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Chapter One 

Systems of Linear Equations 

 

1.1 Introduction to System of Linear Equations. 

Linear equations in two dimensional has the form  

1 1 2 2 1 2,  for , ,  and  are constant real numbersa x a x b a a b   

Also, the above equation is called a linear equation in two 

variables 1 2 and x x . 

 

Definition 1. ( Linear Equation in variablesn  ) 

A linear equation in variablesn   1 2, , , nx x x   has 

the form  

1 1 2 2 ,                 ( )n na x a x a x b      

         Where  1 2, , ,  , and  are real numbersna a a b .  

We call 1 2, , , na a a  the coefficients, and b  the constant term. 

Also, 1a  is called the leading coefficient and 1x  is called the 

leading variable. 

Remarks. Linear equations have no products or roots of variable, 

and no variables involved in trigonometric, logarithmic or 

exponential functions, that is variables appear only to the first 

order (power). 

Example 1. The following examples are linear equations. 

1) 2 3 17x y                      

2) 1 24 3 9x x   

3) 1 2 24 3 5 5x x x          

4) 1 2sin(2) 3 14x x   

5) 
3

1 23 11e x x                    
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6) 3

1 3 2log (2) 11e x x   

Example 2. The following examples are non-linear equations. 

1) 2 3 5xy x   

2) 1

2 32 1
xe x x    

3) sin 2 3 9x y z    

4) 2 32 3 4x y z    

5) 2log 2 3x y   

6) 
1 2

3
x y
   

Home Work. (page 11). 

Ex: 1, 2, 3, and 5. 

Definition 2. A solution of a linear equation in variablesn   

is a sequence of  n  real numbers 1 2, , , ns s s   such that 

1 1 2 2s , s , , n nx x x s    such that the equation ( )  is 

satisfied by 1 2, , , ns s s . 

   For example, 2,  and 1x y    satisfied the linear 

equation 2 5x y  . Thus, 2,  and 1x y    is a solution for 

2 5x y  .  

The solution set is the set of all solutions of the linear equation. 

Example 2. (Parametric solution) 

Consider the linear equation 1 22 4x x  , To get the 

solution of the above equation, we solve the equation for one of 

the variables in term of the others. Thus  1 24 2x x  . Then 2x  

is called the free variable ( independent), and 1x  is called the 

dependent variable ( not free). Thus, we have infinite number of 

solutions for the equation 1 22 4x x  . Hence, we could have 

t   called the parameter, and by letting 2x t . Then the 

solution set is 2x t , and 1 4 2x t  . 
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If  
2 2x t  , then 

1 4 2 4 2(2) 0x t     . The solution 

set is   1 20, 2x x  . 

If  2 3x t  , then 1 4 2 4 2(3) 4 6 2x t        . The 

solution set is   1 22, 3x x   . 

Example 3. (Parametric solution) 

Consider the linear equation 3 2 3x y z   , To get the 

solution of the above equation,  we let the variables ,  and  y z  be 

the free variables.. Thus, we have infinite number of solutions for 

the equation 3 2 3x y z   . Hence, we could have ,t s   

called the parameter, and by letting ,  and  y t z s    . 

Then the solution set is ,  y t z s  , and 
1 2

1
3 3

x s t   . 

Home Work. (page 11). 

Ex. 8, 9, 10, and 12. 

Systems of Linear Equations 

A system of  m  linear equations in n  variables is a set of 

equations, each of which is linear in the same variables: 
 

11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2 3 3

1 1 2 2

n n

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   

   

 

Remark. The double-subscript notation indicates ija is the 

coefficient of the variable jx  in the equation. 

 
Definition 3. A solution of a system of linear equations is a 

sequence of  n  real numbers 1 2, , , ns s s   such that 
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1 1 2 2s , s , , n nx x x s    that is a solution of each linear 

equation in the system.  

 

For example, the system 

1 2

1 2

 3 2  3

    4

x x

x x

 

  
 

has 1 21,  and 3x x    as a solution because both equations are 

satisfied when 1 21,  and 3x x   . On the other hand, 

1 21,  and 0x x   is not a solution of the system because these 

values satisfy only the first equation in the system. 

