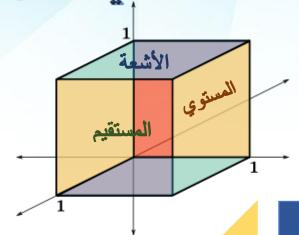
الأسس

رياضيات بكالوريا

منهاج حديث

الهندسة في الفراغ



50 **سؤال**

جميع طرق الحل

مثال لكل طريقة

الاستاذ مأمون قواف 0944588021

رقم	الســــــــــــــــــــــــــــــــــــ	رقم
26	كيف نجد مركبات شعاع	1
27	كيف نجد طويلة شعاع	2
28	كيف يتم إثبات الارتباط الخطي لثلاث أشعة	3
29	كيف نثبت أن ثلاث نقاط على استقامة واحدة	4
30	كيف نثبت أن ثلاث نقاط تعين مستوي	5
31	كيف نجد الجداء السلمي لشعاعين	6
32	كيف يتم حساب الجداء السلمي بالمسقط العمودي	7
33	كيف نثبت تعامد شعاعين	8
34	كيف نجد إحداثيات نقط بمعلم	9
35	كيف نثبت الارتباط الخطي لثلاث أشعة	10
36	كيف نجد معادلة مستوي	11
37	كيف نجد معادلة مستوي مار من ثلاث نقاط	12
38	كيف نجد معادلة مستوي يمر من نقطة معلومة و علم شعاع توجيه له	13
39	كيف نجدمعادلة مستوي يحوي مستقيمين متقاطعين	14
40	كيف نثبت أن أربع نقاط تقع على استقامة واحدة	15
41	كيف نجد تمثيل وسيطي المستقيم	16
42	كيف نجد تمثيل وسيطين لمستقيم مار من نقطتين	17
43	كيف نجد شعاع توجيه مستقيم ناتج من تقاطع مستويين	18
44	معادلة مستويات خاصة	19
45	كيف نجد إحداثيات نقطة في مستوي	20
46	كيف نجد إحداثيات نقطة من مستقيم	21
47	كيف نعين المسقط العمودي لنقطة على مستقيم	22
48	كيف نعين المسقط العمودي لنقطة على مستوي	23
49	كيف نجد بعد نقطة عن مستوي	24
50	كيف نجد بعد نقطة عن مستقيم	25
	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	22 يف نجد مركبات شعاع 22 يف نجد مويلة شعاع 22 يف نجم الثبات الارتباط الخطي لثلاث اشعة 22 يف نثبت أن ثلاث نقاط على استقامة واحدة 23 يف نثبت أن ثلاث نقاط تعين مستوي 24 يف نثبت أن ثلاث نقاط تعين مستوي 25 يف نثبت تعامد شعاعين 26 يف نثبت الارتباط الخطي لثلاث الشعة 26 يف نجد معادلة مستوي 27 يف نجد معادلة مستوي 28 يف نجد معادلة مستوي 29 يم شعاع توجيه له 20 يف نجد معادلة مستوي 21 يف نجد معادلة مستوي 22 يف نجد معادلة مستوي 24 يم شعاع توجيه له 25 يف نجد تمثيل وسيطي المستقيم 26 يف نجد تمثيل وسيطي المستقيم مار من نقطتين 27 يف نجد شعاع توجيه مستقيم مار من نقطتين 28 يف نجد إحداثيات نقطة في مستوي 29 كيف نجد إحداثيات نقطة في مستوي 20 يف نجد إحداثيات نقطة من مستقيم 21 كيف نجد بعد نقطة عن مستوي 22 ينقطة على مستوي 23 ينقطة عن مستوي

\overrightarrow{AB} کیف نجد مرکبات شعاع	1
$\overrightarrow{AB} = (X_B - X_A, Y_B - Y_A, Z_B - Z_A)$	الطريقة
B(0,3,-1), A(1,2,3)	
\overrightarrow{AB} ($0-1$, $3-2$, $-1-3$)	مثال
$\overrightarrow{AB} = (-1, 1, -4)$	

كيف نجد طويلة شعاع	2
$\ \overrightarrow{AB} \ = AB = \sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}$ و اذا کان $\ \overrightarrow{U} \ = \sqrt{X^2 + Y^2 + Z^2}$ فإن $\ \overrightarrow{U} (X, Y, Z) \ $	الطريقة
$ \vec{u} = (3,0,2)$ $ \vec{u} = \sqrt{3^2 + 0^2 + 2^2}$ $= 5$ $ A(1,+1,0) B(1,-3,2)$ $ AB = AB = \sqrt{(1-1)^2 + (-3-1)^2 + (2-0)^2}$ $= \sqrt{0^2 + 16 + 4}$ $= \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$	مثال

كيف يتم اثبات توازي شعاعين لأي مرتبطين خطياً	
$rac{X_1}{X_2} = rac{Y_1}{Y_2} = rac{Z_1}{Z_2}$ شرط التوازي $rac{ec{\mathcal{U}}\left(X_1, Y_1, Z_1 ight)}{ec{\mathcal{V}}\left(X_2, Y_2, Z_2 ight)}$	الطريقة
حمق - $\frac{1}{2} = \frac{3}{-6} = \frac{2}{-4}$ $\vec{\mathcal{V}} / / \vec{\mathcal{U}}$ الشرط $\vec{\mathcal{V}} = (-1,3,2)$ $\vec{\mathcal{V}} = (-1,3,2)$ $\vec{\mathcal{V}} = (-1,3,2)$ أي الشعاعين مرتبطين خطياً	مثال

كيف نثبت ثلاث نقاط A,B,C على استقامة واحدة	4
نثبت أن أي شعاعين متشكلين من النقاط الثلاث مرتبطين خطياً A	الطريقة
\overrightarrow{AB} $(-1,-1,1)$ \overrightarrow{AC} $(2,2,-2)$ فالشعاعين مرتبطين خطياً نلاحظ أن مركباتهما متناسبة $\frac{-1}{2} = \frac{-1}{2} = \frac{1}{-2}$	مثال

كيف نثبت ثلاث نقاط تعين مستوي	5
نثبت أنها لا تقع على استقامة واحدة كالسؤال الرابع (4)	الطريقة
أثبت أن النقاط (1,2,3) A و (0,1,4) و (C (-1,-3,2)	
تعين مستوي	
$\frac{-1}{-2} = \frac{-1}{-5}$ نلاحظ أن :	مثال
فالشعاعين غير مرتبطين خطياً فالشعاعين غير مرتبطين خطياً $\overrightarrow{AC} \ (-1,-1,1)$ فالنقاط لا تقع على استقامة واحدة و النقاط تعين مستوي	
فالنقاط لا تقع على استقامة و احدة و النقاط تعين مستوي $A\dot{C}~(-2~,-5~,-1~)$	

كيف نجد الجداء السلمي لشعاعين	6
$\vec{u} \cdot \vec{v} = X_1 \cdot X_2 + Y_1 \cdot Y_2 + Z_1 \cdot Z_2$ $= \ \vec{u}\ \cdot \ \vec{v}\ \cdot \cos \sigma$	
$\sigma = \frac{\pi}{4} \mathcal{V} = 2 \mathcal{U} = 3$ $\vec{\mathcal{U}} \cdot \vec{\mathcal{V}} = 3 \times 2 \times \cos \frac{\pi}{4}$ $= 6 \frac{\sqrt{2}}{2} = 3 \frac{\sqrt{2}}{2}$	مثال
$\vec{\mathcal{U}}(2,3,1)$ فإن $\vec{\mathcal{U}}(-1,0,5)$ فإن $\vec{\mathcal{U}}.\vec{\mathcal{V}}=-1{ imes}2+0{ imes}3+5{ imes}1=3$	مثال

