{1}{x}\right) \\
\frac{y^{\prime}}{y}=\frac{\ln x}{2 \sqrt{x}}+\frac{\sqrt{x}}{x}=\frac{x \ln x+2 x}{2 x \sqrt{x}}=\frac{x(\ln x+2)}{2 x \sqrt{x}} \\
=\frac{\ln x+2}{2 \sqrt{x}} \\
y^{\prime}=y\left(\frac{\ln x+2}{2 \sqrt{x}}\right)=x^{\sqrt{x}}\left(\frac{\ln x+2}{2 \sqrt{x}}\right)
\end{gathered}
$$

71) If $y=\log _{7}\left(x^{3}-2\right)$, then $y^{\prime}=$

Solution:

Use the rule $\quad\left(\log _{a} u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$

$$
y^{\prime}=\frac{1}{\left(x^{3}-2\right)(\ln 7)} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{\left(x^{3}-2\right)(\ln 7)}
$$

66) If $y=\ln \frac{x-1}{\sqrt{x+2}}$, then $y^{\prime}=$

Solution:

Use the rules

$$
(\ln u)^{\prime}=\frac{u^{\prime}}{u},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \quad \text { and }(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}
$$

$$
y^{\prime}=\frac{1}{\frac{x-1}{\sqrt{x+2}}} \cdot\left(\frac{(1)(\sqrt{x+2})-(x-1)\left(\frac{1}{2 \sqrt{x+2}}\right)}{(\sqrt{x+2})^{2}}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\sqrt{x+2}-\frac{x-1}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{2(x+2)-(x-1)}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1} \cdot\left(\frac{\frac{x+5}{2 \sqrt{x+2}}}{x+2}\right)
$$

$$
=\frac{\sqrt{x+2}}{x-1}\left(\frac{x+5}{2(x+2) \sqrt{x+2}}\right)
$$

$$
=\frac{x+5}{2(x-1)(x+2)}
$$

70) If $y=(\sin x)^{x}$, then $y^{\prime}=$

Solution:

Use the rule $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$

$$
\begin{gathered}
y=(\sin x)^{x} \\
\ln y=\ln (\sin x)^{x} \\
\ln y=x \ln (\sin x) \\
\frac{y^{\prime}}{y}=(1)(\ln (\sin x))+(x)\left(\frac{\cos x}{\sin x}\right) \\
\frac{y^{\prime}}{y}=\ln (\sin x)+\frac{x \cos x}{\sin x}=\ln (\sin x)+x \cot x \\
y^{\prime}=y(\ln (\sin x)+x \cot x) \\
=(\sin x)^{x}(\ln (\sin x)+x \cot x)
\end{gathered}
$$

72) If $y=\cos \left(x^{5}\right)$, then $y^{\prime}=$

Solution:
Use the rule $(\cos u)^{\prime}=-\sin u \cdot u^{\prime}$

$$
y^{\prime}=-\sin \left(x^{5}\right) \cdot\left(5 x^{4}\right)=-5 x^{4} \sin \left(x^{5}\right)
$$

73) If $y=\sec x \tan x$, then $y^{\prime}=$

Solution:
$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime} \quad$ and $(\tan u)^{\prime}=\sec ^{2} u \cdot u^{\prime}$
$y^{\prime}=(\sec x \tan x)(\tan x)+(\sec x)\left(\sec ^{2} x\right)$
$=\sec x \tan ^{2} x+\sec ^{3} x=\sec x\left(\tan ^{2} x+\sec ^{2} x\right)$
75) If $y=(x+\sec x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\sec x)^{2} \cdot(1+\sec x \tan x)
$$

77) If $x^{2}-5 y^{2}+\sin y=0$, then $y^{\prime}=$

Solution:

$$
\begin{gathered}
2 x-10 y y^{\prime}+\cos y \cdot y^{\prime}=0 \\
y^{\prime}(-10 y+\cos y)=-2 x \\
y^{\prime}=\frac{-2 x}{-10 y+\cos y}=\frac{2 x}{10 y-\cos y}
\end{gathered}
$$

79) If $f(x)=\sin ^{2}\left(x^{3}+1\right)$, then $f^{\prime}(x)=$

Solution:

Use the rules
$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\sin u)^{\prime}=\cos u \cdot u^{\prime}$
$f^{\prime}(x)=2 \sin \left(x^{3}+1\right) \cdot\left(\cos \left(x^{3}+1\right)\right) \cdot\left(3 x^{2}\right)$ $=6 x^{2} \sin \left(x^{3}+1\right) \cos \left(x^{3}+1\right)$
81) If $y=\tan ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\tan ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{1+u^{2}}$
$y^{\prime}=\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=\frac{1}{2\left(\frac{4+x^{2}}{4}\right)}=\frac{2}{4+x^{2}}$
83) If $y=\sin ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\sin ^{-1} u\right)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

74) If $D^{99}(\cos x)=$

Solution:

$$
\begin{aligned}
D(\cos x) & =-\sin x \\
D^{2}(\cos x) & =-\cos x \\
D^{3}(\cos x) & =\sin x \\
D^{4}(\cos x) & =\cos x
\end{aligned}
$$

Note: $D^{n}(\cos x)=\cos x$ whenever n is a multiple of 4 . Hence,

$$
\begin{aligned}
& D^{96}(\cos x)=\cos x \\
& D^{97}(\cos x)=-\sin x \\
& D^{99}(\cos x)=-\cos x \\
& D^{99}(\cos x)=\sin x
\end{aligned}
$$

76) If $x^{2}=5 y^{2}+\sin y$, then $y^{\prime}=$

Solution:

$$
\begin{aligned}
2 x & =10 y y^{\prime}+\cos y \cdot y^{\prime} \\
y^{\prime}(10 y+\cos y) & =2 x \\
y^{\prime} & =\frac{2 x}{10 y+\cos y}
\end{aligned}
$$

78) If $y=\sin x \sec x$, then $y^{\prime}=$

Solution:

$(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad(\sin u)^{\prime}=\cos u . u^{\prime}$ and

$$
(\sec u)^{\prime}=\sec u \tan u \cdot u^{\prime}
$$

$y^{\prime}=(\cos x)(\sec x)+(\sin x)(\sec x \tan x)$
$=1+\sin x \cdot \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}=1+\frac{\sin ^{2} x}{\cos ^{2} x}=1+\tan ^{2} x$
$=\sec ^{2} x$
80) If $y=(x+\cot x)^{3}$, then $y^{\prime}=$

Solution:

Use the rules

$(u)^{n}=n(u)^{n-1} \cdot u^{\prime} \quad$ and $\quad(\cot u)^{\prime}=-\csc ^{2} u \cdot u^{\prime}$

$$
y^{\prime}=3(x+\cot x)^{2} \cdot\left(1-\csc ^{2} x\right)
$$

82) If $y=\cot ^{-1}\left(\frac{x}{2}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cot ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{1+u^{2}}$

$$
\begin{gathered}
y^{\prime}=-\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot \frac{1}{2}=-\frac{1}{2\left(1+\frac{x^{2}}{4}\right)}=-\frac{1}{2\left(\frac{4+x^{2}}{4}\right)} \\
=-\frac{2}{4+x^{2}}
\end{gathered}
$$

84) If $y=\cos ^{-1}\left(\frac{x}{3}\right)$, then $y^{\prime}=$

Solution:
Use the rule $\left(\cos ^{-1} u\right)^{\prime}=-\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
\begin{aligned}
y^{\prime} & =-\frac{1}{\sqrt{1-\left(\frac{x}{3}\right)^{2}}} \cdot \frac{1}{3}=-\frac{1}{3 \sqrt{1-\frac{x^{2}}{9}}}=-\frac{1}{3 \sqrt{\frac{9-x^{2}}{9}}} \\
& =-\frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

85) If $D^{99}(\sin x)=$

Solution:

$$
\begin{gathered}
D(\sin x)=\cos x \\
D^{2}(\sin x)=-\sin x \\
D^{3}(\sin x)=-\cos x \\
D^{4}(\sin x)=\sin x
\end{gathered}
$$

Note: $D^{n}(\sin x)=\sin x$ whenever n is a multiple of 4 .
Hence,

$$
\begin{aligned}
& D^{96}(\sin x)=\sin x \\
& D^{97}(\sin x)=\cos x \\
& D^{98}(\sin x)=-\sin x \\
& D^{99}(\sin x)=-\cos x
\end{aligned}
$$

Workshop Solutions to Sections 5.1 and 5.2

1) The absolute maximum value of $f(x)=x^{3}-2 x^{2}$ in $[-1,2]$ is at $x=$

Solution:

Since $f(x)$ is a continuous on $[-1,2]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=x^{3}-2 x^{2} \\
f^{\prime}(x)=3 x^{2}-4 x
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-4 x=0 \underset{ }{\Rightarrow} x(3 x-4)=0 \\ & \Rightarrow x=0 \text { or } x=\frac{4}{3}\end{aligned}$
Thus,
$f(-1)=(-1)^{3}-2(-1)^{2}=-1-2=-3$
$f(2)=(2)^{3}-2(2)^{2}=8-8=0$
$f(0)=(0)^{3}-2(0)^{2}=0-0=0$
$f\left(\frac{4}{3}\right)=\left(\frac{4}{3}\right)^{3}-2\left(\frac{4}{3}\right)^{2}=\frac{64}{27}-\frac{32}{9}=-\frac{32}{27}$
Hence, we see that the absolute maximum value is 0 at $x=0$ and $x=2$
3) The absolute maximum point of $f(x)=3 x^{2}-12 x+1$ in $[0,3]$ is

Solution:

Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+1 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$f^{\prime}(x)=0 \quad \Rightarrow \quad 6 x-12=0 \quad \Rightarrow \quad 6 x=12$

$$
\Rightarrow \quad x=2
$$

Thus,
$f(0)=3(0)^{2}-12(0)+1=0-0+1=1$
$f(3)=3(3)^{2}-12(3)+1=27-36+1=-8$
$f(2)=3(2)^{2}-12(2)+1=12-24+1=-11$
Hence, we see that the absolute maximum point is $(0,1)$.
5) The absolute minimum point of $f(x)=3 x^{2}-12 x+2$ in $[0,3]$ is