 

Remarks. It is possible for a system of linear equations to have 
exactly one solution, an infinite number of solutions, or no 

solution. A system of linear equations is called consistent if it has 

at least one solution and inconsistent if it has no solution. 
 

Example 4.  
(a) Consider the system 

  3

    1

x y

x y

 

  
 

Solving the system, we get 1,  and 2x y  . Hence, the 

system has only one solution (unique solution). Hence, 

the lines are intersected. 

 
 

(b) Consider the system 
        3

  2 2  6

x y

x y

 

 
 



5 
 

 

Solving the system, we get an infinite number of 

solutions. Hence, Let y t  , then 3 2x y  , and 

the solution set is 3 2x t  , and y t   is the 

parametric solution. Hence, the lines are coincide. 

 
 

(c) Consider the system 
3

1

x y

x y

 

 
 

Then the system has no solution. Hence, the lines are 
parallel. 

 
 

Theorem 1. (Number of Solutions of a System of Linear 
Equations) 

For a system of linear equations in n   variables, precisely 

one of the following is true. 
1. The system has exactly one solution (consistent system). 

2. The system has an infinite number of solutions (consistent 
system). 

3. The system has no solution (inconsistent system). 
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Back-Substitution Method and Row-Echelon Form 

Example 5. Consider the system 

1

2

2 5          ( )

        2        ( )

x y E

y E

 

 
 

We use back-substation method to solve the system.  From 2( )E

, we have  2y   . By substitution 2y    in 
1( )E , we get 

2 5 2( 2) 5

4 5 5 4 1

x y x

x x x

     

       
 

The system has exactly one solution: 1x  , and 2y   . 

Example 6. Consider the system 

1

2

3

2 3 9         ( )

        3 5         ( )

                2         ( )

x y z E

y z E

z E

  

 



 

We use back-substation method to solve the system. From 3( )E , 

we have  2z  . Put 2z   in 2( )E , we have 

3 5 3(2) 5 6 5 5 6 1y z y y y              

Finally, substitute 1y   , and 2z   in 1( )E , we get 

2 3 9 2( 1) 3(2) 9 2 6 9 9 8 1x y z x x x               

 

Hence, the solution is 1, 1 and z=2x y   . 

Definition 4. Two systems of linear equations are called 

equivalent if they have precisely the same solution set.  
 

To solve a system that is not in row-echelon form, first 

change it to an equivalent system that is in row-echelon form by 
using the operations listed below. 

Operations That Lead to Equivalent Systems of Equations 

Each of the following operations on a system of linear equations 

produces an equivalent system. 

1. Interchange two equations. ( i jE E )   

2. Multiply an equation by a nonzero constant.   ( i iE kE

;0 k  ) 

3. Add a multiple of an equation to another equation. (

i i jE E kE  ;0 k  ) 
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Rewriting a system of linear equations in row-echelon form 

usually involves a chain of equivalent systems, each of which is 
obtained by using one of the three basic operations. This process 

is called Gaussian elimination. 

 
Example 7. Consider the system 

1

2

3

  2 3  9           ( )

3          4         ( )

2 5 5   17         ( )

x y z E

x y E

x y z E

  

   

  

 

Adding the first equation to the second equation produces a new 

second equation. The operation is 2 2 1E E E     

1

2

3

  2 3  9           ( )

           3 5            ( )

2 5 5   17         ( )

x y z E

y z E

x y z E

  

 

  

 

Adding the second equation to the third equation produces a new 

third equation. The operation is 2 2 1( 2)E E E      

1

2

3

  2 3  9         ( )

           3 5          ( )

        1         ( )

x y z E

y z E

y z E

  

 

   

 

Adding the second equation to the third equation produces a new 

third equation.  The operation is 3 3 2E E E     

1

2

3

  2 3  9          ( )

           3 5           ( )

                2  4           ( )

x y z E

y z E

z E

  

 



 

Multiplying the third equation by 
1

2
 produces a new third 

equation. The operation is (4)

3 3

1

2
E E   

(4)

1

(4)

2

(4)

3

  2 3  9          ( )

           3 5           ( )

                 2            ( )

x y z E

y z E

z E

  

 


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This is the same system you solved in Example 6, and, as in 

that example, the solution is Hence, the solution of the system is 

1, 1 and z=2x y   . 

