Chapter 1: The Study of Change

Dr. Dalal Alezi dalezi@kau.edu.sa

26/9/2018

Note: Thanks for Dr. Effat \& Dr.Huda. Some of the examples are used from their slides

Scientific Notation

4500000000000

4.5×10^{12}

What is the scientific notation of 602000000 ?

$$
6.02 \times 10^{8}
$$

What is the scientific notation of 0.0000428 ?

$$
4.28 \times 10^{-5}
$$

Write the value of the following operations -

$$
\begin{aligned}
& \text { I. } \frac{10^{3} \times 10^{-2}}{10^{-6}}=10^{(3-2+6)}=10^{7} \\
& \text { II. } \frac{10^{8} \times 10^{3}}{10^{-6} \times 10^{5}}=10^{(8+3+6-5)}=10^{12} \\
& \text { III. } \quad\left(4 \times 10^{5} \mathrm{~cm}\right) \times\left(3 \times 10^{-7} \mathrm{~cm}\right)=\left(4 \times 3 \times 10^{(5-7)}\right)=12 \times 10^{-2}
\end{aligned}
$$

The SI unit of electrical current is
(a) The ampere
(b) The gram
(c) The kilogram
(d) The mole

The K is the SI unit of
(a) Length
(b) Mass
(c) Temperature
(d) Current

TABLE 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

Units Conversion

TABLE 1.3 Prefixes Used with SI Units

Prefix	Symbol	Meaning	Example	
tera-	T	$1,000,000,000,000$, or 10^{12}	1 terameter $(\mathrm{Tm})=1 \times 10^{12} \mathrm{~m}$	
giga-	G	$1,000,000,000$, or 10^{9}	1 gigameter $(\mathrm{Gm})=1 \times 10^{9} \mathrm{~m}$	
mega-	M	$1,000,000$, or 10^{6}	1 m	1 megameter $(\mathrm{Mm})=1 \times 10^{6} \mathrm{~m}$
kilo-	k	1,000, or 10^{3}	1 kilometer $(\mathrm{km})=1 \times 10^{3} \mathrm{~m}$	
deci-	d	$1 / 10$, or 10^{-1}	1 decimeter $(\mathrm{dm})=0.1 \mathrm{~m}$	
centi-	c	11100, or 10^{-2}	1 centimeter $(\mathrm{cm})=0.01 \mathrm{~m}$	
milli-	m	$1 / 1,000$, or 10^{-3}	1 millimeter $(\mathrm{mm})=0.001 \mathrm{~m}$	
micro-	μ	$1 / 1,000,000$, or 10^{-6}	1 micrometer $(\mu \mathrm{m})=1 \times 10^{-6} \mathrm{~m}$	
nano-	n	$1 / 1,000,000,000$, or 10^{-9}	1 nanometer $(\mathrm{nm})=1 \times 10^{-9} \mathrm{~m}$	
pico-	p	$1 / 1,000,000,000,000$, or 10^{-12}	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}$	

Units Conversion

1. Prefix \rightarrow Base Unit
e.g. $6 \mathrm{~km} \rightarrow$? m
$6 \times 10^{3} \mathrm{~m}$
(km is $10^{3} \mathrm{~m}$ from the table of prefixes)
2. Base Unit \rightarrow Prefix

$$
\begin{aligned}
& \text { e.g. } 6 \mathrm{~m} \rightarrow \text { ? } \mathrm{km} \\
& 6 \times 10^{-3} \mathrm{~m}(\mathrm{~m} \text { is } \\
& 10^{-3} \mathrm{~km}
\end{aligned}
$$

(reverse the power sign from the table of prefixes)
3. Prefix \rightarrow Prefix
e.g. $6 \mathrm{~km} \rightarrow$? nm $6 \times 10^{3} \times 10^{9}$
$=6 \times 10^{12} \mathrm{~nm}$
(Keep the power of the first one (km) and reverse the power sign of the second ($n m$))

Units Conversion (second method)

1- رسم المسطرة `

$\begin{aligned} & \text { PREFIX } \\ & \text { SYMBOL } \end{aligned}$	$\begin{aligned} & \text { ㅍむ } \\ & \mathbf{~} \\ & \mathbf{T} \end{aligned}$	$\begin{aligned} & \frac{50}{00} \\ & G \\ & G \end{aligned}$	$\begin{aligned} & \text { ๙0 } \\ & \stackrel{0}{\square} \\ & \mathbf{M} \end{aligned}$	$\frac{0}{\sqrt{3}}$	$\underset{(\text { meter })}{\mathbf{m}}$	$\begin{aligned} & \overline{0} \\ & \stackrel{\otimes}{0} \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { ت } \\ & \text { 己 } \\ & \mathbf{c} \end{aligned}$	$\begin{aligned} & \exists \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \circ \\ & . \\ & \vdots \\ & \mu \end{aligned}$	$\begin{aligned} & \text { 으﹎ } \\ & \mathbf{n} \end{aligned}$	$\begin{aligned} & \circ \\ & p \\ & p \end{aligned}$
NUMBER	10^{12}	10^{9}	10^{6}	10^{3}	10^{0}	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

