Chapter 1: The Study of Change

Dr. Dalal Alezi dalezi@kau.edu.sa

26/9/2018

Note: Thanks for Dr. Effat & Dr.Huda. Some of the examples are used from their slides

Scientific Notation

What is the scientific notation of 60200000?

 $\textbf{6.02}\times\textbf{10^8}$

What is the scientific notation of 0.0000428?

 $\textbf{4.28}\times\textbf{10}^{\text{-5}}$

Write the value of the following operations •

$$\frac{10^{3} \times 10^{-2}}{10^{-6}} = 10^{(3-2+6)} = 10^{7}$$

II.
$$\frac{10^8 \times 10^3}{10^{-6} \times 10^5} = 10^{(8+3+6-5)} = 10^{12}$$

^{III.} $(4x10^5 \text{ cm})x(3x10^{-7}\text{ cm}) = (4x3 x10^{(5-7)})=12x10^{-2}$

The SI unit of electrical current is

(a) The ampere

(b) The gram

(c) The kilogram

(d) The mole

The K is the SI unit of

(a) Length

(b) Mass

(c) Temperature

(d) Current

TABLE 1.2	SI Base Units		
Base Quantity		Name of Unit	Symbol
Length		meter	m
Mass		kilogram	kg
Time		second	S
Electrical current		ampere	А
Temperature		kelvin	K
Amount of substance		mole	mol
Luminous intensity		candela	cd

Units Conversion

TABLE 1.3 Prefixes Used with SI Units						
Prefix	Symbol	Meaning	Example			
tera-	Т	1,000,000,000,000, or 10^{12}	1 terameter (Tm) = 1×10^{12} m			
giga-	G	1,000,000,000, or 10 ⁹	1 gigameter (Gm) = 1×10^9 m			
mega-	М	1,000,000, or 10 ⁶	1 megameter (Mm) = 1×10^6 m			
kilo-	k	1,000, or 10^3	1 kilometer (km) = 1×10^3 m			
deci-	d	$1/10$, or 10^{-1}	1 decimeter (dm) = 0.1 m			
centi-	с	$1/100$, or 10^{-2}	1 centimeter (cm) = 0.01 m			
milli-	m	$1/1,000$, or 10^{-3}	1 millimeter (mm) = 0.001 m			
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	1 micrometer (μ m) = 1 × 10 ⁻⁶ m			
nano-	n	$1/1,000,000,000, \text{ or } 10^{-9}$	1 nanometer (nm) = 1×10^{-9} m			
pico-	р	$1/1,000,000,000,000$, or 10^{-12}	1 picometer (pm) = 1×10^{-12} m			

Units Conversion

1. Prefix → Base Unit

e.g. $6 \text{ km} \rightarrow ? \text{ m}$ $6 \times 10^3 \text{ m}$

(km is 10³ m from the table of prefixes) 2. Base Unit \rightarrow Prefix

e.g. $6m \rightarrow ? km$ $6 \times 10^{-3} m (m is)$ $10^{-3} km$

(reverse the power sign from the table of prefixes) 3. Prefix → Prefix

e.g. 6 km \rightarrow ? nm 6 x 10³ x 10⁹ = 6 x 10¹² nm (Keep the power of the first one (km) and reverse the power sign of the second (nm))

Units Conversion (second method)

PREFIX	tera	giga	mega	kilo	m (meter)	deci	centi	milli	micro	nano	pico
SYMBOL	Т	G	Μ	k		d	c	m	μ	n	р
NUMBER	10 ¹²	10 ⁹	10⁶	10³	10⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10-6	10 ⁻⁹	10-12

How many nanogram in a gram? 1 g \rightarrow ng (Base Unit \rightarrow Prefix) reverse the power sign $10^{-9} \rightarrow 10^{9}$ Answer: 1x10⁹ ng How many Ts in a second? 1 s \rightarrow Ts (Base Unit \rightarrow Prefix) reverse the power sign $10^{12} \rightarrow 10^{-12}$ Answer: 1x10⁻¹² Ts • Mount Everest is 8.847×10^5 cm high. How many meters high is the mountain?