Example 8. Consider the system 

1 2 3 1

1 2 3 2

1 2 3 3

  3   1           ( )

2  2  2           ( )

  2 3  1         ( )

x x x E

x x x E

x x x E

  

  

   

 

Adding 2  times the first equation to the second equation 
produces a new second equation. The operation is 

2 2 1( 2)E E E     

1 2 3 1

2 3 2

1 2 3 3

  3    1           ( )

         5 4  0           ( )

  2 3  1         ( )

x x x E

x x E

x x x E

  

 

   

 

Adding 1  times the first equation to the third equation produces 

a new  third equation. The operation is 3 3 1( 1)E E E      

1 2 3 1

2 3 2

2 3 3

  3      1           ( )

         5 4   0            ( )

         5 4  2          ( )

x x x E

x x E

x x E

  

 

  

 

Now, continuing the elimination process, add 1  times the 
second equation to the third equation to produce a new third 

equation. The operation is 3 3 2( 1)E E E      

1 2 3 1

2 3 2

3

  3      1           ( )

         5 4   0            ( )

                        0 2          ( )

x x x E

x x E

E

  

 

 

 

 

Because the third “equation” is a false statement, this system has 
no solution. Moreover, because this system is equivalent to the 

original system, you can conclude that the original system also 

has no solution. The system is inconsistent. 
Example 9. Consider the system 

2 3 1

1 3 2

1 2 3

           0         ( )

          3 1       ( )

3        1          ( )

x x E

x x E

x x E

 

  

  
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The first two equations are interchanged. Thus 
1 2E E   

1 3 1

2 3 2

1 2 3

          3 1        ( )

           0          ( )    

3        1          ( )

x x E

x x E

x x E

  

 

  

 

Adding the first equation to the third equation produces a new 

third equation. Hence, 3 3 1E E E    

1 3 1

2 3 2

2 3 3

          3 1        ( )

           0          ( )    

        3 3 0          ( )

x x E

x x E

x x E

  

 

 

 

Adding 3  times the second equation to the third equation 

eliminates the third equation. Thus 3 3 2( 3)E E E     

1 3 1

2 3 2

3

          3 1        ( )

           0          ( )    

                    0 0          ( )

x x E

x x E

E

  

 



 

Then, we have the system  

1 3 1

2 3 2

          3 1        ( )

           0          ( )    

x x E

x x E

  

 
 

Hence, we have 2 3 0x x  , and 2 3x x . Put 2 3x x t   . 

Then 1 33 1x x   , and 1 33 1 3 1x x t    . The solution set is  

1 3 1x t  , and 2 3x x t   .  

 
 

Answers:  
1) Linear equation.                            2) Non-linear equation. 

3) Non-linear equation.                     4) Non-linear equation. 

5) Non-linear equation.                     6) Linear equation. 
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7) Let 2 4 0,and let .x y y t     Then 2 2x y t  . 

Hence, the solution is 2 2x y t  , and  .y t   

8) 
1

Let 3 9,and let .
2

x y y t   
1

3 9 ;
2

x y y t  

Then  
1 1

3 3
6 6

x y t    . Then the  solution is  

1
3 ,

6
x t y t    

9) Let 0,and let , .x y z y t z s       Then 

( )x y z t s t s          

 Hence, the solution set is   ( ), ,x t s y t z s     . 

10) We have 1 2 313 26 39 13x x x   . Then  

1 2 32 3 1x x x    

1 2Let , .x t x s    Then, the solution set is 

1 2 31 2 3 , ,x t s x t x s      

 
11) Let  

1 2 1

2 2

 2         ( )

        3         ( )

x x E

x E

 


 

Then the solution set is 1 2 2 3 2 5,and 3 x x x     . 
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15) Let 

1 2 3 1

1 2 2

5  2 0             ( )

2           0             ( )

x x x E

x x E

  

 
 

Then from  2E , we have  2 12x x  . Let  
1x t   . Then 

2 2x t  , and  

1 2 3

3 1 2

5  2 0

5 2 5 2( 2 ) 5 4

x x x

x x x t t t t t

  

            
 

The solution set is 1 2 3, 2 ,  and x t x t x t     . 