Solution:

Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+2 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when
$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \quad 6 x-12=0 \quad \Rightarrow \quad 6 x=12 \\ & \Rightarrow \quad x=2\end{aligned}$
Thus,
$f(0)=3(0)^{2}-12(0)+2=0-0+2=2$
$f(3)=3(3)^{2}-12(3)+2=27-36+2=-7$
$f(2)=3(2)^{2}-12(2)+2=12-24+2=-10$
Hence, we see that the absolute minimum point is $(2,-10)$.
2) The absolute minimum value of $f(x)=x^{3}-3 x^{2}+1$ in $\left[-\frac{1}{2}, 4\right]$ is

Solution:

Since $f(x)$ is a continuous on $\left[-\frac{1}{2}, 4\right]$, we can use the
Closed Interval Method,

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+1 \\
& f^{\prime}(x)=3 x^{2}-6 x
\end{aligned}
$$

Now, we find the critical numbers of $f(x)$ when

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-6 x=0 \quad \Rightarrow \quad 3 x(x-2)=0 \\
& \Rightarrow x=0 \text { or } x=2
\end{aligned}
$$

Thus,
$f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+1=-\frac{1}{8}-\frac{3}{4}+1=\frac{1}{8}$
$f(4)=(4)^{3}-3(4)^{2}+1=64-48+1=17$
$f(0)=(0)^{3}-3(0)^{2}+1=0-0+1=1$
$f(2)=(2)^{3}-3(2)^{2}+1=8-12+1=-3$
Hence, we see that the absolute minimum value is -3 at $x=2$
4) The absolute minimum point of $f(x)=3 x^{2}-12 x+1$ in $[0,3]$ is

Solution:

Since $f(x)$ is a continuous on $[0,3]$, we can use the Closed Interval Method,

$$
\begin{gathered}
f(x)=3 x^{2}-12 x+1 \\
f^{\prime}(x)=6 x-12
\end{gathered}
$$

Now, we find the critical numbers of $f(x)$ when

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow \quad 6 x-12=0 \quad \Rightarrow \quad 6 x=12 \\
& \Rightarrow \quad x=2
\end{aligned}
$$

Thus,
$f(0)=3(0)^{2}-12(0)+1=0-0+1=1$
$f(3)=3(3)^{2}-12(3)+1=27-36+1=-8$
$f(2)=3(2)^{2}-12(2)+1=12-24+1=-11$
Hence, we see that the absolute minimum point is $(2,-11)$.
6) The values in $(-3,3)$ which make $f(x)=x^{3}-9 x$
satisfy Rolle's Theorem on $[-3,3]$ are deleted

Solution:

$\because f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[-3,3]$.
2- $f(x)$ is differentiable on $(-3,3)$,

$$
f^{\prime}(x)=3 x^{2}-9
$$

3- $f(-3)=(-3)^{3}-9(-3)=-27+27=0=f(3)$
Then there is a number $c \in(-3,3)$ such that
$f^{\prime}(c)=0 \quad \Rightarrow \quad 3 c^{2}-9=0 \quad \Rightarrow \quad 3 c^{2}=9$

$$
\Rightarrow c^{2}=3 \Rightarrow c= \pm \sqrt{3}
$$

Hence, the values are $\pm \sqrt{3} \in(-3,3)$.
7) The values in $(0,2)$ which make
$f(x)=x^{3}-3 x^{2}+2 x+5$ satisfy Rolle's Theorem on $[0,2]$ are deleted

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,2]$.
2- $f(x)$ is differentiable on $(0,2)$,
$f^{\prime}(x)=3 x^{2}-6 x+2$
3- $f(0)=(0)^{3}-3(0)^{2}+2(0)+5=5=f(2)$
Then there is a number $c \in(0,2)$ such that

$$
\begin{gathered}
f^{\prime}(c)=0 \Rightarrow 3 c^{2}-6 c+2=0 \\
\Rightarrow \quad c=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(2)}}{2(3)}=\frac{6 \pm \sqrt{36-24}}{6} \\
=\frac{6 \pm \sqrt{12}}{6}=\frac{6 \pm \sqrt{3 \times 4}}{6}=\frac{6 \pm 2 \sqrt{3}}{6} \\
= \\
=\frac{2(3 \pm \sqrt{3})}{6}=\frac{3 \pm \sqrt{3}}{3}=\frac{3}{3} \pm \frac{\sqrt{3}}{3} \\
=1 \pm \frac{\sqrt{3}}{3}
\end{gathered}
$$

Hence, the values are $1 \pm \frac{\sqrt{3}}{3} \in(0,2)$.
9) The value c in $(0,2)$ makes $f(x)=x^{3}-x$ satisfied the Mean Value Theorem on [0,2] are deleted

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,2]$.
2- $f(x)$ is differentiable on $(0,2)$,

$$
f^{\prime}(x)=3 x^{2}-1
$$

Then there is a number $c \in(0,3)$ such that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(2)-f(0)}{2-0} \\
& \Rightarrow 3 c^{2}-1=\frac{\left[(2)^{3}-(2)\right]-\left[(0)^{3}-(0)\right]}{2} \\
& \Rightarrow 3 c^{2}-1=\frac{(6)-(0)}{2} \\
& \Rightarrow 3 c^{2}-1=\frac{6}{2} \\
& \Rightarrow 3 c^{2}-1=3 \\
& \Rightarrow 3 c^{2}=3+1 \\
& \Rightarrow c^{2}=\frac{4}{3} \\
& \Rightarrow c= \pm \sqrt{\frac{4}{3}} \\
& \Rightarrow c= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

Hence, the value c is $\frac{2}{\sqrt{3}} \in(0,2)$ but $-\frac{2}{\sqrt{3}} \notin(0,2)$.
11) The critical numbers of the function

$$
f(x)=x^{3}+3 x^{2}-9 x+1 \text { are }
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 3 x^{\prime}(x)=3 x^{2}+6 x-9 x-9=0 \\
& \Rightarrow 3\left(x^{2}+2 x-3\right)=0 \\
& \Longrightarrow x^{2}+2 x-3=0 \\
& \Rightarrow(x+3)(x-1)=0 \\
& \Rightarrow x=-3 \text { or } x=1
\end{aligned}
$$

8) The value c in $(0,5)$ which makes $f(x)=x^{2}-x-6$
satisfy the Mean Value Theorem on [0,5] is deleted
Solution:
$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,5]$.
2- $f(x)$ is differentiable on $(0,5)$,

$$
f^{\prime}(x)=2 x-1
$$

Then there is a number $c \in(0,5)$ such that

$$
\begin{aligned}
f^{\prime}(c)= & \frac{f(5)-f(0)}{5-0} \\
& \Rightarrow 2 c-1=\frac{\left[(5)^{2}-(5)-6\right]-\left[(0)^{2}-(0)-6\right]}{5} \\
& \Rightarrow 2 c-1=\frac{(14)-(-6)}{5} \\
& \Rightarrow 2 c-1=\frac{14+6}{5} \\
& \Rightarrow 2 c-1=4 \\
& \Rightarrow 2 c=4+1 \\
& \Rightarrow c=\frac{5}{2}
\end{aligned}
$$

Hence, the value c is $\frac{5}{2} \in(0,5)$.
10) The value in $(0,1)$ which makes $f(x)=3 x^{2}+2 x+5$ satisfy the Mean Value Theorem on $[0,1]$ is deleted

Solution:

$\because \quad f(x)$ is a polynomial, then
1- $f(x)$ is a continuous on $[0,1]$.
2- $f(x)$ is differentiable on $(0,1)$,

$$
f^{\prime}(x)=6 x+2
$$

Then there is a number $c \in(0,1)$ such that
$f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$

$$
\Rightarrow \quad 6 c+2=\frac{\left[3(1)^{2}+2(1)+5\right]-\left[3(0)^{2}+2(0)+5\right]}{1}
$$

$\Rightarrow 6 c+2=(3+2+5)-(0+0+5)$
$\Rightarrow 6 c+2=10-5$
$\Rightarrow 6 c+2=5$
$\Rightarrow 6 c=5-2$
$\Rightarrow \quad 6 c=3$
$\Rightarrow \quad c=\frac{3}{6}$
$\Rightarrow c=\frac{1}{2}$
Hence, the values are $\frac{1}{2} \in(0,1)$.
12) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ is decreasing on

Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & 3 x^{2}+6 x-9=0 \\ & 3\left(x^{2}+2 x-3\right)=0 \\ & x^{2}+2 x-3=0 \\ & (x+3)(x-1)=0 \\ & x=-3 \text { or } x=1 \\ & 1 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicit y

Hence, the function $f(x)$ is decreasing on $(-3,1)$
14) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has a relative maximum value at the point
Solution:

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}+6 x-9=0$

$$
\Rightarrow \quad 3\left(x^{2}+2 x-3\right)=0
$$

$$
\Rightarrow \quad x^{2}+2 x-3=0
$$

$$
\Rightarrow \quad(x+3)(x-1)=0
$$

$$
\Rightarrow \quad x=-3 \text { or } x=1
$$

| +3 | - | + | Sign of
 $f^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| | | | Kind of
 monotonicit
 y |

Hence, the function $f(x)$ has a relative maximum value at the point $(-3,28)$.
$f(-3)=(-3)^{3}+3(-3)^{2}-9(-3)+1$
$=-27+27+27+1=28$
16) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ concave upward on

Solution:

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

$f^{\prime \prime}(x)=6 x+6$
$f^{\prime \prime}(x)=0 \Rightarrow 6 x+6=0$
$\Rightarrow \quad 6 x=-6$
$\Rightarrow x=-\frac{6}{6}$
$\Rightarrow \quad x=-1$