 8.847×10^5 cm \rightarrow m (Prefix \rightarrow Base Unit) Use the prefix directly $\rightarrow 10^{-2}$ Answer: 8.847 x10³ m • How many m^3 in 3.5L?

```
3.5 L \rightarrow m^3 (1L=1dm^3)

3.5 dm^3 \rightarrow m^3 (Prefix \rightarrow Base Unit) use the prefix directly

Note: don't forget the power of unit

3.5 x(10^{-1})^3 m^3 = 3.5 x 10^{-3} m^3

Answer: 3.5 x 10^{-3} m^3
```

• Convert 25.5 m³ to Mm³?

25.5 m³ → ? Mm³ (Base Unit → Prefix) reverse the power sign $10^{6} \rightarrow 10^{-6}$ Note: don't forget the power of unit 25.5 x(10^{-6})³ m³ = 25.5x $10(^{-6x3})$ Mm³ = 25.5x 10^{-18} Mm³ Answer: 25.5x 10^{-18} Mm³ What is the largest mass? •

- 4.5x10² kg
- 45x10⁻⁴ pg
- 4.5x10⁻⁹ Tg
- 45x10⁹ ng

Put all of them in the same unit, (Prefix \rightarrow Base Unit) use the prefix directly

A. $4.5 \times 10^{2} \text{ kg} \rightarrow 4.5 \times 10^{5} \text{g}$ B. $45 \times 10^{-4} \text{ pg} \rightarrow 45 \times 10^{-16} \text{g}$ C. $4.5 \times 10^{-9} \text{ Tg} \rightarrow 4.5 \times 10^{3} \text{g}$ D. $45 \times 10^{9} \text{ ng} \rightarrow 45 \text{g} = 4.5 \times 10^{1} \text{g}$

• Convert 6 Mm to cm?

 $6 \text{ Mm} (10^6) \rightarrow \text{?cm} (10^{-2})$

Keep the power of the first one (Mm) and reverse <u>the power</u> sign of the second (cm)

 $\therefore 6x10^{6}x10^{2} = 6x10^{6+2} = 6x10^{8} \text{ cm}$

• Convert 1.8x10⁹ ns to μ s ?

 $1.8 \times 10^9 \text{ ns} (10^{-9}) \rightarrow 2 \mu \text{s} (10^{-6})$

Keep the power of the first one (ns) and reverse the power sign of the second (μ s)

 $\therefore 1.8 x 10^9 x 10^{-9} x 10^6 = 1.8 x 10^6 \ \mu s$

• How many kg in 3.3x10⁻⁴ Tg ?

 $3.3x10^{-4}$ Tg (10¹²) \rightarrow ? kg (10³)

Keep the power of the first one (Tg) and reverse the power sign of the second (kg)

 $\therefore 3.3 \times 10^{-4} \times 10^{12} \times 10^{-3} = 3.3 \times 10^{5} \text{ kg}$

- Which of the following is the largest volume?
- A) 7 m³
- B) 3X10⁷ cm³
- C) 1.2X 10³ dm³
- D) 2.1 X10⁴ L

عند مقارنة القيم بوحدات مختلفة لابد من توحيد الوحدات أو لا.