16) Let 

1 2 3 1

2 2

 0         ( )

               0         ( )

x x x E

x E

  


 

Then 1 3 0x x  , and 1 3 3;x x t x t      . The 

solution set is 1 2 3; 0,  and x t x x t    .  

 

1.2 Gaussian Elimination and Gaussian Jordan Elimination 

In Section 1.1, Gaussian elimination was introduced as 
procedure for solving a system of linear equations. In this section 

we will study this procedure more thoroughly, beginning with 

some definitions.  
 

Definition 1. Let  and m n  be positive integers. Then an m n   

matrix is a rectangular array 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 

 

 

in which each entry 
ija  of the matrix is a number, and 

1 ;1i m j n     where m is the number of rows and n  is the 

number of columns.  
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Remark. 1) If each entry of a matrix is a real number, then the 

matrix is called a real matrix.  
2) The order of the matrix with m rows and n  columns is m n . 

3) If m n , then the matrix is called a square matrix of order 

.n  
4) For a square matrix of order n , the entries 11 22, , , nna a a  are 

called the main diagonal entries. 
 

Example 1. (Examples of matrices) 

1)  
1 1

3


   2)  
1 3

1 2 3


    3) 
2

1 0

0 1

 
 
 

  4) 

3

 1 2 2

 1 1

1  2 0

e

 
 

 
 
 

  

Definition 2. The matrix derived from the coefficients and 
constant terms of a system of linear equations is called the 

augmented matrix of the system. The matrix containing only the 

coefficients of the system is called the coefficient matrix of the 
system.  

   Let consider the system  

 
  2 3  9 

3          4

2 5 5   17

x y z

x y

x y z

  

   

  

 

Then the augmented matrix is  

1 2 3 9

1 3 0 4

2 5 5 17

  
 
  
  

 

The coefficient matrix is  

1 2 3

1 3 0

2 5 5

 
 
 
  

 

Remark. When forming either the coefficient matrix or the 

augmented matrix of a system, you should begin by aligning the 
variables in the equations vertically. 
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Elementary Row Operations 

1. Interchange two rows. (
i jR R ) 

2. Multiply a row by a nonzero constant.  (
i iR kR ;0 k  ) 

3. Add a multiple of a row to another row. (
i i jR R kR 

;0 k  ) 

An elementary row operation on an augmented matrix 

produces a new augmented matrix corresponding to a new (but 
equivalent) system of linear equations. Two matrices are said to 

be row-equivalent if one can be obtained from the other by a 

finite sequence of elementary row operations.  
 

Example 2. (Elementary row operations) 

1) 
1 2

0 1 3 4 1 3 0 1

1 3 0 1 0 1 3 4

2 4 7 0 2 4 7 0

R R

    
   

    
       

  

2) 1 2

2 4 8 6 1 2 4 3
1

3 3 0 1 3 3 0 1
2

1 4 7 0 1 4 7 0

R R

       
   

       
         

 

3) 2 2 2

1 2 4 3 1 2 4 3

0 3 2 1 ( 2) 0 3 2 1

2 1 5 2 0 3 13 8

R R R

     
   

         
        
 

Example 3. Let consider the system  

 
  2 3  9 

3          4

2 5 5   17

x y z

x y

x y z

  

   

  

 

Then the augmented matrix is  

1 2 3 9

1 3 0 4

2 5 5 17

  
 
  
  
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2 2 1

3 3 1

       

       ( 2)

              

R R R

R R R

 

  



  

1 2 3 9

0 1 3 5

0 1 1 1

  
 
 
    

 

3 3 2       

           

R R R 


  

1 2 3 9

0 1 3 5

0 0 2 4

  
 
 
  

 

3 3

1
       

2

           

R R



  

1 2 3 9

0 1 3 5

0 0 1 2

  
 
 
  

 

Then we have the corresponding of linear equations system is 

1

2

3

2 3 9         ( )

        3 5         ( )

                2         ( )

x y z E

y z E

z E

  

 



 

We use back-substation method to solve the system. From 3( )E , 

we have  2z  . Put 2z   in 2( )E , we have 

3 5 3(2) 5 6 5 5 6 1y z y y y              

Finally, substitute 1y   , and 2z   in 1( )E , we get 

2 3 9 2( 1) 3(2) 9 2 6 9 9 8 1x y z x x x               

Hence, the solution is 1, 1 and z=2x y   . 
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Definition 3. (Row-Echelon Form of a Matrix) 

A matrix in row-echelon form has the following properties. 
1. All rows consisting entirely of zeros occur at the bottom of the 

matrix. 

