ا متحسان الدوري الأول للقصل الأول سست 22 512 King Abdulaziz University Faculty of Sciences First Term 1433-1434 H **Physics Department** Date: 30 /11/ 1433H First Exam - Phys 110 Name: ID No: Section: CHOOSE THE CORRECT ANSWER 1. Vectors \overline{C} and \overline{D} have magnitude of 5 units and 3.6 units, respectively ($(2 - 2)^{-1})$). What is the angle between \overrightarrow{C} and \overrightarrow{D} if $\overrightarrow{C} \times \overrightarrow{D}$ equals to +6 units a) -18° b) 110° c) 95° d) +19° $\mathcal{O} = 5 i \pi^{-1} \left(\frac{C \times D}{C D} \right) = 5 i \pi^{-1} \frac{1}{3} = 19 \cdot 5^{\circ}$ 2. In the figure, the signs of the x and y components of the vector $\vec{r} = \vec{a} + \vec{b}$ are: $Y_x = +, V_y = -$ **(a)** $r_x = +, r_y = -$ **b)** $r_x = -, r_y = +$ **c)** $r_x = -, r_y = -$ **d)** $r_x = +, r_y = +$ 3. A vector \overline{N} has a length 0.1 m making an angle of 30° with positive y axis ,the x and y components are: $M_{\chi} = N C_{OSC}$ $N_{y} = NSin C_{OS}$ $N_{y} = NSin C_{OS}$ $N_{y} = 0.15 \text{ in } 66^{\circ} = 0.086 \text{ M}$ (a) $N_x = 0.05 \text{ m}, N_y = 0.086 \text{ m}$ (b) $N_x = 58 \text{ m}, N_y = 86 \text{ m}$ c) $N_x = 50 \text{ m}, N_y = 86 \text{ m}$ d) $N_x = 0.5 \text{ m}, N_y = 0.86 \text{ m}$ 30 = 60 +X 4. The magnitude of the unit vector a) less than 1 (b) equals 1 c) greater than 1 d) equals zero 5. Which of the following is not used as a unit of time, a) hour (h) b) day (d) (c) meter (m) d) seconds (s)

6. A circle with radius r of 5 cm has an area of (area = πr^2) square meter given by: a) 2.5×10⁴ π (m²) b) 2.5×10² π (m²) c) 2.5×10³ π (m²) c) 2.5×10⁵ π (m²) c) 2.5×10⁻¹² π c) 9.35 rs c) 9.35 rs c) 9.35 rs c) 9.35 rs d) 9.35 ps F $\leq 1 \circ^{-12} S$ 8. The position of a particle moving along the x-axis is given by: $\mathbf{x}(\mathbf{t}) = \mathbf{8} + \mathbf{5}\mathbf{t} + \mathbf{2} \mathbf{t}^3$. Its acceleration function is: v(t) = $\mathbf{0} + \mathbf{5} + \mathbf{5} + \mathbf{5} t^2$ a) 5 + 12 t b) 6 t² (c) 12 t d) 5 + 6 t² F. A particle had a speed of 12 m/s in the positive \mathbf{x} direction and after 2.4 s its speed was 28 m/s in the integrative \mathbf{x} direction. Its average acceleration during this time is: c) $\pi_{\text{arg}} = \frac{28 - 12}{2.4}$ c) $\pi_{\text{arg}} = \frac{-28 - 12}{2.4}$ d) $\pi_{\text{arg}} = \frac{-28 - 12}{2.4}$

10. The base quantities are:

a)	(Speed, Mass, Time)	
(b)	(Length, Mass, Time)	

c) (Length, Speed, Time)d) (Length, Mass, Speed)

Use the following to answer questions 11-12:

11. Its average speed is:		Savg	= 00	+40	7	100	- = =	50/km/h
a) 120 km/h b) 50 km/h c) zero d)	30 km/h		,					

A car travelled 60 km in 1.33 h along a straight line, then returned back for 40 km in 0.67 h.

12. Its average velocity is:

$$V_{avg} = \frac{X_2 - X_1}{t_2 - t_1} = \frac{(-4_0 + 6_0) - 0}{(0.6Z_+ (1.33) - 0)}$$
$$= \frac{20}{Z} = 10 \text{ km/M}$$

13. If $\bar{a} = 14\hat{i} - 30\hat{j}$ and $\bar{b} = -66\hat{i} + 38\hat{j}$, then $\bar{b} - \bar{a} =$

a) 30 km/h b) 120 km/h c) zero d) 10 km/h

a) $152\hat{i} - 38\hat{j}$ b) $-70\hat{i} + 63\hat{j}$ c) $52\hat{i} + 8\hat{j}$ d) $-80\hat{i} + 68\hat{j}$ b) $-\alpha = (-66 - 14)\hat{i} + (38 + 30)\hat{j}$ $= -80\hat{i} + 68\hat{j}$