-1		+
-	\cup	Sign of $f^{\prime \prime}(x)$ concavity of
\cap		

Hence, the function $f(x)$ is concave upward on $(-1, \infty)$
13) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ is increasing on

Solution:

		$f^{\prime}(x)=3 x^{2}+6 x-9$
$f^{\prime}(x)=0$	\Rightarrow	$3 x^{2}+6 x-9=0$
	\Rightarrow	$3\left(x^{2}+2 x-3\right)=0$
	\Rightarrow	$x^{2}+2 x-3=0$
	\Rightarrow	$(x+3)(x-1)=0$
	\Rightarrow	$x=-3$ or $x=1$

Hence, the function $f(x)$ is increasing on $(-\infty,-3) \cup(1, \infty)$
15) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has a relative minimum value at the point
Solution:

		$f^{\prime}(x)=3 x^{2}+6 x-9$
$f^{\prime}(x)=0$	\Rightarrow	$3 x^{2}+6 x-9=0$
	\Rightarrow	$3\left(x^{2}+2 x-3\right)=0$
	\Rightarrow	$x^{2}+2 x-3=0$
	\Rightarrow	$(x+3)(x-1)=0$
	\Rightarrow	$x=-3$ or $x=1$

Hence, the function $f(x)$ has a relative minimum value at the point $(1,-4)$.
$f(1)=(1)^{3}+3(1)^{2}-9(1)+1$ $=1+3-9+1=-4$
17) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
& f^{\prime \prime}(x)=6 x+6 \\
& f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x+6=0 \\
& \Rightarrow \quad 6 x=-6 \\
& \Rightarrow x=-\frac{6}{6} \\
& \Rightarrow \quad x=-1
\end{aligned}
$$

Hence, the function $f(x)$ is concave downward on $(-\infty,-1)$
18) The function $f(x)=x^{3}+3 x^{2}-9 x+1$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}+6 x-9
$$

$f^{\prime \prime}(x)=0 \quad f^{\prime \prime}(x)=6 x+6$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x+6=0$
$\Rightarrow \quad 6 x=-6$
$\Rightarrow x=-\frac{6}{6}$
$\Rightarrow \quad x=-1$
-1

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(-1,12)$.

$$
f(-1)=(-1)^{3}+3(-1)^{2}-9(-1)+1
$$

$$
=-1+3+9+1=12
$$

20) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ is decreasing on
Solution:

		$f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime}(x)=0$	\Rightarrow	$3 x^{2}-6 x-9=0$
\Rightarrow	$3\left(x^{2}-2 x-3\right)=0$	
\Rightarrow	$x^{2}-2 x-3=0$	
	\Rightarrow	$(x+1)(x-3)=0$
	\Rightarrow	$x=-1 \quad$ or $x=3$

Hence, the function $f(x)$ is decreasing on $(-1,3)$
22) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has a relative maximum value at the point

Solution:

Hence, the function $f(x)$ has a relative maximum value at the point $(-1,6)$.
$f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)+1$ $=-1-3+9+1=6$.
19) The critical numbers of the function
$f(x)=x^{3}-3 x^{2}-9 x+1$ are

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-6 x-9=0 \\
& \Rightarrow 3\left(x^{2}-2 x-3\right)=0 \\
& \Rightarrow x^{2}-2 x-3=0 \\
& \Rightarrow(x+1)(x-3)=0 \\
& \Rightarrow x=-1 \quad \text { or } x=3
\end{aligned}
$$

21) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ is increasing on

Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x-9 \\ & 3 x^{2}-6 x-9=0 \\ & 3\left(x^{2}-2 x-3\right)=0 \\ & x^{2}-2 x-3=0 \\ & (x+1)(x-3)=0 \\ & x=-1 \text { or } x=3 \\ & 3 \end{aligned}$		
+	-	$+$	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ is increasing on
$(-\infty,-1) \cup(3, \infty)$
23) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has a relative minimum value at the point

Solution:

$\left.\begin{array}{rll} & & f^{\prime}(x)=3 x^{2}-6 x-9 \\ f^{\prime}(x)=0 & \Rightarrow & 3 x^{2}-6 x-9=0 \\ & \Rightarrow & 3\left(x^{2}-2 x-3\right)=0 \\ & \Rightarrow & x^{2}-2 x-3=0 \\ & \Rightarrow & (x+1)(x-3)=0 \\ & \Rightarrow & x=-1 \quad \text { or } x=3\end{array}\right]$

Hence, the function $f(x)$ has a relative minimum value at the point $(3,-26)$.
$f(3)=(3)^{3}-3(3)^{2}-9(3)+1$

$$
=27-27-27+1=-26 \text {. }
$$

24) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ concave upward on

Solution:

for $\quad f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x-6=0$

$$
\Rightarrow \quad 6 x=6
$$

$$
\Rightarrow \quad x=\frac{6}{6}
$$

$$
\Rightarrow \quad x=1
$$

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$
26) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ has an inflection point at
Solution:

	$f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime \prime}(x)=6 x-6$	
$f^{\prime \prime}(x)=0$	$\Rightarrow 6 x-6=0$
	$\Rightarrow 6 x=6$
	$\Rightarrow x=\frac{6}{6}$
	$\Rightarrow x=1$

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,-10)$.

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1)^{2}-9(1)+1 \\
& =1-3-9+1=-10
\end{aligned}
$$

28) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ is decreasing on
Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & -3 \end{aligned}$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & 3 x^{2}+6 x-9=0 \\ & 3\left(x^{2}+2 x-3\right)=0 \\ & x^{2}+2 x-3=0 \\ & (x+3)(x-1)=0 \\ & x=-3 \text { or } x=1 \\ & 1 \end{aligned}$		
+	-	+	$\begin{aligned} & \text { Sign of } \\ & f^{\prime}(x) \end{aligned}$
\square			Kind of monotonicit y

Hence, the function $f(x)$ is decreasing on $(-3,1)$.
25) The function $f(x)=x^{3}-3 x^{2}-9 x+1$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & 6 x=6 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

1		+
Sign of $f^{\prime \prime}(x)$		
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$
27) The critical numbers of the function
$f(x)=x^{3}+3 x^{2}-9 x+5$ are
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}+6 x-9=0 \\
& \Rightarrow 3\left(x^{2}+2 x-3\right)=0 \\
& \Rightarrow x^{2}+2 x-3=0 \\
& \Rightarrow(x+3)(x-1)=0 \\
& \Rightarrow x=-3 \text { or } x=1
\end{aligned}
$$

29) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ is increasing on
Solution:
$\left.\begin{array}{rll} & \\ f^{\prime}(x)=0 & & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & \Rightarrow 3 x^{2}+6 x-9=0 \\ & \Rightarrow & 3\left(x^{2}+2 x-3\right)=0 \\ & \Rightarrow & x^{2}+2 x-3=0 \\ & \Rightarrow & (x+3)(x-1)=0 \\ \hline+ & x=-3 \text { or } x=1\end{array}\right]$

Hence, the function $f(x)$ is increasing on $(-\infty,-3) \cup(1, \infty)$.
30) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has a relative minimum value at the point

Solution:

Hence, the function $f(x)$ has a relative minimum value at the point $(1,0)$.
$f(1)=(1)^{3}+3(1)^{2}-9(1)+5$

$$
=1+3-9+5=0
$$

32) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has an inflection point at
Solution:

$\begin{aligned} f^{\prime \prime}(x)=0 & = \\ & = \\ & = \\ & =\end{aligned}$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & f^{\prime \prime}(x)=6 x+6 \\ & 6 x+6=0 \\ & 6 x=-6 \\ & x=-\frac{6}{6} \\ & x=-1 \\ & -1 \\ & \hline \end{aligned}$	
-	+	Sign of $f^{\prime \prime}(x)$
\bigcap		Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(-1,16)$.

$$
\begin{aligned}
f(-1) & =(-1)^{3}+3(-1)^{2}-9(-1)+5 \\
& =-1+3+9+5=16
\end{aligned}
$$

34) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ concave upward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
& f^{\prime \prime}(x)=6 x+6 \\
& f^{\prime \prime}(x)=0 \Rightarrow \\
& 6 x+6=0 \\
& 6 x=-6 \\
& \Rightarrow x=-\frac{6}{6} \\
& \Rightarrow x=-1
\end{aligned}
$$

-1

-	+	Sign of $f^{\prime \prime}(x)$
Ω	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(-1, \infty)$.
31) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ has a relative maximum value at the point

Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & 3 x^{2}+6 x-9=0 \\ & 3\left(x^{2}+2 x-3\right)=0 \\ & x^{2}+2 x-3=0 \\ & (x+3)(x-1)=0 \\ & x=-3 \text { or } x=1 \\ & 1 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicit y

Hence, the function $f(x)$ has a relative maximum value at the point $(-3,32)$.
$f(-3)=(-3)^{3}+3(-3)^{2}-9(-3)+5$

$$
=-27+27+27+5=32
$$

33) The function $f(x)=x^{3}+3 x^{2}-9 x+5$ concave downward on
Solution:

$\begin{aligned} f^{\prime \prime}(x)=0 & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow\end{aligned}$	$\begin{array}{ll} & f^{\prime}(x)=3 x^{2}+6 x-9 \\ & f^{\prime \prime}(x)=6 x+6 \\ \Rightarrow & 6 x+6=0 \\ \Rightarrow & 6 x=-6 \\ \Rightarrow & x=-\frac{6}{6} \\ \Rightarrow & x=-1 \\ & -1 \\ \hline \end{array}$	
-	+	Sign of $f^{\prime \prime}(x)$
\bigcirc		Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty,-1)$.
35) The critical numbers of the function

$$
f(x)=x^{3}-3 x^{2}-9 x+5 \text { are }
$$

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-6 x-9=0 \\
& \Rightarrow 3\left(x^{2}-2 x-3\right)=0 \\
& \Rightarrow x^{2}-2 x-3=0 \\
& \Rightarrow(x+1)(x-3)=0 \\
& \Rightarrow x=-1 \text { or } x=3
\end{aligned}
$$

36) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ is increasing on

Solution:

		$f^{\prime}(x)=3 x^{2}-6 x-9$
$f^{\prime}(x)=0$	$\Rightarrow 3 x^{2}-6 x-9=0$	
\Rightarrow	$3\left(x^{2}-2 x-3\right)=0$	
\Rightarrow	$x^{2}-2 x-3=0$	
\Rightarrow	$(x+1)(x-3)=0$	
	\Rightarrow	$x=-1 \quad$ or $x=3$

Hence, the function $f(x)$ is increasing on $(-\infty,-1) \cup(3, \infty)$.
38) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has a relative maximum value at the point
Solution:
37) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ is decreasing on
Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(x)=3 x^{2}-6 x-9 \\ & 3 x^{2}-6 x-9=0 \\ & 3\left(x^{2}-2 x-3\right)=0 \\ & x^{2}-2 x-3=0 \\ & (x+1)(x-3)=0 \\ & x=-1 \quad \text { or } x=3 \\ & 3 \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
∇	X		Kind of monotonicity

Hence, the function $f(x)$ is decreasing on $(-1,3)$.
39) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has a relative minimum value at the point
Solution:

Hence, the function $f(x)$ has a relative minimum value at the point $(3,-22)$.
$f(3)=(3)^{3}-3(3)^{2}-9(3)+5$

$$
=27-27-27+5=-22 .
$$

41) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ concave downward on

Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-6 \\
\Rightarrow & 6 x-6=0 \\
\Rightarrow & 6 x=6 \\
\Rightarrow & x=\frac{6}{6} \\
\Rightarrow & x=1
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.
42) The function $f(x)=x^{3}-3 x^{2}-9 x+5$ has an inflection point at

Solution:

Hence, the function $f(x)$ has an inflection point at $(1,-6)$.

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1)^{2}-9(1)+5 \\
& =1-3-9+5=-6
\end{aligned}
$$

44) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ is increasing on

Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}-x-2=0$

$$
\Rightarrow \quad(x+1)(x-2)=0
$$

$$
\Rightarrow \quad x=-1 \quad \text { or } x=2
$$

| + | - | + | Sign of $f^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| | | | Kind of
 monotonicity |

Hence, the function $f(x)$ is increasing on $(-\infty,-1) \cup(2, \infty)$.
46) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ has a relative maximum point
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}-x-2=0$

$$
\Rightarrow \quad(x+1)(x-2)=0
$$

$$
\Rightarrow \quad x=-1 \text { or } x=2
$$

$$
\begin{array}{ll}
-1 & 2 \\
\hline
\end{array}
$$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $\left(-1, \frac{13}{6}\right)$.
$f(-1)=\frac{1}{3}(-1)^{3}-\frac{1}{2}(-1)^{2}-2(-1)+1$

$$
=-\frac{1}{3}-\frac{1}{2}+2+1=\frac{13}{6}
$$

43) The critical numbers of the function
$f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ are
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2 \\
f^{\prime}(x)=0 & \Rightarrow x^{2}-x-2=0 \\
& \Rightarrow \quad(x+1)(x-2)=0 \\
& \Rightarrow \quad x=-1 \quad \text { or } \quad x=2
\end{aligned}
$$

45) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ is decreasing on

Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}-x-2=0$
	$\Rightarrow \quad(x+1)(x-2)=0$
	$\Rightarrow \quad x=-1 \quad$ or $x=2$

Hence, the function $f(x)$ is decreasing on $(-1,2)$.
47) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ has a relative minimum point Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}-x-2=0$

$$
\Rightarrow \quad(x+1)(x-2)=0
$$

$$
\Rightarrow \quad x=-1 \quad \text { or } x=2
$$

$-1 \quad 2$

+	-	+	Sign of $f^{\prime}(x)$
		Kind of monotonicity	

Hence, the function $f(x)$ has a relative minimum point at $\left(2,-\frac{7}{3}\right)$.

$$
\begin{aligned}
f(2) & =\frac{1}{3}(2)^{3}-\frac{1}{2}(2)^{2}-2(2)+1 \\
& =\frac{8}{3}-\frac{4}{2}-4+1=-\frac{7}{3}
\end{aligned}
$$

48) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ concave upward on
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x-1=0$

$$
\Rightarrow \quad 2 x=1
$$

$$
\Rightarrow \quad x=\frac{1}{2}
$$

Hence, the function $f(x)$ is concave upward on $\left(\frac{1}{2}, \infty\right)$.
50) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ has an inflection point at

Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2$				
$f^{\prime \prime}(x)=0$	$\Rightarrow \quad f^{\prime \prime}(x)=2 x-1$				
	$\Rightarrow 2 x=1=0$				
	$\Rightarrow \quad x=\frac{1}{2}$	\quad	-	+	Sign of $f^{\prime \prime}(x)$
:---:	:---:	:---:			
\cap	\bigcup	Kind of concavity			

Hence, the function $f(x)$ has an inflection point at $\left(\frac{1}{2},-\frac{1}{12}\right)$.
$f\left(\frac{1}{2}\right)=\frac{1}{3}\left(\frac{1}{2}\right)^{3}-\frac{1}{2}\left(\frac{1}{2}\right)^{2}-2\left(\frac{1}{2}\right)+1$
$=\frac{1}{24}-\frac{1}{8}-1+1=-\frac{1}{12}$
52) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ is increasing on

Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}+x-2=0$

$$
\begin{aligned}
& \Rightarrow \quad(x+2)(x-1)=0 \\
& \Rightarrow \quad x=-2 \quad \text { or } x=1
\end{aligned}
$$

$$
-2
$$

+2	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ is increasing on
$(-\infty,-2) \cup(1, \infty)$.
49) The function $f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+1$ concave downward on
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}-2\left(\frac{1}{2}\right) x-2=x^{2}-x-2 \\
& f^{\prime \prime}(x)=2 x-1 \\
& f^{\prime \prime}(x)=0 \Rightarrow \quad 2 x-1=0 \\
& \Rightarrow \quad 2 x=1 \\
& \Rightarrow x=\frac{1}{2} \\
& \hline-+ \\
& \hline \text { n } \\
& \hline
\end{aligned}
$$

Hence, the function $f(x)$ is concave downward on $\left(-\infty, \frac{1}{2}\right)$.
51) The critical numbers of the function
$f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ are
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2 \\
f^{\prime}(x)=0 & \Rightarrow x^{2}+x-2=0 \\
& \Rightarrow \quad(x+2)(x-1)=0 \\
& \Rightarrow \quad x=-2 \quad \text { or } x=1
\end{aligned}
$$

53) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ is decreasing on

Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime}(x)=0 \quad \Rightarrow \quad x^{2}+x-2=0
$$

$$
\Rightarrow \quad(x+2)(x-1)=0
$$

$$
\Rightarrow \quad x=-2 \quad \text { or } x=1
$$

$$
\begin{array}{ll}
-2 & 1 \\
\hline
\end{array}
$$

+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ is decreasing on $(-2,1)$.
54) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ has a relative maximum point
Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}+x-2=0$
	$\Rightarrow(x+2)(x-1)=0$
	$\Rightarrow x=-2$ or $x=1$
+	-2

Hence, the function $f(x)$ has a relative maximum point at $\left(-2, \frac{13}{3}\right)$.
$f(-2)=\frac{1}{3}(-2)^{3}+\frac{1}{2}(-2)^{2}-2(-2)+1$

$$
=-\frac{8}{3}+\frac{4}{2}+4+1=\frac{13}{3}
$$

56) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ concave upward on

Solution:

$$
\begin{gathered}
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2 \\
f^{\prime \prime}(x)=2 x+1
\end{gathered}
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$
$\Rightarrow \quad 2 x=-1$
$\Rightarrow \quad x=-\frac{1}{2}$

Hence, the function $f(x)$ is concave upward on $\left(-\frac{1}{2}, \infty\right)$.
58) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ has an inflection point at
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime \prime}(x)=2 x+1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$

$$
\Rightarrow \quad 2 x=-1 \quad \Rightarrow \quad x=-\frac{1}{2}
$$

$-\frac{1}{2}$	+	Sign of $f^{\prime \prime}(x)$
-	\bigcup	Kind of concavity
Ω		

Hence, the function $f(x)$ has an inflection point at ($-\frac{1}{2}, \frac{25}{12}$).
$f\left(-\frac{1}{2}\right)=\frac{1}{3}\left(-\frac{1}{2}\right)^{3}+\frac{1}{2}\left(-\frac{1}{2}\right)^{2}-2\left(-\frac{1}{2}\right)+1$
$=-\frac{1}{24}+\frac{1}{8}+1+1=\frac{25}{12}$
55) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ has a relative minimum point Solution:

$f^{\prime}(x)$	$=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2$
$f^{\prime}(x)=0$	$\Rightarrow x^{2}+x-2=0$
	$\Rightarrow(x+2)(x-1)=0$
	$\Rightarrow x=-2$ or $x=1$
+	-2

Hence, the function $f(x)$ has a relative minimum point at $\left(1,-\frac{1}{6}\right)$.

$$
\begin{aligned}
f(1) & =\frac{1}{3}(1)^{3}+\frac{1}{2}(1)^{2}-2(1)+1 \\
& =\frac{1}{3}+\frac{1}{2}-2+1=-\frac{1}{6}
\end{aligned}
$$

57) The function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-2 x+1$ concave downward on
Solution:

$$
f^{\prime}(x)=3\left(\frac{1}{3}\right) x^{2}+2\left(\frac{1}{2}\right) x-2=x^{2}+x-2
$$

$$
f^{\prime \prime}(x)=2 x+1
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 2 x+1=0$
$\Rightarrow \quad 2 x=-1$
$\Rightarrow \quad x=-\frac{1}{2}$

59) The critical numbers of the function $f(x)=x^{3}-12 x+3$ are
Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}(x)=3 x^{2}-12 \\
& \Rightarrow 3\left(x^{2}-4\right)=0 \\
& \Longrightarrow x^{2}-4=0 \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x= \pm 2
\end{aligned}
$$