How many nanogram in a gram?
$1 \mathrm{~g} \rightarrow \mathrm{ng}$ (Base Unit \rightarrow Prefix)
reverse the power sign $10^{-9} \rightarrow 10^{9}$
Answer: $1 \times 10^{9} \mathrm{ng}$
How many Ts in a second?
$1 \mathrm{~s} \rightarrow$ Ts (Base Unit \rightarrow Prefix)
reverse the power sign $10^{12} \rightarrow 10^{-12}$
Answer: 1×10^{-12} Ts

- Mount Everest is $8.847 \times 10^{5} \mathrm{~cm}$ high. How many meters high is the mountain?

$8.847 \times 10^{5} \mathrm{~cm} \rightarrow \mathrm{~m}$ (Prefix \rightarrow Base Unit) Use the prefix directly $\rightarrow 10^{-2}$
 Answer: $8.847 \times 10^{3} \mathrm{~m}$

- How many m ${ }^{3}$ in 3.5 L ?
$3.5 \mathrm{~L} \rightarrow \mathrm{~m}^{3}\left(1 \mathrm{~L}=1 \mathrm{dm}^{3}\right)$
$3.5 \mathrm{dm}^{3} \rightarrow \mathrm{~m}^{3}$ (Prefix \rightarrow Base Unit) use the prefix directly
Note: don't forget the power of unit
$3.5 \times\left(10^{-1}\right)^{3} \mathrm{~m}^{3}=3.5 \times 10^{-3} \mathrm{~m}^{3}$
Answer: $3.5 \times 10^{-3} \mathrm{~m}^{3}$
- Convert $25.5 \mathrm{~m}^{3}$ to Mm^{3} ?
$25.5 \mathrm{~m}^{3} \rightarrow$? Mm^{3} (Base Unit \rightarrow Prefix)
reverse the power sign $10^{6} \rightarrow 10^{-6}$
Note: don't forget the power of unit $\left.25.5 \times\left(10^{-6}\right)^{3} \mathrm{~m}^{3}=25.5 \times 100^{-6 \times 3}\right) \mathrm{Mm}^{3}=25.5 \times 10^{-18} \mathrm{Mm}^{3}$ Answer: $25.5 \times 10^{-18} \mathrm{Mm}^{3}$

What is the largest mass? •

- $4.5 \times 10^{2} \mathrm{~kg}$
- $45 \times 10^{-4} \mathrm{pg}$
- $4.5 \times 10^{-9} \mathrm{Tg}$
- $45 \times 10^{9} \mathrm{ng}$

Put all of them in the same unit, (Prefix \rightarrow Base Unit) use the prefix directly

$$
\begin{aligned}
& \text { A. } 4.5 \times 10^{2} \mathrm{~kg} \rightarrow 4.5 \times 10^{5} \mathrm{~g} \\
& \text { B. } 45 \times 10^{-4} \mathrm{pg} \rightarrow 45 \times 10^{-16} \mathrm{~g} \\
& \text { C. } 4.5 \times 10^{-9} \mathrm{Tg} \rightarrow 4.5 \times 10^{3} \mathrm{~g} \\
& \text { D. } 45 \times 10^{9} \mathrm{ng} \rightarrow 45 \mathrm{~g}=4.5 \times 10^{1} \mathrm{~g}
\end{aligned}
$$