14. From the figure, the Car's speed

(a) decreases b) constant c) zero d) increases

15. The position of a particle on the x axis is given by x(t)= 16 t -12 t³, at what time the velocity v = 0? V(t)= 16-36t2

0= 16-3622 $16 - 36t^{2} = 5t^{2} = 5t^{2} = \frac{16}{36} = 5t = \sqrt{\frac{16}{36}} = \frac{4}{6}$ L = 0.667a) 0.17 s b) 6.7 s c) 0.67 s d) 1.67 s **16.** If $\bar{A} = 2\hat{i} - \hat{j} + 3\hat{k}$, then $-3\bar{A}$ equals $-3\bar{A} = -6\hat{i} + 3\hat{j} - 9\hat{k}$ (a) $-6\hat{i} + 3\hat{j} - 9\hat{k}$ c) $-3\hat{i} - 3\hat{j} - 9\hat{k}$ **b)** $2\hat{i} - 3\hat{j} - 9\hat{k}$ **d)** $+6\hat{i} + \hat{j} - 12\hat{k}$

17. The position of a particle moving on an x axis is given by: $X(t) = 2t^2 + 4$, its average velocity in the time interval from t=1s to t=2s is: $x_{(1)} = 2(1)^2 + 4 = 5_{m_2} x(2) = 2(2)^2 + 4 = 12$.

a) 12 m/s **b)** 9 m/s **c)** 3 m/s
$$(d) = \frac{12 - 6}{2 - 1} = 6 m / S$$

18. The components of \vec{a} are: $a_x = 25 \text{ m}$, and $a_y = 11 \text{ m}$, the magnitude of \vec{a} is:

(a) 27.3 m b) 625 m c) 32.5 m d) 121 m
$$\alpha = \sqrt{\alpha^2 + \alpha^2} = \sqrt{(25)^2 + (11)^2} = 2.7.3 \text{ m}$$

19. The conversion factor is:

a) Greater than one

b) A small number of physical quantities

A ratio (النسبة) of units that is equal to unity
 A base quantity

d) A base quantity **20.** A car travels with a velocity of 11 m/s , if this car was going under acceleration of $\frac{-5 \text{ m/s}^2}{2}$. **What is the distance traveled until it stops** $p^{2} = 0$ $\sqrt{2} = \sqrt{2} + 2 \alpha (\chi - \chi_0)$ **a)** 21.2 m **b)** 2.1 m **c)** 11.2 m **d)** 12.1 m $0 = (11)^2 - \frac{1}{2} \circ (\chi - \chi_0)$ $\chi - \chi_0 = \frac{\sqrt{21}}{10} = 12.1 \text{ m}$

21. The difference between speed and velocity that velocity includes

a) distance b) time c) mass d) direction

22. If vector $\vec{A} = A_x \hat{i} + 2\hat{j} - 3\hat{k}$ is perpendicular to vector $\vec{B} = 3\hat{i} - 6\hat{j} + 4\hat{k}$, the value of A_x will be: $\vec{A} \perp \vec{B} = 0$, $\vec{A} \cdot \vec{B} = 0$ $3A_x + (2)(6) + (-3)(4) = 0 \Rightarrow 3A_x = 24 \Rightarrow A_x = \frac{24}{3} = 8$

a) -5 **b)** $6\hat{j}$ **c)** 4 **d)** 8

23. The position of a particle is given by: $x(t) = 6 + 5t + 8t^2$, the instantaneous acceleration at t = 1 s is: $v(t) = o + 5 + 3t^2 \Rightarrow a(t) = 16 m/s^2$

a) 37 m/s² b) 16 m/s² c) 8 m/s² d) 31 m/s²

24. A car is driven <u>east</u> for a distance of 50 km , then <u>north</u> for 30 km , and then in a direction 30° <u>east</u> of north for 25 km . The vector diagram that represents geometrically the motion is

Use the following to answer questions 25-26:

The position of a body moving along the x axis is given by $\mathbf{x} = 5\mathbf{t} - 2\mathbf{t}^2 + \mathbf{t}^3$. **25.** The **position** at $\mathbf{t} = 2\mathbf{s}$ is: $X(\mathcal{L}) = 5(\mathcal{L}) - 2(\mathcal{L})^2 + (\mathcal{L})^3 = 10 - S + S = 10$ m.