2. For each row that does not consist entirely of zeros, the first 
nonzero entry is 1 (called a leading 1). 

3. For two successive (nonzero) rows, the leading 1 in the higher 

row is farther to the left than the leading 1 in the lower row. 

 

Definition 4. (reduced row-echelon form ) 

A matrix in row-echelon form is in reduced row-echelon 

form if every column that has a leading 1 has zeros in every 

position above and below its leading 1. 

 
Example 4. (Row-Echelon Form) 

The matrices below are in row-echelon form. 

  
The matrices shown in parts (b) and (d) are in reduced row 

echelon form. The matrices listed below are not in row-echelon 

form. 

 
Gaussian Elimination with Back-Substitution  
1. Write the augmented matrix of the system of linear equations. 

2. Use elementary row operations to rewrite the augmented 

matrix in row-echelon form. 
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3. Write the system of linear equations corresponding to the 

matrix in row-echelon form, and use back-substitution to find the 
solution. 

Example 5. (Gaussian Elimination with Back-Substitution) 

Consider the system  

2 3 4

1 2 3

1 2 3 4

1 2 3 4

2 3

2     2

2 4 3 2

4 7 19

x x x

x x x

x x x x

x x x x

   

  

    

    

 

The augmented matrix for this system is 

0 1 1 2 3

1 2 1 0 2

2 4 1 3 2

1 4 7 1 19

   
 

 
  
 

    

 

1 2       

            

R R


 

1 2 1 0 2

0 1 1 2 3

2 4 1 3 2

1 4 7 1 19

  
 

  
  
 

    

 

3 3 1

4 4 2

        ( 2)

        ( 1)

               

R R R

R R R

  

  



 

1 2 1 0 2

0 1 1 2 3

0 0 3 3 6

0 6 6 1 21

  
 

  
  
 

    

 

4 4 2        6

              

R R R 


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1 2 1 0 2

0 1 1 2 3

0 0 3 3 6

0 0 0 13 39

  
 

  
  
 

  

 

3 3

4 4

1
        

3

1
        

13

              

R R

R R







 

1 2 1 0 2

0 1 1 2 3

0 0 1 1 2

0 0 0 1 3

  
 

  
  
 
 

 

Then we have the corresponding of linear equations system is 

1 2 3

2 3 4

3 4

4

2    2     

2 3  

  2

   3

x x x

x x x

x x

x

  

   

  



Using back-substitution, you can determine that the solution is 

1 2 3 41, 2, 1,  and 3x x x x      

Example 6. (Gaussian Elimination with Back-Substitution- A 

system with no solution) 

Consider the system 

1 2 3

1 3

1 2 3

1 2 3

2 4

  6

2 3 5 4

3 2 1

x x x

x x

x x x

x x x

  

 

  

  

 

The augmented matrix for this system is 
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1 1 2 4

1 0 1 6

2 3 5 4

3 2 1 1

  
 
 
 
 

 

  

2 2 1

3 3 1

4 4 1

        

       ( 2)

       ( 3)

              

R R R

R R R

R R R

 

  

  



  

1 1 2 4

0 1 1 2

0 1 1 4

0 5 7 11

  
 

 
  
 

  

 

3 3 2

4 4 2

       

       ( 5)

              

R R R

R R R

 

  



  

1 1 2 4

0 1 1 2

0 0 0 2

0 0 2 1

  
 

 
 
 

  

 

Note that the third row of this matrix consists of all zeros except 

for the last entry. This means that the original system of linear 

equations is inconsistent. You can see why this is true by 
converting back to a system of linear equations. 