- Convert 6 Mm to cm ?
$6 \mathrm{Mm}\left(10^{6}\right) \rightarrow$?cm (10-2)
Keep the power of the first one (Mm) and reverse the power sign of the second (cm)
$\therefore 6 \times 10^{6} \times 10^{2}=6 \times 10^{6+2}=6 \times 10^{8} \mathrm{~cm}$
- Convert 1.8×10^{9} ns to $\mu \mathrm{s}$?
$\mid 1.8 \times 10^{9} \mathrm{~ns}\left(10^{-9}\right) \rightarrow$? $\mu \mathrm{s}\left(10^{-6}\right)$
Keep the power of the first one (ns) and reverse the power sign of the second ($\mu \mathrm{s}$)
$\therefore 1.8 \times 10^{9} \times 10^{-9} \times 10^{6}=1.8 \times 10^{6} \mu \mathrm{~s}$
- How many kg in $3.3 \times 10^{-4} \mathrm{Tg}$?
$3.3 \times 10^{-4} \mathrm{Tg}\left(10^{12}\right) \rightarrow ? \mathrm{~kg}\left(10^{3}\right)$
Keep the power of the first one (Tg) and reverse the power sign of the second (kg)
$\therefore 3.3 \times 10^{-4} \times 10^{12} \times 10^{-3}=3.3 \times 10^{5} \mathrm{~kg}$
- Which of the following is the largest volume?
-A) $7 \mathrm{~m}^{3}$
- B) $3 \times 10^{7} \mathrm{~cm}^{3}$
-C) $1.2 \times 10^{3} \mathrm{dm}^{3}$
-D) $2.1 \times 10^{4} \mathrm{~L}$
عند مقارنة القبم بوحدات مختلفة لابد من نوحبد الوحدات أو لا.

Best way to figure this is to change all the units to m^{3}
فالأن سوف نحول جميع الوحدات إلى m³

القّمة فُبل النحويل(Before conversion)	القّمة بعد النحويل (After conversion)
$7 \mathrm{~m}^{3}$	$7 \mathrm{~m}^{3}$
$3 \times 10^{7} \mathrm{~cm}^{3}$	$30 \mathrm{~m}^{3}$
$1.2 \times 10^{3} \mathrm{dm}^{3}$	$1.2 \mathrm{~m}^{3}$
$2.1 \times 10^{4} \mathrm{~L}$	$21 \mathrm{~m}^{3}$

Ans: B

Questions in Density

- Bromine is a red liquid at $25^{\circ} \mathrm{C}$. Its density is $3.12 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of 28.1 g of liquid bromine?

$$
\begin{gathered}
d=\frac{m}{V} \\
3.12 \mathrm{~g} / \mathrm{cm}^{3}=\frac{28.1 \mathrm{~g}}{V} \\
V=\frac{28.1 \mathrm{~g}}{3.12 \mathrm{~g} / \mathrm{cm}^{3}} \\
V=9.01 \mathrm{~cm}^{3}
\end{gathered}
$$

- The density of silver is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. What is the density in $\mathrm{kg} / \mathrm{m}^{3}$ of silver?

$$
\begin{gathered}
1 \mathrm{~g} / \mathrm{cm}^{3} \rightarrow 1000 \mathrm{~kg} / \mathrm{m}^{3} \\
2.70 \mathrm{~g} / \mathrm{cm}^{3} \rightarrow \mathrm{x} \mathrm{~kg} / \mathrm{m}^{3} \\
\\
x=2.70 \times 1000 \\
x=2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

- Which is greater? $450 \mathrm{~g} / \mathrm{L}$ or $63 \mathrm{~g} / \mathrm{ml}$?

$1^{\text {st }}$ density	$2^{\text {nd }}$ density
$450 \mathrm{~g} / \mathrm{L}$	$63 \mathrm{~g} / \mathrm{ml}$
$1 \mathrm{~g} / \mathrm{ml} \rightarrow 1000 \mathrm{~g} / \mathrm{L}$	
$\mathrm{x} \mathrm{g} / \mathrm{ml} \rightarrow 450 \mathrm{~g} / \mathrm{L}$	
$x=\frac{450}{1000}=0.45 \mathrm{~g} / \mathrm{ml}$	

Ans: $63 \mathrm{~g} / \mathrm{ml}$

- How many g / L are in $1.23 \mathrm{~g} / \mathrm{ml}$?

$$
\begin{aligned}
& 1 \mathrm{~g} / \mathrm{ml} \rightarrow 1000 \mathrm{~g} / \mathrm{L} \\
& 1.23 \mathrm{~g} / \mathrm{ml} \rightarrow \mathrm{xg} / \mathrm{L} \\
& \mathrm{x}=1.23 \times 1000 \\
& \mathrm{x}=1.23 \times 10^{3} \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

Ans: $1.23 \times 10^{3} \mathrm{~g} / \mathrm{L}$

A sample of iron has the same dimensions of $2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$. If the mass of this rectangular-shaped object is 94 g , what is the density of iron?

$$
\begin{gathered}
d=\frac{m}{V} \\
V=2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}=12 \mathrm{~cm}^{3} \\
d=\frac{94 \mathrm{~g}}{12 \mathrm{~cm}^{3}} \\
d=7.833 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