a) 36 m b) 18 m c) 8 m d) 10 m

27. (0.000 000 000 535) is equal to: 5. 35 10

26. The **displacement** of the object in the time interval t = 0 to t = 5 s is: $\frac{\lambda(a)}{\lambda(5)}$

$$\begin{array}{l} \chi(o) = 0 \\ \chi(5) = (5)(5) - 2(5)^{2} + (5)^{3} \\ = 25 - 50 + 125 \\ = 100 \\ \Delta X = 100 \end{array}$$

a) $5.35 \times 10^{+10}$ b) $5.35 \times 10^{+7}$ c) 5.35×10^{-10} d) 5.35×10^{-8}

a) $\Delta x = 100m$ **b)** $\Delta x = 50m$ **c)** $\Delta x = 125m$ **d)** $\Delta x = 25m$

28. In which situation of the following the displacement with the largest magnitude?

Situation	X1(m)	X2(m)	$\Delta X = \lambda_2 - \lambda_1$
L	-4	10	=10-1-4)=14 =>14
M	-2	-12	=-12-(-2)=-10-5
N	-10	-9	
Р	12	-5	5-12=-17 -> 17

a) N b) L c) P d) M

Use the following to answer questions 29-30:

An object dropped from a building **80m high**, $V_o = o_1 y_o = o_2 y = 80 \text{ m}$ **29. The velocity** of the object before reaching the ground is $\sqrt{2} = \sqrt{2} = 29 (9-9) = -2(9.8) (-50)$ a) +78.4 m/s b) +39.6 m/s c) -19.6 m/s d) -39.6 m/s $\sqrt{2439.6}$ 30. Its speed after 3s is: $\sqrt{-9} = \sqrt{-9} = (-9.8)/(3)$ Speech is is: $\sqrt{-9} = \sqrt{-9} = -29.4 \text{ m/s}$ a) 39.8 m/s b) 19.6 m/s (0) 29.4 m/s d) 9.8 m/s

31. The direction of vector $\vec{A} = (-25m)\hat{i} + (55m)\hat{j}$ is:

1. The direction of vector
$$\vec{A} = (-25m)\hat{i} + (55m)\hat{j}$$
 is:
a) -113° **b)** 29° **c)** 151° $\vec{(d)} - 66^\circ$ $G = Tan^{-1}(\frac{55}{-25}) = -65.55 \pm -66^\circ$

32. When an object is thrown vertically upward ↑, During the descent (مبوط) from the highest point :

a) its velocity and acceleration are both downward ↓
 b) its velocity and acceleration are both upward ↑
 c) its velocity is downward ↓ and its acceleration is upward ↑

a) 1.3 m/s² b) 2.5 m/s² c) 4.9 m/s² d) 0.4 m/s²

d) its velocity is upward \uparrow and its acceleration is downward \downarrow

33. A car, initially $\underbrace{v_0}_{a} \stackrel{cov}{\text{rest}}$, travels 20 m in $\underbrace{4 \text{ s}}_{s}$ along a straight line with constant acceleration. **The acceleration of the car is:**

 $\begin{array}{c} x - X_{0} = V_{0} + \frac{1}{2} a t^{2} \\ &\approx 20 = \frac{1}{2} (a) (4)^{2} \\ &a = \frac{(20)(2)}{16} = 2.5 \text{ m/s}^{2} \end{array}$

CHOOSE THE CORRECT ANSWER

- **1.** Vectors \vec{C} and \vec{D} have magnitude of **5** units and **3.6** units, respectively (\vec{A}). What is the angle between \vec{C} and \vec{D} if $\vec{C} \times \vec{D}$ equals to -6 units
 - **a)** -18° **b)** 110° **c)** 95° **d)** -19°
- **2.** In the figure, **the signs of the x and y components** of the vector $\vec{r} = \vec{a} + \vec{b}$ are:

a) $r_x = +, r_y = -$ b) $r_x = -, r_y = +$ c) $r_x = -, r_y = -$ d) $r_x = +, r_y = +$

- **3.** A vector \vec{N} has a length **0.1 m** making an angle of **30**^o with positive y axis ,**the x and y** components are:
 - **a)** $N_x = 0.05 \text{ m}, N_y = 0.086 \text{ m}$ **c)** $N_x = 50 \text{ m}, N_y = 86 \text{ m}$
 - **b)** $N_x = 58 \text{ m}, N_y = 86 \text{ m}$ **d)** $N_x = 0.5 \text{ m}, N_y = 0.86 \text{ m}$
- 4. The magnitude of the unit vector
 - a) less than 1 b) equals 1 c) greater than 1 d) equals zero
- 5. Which of the following is not used as a unit of time,
 - **a)** hour (h) **b)** day (d) **c)** meter (m) **d)** seconds (s)