ودي للشعاع	كيف يتم حساب الجداء السلمي بالمسقط العه	7
c ,	$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC}$	الطريقة
	حيث $\stackrel{.}{C}$ المسقط العمودي لـ $\stackrel{.}{C}$ على	
A C	المستوي (P)	
<u>/ P)</u> B		N
E/H	مکعب طول حرفه a	مثال
F	\overrightarrow{AB} . \overrightarrow{GE} احسب الجداء السلمي لـ (1)	
l d	\overrightarrow{DB} . \overrightarrow{GC} احسب الجداء السلمي لـ (2	
D	الحل :	
$B \stackrel{\triangle}{\longrightarrow} C$	$\overrightarrow{AB} \cdot \overrightarrow{GE} = \overrightarrow{AB} \cdot \overrightarrow{CA}$ (1	
в а С	$=\overrightarrow{AB}.\overrightarrow{BA}$	
	$= -a \cdot a = -a^2$	
	. حيث : مسقط GE على المستوي . حيث	
	. AB على \overrightarrow{BA}	
	$\overrightarrow{DB} \cdot \overrightarrow{GC} = \overrightarrow{DC} \cdot \overrightarrow{GC} = 0$ (2	
	. لأن الشعاعين \overrightarrow{GC} و \overrightarrow{DC} متعامدان	

كيف نثبت تعامد شعاعين	8
نثبت أن الجداء السلمي لهما صفراً	الطريقة
أثبت أن الشعاعين $ec{\mathcal{U}}$ متعامدين	
$\vec{\mathcal{V}}$ (1,2,1) $\vec{\mathcal{U}}$ (1,2,-5) حيث	
$\vec{\mathcal{U}} \cdot \vec{\mathcal{V}} = 1 \times 1 + 2 \times 2 + 1 \times -5$	مثال
= 1 + 4 - 5 = 0	
إذا $ec{\mathcal{U}}$ متعامدين	

	ايجاد إحداثيات النقط	9
7 .	$(\overrightarrow{A}$, \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}) في معلم	
Z 🏚	A(0,0,0)	
E H	B(a,0,0)	
	D(0,a,0)	
F G J	C(a,a,0)	الطريقة
' A	F(a,0,a)	
D Y	H (0 , a, a)	
В	G (a , a ,a)	
X, C		
	إذا كان المكعب طول حرفه 1 .	
A(0,0,0) , B(1,0,0) , D(0,1,0) , E((0,0,1), E(0,0,1), C(1,1,0)	مثال
$I\left(1,\frac{1}{2},0\right), J\left(-\frac{1}{2},0\right)$	$\frac{1}{2}$,1,1)	متان

$\overrightarrow{u},\overrightarrow{\mathcal{V}},\overrightarrow{\mathcal{W}}$ تباط الخطي لثلاث أشعة	10 إثبات الارن
ان $\overrightarrow{\mathcal{U}}$ و $\overrightarrow{\mathcal{U}}$) غیر مرتبطین . a , b غیر میتون عددین حقیقین $\vec{\mathcal{W}}=a\vec{\mathcal{U}}+b\vec{\mathcal{V}}$	•
$\vec{W}\left(\frac{1}{2},0,-1\right), \vec{V}\left(\frac{-1}{2},1,1\right), \vec{U}\left(\frac{1}{2},1,-1\right)$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$	أثبت أنها مر الحل : نلاح الحل : نلاح الآن لنثبت و مثال

كيف نجد معادلة المستوي	11
اذا کان	
$\overrightarrow{\mathrm{n}}$ (a,b,c) P معلوم شعاع الناظم للمستوي – معلوم	
(x_0,y_0,z_0) نقطة يمر منها المستوي - نقطة يمر منها المستوي	الطريقة
- تكون معادلة المستوي	
$a(X - X_0) + b(Y - Y_0) + c(z - z_0) = 0$	
اكتب معادلة المستوي P المار من النقطة (3-, 3, 1)A و شعاع الناظم له	
n(2,3,5)	مثال
2(x-1) + 3(y-3) + 5(z+2) = 0 الحل: المعادلة هي	متان
2x + 3y + 5z - 1 = 0	

A

إيجاد معادلة مستوي مار من ثلاث نقاط C, B, A معلومة	12
$A\overrightarrow{C}$ غير مرتبطين خطياً في تعيين مستوي . $A\overrightarrow{C}$ غير مرتبطين خطياً في تعيين مستوي . -2 حسب تعريف المستوي هو مجموعة النقاط -2 -2 -2 -2 -2	الطريقة الأولى
وجد معادلة المستوي P المار من النقاط $C(4,3,5)$, $B(10,4,3)$, $A(1,5,4)$ المحل نلاحظ أن الشعاعين الحل نلاحظ أن الشعاعين $\overline{AB}(9,-1,-1)$, $\overline{AC}(3,-2,1)$ غير مرتبطين خطيا $\overline{AM}=a\overline{AB}+b\overline{AC}$ نصع $x-1=9()+3()$ $x-1=9a+3b\dots$ $x-1=9a+3b\dots$ $x+4y+5z-41=0$ $x-1=0$	$\begin{bmatrix} a + 3b \\ a - 2b \\ -a + b \end{bmatrix}$

	12
لايجاد معادلة مستوي مار من ثلاث نقاط A ,B , C	الطريقة الثانية
. عير مرتبطين خطياً \overrightarrow{AB} , \overrightarrow{AC} غير مرتبطين خطياً	
2- نكتب معادلة المستوي :	
$ec{n}(a,b,c)$ ناظمة $ax+by+cz+d=0$	
\overrightarrow{AB} , \overrightarrow{AC} و الناظم عمودي على شعاعي توجيه	
$ec{n}$. $\overrightarrow{AB}~=~0$ نضع -3	الطريقة
$\vec{n} \cdot \overrightarrow{AC} = 0$	
4- نحل معادلتین بثلاث مجاهیل و نجد a,b,c	
مثلاً . A باعتبار المستوي مار من A مثلاً .	
A(1,5,4) B(10,4,3) C(4,3,5)	
الحل :	
$(\overrightarrow{AP}(0, 1, 1))$	
غير مرتبطين خطياً $\overline{BC}(3,-1,-1)$	
(a,b,c) $ec{n}$ بفرض $ec{n}$) ناظم المستوي	
$\vec{n} \cdot \overrightarrow{AB} = 0 \implies 9a - b - c = 0$	
$\vec{n} \cdot \vec{BC} = 0 \implies 3a - 2b + c = 0$	
$a=rac{1}{5}$, $b=rac{4}{5}$ ومنه $a=rac{1}{5}$, $b=rac{4}{5}$ بحل المعادلتين نجد $a=rac{1}{5}$, $b=rac{4}{5}$	مثال
ومنه الناظم $\vec{n}(rac{1}{5},rac{4}{5},1)$ ومنه الناظم $\vec{n}(rac{1}{5},rac{4}{5},1)$	
$\frac{1}{5}x + \frac{4}{5}y + z + d = 0$	
وبما أن المستوي (ABC) مار من النقطة (1,5,4)A نعوض :	
$d = \frac{41}{5}$ ومنه $\frac{1}{5}(1) + \frac{4}{5}(5) + 1(4) + d = 0$	
وبالتالي : $\frac{1}{5}x + \frac{4}{5}y + z - \frac{41}{5} = 0$	
وبالمعادلة المستوي : $X + 4y + 5z - 41 = 0$	
A + 4y + 3z - 41 = 0	