Best way to figure this is to change all the units to m³

فالأن سوف نحول جميع الوحدات إلى m³

القيمة قبل التحويل(Before conversion)	القيمة بعد التحويل (After conversion)
7 m^3	$7 \mathrm{m}^3$
$3 \times 10^7 \text{ cm}^3$	30 m^3
$1.2 \times 10^3 \text{ dm}^3$	1.2 m^3
$2.1 imes 10^4 ext{ L}$	21 m^3

Ans: B

• Bromine is a red liquid at 25°C. Its density is 3.12 g/cm³. What is the volume of 28.1 g of liquid bromine?

$$d = \frac{m}{V}$$

$$3.12 \ g/cm^3 = \frac{28.1 \ g}{V}$$

$$V = \frac{28.1 \ g}{3.12 \ g/cm^3}$$

$$V = 9.01 \ cm^3$$

• The density of silver is 2.70 g/cm³. What is the density in kg/m³ of silver?

$$\frac{1 \text{ g/cm}^3 \rightarrow 1000 \text{ kg/m}^3}{2.70 \text{ g/cm}^3 \rightarrow \text{x kg/m}^3}$$

$$x = 2.70 \times 1000$$

 $x = 2.7 \times 10^3 \ kg/m^3$

• Which is greater? 450 g/L or 63 g/ml?

1 st density	2 nd density
450 g/L	63 g/ml
$1 g/m \rightarrow 1000 g/I$	
$rg/ml \rightarrow 1000 g/L$	
$\chi g/m \rightarrow 450 g/L$	
450	
$x = \frac{1000}{1000} = 0.45 g/ml$	

Ans: 63 g/ml

• How many g/L are in 1.23 g/ml?

$$1 \text{ g/ml} \rightarrow 1000 \text{ g/L}$$

$$1.23 \text{ g/ml} \rightarrow \mathbf{x} \text{ g/L}$$

$$\mathbf{x} = 1.23 \times 1000$$

$$\mathbf{x} = 1.23 \times 10^{3} \text{ g/L}$$

Ans: 1.23×10^3 g/L

A sample of iron has the same dimensions of 2 cm x 3 cm x 2 cm. If the mass of this rectangular-shaped object is 94 g, what is the density of iron?

$$d = \frac{m}{V}$$

$$V = 2 \text{ cm} \times 3 \text{ cm} \times 2 \text{ cm} = 12 \text{ cm}^3$$

$$d = \frac{94 \text{ g}}{12 \text{ cm}^3}$$

$$d = 7.833 \text{ g/cm}^3$$

If you have equal masses of the following metals, which will occupy the largest volume?

- a) Au, density=19.3 g/cm³
- b) Pb, density=11.3 g/cm³
- c) Ag, density=10.5 g/cm³
- d) Al, density=2.70 g/cm³

Temperature Units Conversion

• Which temperature is hotter: 17°C or 58°F?

عند مقارنة قيمتين بوحدات مختلفة لابد من توحيد الوحدات. فإما توحدي القيميتين إلى <u>C° أو</u> إلى <u>F</u>

Best way to figure this is to change all the units to <u>°C or °F</u>

1 st temperature	2 nd temperature
58°F	17 <u>°C</u>
$^{\circ}\mathrm{C} = \frac{5}{9} \times (^{\circ}\mathrm{F} - 32)$	
$^{\circ}C = \frac{5}{9} \times (58 - 32)$	
$^{\circ}C = \frac{5}{9} \times 26$	
°C = 14	

• Liquid nitrogen boils at –195.8°C. Express the boiling point of liquid nitrogen in K.

 $K = {^{\circ}C} + 273.15$ K = -195.8 + 273.15K = 77.35

 Gallium is a metal that can melt in your hand at 302.93 K. What is the temperature in °F?

> يتم حل هذا التمرين في خطوتين 1- تحويل K إلى ℃ (℃ convert K to)

 $K = {^{\circ}C} + 273.15$ 302.93 = ${^{\circ}C} + 273.15$ ${^{\circ}C} = 302.93 - 273.15$ ${^{\circ}C} = 29.78$

(convert °C to °F) °F (لى $F = \frac{9}{5} \times °C + 32$ °F = $\frac{9}{5} \times °C + 32$ °F = $(\frac{9}{5} \times 29.78) + 32$ °F = 53.604 + 32 °F = 85.604