60) The function $f(x)=x^{3}-12 x+3$ is increasing on

Solution:

$$
f^{\prime}(x)=3 x^{2}-12
$$

$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-12=0$
$\Rightarrow 3\left(x^{2}-4\right)=0$
$\Rightarrow \quad x^{2}-4=0$
$\Rightarrow x^{2}=4$
$\Rightarrow \quad x= \pm 2$

| + | - | + | Sign of $f^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| | | Kind of
 monotonicity | |

Hence, the function $f(x)$ is increasing on $(-\infty,-2) \cup(2, \infty)$.
62) The function $f(x)=x^{3}-12 x+3$ has a relative maximum point at
Solution:

		$f^{\prime}(x)=3 x^{2}-12$	
$f^{\prime}(x)=0$	$\Rightarrow 3 x^{2}-12=0$		
	$\Rightarrow 3\left(x^{2}-4\right)=0$		
	$\Rightarrow x^{2}-4=0$		
	$\Rightarrow x^{2}=4$		
	$\Rightarrow x= \pm 2$		
+	-2	-	+

Hence, the function $f(x)$ has a relative maximum point at $(-2,19)$.
$f(-2)=(-2)^{3}-12(-2)+3$

$$
=-8+24+3=19
$$

64) The function $f(x)=x^{3}-12 x+3$ concave upward on
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-12 \\
f^{\prime \prime}(x)=0 & \Rightarrow \\
& 6 x=0 \\
& \Rightarrow x=\frac{0}{6} \\
& \Rightarrow \quad x=0
\end{aligned}
$$

0		+
-	\cup	Sign of $f^{\prime \prime}(x)$ Kind of concavity

Hence, the function $f(x)$ is concave upward on $(0, \infty)$.
61) The function $f(x)=x^{3}-12 x+3$ is decreasing on

Solution:

$\quad f^{\prime}(x)=3 x^{2}-12$
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-12=0$
$\Rightarrow 3\left(x^{2}-4\right)=0$
$\Rightarrow x^{2}-4=0$
$\Rightarrow \quad x^{2}=4$
$\Rightarrow \quad x= \pm 2$

+	-	+	Sign of $f^{\prime}(x)$
+		Kind of monotonicity	

Hence, the function $f(x)$ is decreasing on $(-2,2)$.
63) The function $f(x)=x^{3}-12 x+3$ has a relative minimum point at
Solution:

$f^{\prime}(x)=0$	$\Rightarrow \quad 3 x^{2}-12=0$	
	$\Rightarrow 3\left(x^{2}-4\right)=0$	
	$\Rightarrow x^{2}-4=0$	
	$\Rightarrow x^{2}=4$	
	$\Rightarrow x= \pm 2$	
	-2	-

Hence, the function $f(x)$ has a relative minimum point at $(2,-13)$.
$f(2)=(2)^{3}-12(2)+3$

$$
=8-24+3=-13
$$

65) The function $f(x)=x^{3}-12 x+3$ concave downward on
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-12 \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad 6 x=0 \\
& \Rightarrow x=\frac{0}{6} \\
& \Rightarrow x=0
\end{aligned}
$$

0		
-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 0)$.
66) The function $f(x)=x^{3}-12 x+3$ has an inflection point at

Solution:

$$
f^{\prime}(x)=3 x^{2}-12
$$

$$
f^{\prime \prime}(x)=6 x
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 6 x=0$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{0}{6} \\
\Rightarrow & x=0
\end{array}
$$

0		+
Sign of $f^{\prime \prime}(x)$		
〇	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(0,3)$. $f(0)=(0)^{3}-12(0)^{2}+3$
$=0-0+3=3$
68) The function $f(x)=x^{3}-3 x^{2}+1$ is increasing on
Solution:

$f^{\prime}(x)=0$	$\begin{gathered} f^{\prime} \\ 3 x^{2} \\ 3\left(x^{2}\right. \\ x^{2}- \\ x(x \\ x= \end{gathered}$	$=2$	
$+$	-	$+$	Sign of $f^{\prime}(x)$
π			Kind of monotonicity

Hence, the function $f(x)$ is increasing on
$(-\infty, 0) \cup(2, \infty)$.
70) The function $f(x)=x^{3}-3 x^{2}+1$ has a relative maximum point at

Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{gathered} f^{\prime} \\ 3 x^{2} \\ 3\left(x^{2}\right. \\ x^{2}- \\ x(x \\ x= \end{gathered}$	$=2$	
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $(0,1)$.
$f(0)=(0)^{3}-3(0)^{2}+1$
$=0-0+1=1$.
67) The critical numbers of the function
$f(x)=x^{3}-3 x^{2}+1$ are

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & \Rightarrow 3 f^{\prime}(x)=3 x^{2}-6 x \\
& \Rightarrow 3\left(x^{2}-2 x=0\right. \\
& \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& \Rightarrow x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

69) The function $f(x)=x^{3}-3 x^{2}+1$ is decreasing on

Solution:

Hence, the function $f(x)$ is decreasing on $(0,2)$.
71) The function $f(x)=x^{3}-3 x^{2}+1$ has a relative minimum point at

Solution:

$\begin{aligned} f^{\prime}(x)=0 & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \\ & 0 \end{aligned}$	$\begin{gathered} f^{\prime} \\ 3 x^{2} \\ 3\left(x^{2}\right. \\ x^{2}- \\ x(x \\ x= \end{gathered}$	$=2$	
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative minimum point at $(2,-3)$.
$f(2)=(2)^{3}-3(2)^{2}+1$

$$
=8-12+1=-3
$$

72) The function $f(x)=x^{3}-3 x^{2}+1$ concave upward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad 6 x-6=0 \\
& \Rightarrow \quad 6 x=6 \\
& \Rightarrow x=\frac{6}{6} \\
& \Rightarrow x=1
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$.
74) The function $f(x)=x^{3}-3 x^{2}+1$ has an inflection point at
Solution:

$$
\begin{array}{rlr}
& & f^{\prime}(x)=3 x^{2}-6 x \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad 6 x-6=0 \\
& \Rightarrow \quad 6 x=6 \\
& \Rightarrow \quad x=\frac{6}{6} \\
& \Rightarrow \quad x=1
\end{array}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\cap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,-1)$.
$f(1)=(1)^{3}-3(1)^{2}+1$

$$
=1-3+1=-1
$$

76) The function $f(x)=x^{3}-3 x^{2}+2$ is increasing on Solution:
77) The function $f(x)=x^{3}-3 x^{2}+2$ is decreasing on Solution:

$f^{\prime}(x)=0$	$\Rightarrow \quad f^{\prime}(x)=3 x^{2}-6 x$
	$\Rightarrow 3 x^{2}-6 x=0$
	$\Rightarrow x^{2}-2 x=0$
	$\Rightarrow x(x-2)=0$
	$\Rightarrow x=0 \quad$ or $x=2$

Hence, the function $f(x)$ is decreasing on (0,2).
78) The function $f(x)=x^{3}-3 x^{2}+2$ has a relative minimum point at

Solution:

$f^{\prime}(x)=3 x^{2}-6 x$
$f^{\prime}(x)=0 \quad \Rightarrow \quad 3 x^{2}-6 x=0$
$\Rightarrow 3\left(x^{2}-2 x\right)=0$
$\Rightarrow \quad x^{2}-2 x=0$

$$
\Rightarrow \quad x(x-2)=0
$$

$$
\Rightarrow \quad x=0 \quad \text { or } x=2
$$

0		+	+
+			Sign of $f^{\prime}(x)$
	Kind of monotonicity		

Hence, the function $f(x)$ has a relative minimum point at $(2,-2)$.
$f(2)=(2)^{3}-3(2)^{2}+2$
$=8-12+2=-2$.
80) The function $f(x)=x^{3}-3 x^{2}+2$ concave downward on
Solution:

$$
\begin{aligned}
& \\
& \quad f^{\prime}(x)=3 x^{2}-6 x \\
& f^{\prime \prime}(x)=0 \Rightarrow \quad 6 x-6=0 \\
& \Rightarrow \quad 6 x=6 \\
& \Rightarrow \quad x=\frac{6}{6} \\
& \Rightarrow \quad x=1
\end{aligned}
$$

1		+
-	\cup	Sign of $f^{\prime \prime}(x)$ concavity of
\bigcap		

Hence, the function $f(x)$ is concave downward on $(-\infty, 1)$.
82) The function $f(x)=x^{3}-3 x^{2}+2$ has an inflection point at
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad 6 x-6=0 \\
& \Rightarrow 6 x=6 \\
& \Rightarrow x=\frac{6}{6} \\
& \Rightarrow x=1
\end{aligned}
$$

1		+
Sign of $f^{\prime \prime}(x)$		
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(1,0)$. $f(1)=(1)^{3}-3(1)^{2}+2$ $=1-3+2=0$
79) The function $f(x)=x^{3}-3 x^{2}+2$ has a relative maximum point at

Solution:

$f^{\prime}(x)=0$	$\begin{aligned} & f^{\prime}(\\ & 3 x^{2} \\ & 3\left(x^{2}\right. \\ & x^{2}- \\ & x(x- \\ & x= \end{aligned}$		
+	-	+	Sign of $f^{\prime}(x)$
			Kind of monotonicity

Hence, the function $f(x)$ has a relative maximum point at $(0,2)$.
$f(0)=(0)^{3}-3(0)^{2}+2$ $=0-0+2=2$.
81) The function $f(x)=x^{3}-3 x^{2}+2$ concave upward on
Solution:

$$
\begin{aligned}
& \\
& f^{\prime}(x)=3 x^{2}-6 x \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad 6 x-6=0 \\
& \Rightarrow \quad 6 x=6 \\
& \Rightarrow x=\frac{6}{6} \\
& \Rightarrow \quad x=1
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\cup	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(1, \infty)$.
83) The critical numbers of the function
$f(x)=x^{3}-6 x^{2}-36 x$ are