If you have equal masses of the following metals, which will occupy the largest volume?
a) Au , density $=19.3 \mathrm{~g} / \mathrm{cm}^{3}$
b) Pb , density $=11.3 \mathrm{~g} / \mathrm{cm}^{3}$
c) Ag , density $=10.5 \mathrm{~g} / \mathrm{cm}^{3}$
d) Al , density $=2.70 \mathrm{~g} / \mathrm{cm}^{3}$
$d=m / V$
Density is inversely proportional to volume
الكثافة تتناسب عكسيا مع الحجم. فأصغر العناصر كثافة لها أكبر
Answer: d

Temperature Units Conversion

- Which temperature is hotter: $17^{\circ} \mathrm{C}$ or $58^{\circ} \mathrm{F}$?

عند مقارنة قيمتين بوحدات مختلفة لابد من توحيد الوحدات. فإما توحدي القيميتين إلى ${ }^{\circ} \mathrm{C}$ م أو Best way to figure this is to change all the units to ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

$1^{\text {st }}$ temperature	$2^{\text {nd }}$ temperature
$58{ }^{\circ} \mathrm{F}$	$17{ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}=\frac{5}{9} \times\left({ }^{\circ} \mathrm{F}-32\right)$	
${ }^{\circ} \mathrm{C}=\frac{5}{9} \times(58-32)$	
${ }^{\circ} \mathrm{C}=\frac{5}{9} \times 26$	
${ }^{\circ} \mathrm{C}=14$	

- Liquid nitrogen boils at $-195.8^{\circ} \mathrm{C}$. Express the boiling point of liquid nitrogen in K.

$$
\begin{gathered}
K={ }^{\circ} \mathrm{C}+273.15 \\
\mathrm{~K}=-195.8+273.15 \\
\mathrm{~K}=77.35
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
{ }^{\circ}={ }^{\circ}{ }^{\circ} \mathrm{Cor}{ }^{\circ} \mathrm{C} \rightarrow \mathrm{~K} \\
\mathrm{~K}^{\circ} \mathrm{C}+273.15 \\
{ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C}=\mathrm{K}-273.15
\end{array} \\
& \text { - Fahrenheit }{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C} \text { or }{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F} \\
& { }^{\circ} \overline{\mathrm{F}}^{-}=\left[\overline{-}(\overline{9} / 5) \times{ }^{-}{ }^{-} \bar{C} \bar{C} \overline{+} \overline{3} \overline{2}\right. \\
& 1^{\circ} \mathrm{C}=(5 / 9)\left({ }^{\circ} \mathrm{F}-32\right)
\end{aligned}
$$

- Gallium is a metal that can melt in your hand at 302.93 K . What is the temperature in ${ }^{\circ} \mathrm{F}$?

يتم حل هذا التمرين في خطوتين
1- تحويل K إلى
\[\begin{gathered} \mathrm{K}={ }^{\circ} \mathrm{C}+273.15
302.93={ }^{\circ} \mathrm{C}+273.15
{ }^{\circ} \mathrm{C}=302.93-273.15
{ }^{\circ} \mathrm{C}=29.78 \end{gathered} \]

$$
\begin{aligned}
& \begin{array}{l}
\geq K \rightarrow{ }^{\circ} \mathrm{C} \text { or }{ }^{\circ} \mathrm{C} \rightarrow \mathrm{~K} \\
\mathrm{~K}^{\circ} \mathrm{C}+273.15 \\
{ }^{\circ} \mathrm{C}+\mathrm{C}=273.15 \\
1^{\circ} \mathrm{C}=\mathrm{K}-27
\end{array} \\
& \text {-Fahrenheit }{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C} \text { or }{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F} \\
& { }^{\circ}{ }^{\circ} \mathrm{F}^{\prime}=\left[(9 / 5) \times{ }^{\circ} \mathrm{C}\right]+32, \\
& i^{\circ} \mathrm{C}=(5 / 9)\left({ }^{\circ} \mathrm{F}-32\right)
\end{aligned}
$$

2- تحويل الناتج إلى (convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$) ${ }^{\circ} \mathrm{F}$ (

$$
\begin{gathered}
{ }^{\circ} \mathrm{F}=\frac{9}{5} \times{ }^{\circ} \mathrm{C}+32 \\
{ }^{\circ} \mathrm{F}=\left(\frac{9}{5} \times 29.78\right)+32 \\
{ }^{\circ} \mathrm{F}=53.604+32 \\
{ }^{\circ} \mathrm{F}=85.604
\end{gathered}
$$