لايجاد معادلة مستوي مار من ثلاث نقاط .	12 الطريقة الثالثة	
ax+by+cz+d=0 نكتب معادلة المستوي -1		
2- نعوض إحداثيات النقاط C,B,A في المعادلة.		
3- نحصل على ثلاث معادلات بأربع مجاهيل .	الطريقة	
4- نضع d=1 مثلاً و نحل ثلاث معادلات و نجد c, b, a .		
أوجد معادلة المستوي (ABC)		
A(-1,0,1),B(1,2,-1),C(0,3,1)		
الحل:		
ax + by + cz + d = 0 المعادلة		
A(-1,0,1): -ax + c + d = 0		
B(1,2,-1): $a + 2b - c + d = 0$		
C(0,3,1): 3b+c+d=0		
نضع d=1 :		
1) $-a+c+1=0$		
	مثال	
2) $a + 2b - c + 1 = 0$		
3) $3b + c + 1 = 0$		
بجمع 1 و 2 :		
2b + 2 = 0 $b = -1$		
نعوض في 3 فنجد :		
نعوض في 1 فنجد :		
تتكون معادلة المستوي :		
3x - y + 2z + 1 = 0		

$\overrightarrow{w},\overrightarrow{u}$ ایجاد معادلة مستوي یمر من نقطة و عُلم شعاعي توجیه له	13
$ec{n}(a,b,c)$ بفرض شعاع الناظم للمستوي -1	
$\vec{\mathrm{n}} \cdot \vec{\mathrm{u}} = 0$: نضع -2	
$\vec{\mathrm{n}}\cdot\vec{\mathrm{v}}=0$	الطريقة
a,b,c و نحسب	
11 كما في السؤال $\vec{\mathrm{n}}(a,\mathrm{b},\mathrm{c})$ كما في السؤال 21 -3	
أوجد معادلة المستوي P المار من النقطة (1,0,1)A	
. والشعاعين $\vec{\mathrm{u}}(2,1,1)$ و $\vec{\mathrm{v}}(1,-1,-2)$ شعاعي توجيه له	
$\vec{n}(a,b,c)$ الحل : بفرض الناظم	
: نجن $c=1$ نضع $\begin{cases} n. \vec{u}=0 \ \rightarrow \ 2a+b+c=0 \\ n. \vec{v}=0 \ \rightarrow \ a-b+2c=0 \end{cases}$	
2a + b + 1 = 0	
a - b + 2 = 0	مثال
b=3 ومنه $a=-1$ ومنه $a=-1$	
A فيكون الناظم $\vec{n}(1,3,1)$ و بالتالي معادلة المستوي المار من النقطة	
و ناظمه آ هي :	
1(x-1) + 3(y-0) + (z+1) = 0	
P: x + 3y + z - 2 = 0	

كيف نجد معادلة مستوي يحوي مستقيمين متقاطعين	14	
1- تعيين نقطة التقاطع A .		
. نجد $\overrightarrow{ extbf{v}}$ شعاعين توجيه هذين المستقيمين -2		
: للمستوي الذي يحققه $ec{n}(a,b,c)$ للمستوي الذي يحققه		
$\vec{n}.\vec{u} = 0$	الطريقة	
$\vec{n}.\vec{v}=0$		
4- نكتب معادلة المستوي المار من $f A$ و $f {f n}$ ناظمه .		
ليكن المستقيمين		
$d\begin{cases} x = t - 4 \\ y = -t + 3 \\ z = t \end{cases} \qquad t \in R\acute{d} \begin{cases} x = 3t \\ y = 2t + 1 \\ z = -t + 2 \end{cases}$		
d_1 المتقاطعة في A(0,1,2) المتقاطعة في A(0,1,2)		
v_1 : Lab		
d نجد $ec{u}(1,-1,1)$ شعاع توجیه	مثال	
d شعاع توجیه $ec{V}(3$, 2 , -1)		
: الذي يحوي d,d فهو يحقق المستوي P الذي يحوي $\overrightarrow{n}(a,b,c)$ فهو		
$\vec{n}.\vec{v} = 0$		
$\vec{n}.\vec{u} = 0$		
ونكمل كما في السؤال 13		

كيف نثبت أن أربع نقاط تقع في مستوي واحد A,B,C,D	15
طريقة 1- نثبت أن ثلاث منها تعيين مستوي كما سبق بالسؤال 5.	
ثم نثبت أن النقطة الرابعة تنتمي لهذا المستوي .	
طريقة 2- نثبت أن إحدى النقاط مركز أبعاد متناسبة للنقاط الثلاثة الباقية .	الطريقة
طريقة 3- نثبت أن الأشعة $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AD}}$, مرتبطة خطيا كما في السؤال 10	
A(1,5,4) B(10,4,3) C(4,3,2) لتكن النقاط	
D(0,4,5) أثبت أنها تقع في مستو واحد .	
: الحل	
\overrightarrow{AB} , \overrightarrow{AC} نلاحظ أن الشعاعين \overrightarrow{AB} ($9,-1,-1$) غير مرتبطين خطياً نجد : خير \overrightarrow{AC} ($3,-2,1$) نجد : خير متناسبة \overrightarrow{AD} ($-1,-1,1$) اذاً النقاط A,B,C مستو تعيين	
تكون النقطة D من المستوي (ABC) اذا وفقط اذا وجد عددان حقيقيان a,b يحققان	
$\overrightarrow{AD} = a\overrightarrow{AB} + b\overrightarrow{AC}$	
(-1,-1,1) = a(9,-1,-1) + b(3,-2,1)	
= 9a + 3b, -a - 2b, -a + b	مثال
$\begin{cases} 9a + 3b = -1 & (1 \\ -a - 2b = -1 & (2 \\ -a + b = 1 & (3 \end{cases}$	
من المعادلتين 2 و 3 نجد أن :	
$a=-rac{1}{3}$, $b=rac{2}{3}$	
, نعوضها في المعادلة 1 فنجد $(\frac{2}{3})=-1$ نعوضها في المعادلة 1 فنجد	
$\overrightarrow{AD} = -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$ إذا	
. فالاشعة : $\overrightarrow{\mathrm{AD}}$, $\overrightarrow{\mathrm{AB}}$, $\overrightarrow{\mathrm{AC}}$ مرتبطة خطياً	
فالنقاط A,B,C,D تقع في مستو واحد .	