1 2 3

2 3

3

2 4

  2

0 2

2 1

x x x

x x

x

  

 

 

  

 

Because the third “equation” is a false statement, the system has 
no solution. 
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Gauss-Jordan Elimination 

With Gaussian elimination, you apply elementary row 
operations to a matrix to obtain a (row-equivalent) row-echelon 

form. A second method of elimination, called Gauss-Jordan 

elimination after Carl Gauss and Wilhelm Jordan (1842–1899), 
continues the reduction process until a reduced row-echelon form 

is obtained. This procedure is demonstrated in the next example. 

Example 7. (Gaussian-Jordan elimination) 
Consider the system  

 
  2 3  9 

3          4

2 5 5   17

x y z

x y

x y z

  

   

  

 

Then the augmented matrix is  

1 2 3 9

1 3 0 4

2 5 5 17

  
 
  
  

 

2 2 1

3 3 1

       

       ( 2)

              

R R R

R R R

 

  



  

1 2 3 9

0 1 3 5

0 1 1 1

  
 
 
    

 

3 3 2       

           

R R R 


  

1 2 3 9

0 1 3 5

0 0 2 4

  
 
 
  

 

3 3

1
       

2

           

R R


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1 2 3 9

0 1 3 5

0 0 1 2

  
 
 
  

 

2 2 3

1 1 3

       ( 3)

       ( 3)

             

R R R

R R R

  

  



 

1 2 0 3

0 1 0 1

0 0 1 2

  
 

 
  

 

1 1 2       (2)

             

R R R 


 

1 0 0 1

0 1 0 1

0 0 1 2

 
 

 
  

 

Now, converting back to a system of linear equations, you 

have the solution is 1, 1 and z=2x y   . 

Example 8. (Gaussian-Jordan elimination. A system with an 

infinite number of solutions) 

Consider the system  

1 2 3

1 2

2 4 2 0

3 5   1

x x x

x x

  

 
 

The augmented matrix of the system of linear equations is 

2 4 2 0

3 5 0 1

  
 
 

 

1 1

1
       

2

            

R R



 

1 2 1 0

3 5 0 1

  
 
 
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2 2 1       ( 3)

               

R R R  


 

1 2 1 0

0 1 3 1

  
 

 
 

2 2       

               

R R


 

1 2 1 0

0 1 3 1

  
 

  
 

2 2 1       ( 3)

               

R R R  


 

1 0 5 2

0 1 3 1

 
 

  
 

The corresponding system of equations is 

1 3

2 3

5 2

 3 1

x x

x x

  

  
 

Now, using the parameter to represent the non-leading 

variable , we have 1 2 32 5 , 1 3 ,  and x t x t x t       . 

 

Homogeneous Systems of Linear Equations 

We will look at systems of linear equations in which each of the 

constant terms is zero. We call such systems homogeneous. For 
example, a homogeneous system of m  equations in n  variables 

has the form 

 
It is easy to see that a homogeneous system must have at least one 

solution. Specifically, if  all variables in a homogeneous system 
have the value zero, then each of the equations must be satisfied. 

Such a solution is called trivial (or obvious). 
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Example 9. (Gaussian-Jordan elimination. A system with an 

infinite number of solutions) 
Consider the system  

1 2 3

1 2

2 4 2 0

3 5   0

x x x

x x

  

 
 

The augmented matrix of the system of linear equations is 

2 4 2 0

3 5 0 0

  
 
 

 

1 1

1
       

2

            

R R



 

1 2 1 0

3 5 0 0

  
 
 

 

2 2 1       ( 3)

               

R R R  


 

1 2 1 0

0 1 3 0

  
 

 
 

2 2       

               

R R


 

1 2 1 0

0 1 3 0

  
 

 
 

2 2 1       ( 3)

               

R R R  


 

1 0 5 0

0 1 3 0

 
 

 
 

The corresponding system of equations is 

1 3

2 3

5 0

 3 0

x x

x x

  

 
 

Now, using the parameter to represent the non-leading 

variable , we have 1 2 35 , 3 ,  and x t x t x t     . 
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Theorem 1.(The Number of Solutions of a Homogeneous 

System) 
 Every homogeneous system of linear equations is 

consistent. Moreover, if the system has fewer equations than 

variables, then it must have an infinite number of solutions. 