Solution:

$$
\begin{aligned}
& \\
f^{\prime}(x)=0 & f^{\prime}(x)=3 x^{2}-12 x-36 \\
& \Rightarrow 3 x^{2}-12 x-36=0 \\
& \Rightarrow 3\left(x^{2}-4 x-12\right)=0 \\
& \Rightarrow x^{2}-4 x-12=0 \\
& \Rightarrow x+2)(x-6)=0 \\
& x=-2 \quad \text { or } \quad x=6
\end{aligned}
$$

84) The function $f(x)=x^{3}-6 x^{2}-36 x$ is decreasing on Solution:

$f^{\prime}(x)=0$	$f^{\prime}(x)=3 x^{2}-12 x-36$
	$\Rightarrow 3 x^{2}-12 x-36=0$
	$\Rightarrow 3\left(x^{2}-4 x-12\right)=0$
	$\Rightarrow \quad x^{2}-4 x-12=0$
	$\Rightarrow x+2)(x-6)=0$
+	$x=-2$ or $x=6$

Hence, the function $f(x)$ is decreasing on $(-2,6)$.
86) The function $f(x)=x^{3}-6 x^{2}-36 x$ has a relative minimum value at the point

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime}(x)=0 & \Rightarrow 3 x^{2}-12 x-36=0 \\
& \Rightarrow 3\left(x^{2}-4 x-12\right)=0 \\
& \Rightarrow x^{2}-4 x-12=0 \\
& \Rightarrow(x+2)(x-6)=0 \\
& \Rightarrow x=-2 \quad \text { or } x=6
\end{aligned}
$$

+	-	+	Sign of $f^{\prime}(x)$
		Kind of monotonicity	

Hence, the function $f(x)$ has a relative minimum value at the point $(6,-216)$.
$f(6)=(6)^{3}-6(6)^{2}-36(6)$

$$
=216-216-216=-216
$$

88) The function $f(x)=x^{3}-6 x^{2}-36 x$ has an inflection point at

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-12 \\
\Rightarrow & 6 x-12=0 \\
\Rightarrow & 6 x=12 \\
\Rightarrow & x=\frac{12}{6} \\
& x=2
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
\bigcap	\bigcup	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(2,-88)$.
$f(2)=(2)^{3}-6(2)^{2}-36(2)$
$=8-24-72=-88$
85) The function $f(x)=x^{3}-6 x^{2}-36 x$ is increasing on Solution:

Hence, the function $f(x)$ is increasing on $(-\infty,-2) \cup(6, \infty)$.
87) The function $f(x)=x^{3}-6 x^{2}-36 x$ has a relative maximum value at the point
Solution:

Hence, the function $f(x)$ has a relative maximum value at the point $(-2,40)$.
$f(-2)=(-2)^{3}-6(-2)^{2}-36(-2)$

$$
=-8-24+72=40
$$

89) The function $f(x)=x^{3}-6 x^{2}-36 x$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=6 x-12 \\
\Rightarrow & 6 x-12=0 \\
\Rightarrow & 6 x=12 \\
\Rightarrow & x=\frac{12}{6} \\
\Rightarrow & x=2
\end{aligned}
$$

-	+	Sign of $f^{\prime \prime}(x)$
〇	\bigcup	Kind of concavity

Hence, the function $f(x)$ is concave downward on $(-\infty, 2)$.
90) The function $f(x)=x^{3}-6 x^{2}-36 x$ concave upward on

Solution:

\(\left.$$
\begin{array}{rl} & f^{\prime}(x)=3 x^{2}-12 x-36 \\
f^{\prime \prime}(x)=0 & \Rightarrow \quad \begin{array}{c}f^{\prime \prime}(x)=6 x-12=0\end{array}
$$

\Rightarrow \& 6 x=12

\Rightarrow \& x=\frac{12}{6}

\Rightarrow \& x=2\end{array}\right]\)| - | + | Sign of $f^{\prime \prime}(x)$ |
| :---: | :---: | :---: |
| \cap | U | Kind of
 concavity |

Hence, the function $f(x)$ is concave upward on $(2, \infty)$.
92) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ is decreasing on
Solution:

$f^{\prime}(x)=0$	$f^{\prime}(x)=-3 x^{2}-12 x-9$
	$\Rightarrow \quad-3 x^{2}-12 x-9=0$
	$\Rightarrow \quad x^{2}+3\left(x^{2}+4 x+3\right)=0$
	$\Rightarrow \quad(x+3)(x+1)=0$
	$\Rightarrow x=-3$ or $x=-1$

Hence, the function $f(x)$ is decreasing on
$(-\infty,-3) \cup(-1, \infty)$.
94) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has a relative minimum value at the point

Solution:

	$f^{\prime}(x)=-3 x^{2}-12 x-9$
$f^{\prime}(x)=0$	$\Rightarrow-3 x^{2}-12 x-9=0$
	$\Rightarrow \quad-3\left(x^{2}+4 x+3\right)=0$
\Rightarrow	$x^{2}+4 x+3=0$
	$\Rightarrow \quad(x+3)(x+1)=0$
	$\Rightarrow \quad x=-3 \quad$ or $x=-1$
-	+

Hence, the function $f(x)$ has a relative minimum value at the point $(-3,1)$.
$f(-3)=-(-3)^{3}-6(-3)^{2}-9(-3)+1$
$=27-54+27+1=1$.
91) The critical numbers of the function
$f(x)=-x^{3}-6 x^{2}-9 x+1$ are

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}-12 x-9 \\
f^{\prime}(x)=0 & \Rightarrow-3 x^{2}-12 x-9=0 \\
& \Rightarrow-3\left(x^{2}+4 x+3\right)=0 \\
& \Rightarrow x^{2}+4 x+3=0 \\
& \Rightarrow(x+3)(x+1)=0 \\
& \Rightarrow x=-3 \quad \text { or } \quad x=-1
\end{aligned}
$$

93) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ is increasing on
Solution:

Hence, the function $f(x)$ is increasing on $(-3,-1)$.
95) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has a relative maximum value at the point Solution:

Hence, the function $f(x)$ has a relative maximum value at the point $(-1,5)$.
$f(-1)=-(-1)^{3}-6(-1)^{2}-9(-1)+1$

$$
=1-6+9+1=5 .
$$

96) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ has an inflection point at
Solution:

$$
f^{\prime}(x)=-3 x^{2}-12 x-9
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad-6 x-12=0$
$\Rightarrow \quad-6 x=12$
$\Rightarrow x=-\frac{12}{6}$
$\Rightarrow \quad x=-2$

+2	-	Sign of $f^{\prime \prime}(x)$
\cup	\bigcap	Kind of concavity

Hence, the function $f(x)$ has an inflection point at $(-2,3)$. $f(-2)=-(-2)^{3}-6(-2)^{2}-9(-2)+1$ $=8-24+18+1=3$
98) The function $f(x)=-x^{3}-6 x^{2}-9 x+1 \quad$ concave upward on
Solution:

$$
\begin{gathered}
f^{\prime}(x)=-3 x^{2}-12 x-9 \\
f^{\prime \prime}(x)=-6 x-12
\end{gathered}
$$

$f^{\prime \prime}(x)=0 \quad \Rightarrow \quad-6 x-12=0$

$$
\Rightarrow \quad-6 x=12
$$

$$
\Rightarrow \quad x=-\frac{12}{6}
$$

$$
\Rightarrow \quad x=-2
$$

+	-	Sign of $f^{\prime \prime}(x)$
\cup	\bigcap	Kind of concavity

Hence, the function $f(x)$ is concave upward on $(-\infty,-2)$.
97) The function $f(x)=-x^{3}-6 x^{2}-9 x+1$ concave downward on

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=-3 x^{2}-12 x-9 \\
& f^{\prime \prime}(x)=-6 x-12 \\
& f^{\prime \prime}(x)=0 \quad \Rightarrow \quad-6 x-12=0 \\
& \Rightarrow \quad-6 x=12 \\
& \Rightarrow x=-\frac{12}{6} \\
& \Rightarrow \quad x=-2
\end{aligned}
$$

Hence, the function $f(x)$ is concave downward on $(-2, \infty)$.

| King Abdul Aziz University | Faculty of Sciences | Mathematics Department |
| :--- | :---: | :---: | :---: |
| Math 110 | Final Test Fall $2013 \quad$ (40 Marks) | Time 120 m |
| Student Name: | Student Number: | A |

1) If $f(x)=2 x-9$, then $f^{-1}(x)=$
(a) $\frac{x-9}{2}$
(b) $\frac{x}{2}-9$
(c) $\frac{x+9}{2}$
(d) $\frac{x}{2}+9$
2) If $y=\sqrt{3 x^{2}+6 x}$, then $y^{\prime}=$
(a) $\frac{6(x+1)}{\sqrt{3 x^{2}+6 x}}$
b $\frac{x+6}{\sqrt{3 x^{2}+6 x}}$
(c) $\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}}$
(d) $\frac{x+1}{2 \sqrt{3 x^{2}+6 x}}$
3) If $y=\log _{5}\left(x^{3}-2 \csc x\right)$, then $y^{\prime}=$
a $\frac{3 x^{2}+2 \csc x \cot x}{x^{3}-2 \csc x} \quad b \frac{3 x^{2}+2 \csc x \cot x}{x^{3}-2 \csc x \ln 5}$
(c) $\frac{3 x^{2}+2 \csc x \cot x}{\left(x^{3}-2 \csc x\right) \ln 5}$
d $\frac{3 x^{2}-2 \csc x \cot x}{\left(x^{3}-2 \csc x\right) \ln 5}$
4) If $-7 \leq 2 x+3<5$, then $x=$
(a) $(-5,1)$
b $(-5,1]$
c $[-5,1)$
d $[-5,1]$
5) If $f(x)=x^{2}$, then $f^{\prime}(x)=$
(a) $\lim _{x \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
(b) $\lim _{x \rightarrow 0} \frac{(x+h)^{2}+x^{2}}{h}$
(c) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}+x^{2}}{h}$
(d) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
6) The function $f(x)=\frac{x+1}{x^{2}-4}$ is continuous on
a $\{ \pm 2\}$
b $[-2,2]$
c $\{x \in \mathbb{R}: x \neq \pm 2\}$
d $(-\infty,-2) \cup(2, \infty)$
7) The domain of $\frac{x+3}{\sqrt{x^{2}-4}}$ is
(a) $[-2,2]$
b $(-2,2)$
c $(-\infty,-2) \cup(2, \infty)$
d $(-\infty,-2] \cup[2, \infty)$
8) $\csc \left(\tan ^{-1} x\right)=$
(A) $\frac{1}{\sqrt{x^{2}+1}}$
B $\frac{x}{\sqrt{x^{2}+1}}$
C] $\sqrt{x^{2}+1}$
D. $\frac{\sqrt{x^{2}+1}}{x}$