إيجاد تمثيل وسيطي لمستقيم مار من نقطة و معلوم شعاع توجيه له .	16
$A(x_0,y_0,z_0)$ النقطة $\vec{v}(a,b,c)$ $\vec{v}(a,b,c)$ يوازي المستقيم $\vec{v}(a,b,c)$ عادلة المستقيم $\vec{v}(a,b,c)$ \vec	الطريقة
A(1,2,3) abail on on on one dependence of the contract $A(1,2,3)$ and $A(1,2,3)$ and $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$ are $A(1,2,3)$ and $A(1,2,3)$ are $A(1,2,3)$	مثال

إيجاد تمثيل وسيطي لمستقيم (AB)	17
• نختار نقطة من أحد النقطتين A أو B . • نجد شعاع التوجيه $\overrightarrow{u} = \overrightarrow{AB}$ • نعوض بالمعادلات الوسيطية .	الطريقة
$B(0,1,4)$ و $A(1,2,3)$ حيث $A(1,2,3)$ و $A(1,2,3)$ اكتب تمثيل وسيطي للمستقيم $A(1,2,3)$ ختار النقطة $\vec{u} = \overrightarrow{AB} = (0-1,1-2,4-1)$ نجد شعاع التوجيه	
$u = AB = (0 - 1, 1 - 2, 4 - 1)$ = $(-1, -1, 3)$ = $(-1, -1, 3)$ $\begin{cases} x = t + 1 \\ y = -t + 2 & t \in R \end{cases}$ ونكتب المعادلات $z = t + 3$	مثال

كيف نجد شعاع توجيه المستقيم d الناتج من تقاطع مستويين p و Q	18	
: و Q على الترتيب P و شعاعين ناظمي الترتيب P و $\overline{n_2}$, $\overline{n_1}$		
بفرض ($ec{u}$ (a , b , c) بفرض -2		
$\vec{\mathcal{U}}.\overrightarrow{n_1}=0$	الطريقة	
$\vec{\mathcal{U}}.\overrightarrow{n_2}=0$		
ونعين a ,b , c كما سبق بالسؤال (12)		
ليكن المستويين:		
$\mathcal{P}: x + 2y - 3z + 1 = 0$		
Q: x + y + z + 1 = 0		
يتقاطع المستويين وفق مستقيم Δ أوجد شعاع توجيه له .		
الحل :		
ناظم $ec{n}_1(1,2,-3)$ أن نلاحظ n_1,n_2 غير متوازيين $ec{n}_2(1,1,1)$		
ناظم Q ناظم $ec{n}_2(1,1,1)$		
Δ ولیکن $ec{\mathcal{U}}(a,b.c)$ شعاع توجیه		
$\vec{\mathcal{U}}.\vec{n}_1=0$		
$\vec{\mathcal{U}}.\vec{n}_2=0$	مثال	
a + 2b - 3c =0 : ومنه	_	
a + b + c =0		
a + 2b =3 ← c=1 نضع		
a + b =-1		
لحل هاتين المعادلتين نجد أن :		
a = 5 , b = 4		
وبالتالي :		
Δ ا شعاع توجیه ل $ec{\mathcal{U}}(4,-5,1)$		

	$(\boldsymbol{o}, \vec{\boldsymbol{i}}, \vec{\boldsymbol{j}}, \overrightarrow{\boldsymbol{k}})$	مستويات خاصة	19
$\mathcal{Z}=0$ نبي	ي : (ر ئر , ر ئر) ه	• معادلة المستو	
y=0 هي	$(o,\vec{\iota}, \overrightarrow{k})$: ي	• معادلة المستو	
x=0 هي	$\left(\ o, \overrightarrow{j}, \overrightarrow{k} \ \right)$: ي	• معادلة المستو	
z=aهي a a $by+cz+d=0$ $ax+cz+d=0$) يوازي : ox) يوازي :oy	 معادلة مستوي معادلة مستوي معادلة مستوي معادلة مستوي معادلة مستوي معادلة مستوي 	الطريقة

كيف نجد احداثيات نقطة من مستو معلومة معادلته .	20
 نعطي قيمتين لمتغيرين ونجد قيمة المتغير الثالث. و اذا كانت المعادلة فيها فقط نتغير نجد قيمة هذا المتغير و يكون قيمة المتغير الثاني و الثالث كيفي. اذا كانت المعادلة فيها متغيرين نعطي لإحدهما قيمة و نجد الآخر و يكون قيمة الثالث كيفي. 	الطريقة
أوجد إحداثيات نقطة من المستوي P بالحالات التالية : $3x + y + z + 2 = 0$: P معادلة $2x + y + z + 2 = 0$ و نتحلي $2x + y + z + 2 = 0$ و نتحلي $2x + y + z + 2 = 0$ و نتحلي $2x + y + z + 2 = 0$ و نتحار $2x + z + z + z + 2 = 0$ و نتحار $2x + z + z + 2 = 0$ و نتحار $2x + z + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + z + 2 = 0$ و نتحار $2x + 2 =$	مثال

من مستقيم عُلم تمثيل وسيطي له .	كيف نجد إحداثيات نقطة م	21
) قیمة من R .	 نعطي للوسيط † أي 	
	x , y , z	الطريقة
ت نأخذه كما هو	وإذا كان أحدهم ثابن	
مستقيم d .	أوجد إحداثيات نقطة من ال	
x = 1 $x = 3 : if x = 3 + i$	$\int_{x_1}^{x} = 2t - 1$	
y=3 : فنجد أن t=1 قيمة $z=3$	$\begin{cases} y = -t + 4 \\ z = 3 \end{cases}$	مثال
فتكون النقطة (3، 3، 1)	851	

كيف نعين المسقط العمودي لنقطة A على مستقيم .	22
d الذي يمر من A وعمودي على b أي شعاع توجيه Δ الذي يمر من A وعمودي على b أي شعاع توجيه Δ = ناظم لـ Δ . (2) نعين نقطة تقاطع المستوي P و المستقيم b ولتكن H . (4) المسقط العمودي لـ Δ على Δ .	الطريقة
ليكن المستقيم $x=t$ $y=2t+1$: d المستقيم $z=-t$ $z=-t$. d ي d على d الوجد المسقط القائم لـ d	مثال

كيف نعين المسقط العمودي لنقطة A على مستوي P.	23
1- نكتب معادلة المستقيم d و الذي يمر من A .	
2- شعاع توجیهه هو ناظم P .	الطريقة
3- نعين نقطة تقاطع P و d و لتكن H إن H هي المسقط العمودي لـ A على d	
أوجد إحداثيات المسقط العمودي للنقطة (A (2 , -1 , 1)	
P: x + y + z = 0 على المستوي	
الحل : نجد (1,1,1) أنظم P وهو شعاع توجيه لـ d نجد \vec{n} (1,1,1) ناظم	
إذا معادلة d :	
x = t + 2	
$y = t - 1 \qquad t \in \mathbb{R}$	
z=t+1نعوض تمثیل d بمعادلة P : فنجد	
t+2+t-1+t+1=0	
$3t = -2 \implies t = -\frac{2}{3}$	tı 2
ومنه نعوض في معادلة d فنجد :	مثال
$x = -\frac{2}{3} + 2 = \frac{4}{3}$	
3 3	
$y = -\frac{2}{3} - 1 = -\frac{5}{3}$	
$z = -\frac{2}{3} + 1 = \frac{1}{3}$	
إذاً إحداثيات المسقط	
$H(\frac{4}{3}, -\frac{5}{3}, \frac{1}{3})$	
$n(\frac{\pi}{3},-\frac{\pi}{3},\frac{\pi}{3})$	

كيف نجد بعد نقطة ∆عن مستوي P.	24
النقطة Δ على المسقط العمودي H للنقطة Δ على المستوي P ثم نجد طريقة Δ	
المسافة ΔH فتكون هي البعد عن المستوي P .	
المستوي P عن المستوي Δ عن المستوي المستوي عن المستوي	الطريقة
$d(\Delta, p) = \frac{ a + by + cz + d }{\sqrt{a^2 + b^2 + c^2}}$	
احسب بعد النقطة (2,1,1) عن المستوي :	
P: 2x - 2y - z - 2 = 0	
الحل : $d(A, p) = \frac{ 4-1-4-1 }{\sqrt{4+4+1}} = \frac{2}{3}$	مثال