9) If $y=\sin x \sec x$, then $y^{\prime}=$
(a) $\sin x \tan x+1 \quad b \sec ^{2} x \quad$ a $\sin x \tan x-1 \quad$ d $\sin x \sec x \tan x-1$
10) If $y=\sin ^{3}(4 x)$, then $y^{\prime}=$
(a) $4 \cos ^{3}(4 x)$
(b) $3 \sin ^{2}(4 x) \cos (4 x)$
c $12 \sin ^{2}(4 x) \cos (4 x)$
(d) $4 \sin ^{3}(4 x)+12 \sin ^{2} x \cos x$
11) The tangent line equation to the curve $y=\frac{2 x}{x+1}$ at the point $(0,0)$ is
a $y=-2 x$
(b) $y=-2 x+1$
(c) $y=2 x$
d. $y=2 x-1$
12) If $y=3^{x} \cot x$, then $y^{\prime}=$
(a) $3^{x} \ln 3 \cot x+3^{x} \sec ^{2} x \quad b \quad 3^{x} \cot x+3^{x} \sec ^{2} x$
c) $3^{x} \cot x-3^{x} \csc ^{2} x$ d $3^{x} \ln 3 \cot x-3^{x} \csc ^{2} x$
13) If $y=\left(2 x^{2}+\sec x\right)^{7}$, then $y^{\prime}=$
(a) $7\left(2 x^{2}+\sec x\right)^{6}$

$$
\text { b } 7\left(2 x^{2}+\sec x\right)^{6}(4 x-\sec x \tan x)
$$

$$
\text { c } 7\left(2 x^{2}+\sec x\right)^{6}(4 x+\sec x \tan x) \quad \text { d } 28 x\left(2 x^{2}+\sec x\right)^{6}
$$

25) The slope of the perpendicular line to the line $3 y-2 x-6=0$ is
(a) $\frac{2}{3}$
(b) $-\frac{2}{3}$
(c) $-\frac{3}{2}$
d $\frac{3}{2}$
26) If the graph of the function $f(x)=3^{x}$ is shifted a distance 2 units upward, then the new graph represented the graph of the function
(a) 3^{x+2}
(b) $3^{x}+2$
(c) 3^{x-2}
(d) $3^{x}-2$
27) If $y=\ln \frac{x+1}{x-2}$, then $y^{\prime}=$
$a-\frac{3}{(x+1)(x-2)} \quad b \frac{3}{(x+1)(x-2)}$
c $\frac{1}{(x+1)(x-2)} \quad$ d $-\frac{1}{(x+1)(x-2)}$
28) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}=$
(a) $\frac{3}{5}$
(b) $\frac{5}{3}$
(c) $\frac{1}{5}$
d 3

$\begin{aligned} & \text { 29) } D \\ & a \sin x \end{aligned}$	
30) (a) 120°	$\frac{5 \pi}{6} \mathrm{rad}=$ (b) 150° (c) 270° (d) 210°
31) The distance between the points $(-1,2)$ and $(2,-1)$ is (a) $2 \sqrt{3}$ (b) $3 \sqrt{2}$ C 9 d 3	
$\begin{gathered} \text { 32) If } y \\ \text { (a) } 128 e^{2 x} \end{gathered}$	$=e^{2 x} \text {, then } y^{(5)}=$ (b) $16 e^{2 x}$ (c) $64 e^{2 x}$ (d) $32 e^{2 x}$
	The critical numbers of the function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ are (b) $-1,2$ (c) 1,2 (d) $-1,-2$
a $(-\infty,-2) \cup(-1, \infty) \quad b(-\infty,-2) \cup(1, \infty) \quad$ c $(-\infty,-1) \cup(2, \infty) \quad d(-\infty, 1) \cup(2, \infty)$	The function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ is increasing on $\cup(-1, \infty) \quad b(-\infty,-2) \cup(1, \infty) \quad$ c $(-\infty,-1) \cup(2, \infty) \quad d(-\infty, 1) \cup(2, \infty)$
$\begin{gathered} 35) \\ a(-2,-1) \end{gathered}$	The function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ is decreasing on b $(-2,1)$ $(1,2)$ d $(-1,2)$
$\begin{gathered} \hline 36) \\ a(1,8) \end{gathered}$	The function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ has a relative maximum at b $(-1,28)$ $(2,19)$ d $(-2,35)$
$\begin{gathered} 37) \\ a(1,8) \end{gathered}$	The function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ has a relative minimum at b $(-1,28)$ [c) $(2,19)$ d $(-2,35)$
$\begin{gathered} 38) \\ a\left(-\infty, \frac{1}{2}\right) \end{gathered}$	The graph of $f(x)=2 x^{3}+3 x^{2}-12 x+15$ concave upward on b $\left(-\infty,-\frac{1}{2}\right)$ c $\left(-\frac{1}{2}, \infty\right)$ d $\left(\frac{1}{2}, \infty\right)$
$\begin{gathered} 39) \\ a\left(-\infty, \frac{1}{2}\right) \end{gathered}$	The graph of $f(x)=2 x^{3}+3 x^{2}-12 x+15$ concave downward on b $\left(-\infty,-\frac{1}{2}\right)$ c $\left(-\frac{1}{2}, \infty\right)$ d $\left(\frac{1}{2}, \infty\right)$
$\begin{gathered} 40) \\ \left.a_{(}^{2}, 10\right) \end{gathered}$	The function $f(x)=2 x^{3}+3 x^{2}-12 x+15$ has an inflection at b $\left(-\frac{1}{2}, 10\right)$ c $\left(\frac{1}{2}, \frac{43}{2}\right)$ d $\left(-\frac{1}{2}, \frac{43}{2}\right)$

King Abdul Aziz University Faculty of Sciences Mathematics Department
Math 110 Final Test Fall 2013 (40 Marks) Time 120 m
Student Name: Student Number: \quad B
1) If $y=\cos x \csc x$, then $y^{\prime}=$ (a) $-\csc ^{2} x$ (b) $1-\cos x \cot x$ (c) $-1+\cos x \cot x$ d $1-\cos x \csc x \cot x$
2) If $f(x)=\cot ^{-1}(x)$ and $g(x)=\cot (x)$ then $(f \circ g)(x)=$ (a) 1 (b) $\cot x \cot ^{-1} x$ (c) x (d) $\cot x$
3) The function $f(x)=\frac{x+1}{x^{2}-49}$ is continuous on (a) $\{x \in \mathbb{R}: x \neq \pm 7\}$ b $[-7,7]$ $c(-\infty,-7) \cup(7, \infty)$ d $\{ \pm 7\}$
4) If $x^{2}-4=3 x y-y^{2}$, then $y^{\prime}=$ (a) $\frac{3 y-2 x}{2 y-3 x}$ (b) $\frac{2 x}{y}$ c. $\frac{2 x}{3-2 y}$ (d) $\frac{2 x+y}{3 x-2 y}$
5) If $y=3^{x} \tan x$, then $y^{\prime}=$ (a) $3^{x} \ln 3 \tan x-3^{x} \sec ^{2} x$ (b) $3^{x} \ln 3 \tan x+3^{x} \sec ^{2} x$ (c) $3^{x} \tan x-3^{x} \sec ^{2} x$ d $3^{x} \tan x+3^{x} \sec ^{2} x$
6) If $y=\log _{5}\left(x^{3}-2 \csc x\right)$, then $y^{\prime}=$ a $\frac{3 x^{2}+2 \csc x \cot x}{\left(x^{3}-2 \csc x\right) \ln 5}$ (b) $\frac{3 x^{2}+2 \csc x \cot x}{x^{3}-2 \csc x \ln 5}$ c. $\frac{3 x^{2}+2 \csc x \cot x}{x^{3}-2 \csc x}$ d $\frac{3 x^{2}-2 \csc x \cot x}{\left(x^{3}-2 \csc x\right) \ln 5}$
7) If $y=\left(2 x^{2}+\csc x\right)^{7}$, then $y^{\prime}=$ (a) $7\left(2 x^{2}+\csc x\right)^{6}(4 x-\csc x \cot x)$ (b) $7\left(2 x^{2}+\csc x\right)^{6}$ c $7\left(2 x^{2}+\csc x\right)^{6}(4 x+\csc x \cot x)$ (d) $28 x\left(2 x^{2}+\csc x\right)^{6}$
8) The absolute minimum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on $[0,4]$ is (a) 6 [b] 0 (c) 2 (d) -3
9) The absolute maximum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on $[0,4]$ is (a) 6 (b) 2 (c) 7 (d) 12