ABCDEFGH متوازي مستطيلات $ABCDEFGH$ فيه $BC = GC = 1$ و $BC = GC = 1$ فيه $BC = GC = 1$ ولتكن النقطة / منتصف $ABCDEFGH$	25
طریقة أولی : بفرض M المسقط القائم للنقطة G علی المستقیم G المستقیم G المسقط الفائم للنقطة G علی المستقیم G المبعاد المتناسبة للنقطتین المثقاتین : M ویما أن M تقع علی G المه فهی مرکز الأبعاد المتناسبة للنقطتین المثقاتین : $M(1-t,1-t)$ و G G المبح لدینا G G G المبح لدینا G	الطريقة
H N G (IH) له G المسقط القائم للنقطة G على G على G المسقط القائم للنقطة G على G المسقط القائم للنقطة G و بفرض G منتصف G و بالتالي G G و بالتالي G	

 $\left\|\overrightarrow{IN}
ight\| = \sqrt{0+1+1} = \sqrt{2}$ و لدينا

 $GM \sqrt{3} = 2 \sqrt{2}$ نعوض في * فنجد

 $GM = \frac{2\sqrt{6}}{3}$ eais live live live graph of the graph of the contract of

كيف نثبت توازي مستقيمين	26
نثبت أن شعاعي توجيههما متوازيين أي مرتبطين خطياً .	الطريقة
أثبت أن المستقيمين d و d المعرفين كما يلي: $ x = 2t + 3 \\ d \begin{cases} x = 2t + 3 \\ y = 6t - 1 \end{cases} \qquad \begin{cases} x = t + 1 \\ y = 3t + 2 \\ z = -2t + 3 \end{cases} $ الحل \vec{u} (1,3,-2): d_1 عنوجيه \vec{v} (2,6,-4): d_1 و شعاع توجيه \vec{v} (2,6,-4): d_1 نلاحظ أن مركباتتها متناسبة أي الشعاعين مرتبطين خطياً فالمستقيمان متوازيان .	مثال

كيف نتبت توازي مستويين	27
نثبت أن شعاعي ناظميهما متوازيان	الطريقة
بین أن المستویین P و Q متوازیین	
$P: -x - 2y + \frac{1}{2}z - 1 = 0$	
Q: 2x + 4y - z = 0	
\mathbf{Q} ناظم $\vec{n}(2,4,-1)$ ناظم الحل : لدينا	مثال
P ناظم $\vec{n}\left(-1,-2,rac{1}{2} ight)$	
$\frac{2}{1} = \frac{4}{-2} = \frac{-1}{\frac{1}{2}}$ نلاحظ مرکباتهما متناسبة	
فالمستويان متوازيان .	

كيف نثبت تعامد مستويين	28
نثبت ناظميهما متعامدين	الطريقة
أثبت أن المستويين :	
P: x + 2y + 3z + 1 = 0	
Q: x + y + z + 1 = 0	
متعامدین .	
P ناظم $\overrightarrow{n_1}(1,2,-3)$ ناظم	مثال
\mathbf{Q} ناظم $\overrightarrow{n_2}(1,1,1)$	
و نلاحظ أن جداءهما السلمي يساوي الصفر	
$\vec{n}_1 \cdot \vec{n}_2 = 1 \times 1 + 2 \times 1 - 3 \times 1 = 0$	
. ومنه Q و P متعامدان	

كيف نثبت أن مستقيم يوازي مستوي .	29
نثبت أن شعاع توجيه المستقيم يعامد شعاع ناظم المستوي .	الطريقة
ليكن المستقيم $x = -4t + t$ و ليكن المستوي $y = x + 2y - 3z + 1 = 0$ $y = 3 + t$ $z = t$	
أثبت أن d و d متوازيان $\vec{n}(1,2,-3)$ شعاع ناظم $\vec{v}(1,1,1)$ شعاع توجيه $\vec{v}(1,1,1)$	مثال
نلاحظ أن جداؤ هما السلمي يساوي صفراً . أي $\vec{n} \perp \vec{v} = \vec{n} \cdot \vec{v} = 1 \times 1 + 2 \times 1 - 3 \times 1 = 0$ أي d متوازيان .	

كيف ندرس الوضع النسبي لمستقيمين	30
1- نجد شعاعي توجيه المستقيمين	
2- أ) إذا كان متوازيان كان المستقيمان متوازيان .	
ب) إذ لم يكونا متوازيان فهما : إما متقاطعين	
أو ليسا في مستو واحد	
ج) لمعرفة الوضع: نساوي المركبات لهذين المستقيمين مع بعضهما نحصل	الطريقة
على ثلاث معادلات بمجهولين t و s :	
• نختار معادلتين ونحلهما و نعين المجهولين ثم نعوض بالثالثة فإذا تحققت	
فهما متقاطعين و إذا لم تتحقق فهما ليسا في مستوٍ واحد .	
ليكن المستقيمين :	
$ \hat{d} \begin{cases} x = 3t \\ y = 2t + 1 \end{cases} \qquad d \begin{cases} x = 2t - 4 \\ y = -t + 3 \end{cases} $	
$d \begin{cases} y = 2t + 1 \\ z = -t + 2 \end{cases} \qquad d \begin{cases} y = -t + 3 \\ z = t \end{cases}$	
ادرس الوضع النسبي لهما .	
$ec{u}(2,-1,1):d$ الحل : لدينا شعاع توجيه	
مرکباتهما غیر متناسبة $ec{v}(3,2,-1): \grave{d}$	
إذاً المستقيمان غير متوازيان	
اذا نضع :	tı »
2) 2s+1=-t+3	مثال
3) -s +2 =t	
نحل 2 و 3 نجد أن بالجمع : s = 0	
t=2 و منه نعوض في 3 فنجد $t=2$	
نعوض بـ 1	
0 = 0 محققة إذاً للمعادلات حل فالمستقيمان متقاطعان و نقطة	
تقاطعهما : (0,1,2)	

كيف ندرس الوضع النسبي لمستويين .	31
\vec{n}_1, \vec{n}_2 نعين شعاعي ناظمي المستويين المستويين ناظمي المستويين ناظمي المستويين نعين شعاعي ناظمي المستويين نعين نعين نعين نعين نعين نعين نعين	
2) إذا كان \vec{n}_1, \vec{n}_2 مرتبطين خطياً كانا المستويين متوازيين . (3) إذا كان \vec{n}_1, \vec{n}_2 غير مرتبطين خطياً كانا المستويين متقاطعين .	الطريقة
السؤال 26	مثال

كيف ندرس الوضع النسبي لمستقيم مع مستوي .	32
1) نعوض معادلة المستقيم bبمعادلة المستوي P ينتج معادلة بمجهول واحد t.	
2) نحل هذه المعادلة ونميز الحالات :	
أ) إذا كان لها حل وحيد ($lpha t = eta$) كان المستقيم قاطع للمستوي .	
و نجد إحداثيات نقطة التقاطع بتعويض قيمة t بمعادلة المستقيم .	
ب)إذا كان للمعادلة عدد غير منتهٍ من الحلول ($Ot=0$)كان المستقيم	الطريقة
محتوى بالمستوي .	
جـ) إذا كان ليس للمعادلة حل ($0t=b$) كان المستقيم يو از ي	
المستوي.	
ادرس الوضع النسبي للمستقيم Dمع المستوي P:	
$P: x-y+z=1 \qquad d: \begin{cases} x=2t-1 \\ y=t \end{cases}$	
$P: x-y+z=1$ $d: \begin{cases} y=t \\ z=-3t+1 \end{cases}$	
الحل نعوض معادلة p بمعادلة P فنجد :	مثال
2t - 1 - t3 - t + 1 = 1	
و منه نجد $t=-rac{1}{2}$ (حل وحيد) إذاً المستقيم d قاطع للمستو d .	

كيف ندرس الوضعيات النسبيبة لثلاث مستويات .	33
 1) نحل جملة ثلاث معادلات بثلاث مجاهیل . 2) إذا كان لها حل وحید كانت المستقیمات تشترك بنقطة واحدة . 3) إذا كان لها عدد غیر منته من الحلول كانت المستویات تشترك بمستقیم . 	الطريقة
4) إذا لم تكن لها أي حل فإنها لا تشترك معاً بأي نقطة . ملاحظة : يتم حل جملة ثلاث معادلات بطريقة غاوس أو أي طريقة أخرى .	
ادرس الوضع النسبي للمستويات الثلاث : $x-y+z=1 \qquad \;\; ext{L}_1 \ 2x+13y-7z=-1 \;\; \;\; ext{L}_2$	
$2x + 13y - 72 = 1 L_2$ $5x + y + z = -5 L_3$ الحل :	
$x - y + z = 1$ $3y - 2z = -5$ $15y - 9z = -3$ $L_2 - 5L_1 \rightarrow \hat{L}_2$ $L_3 - 2L_1 \rightarrow \hat{L}_3$	مثال
نقوم بالإجراء : $x-y+z=1 \qquad \qquad \grave{\rm L}_3-5{\rm L}_2\to\grave{\rm L}_3^{\grave{s}} \\ 3y-2z=-5 \qquad \qquad z=22$	
y=13 : y ومنه نحسب $x=-8$ ومنه نحسب بالأولى فتكون $x=-8$	
و بالتالي المستويات الثلاث تشترك بنقطة واحدة هي (8,13,22-)	

كيف نجد معادلة المستوي المحوري لقطعة مستقمة [AB]	34
$[AB]$ نجد إحداثيات I منتصف $[AB]$ نجد $\overrightarrow{n}=\overrightarrow{AB}$ ناظم المستوي . (2) نجد \overrightarrow{n} عادلة المستوي كما بالسؤال (11) .	الطريقة
A(1,2,3) حيث $[AB]$ حيث $[AB]$. $B(3,-2,1)$. $B(3,-2,1)$. $B(3,-2,1)$. AB .	مثال

كيف نجد معادلة كرة عُلِمَ مركزها و نصف قطرها .	35
r اذا کان مرکز ها $\Omega(x_o,y_o,z_o)$ و نصف قطر ها	:: t ti
$(x-x_o)^2 + (y-y_o)^2 + (z-z_o)^2 = r^2$ نبدل بالمعادلة	الطريقة
اكتب معادلة كرة مركزها (2-,1,-2) و نصف قطرها .	
الحل :	مثال
$(x-2)^2 + (y-1)^2 + (z+2)^2 = 25$: المعادلة	

كيف نجد مركز ونصف قطر كرة عُلِمت معادلتها .	36
- نتمم إلى مربع كامل _.	
- حتى تكتب المعادلة بالشكل:	
$(x - x_o)^2 + (y - y_o)^2 + (z - z_o)^2 = r^2$	الطريقة
. r ونصف قطر ها (x_o,y_o,z_o) ونصف قطر ها - ثم نستنتج المركز	
أوجد مركز نصف قطر الكرة التي معادلتها :	
$x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$	
الحل: نتمم إلى مربع كامل:	
$x^2 - 2x + 1 - 1 + y^2 + 2y + 1 - 1 + z^2 - 4z + 4 - 4 - 3 = 0$	مثال
$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$	
r=3 ومنه المركز $(1,-1,2)$ ونصف القطر	

كيف نثبت أن مستوي يمس كرة .	37
- نجد بعد مركز الدائرة عن المستوي . - فإذا كان البعد = نصف قطر الكرة فكان المستوي يمس الكرة .	الطريقة
اثبت أن المستوي P معادلته : $x - 2y + 3z = 5$ $(x - 2)^2 + (y + 2)^2 + (z + 3)^2 = \frac{4}{14}$ $r = \frac{2}{\sqrt{14}} A(2, -2,3)$ i الحل : نجد أن مركز الكرة $d(\Delta, P) = \frac{ 2 - 4 + 9 - 5 }{1 + 4 + 9} = \frac{2}{\sqrt{14}} = r$ $\Rightarrow \text{ Illustrates}$	مثال

	كيف يتم حساب حجم رباعي الوجوه .	38
احة القاعدة × الارتفاع	القانون : حجم رباعي الوجوه = $\frac{1}{3}$ × مس	
	$v = \frac{1}{3}s.h$	الطريقة
	القاعدة قد تكون مثلث أو مربع أو	
مست <i>و ي</i> القاعدة _.	الارتفاع هو غالباً بعد رأس الرباعي عن	
D(-4,2,1) $C(3,1,-2)$	B(2,2,3) $A(1,0,-1)$ لتكن النقاط	
، مساحته	1) أثبت أن المثلث ABC قائم و احسب	
	2) برض معادلة المستوي (ABC): 0	
<i>()</i>	احسب بعد النقطة D عن (ABC)	
$\sqrt{6}$ \sqrt{v}	3) احسب حجم رباعي الوجوه DABC	
$C \longrightarrow B$	الحل :	
2) بعد D عن المستوي (ABC)	1) نجد	
$d = \frac{ -8 - 6 + 1 - 1 }{\sqrt{4 + 9 + 1}}$	$\overrightarrow{AB}(1,2,4)$	
_(\)	$\overrightarrow{AC}(2,1,-1)$	مثال
= √14	نلاحظ أن جداؤهما السلمي:	
3) حساب الحجم:	$\overrightarrow{AB}.\overrightarrow{AC} = 2 + 2 - 4 = 0$	
	فهما متعامدين فالمثلث ABC قائم في A	
$v = \frac{1}{3}s. h = \frac{1}{3} \times \frac{3}{2} \sqrt{14}. \sqrt{14} = 7$	لحساب مساحته:	
	$\ \overrightarrow{AB}\ = \sqrt{1+4+16} = \sqrt{21}$	
	$\ \overrightarrow{AC}\ = \sqrt{4+1+1} = \sqrt{6}$	
	$S = \frac{\sqrt{21} \times \sqrt{6}}{2} = \frac{3}{2}\sqrt{14}$	

	قواعد إيجاد طبيعة مجموعة نقاط بالفراغ.	39
طبيعة مجموعة النقاط M	العلاقة	
هي كرة مركزها A ونصف قطرها r	r = ثابت = MA	
هي المستوي المحوري للقطعة [AB]	MA=MB	
هي كرة قطر ها [<i>AB</i>]	$\overrightarrow{MA}.\overrightarrow{MB}=0$	
هي مستوي شعاع ناظمه $\overrightarrow{\mathrm{BC}}$ و يمر من النقطة A .	$\overrightarrow{MA}.\overrightarrow{BC}=0$	
: ₍	ملاحظات: 1) مهما تكن النقطة M من الفراغ فإن	

$$(**)$$
 $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \delta \overrightarrow{MC} = (\alpha + \beta + \delta) \overrightarrow{MG}$ حيث α مركز الأبعاد المتناسبة للنقاط المثقلة

$$(A,\alpha),(B,\beta),(C,\delta)$$

$$\alpha + \beta + \delta \neq 0$$
 وحيث

: فإن الشعاع
$$lpha+eta+\delta=0$$
 فإن الشعاع (2

. M شعاع ثابت مستقل عن $lpha \overrightarrow{MA} + eta \overrightarrow{MB} + \delta \overrightarrow{MC}$

(*)
$$\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \delta \overrightarrow{MC} = 3 \overrightarrow{MG}$$
 (3)

حيث G مركز ثقل المثلث ABC.