10) If $y=\sqrt{3 x^{2}-6 x}$, then $y^{\prime}=$ (a) $\frac{x-6}{\sqrt{3 x^{2}-6 x}}$ b $\frac{6(x-1)}{\sqrt{3 x^{2}-6 x}}$ c. $\frac{x-1}{2 \sqrt{3 x^{2}-6 x}}$ d $\frac{3(x-1)}{\sqrt{3 x^{2}-6 x}}$
11) The slope of the perpendicular line to the line $2 y+3 x-6=0$ is (a) $\frac{2}{3}$ (b) $-\frac{2}{3}$ c. $-\frac{3}{2}$ d $\frac{3}{2}$
12) If $y=\ln \frac{x+1}{x-2}$, then $y^{\prime}=$ (a) $\frac{3}{(x+1)(x-2)}$ b $-\frac{3}{(x+1)(x-2)}$ [c $\frac{1}{(x+1)(x-2)}$ (d) $-\frac{1}{(x+1)(x-2)}$
13) $\sec \left(\tan ^{-1} x\right)=$ (A) $\frac{1}{\sqrt{x^{2}+1}}$ B $\frac{x}{\sqrt{x^{2}+1}}$ (C) $\sqrt{x^{2}+1}$ D $\frac{\sqrt{x^{2}+1}}{x}$
14) $\lim _{x \rightarrow 0} \frac{\tan 5 x}{3 x}=$ (a) $\frac{1}{3}$ (b) 5 c $\frac{3}{5}$ (d) $\frac{5}{3}$
15) If $f(x)=2 x+7$, then $f^{-1}(x)=$ (a) $\frac{x+7}{2}$ (b) $\frac{x}{2}-7$ (c) $\frac{x}{2}+7$ (d) $\frac{x-7}{2}$
16) $D^{(127)}(\cos x)=$ (a) $\sin x$ (b) $-\sin x$ c. $\cos x$ (d) $-\cos x$
17) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=$ (a) $\frac{1}{2}$ (b) 1 (c) 0 d $-\frac{1}{2}$
18) If $y=\sin ^{4}(3 x)$, then $y^{\prime}=$ (a) $12 \sin ^{3}(3 x) \cos (3 x)$ (b) $4 \sin ^{3}(3 x) \cos (3 x)$ (c) $3 \cos ^{2}(3 x)$ (d) $3 \sin ^{4}(3 x)+12 \sin ^{3} x \cos x$

King Abdul Aziz University Faculty of Sciences Mathematics Department
Math 110 Final Test Fall 2013 (40 Marks) Time 120 m
Student Name: Student Number: C
1) $\lim _{x \rightarrow 5^{+}} \frac{x+1}{x-5}=$ (a) ∞ (b) $-\infty$ (c) 5 (d) -5
2) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=$ (a) 1 (b) $\frac{1}{2}$ (c) 0 (d) $-\frac{1}{2}$
3) $y=-\ln (\cos x)$, then $y^{\prime}=$ (a) $\tan x$ (b) $-\tan x$ c $\cot x$ (d) $-\cot x$
4) The absolute maximum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on $[0,4]$ is (b) 12 c 7 d 6
5) The absolute minimum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on $[0,4]$ is \square (a) 6 (b) 2 (c) 0 (d) -3
6) If $f(x)=\tan ^{-1}(x)$ and $g(x)=\tan (x)$ then $(f \circ g)(x)=$ (a) x (b) $\tan ^{-1} x \tan x$ (c) 1 (d) $\tan x$
7) If $y=x^{x}$, then $y^{\prime}=$ (a) $1+\ln x$ b $x^{x}(1+\ln x)$ (c) x^{x} (d) $x^{x} \ln x$
8) If $x^{2}+y^{2}-5=3 x y$, then $y^{\prime}=$ (a) $\frac{2 x+y}{3 x-2 y}$ (b) $\frac{2 x}{y}$ c. $\frac{2 x}{3-2 y}$ (d) $\frac{3 y-2 x}{2 y-3 x}$
9) The tangent line equation to the curve $y=\frac{2 x}{x+1}$ at the point (0,0) is (a) $y=2 x$ b $y=-2 x+1$ (c) $y=-2 x$ (d) $y=2 x-1$
10) If $y=3^{x} \cot x$, then $y^{\prime}=$ (a) $3^{x} \ln 3 \cot x-3^{x} \csc ^{2} x$ b $3^{x} \cot x+3^{x} \sec ^{2} x$ (c) $3^{x} \cot x-3^{x} \csc ^{2} x$ d $3^{x} \ln 3 \cot x+3^{x} \sec ^{2} x$
11) $D^{(126)}(\cos x)=$ (a) $\sin x \quad b-\sin x \quad[\cos x \quad d-\cos x$

21) The values in $(-1,3)$ which makes $f(x)=x^{2}-5 x+7$ satisfied Mean Value Theorem on $[-1,3]$ is $a-4$ b 1 c) 0 (d) 2
22) The function $f(x)=\frac{x+1}{x^{2}-9}$ is continuous on a $\{ \pm 3\} \quad b[-3,3] \quad c(-\infty,-3) \cup(3, \infty) \quad d \quad\{x \in \mathbb{R}: x \neq \pm 3\}$
23) $\cos \left(\tan ^{-1} x\right)=$ A $\frac{1}{\sqrt{x^{2}+1}}$ B $\frac{x}{\sqrt{x^{2}+1}}$ C $\sqrt{x^{2}+1}$ D. $\frac{\sqrt{x^{2}+1}}{x}$
24) The distance between the points $(-1,2)$ and $(2,-1)$ is (a) $3 \sqrt{2}$ (b) $2 \sqrt{3}$ (c) 9 d 3
$\begin{array}{lll} \hline \hline \text { 25) If }-7<2 x+3 \leq 5, \text { then } x= \\ a(-5,1) & b(-5,1] & \text { c }[-5,1) \\ \hline d[-5,1] \end{array}$
26) If $y=e^{2 x}$, then $y^{(6)}=$ (a) $128 e^{2 x}$ (b) $16 e^{2 x}$ (c) $64 e^{2 x}$ (d) $32 e^{2 x}$
27) If $y=\sin ^{3}(4 x)$, then $y^{\prime}=$(a) $4 \cos ^{3}(4 x)$ b $3 \sin ^{2}(4 x) \cos (4 x)$ c $4 \sin ^{3}(4 x)+12 \sin ^{2} x \cos x$ d $12 \sin ^{2}(4 x) \cos (4 x)$
28) The domain of $\frac{x+3}{\sqrt{x^{2}-4}}$ is (a) $[-2,2]$ b $(-\infty,-2) \cup(2, \infty)$ c ($-2,2$) d $(-\infty,-2] \cup[2, \infty)$
29) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=$
30) If $y=\sqrt{3 x^{2}+6 x}$, then $y^{\prime}=$ (a) $\frac{x+6}{\sqrt{3 x^{2}+6 x}}$ b $\frac{6(x+1)}{\sqrt{3 x^{2}+6 x}}$ (c) $\frac{x+1}{2 \sqrt{3 x^{2}+6 x}}$ (d) $\frac{3(x+1)}{\sqrt{3 x^{2}+6 x}}$

5) The tangent line equation to the curve $y=\frac{2 x}{x-1}$ at the point $(0,0)$ is

	$y=-2 x-1$	(b) $y=-2 x$
	$y=2 x$	(d) $y=2 x+1$

6) If $y^{2}-2=3 x y-x^{2}$, then $y^{\prime}=$
(a) $\frac{2 x}{3-2 y}$
(b) $\frac{2 x}{y}$
(c) $\frac{3 y-2 x}{2 y-3 x}$
(d) $\frac{2 x+y}{3 x-2 y}$
7) If $y=3^{x} \tan x$, then $y^{\prime}=$

a $3^{x} \ln 3 \tan x-3^{x} \sec ^{2} x$ b $b 3^{x} \tan x-3^{x} \sec ^{2} x$ a $3^{x} \ln 3 \tan x+3^{x} \sec ^{2} x$	$d 3^{x} \tan x+3^{x} \sec ^{2} x$

8) If $y=\left(2 x^{2}+\csc x\right)^{7}$, then $y^{\prime}=$
(a) $28 x\left(2 x^{2}+\csc x\right)^{6}$
(b) $7\left(2 x^{2}+\csc x\right)^{6}$
c $7\left(2 x^{2}+\csc x\right)^{6}(4 x+\csc x \cot x)$ d $7\left(2 x^{2}+\csc x\right)^{6}(4 x-\csc x \cot x)$
9) The slope of the perpendicular line to the line $2 y-3 x-6=0$ is
(a) $\frac{2}{3}$
b $-\frac{2}{3}$
c $-\frac{3}{2}$
d] $\frac{3}{2}$

10) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=$
(a) ∞
(b) 0
(c) 4
(d) $\frac{1}{4}$
11) The distance between the points $(-1,2)$ and $(2,-1)$ is

[a) 3	(b) $2 \sqrt{3}$	c) $3 \sqrt{2}$	d 9
20)	$\frac{3 \pi}{2} \mathrm{rad}=$		
[a] 120°	[b 150°	(c) 270°	(d) 210°

21) The absolute minimum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on $[0,4]$ is | a | 6 | b | b | c |
| :--- | :--- | :--- | :--- | :--- |
22) The absolute maximum value of $f(x)=x^{3}-6 x^{2}+9 x+2$ on [0,4] is $\begin{array}{llll}\text { (a) } 7 & b b & \text { b } 6 & \text { d } 12\end{array}$
23) The values in $(-1,3)$ which makes $f(x)=x^{2}-5 x+7$ satisfied Mean Value Theorem on $[-1,3]$ is

a	-4	b	0
\boxed{c}	2	d	1

24) The domain of $\frac{x+3}{\sqrt{4-x^{2}}}$ is
$[a(-2,2) \quad b(-\infty,-2) \cup(2, \infty) \quad \square \quad[-2,2]$
$25) \quad$ The function $f(x)=\frac{x+1}{x^{2}-25}$ is continuous on
a $[-5,5] \quad b\{x \in \mathbb{R}: x \neq \pm 5\} \quad c(-\infty,-5) \cup(5, \infty) \quad d \quad\{ \pm 5\}$
25) If $f(x)=\cot ^{-1}(x)$ and $g(x)=\cot (x)$ then $(f \circ g)(x)=$