أوجد طبيعة النقاط M التي تحقق .	40
لتكن $G(2,1,0)$ مركز ثقل المثلث ABC و $G(2,1,0)$ مركز الأبعاد	t i 2-
$\{(A,3),(B,-1),(C,1)\}$: المتناسبة للجملة	مثال:
عين مجموعة النقاط M التي تحقق :	
$MA + \overline{MB} + \overline{MC} //= 6$	1 ili
MG=2 ومنه 3MG=6 $//((1+1+1)\overrightarrow{MG})$ ومنه $//=6$	حالة 1
إن مجموعة النقاط M هي كرة مركزها G و نصف قطرها 2.	
$ \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} $ الحل بما أن G هي مركز ثقل المثلث ABC و G هي مركز الأبعاد المتناسبة حسب	
$\parallel 3\overrightarrow{MG} \parallel = \parallel 3\overrightarrow{MG} \parallel = \parallel (*)$ فإن	حالة 2
MG=MG إذن مجموعة النقاط M التي هي المستوي المحوري للقطعة	
الحل : بما أن G مركز ثقل المثلث ABC فإن :	
.(*) حسب $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = (1+1+1)\overrightarrow{MG} = 3\overrightarrow{MG}$	حالة 3
وبما أن مجموعة الأمثال في الطرف الأيمن : 2-1-1=0	
M فإن الشعاع $2\overline{MA}-\overline{MB}-\overline{MC}$ مستقل عن	
أي ثابت لنرى ما هو : $2\overline{ extbf{MA}}-\overline{ extbf{MB}}-\overline{ extbf{MC}}=+\overline{ extbf{MA}}+\overline{ extbf{MA}}-\overline{ extbf{MB}}-\overline{ extbf{MC}}$	
$= -\overrightarrow{AM} - \overrightarrow{AM} - \overrightarrow{MB} - \overrightarrow{MC}$	
$= -(\overrightarrow{AM} + \overrightarrow{MB}) - (\overrightarrow{AM} + \overrightarrow{MC})$	
$= -\overrightarrow{AB} - \overrightarrow{AC}$ $= -(\overrightarrow{AB} + \overrightarrow{AC})$	
$= -2\overrightarrow{AF}$	
$ 3\overline{\mathrm{MG}} = - 2\overline{\mathrm{AF}} $ ومنه : $ -2\overline{\mathrm{AF}} = 3\overline{\mathrm{MG}} = 3\overline{\mathrm{MG}} = + 1000000000000000000000000000000000$	
$3MG = \mathbf{2AF}$ $MG = \frac{2}{3}AF$	
5	
$MA = \frac{2}{3}AF = $ ابت $AF = \frac{2}{3}AF = $ ابن مجموعة النقاط كرة مركزها $AF = \frac{2}{3}AF$.	
3 3 33 33 3 3 3 3 3 3	

كيف نجد إحداثيات مركز ثقل المثلث ABC .	41
$G\left(\frac{X_A+X_B+X_C}{3}, \frac{Y_A+Y_B+Y_C}{3}, \frac{Z_A+Z_B+Z_C}{3}\right)$	الطريقة
ABC مركز ثقل المثلث G مركز ثقل المثلث G	مثال

كيف نجد إحداثيات مركز الأبعاد المتناسبة لثلاث نقاط .	42
: إذا كان G مركز الابعاد المتناسبة للنقاط المثقلة $(A, \alpha), (B, \beta), (C, \delta)$: A,B,C غان معلوم إحداثيات A,B,C غان معلوم إحداثيات $X_G = \frac{\alpha \times X_A + \beta \times X_B + \delta \times X_C}{\alpha + \beta + \delta}$ $Y_G = \frac{\alpha \times Y_A + \beta \times Y_B + \delta \times Y_C}{\alpha + \beta + \delta}$ $Z_G = \frac{\alpha \times Z_A + \beta \times Z_B + \delta \times Z_C}{\alpha + \beta + \delta}$	الطريقة
احسب إحداثيات G مركز الأبعاد المتناسبة للنقاط المثقلة : $(A,1) , (B,-2) , (C,3)$ $A(1,1,-1) B(0,2,1) C(-1,0,0)$ $E = \frac{1 \times 1 - 2 \times 0 + 3 \times -1}{1 - 2 + 3} = \frac{-2}{2} = -1$ $Y_G = \frac{1 \times 1 - 2 \times 2 + 3 \times 0}{2} = \frac{3}{2}$ $Z_G = \frac{1 \times -1 - 2 \times 1 + 3 \times 0}{2} = \frac{-3}{2}$ $\Rightarrow G(-1,\frac{-3}{2},\frac{-3}{2})$	مثال

كيف نثبت أن ثلاث نقاط تقع على استقامة واحدة اعتماداً على مركز الأبعاد المتناسبة .	43
نثبت أن إحدى هذه النقاط هو مركز الأبعاد المتناسبة للنقطتين الباقيتين .	الطريقة
لتكن ABCD رباعي وجوه القطعة K من $\overline{AK} = \frac{1}{3} \overline{AB}$ و L نقطة	مثال
$[BC]$ و لا منتصف $\overrightarrow{CL}=rac{2}{3}\overrightarrow{CD}$ و الحقق $\overrightarrow{CL}=rac{2}{3}\overrightarrow{CD}$ من	
ونعرف G مركز الأبعاد المتناسبة للنقاط:	
(A, 2) (B, 1)(C, 1)(D, 2)	
D . اثبت أن النقاط G و I و I على استقامة و احدة I	
2- أثبت L,K,G على استقامة واحدة .	
الحل: لدينا فرضاً ل منتصف BC	
فيكون (J,2) مركز الأبعاد المتناسبة للنقطتين (B,2), (C,1)	
ولدينا فرضا ا منتصف AD فيكون (١,4) مركز أبعاد (D,2), (2, A)	
ولدينا فرضاً G مركز الأبعاد المتناسبة للنقاط الأربع	
(A,2) (D,2) (C,1) (B,1)	
وحسب الخاصة التجميعية:	
فإن (G,6) مركز أبعاد المتناسبة للنقطيتن (J,2), (I,4)	
ومنه او J و G تقع على استقامة و احدة .	
2- بالمثل يحل .	

كيف نحدد نقطة M أين تقع وتحقق علاقة شعاعية	44
باستخدام علاقة شال .	الطريقة
مكعب J منتصف FG ABC DEFGH مكعب J منتصف M التي تحقق :	
$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{FJ}$	مثال
$\left\{ egin{aligned} \overrightarrow{AM} &= \overrightarrow{AF} + \overrightarrow{FJ} \\ \overrightarrow{AM} &= \overrightarrow{AJ} \end{aligned} ight.$ الحل $\left\{ \overrightarrow{AM} = \overrightarrow{AJ} \right\}$ الحل $\left[\overrightarrow{AM} \right]$. $\left[\overrightarrow{AM} \right]$	

.A,B کیف نجد α لتکون M مرکز الأبعاد المتناسبة لنقطتین α	45
$lpha \overline{MA} + eta \overline{MB} = \overrightarrow{0}$ نكتب العلاقة بالشكل . $lpha$, eta . $lpha$.	الطريقة
$(B,\beta),(A,\alpha)$ انكون $(B,\beta),(A,\alpha)$ انكون $(B,\beta),(A,\alpha)$ الخاد المتناسبة للنقطتين $(B,\beta),(A,\alpha)$ الخاد $(B,\beta),(A,\alpha)$ الخاد $(B,\beta),(A,\alpha)$ الخاد $(B,\beta),(A,\alpha)$ الخاد $(B,\beta),(B,\beta)$ الخاد $(B,\beta),(B,\beta)$ الخاد المتناسبة للنقطتين $(B,\beta),(B,\beta)$ الخاد المتناسبة للنقطتين $(B,\beta),(B,\beta)$	مثال

كيف نكتب علاقة ارتباط لثلاث أشعة .	46
$(C,\delta),(B,eta),(A,lpha)$ إذا كان M مركز الأبعاد المتناسبة لثلاث نقاط	
$ec{o}=lpha \overrightarrow{MA}+eta \overrightarrow{MB}+\delta \overrightarrow{MC}$ نكتب العلاقة (1	
2) حسب الخاصة التجميعية نضع A=M	الطريقة
فنكتب العلاقة بالشكل :	
$\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$	
إذا كانت M مركز الأبعاد المتناسبة للنقاط	
(C,1) , (B,1) , (A,-1)	
$\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$ احسب x,y احسب	
الحل :	
$-\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}$ بما أن M مركز الأبعاد المتناسبة للنقاط فإن	t 1 2-
و حسب الخاصة التجميعية نختار M=A	مثال
$-\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} = (-1 + 1 + 1)\overrightarrow{AM}$	
$ \frac{\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}}{\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}} \right\} \Longrightarrow \begin{matrix} x = 1 \\ y = 1 \end{matrix} $	
$\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC} \implies y = 1$	

T

كيف نتبت أن نقطة K هي مركز الأبعاد المتناسبة لتلاث نقاط.	47
المعطيات علاقة شعاعية تحققها النقطة K .	
طريقة 1: باستخدام علاقة شال نثبت أن العلاقة تكتب بالشكل	
$\alpha \overrightarrow{KA} + \beta \overrightarrow{KB} + \delta \overrightarrow{KC} = 0$	
نستنتج أن K مركز الأبعاد المتناسبة و نستنتج الأثقال .	الطريقة
$\overrightarrow{AK} = a\overrightarrow{AB} + b\overrightarrow{BC}$ طریقة 2 : نثبت أن	
نستنتج أن K,C,B,A تقع في مستو واحد وبالتالي K مركز الأبعاد المتناسبة للنقاط	
(A,1-a-b),(B,a),(C,b)	
لیکن ABCDEFGH مکعب	
أثبت أن النقطة K المعرفة بالعلاقة	
$2\overrightarrow{AK} = \overrightarrow{CB} + \overrightarrow{CA} + 3\overrightarrow{AG}$	
هي مركز الأبعاد المتناسبة للنقاط	
$lpha$, eta , δ , عطلب ایجاد (C , δ), (B , eta), (G , $lpha$)	
الحل :	
لدينا	
$2\overrightarrow{AK} = \overrightarrow{CB} + \overrightarrow{CA} + 3\overrightarrow{AG}$	مثال
$= \overrightarrow{CK} + \overrightarrow{KB} + \overrightarrow{CK} + \overrightarrow{KA} + 3\overrightarrow{AK} + 3\overrightarrow{KG}$	
$= 2\overrightarrow{CK} + \overrightarrow{KB} + 2\overrightarrow{AK} + 3\overrightarrow{KG}$	
$\overrightarrow{KB} - 2\overrightarrow{KC} + 3\overrightarrow{KG} = \overrightarrow{0}$	
وبما أن $0 \neq 3 + 2 - 1$ فإن K وبما أن $0 \neq 3 + 3 + 3$	
للنقاط :	
(G,3) (C,-2) (B,1)	

كيف نجد معادلة مستوي Q عمودي على مستوي P مار من نقطتين B,A	48
. نجد \overrightarrow{AB} و ناظم المستوي \overrightarrow{n} : P و نثبت أنهما غير مرتبطين \overrightarrow{AB}	
ax+by+cz+d=0 : Q نكتب معادلة (2	
ونعوض النقطتين A,B نحصل على معادلتين .	الطريقة
3) و من تعامد ناظم Q و ناظم P نحصل على المعادلة	
a,b,c,d بحل المعادلات نجد (4	
اكتب معادلة المستوي q العمودي على المستوي p و مار من النقطتين B,A	
$B\left(\left(0,1,1\right)\right)$ و $A\left(\left(1,0,0\right)\right)$ و $Q:x+y+z=0$	
الحل :	
نجد أن $\overrightarrow{AB}(-1,1,1)$ و $\overrightarrow{RB}(1,1,1,1)$ غير مرتبطين خطيا ً	
a+d=0 فنجد $A(1,0,0)$ نعوض	
b+c+d=0 فنجد $B(0,1,1)$ فنجد	94 Sa
$a+b+c=0$ نجد \overrightarrow{nq} $(a$, b , c) مع \overrightarrow{np} $($ $1,1,1)$	مثال
بحل المعادلات الثلاث نجد أن :	
b=1 و نعطي $b=-c$ فيكون $b=-c$ و $A=d=0$	
y-z=0 وفیکون معادلهٔ $y-z=0$	

إثبات أن ثلاث نقاط تعين مستوي عُلِمَ معادلته .	49
نتحقق من أن النقاط الثلاث تحقق معادلة المستوي.	الطريقة
تحقق من أن النقاط (C(-1 , 2 , -1) B(2 , 1 , +1) A(+1 ,1,0)	
$\mathrm{x}+\mathrm{y}-\mathrm{z}-2=0$: تعين مستوياً معادلته	
الحل: نعوض (A(+1,1,0) بمعادلة P فنجد D=2-0-1+1+ محققة	
نعوض B(2,1,+1) بمعادلة P فنجد B(2,1,+1) محققة	مثال
نعوض (1-, 2, 1-)C بمعادلة P فنجد 0= 2−1+2+1- محققة	
إذن النقاط A,B,C تعين المستوي P.	

كيف نثبت أن مستقيم يقطع سطح كرة في نقطتين .	50
نعوض معادلة المستقيم بمعادلة الكرة :	
ينتج معادلة من الدرجة الثانية المجهول فيها t .	الطريقة
نثبت أن لها حلان و نجد الحلين .	
ليكن التمثيل الوسيطي لمستقيم d:	
(x=0)	
$t \in R$ حيث $y = -t$	
$\langle z=1+t\rangle$	
$(X+1)^2+Y^2+(Z+2)^2=6$ و لتكن الكرة S معادلتها و لتكن الكرة	
بين أن المستقيم d يقطع الكرة S في نقطتين .	ħ 2-
الحل : نبدل معادلات d بمعادلة D فنجد :	مثال
$1 + t^2 + (t+3)^2 = 6$	
$t^2 + 3t + 2 = 0$ ومنه	
t و بما أن $0 > 1 = \Delta$ فإن المستقيم قاطع للكرة في نقطتين لايجاد إحداثياتها نحسب	
و نعوض بمعادلة المستقيم .	