- **6.** A circle with radius r of 5 cm has an area of (area = πr^2) square meter given by:
 - a) $2.5 \times 10^{-4} \pi$ (m²)c) $2.5 \times 10^{-3} \pi$ (m²)b) $2.5 \times 10^{-2} \pi$ (m²)d) $2.5 \times 10^{-5} \pi$ (m²)
- 7. $9.35 \times 10^{-12} s =$
 - **a)** 9.35 µs **b)** 9.35 ns **c)** 9.35 ms **d)** 9.35 ps
- 8. The position of a particle moving along the x-axis is given by: $x(t) = 8+5t+2t^3$. Its acceleration function is:

a) 5 + 12t **b)** $6t^2$ **c)** 12t **d)** $5 + 6t^2$

9. A particle had a speed of 12 m/s in the positive **x** direction and after 2.4 s its speed was 28 m/s in the negative **x** direction. Its **average acceleration** during this time is:

a)	$\vec{a}_{avg} = \frac{28 - 12}{2.4}$	c)	$\vec{a}_{avg} = \frac{-28 - 12}{2.4}$
b)	$\vec{a}_{avg} = \frac{12 - 28}{2.4}$	d)	$\vec{a}_{avg} = \frac{12 + 28}{2.4}$

10. The **base quantities** are:

a)	(Speed, Mass, Time)	c) (Length, Speed, Time)
	<i>·</i> ···································	

b) (Length, Mass, Time) d) (Length, Mass, Speed)

Use the following to answer questions 11-12:

A car travelled **60 km** in **1.33 h** along a straight line, then returned back for **40 km** in **0.67 h**.

11. Its average speed is:

a) 120 km/h b) 50 km/h c) zero d) 30 km/h

12. Its average velocity is:

a) 30 km/h b) 120 km/h c) zero d) 10 km/h

13. If
$$\vec{a} = 14\hat{i} - 30\hat{j}$$
 and $\vec{b} = -66\hat{i} + 38\hat{j}$, then $\vec{b} - \vec{a} = -66\hat{i} + 38\hat{j}$

a) $152\hat{i} - 38\hat{j}$ **b)** $-70\hat{i} + 63\hat{j}$ **c)** $52\hat{i} + 8\hat{j}$ **d)** $-80\hat{i} + 68\hat{j}$

14. From the figure, the Car's **speed**

a) decreases b) constant c) zero d) increases

- 15. The position of a particle on the x axis is given by x(t) = 16 t −12 t³, at what time the velocity v = 0?
 - **a)** 0.17 s **b)** 6.7 s **c)** 0.67 s **d)** 1.67 s
- **16.** If $\vec{A} = 2\hat{i} \hat{j} + 3\hat{k}$, then $-3\vec{A}$ equals
 - a) $-6\hat{i} + 3\hat{j} 9\hat{k}$ b) $2\hat{i} - 3\hat{j} - 9\hat{k}$ c) $-3\hat{i} - 3\hat{j} - 9\hat{k}$ d) $+6\hat{i} + \hat{j} - 12\hat{k}$
- 17. The position of a particle moving on an x axis is given by: X(t) = 2 t² + 4, its average velocity in the time interval from t=1s to t=2s is:

a) 12 m/s **b)** 9 m/s **c)** 3 m/s **d)** 6 m/s

18. The components of \vec{a} are: $a_x = 25$ m, and $a_y = 11$ m, the magnitude of \vec{a} is:

a) 27.3 m b) 625 m c) 32.5 m d) 121 m

19. The **conversion factor** is:

- **a)** Greater than one
- **b)** A small number of physical quantities
- c) A ratio (النسبة) of units that is equal to unity
- **d)** A base quantity
- 20. A car travels with a velocity of 11 m/s ,if this car was going under acceleration of 5 m/s².
 What is the distance traveled until it stops
 - a) 21.2 m b) 2.1 m c) 11.2 m d) 12.1 m
- 21. The difference between speed and velocity that velocity includes
 - a) distance b) time c) mass d) direction

22. If vector $\vec{A} = A_x \hat{i} + 2\hat{j} - 3\hat{k}$ is perpendicular to vector $\vec{B} = 3\hat{i} - 6\hat{j} + 4\hat{k}$, the value of A_x will be:

a) -5 **b)** $6\hat{j}$ **c)** 4 **d)** 8

23. The position of a particle is given by: x(t) = 6 +5t+ 8 t², the instantaneous acceleration at t = 1 s is:

a) 37 m/s² **b)** 16 m/s² **c)** 8 m/s² **d)** 31 m/s²

24. A car is driven east for a distance of 50 km , then north for 30 km , and then in a direction 30° east of north for 25 km . The vector diagram that represents geometrically the motion is

Use the following to answer questions 25-26:

The position of a body moving along the x axis is given by $\mathbf{x} = 5 \mathbf{t} - 2 \mathbf{t}^2 + \mathbf{t}^3$.

25. The **position** at **t** = **2 s** is:

a) 36 m **b)** 18 m **c)** 8 m **d)** 10 m

26. The **displacement** of the object in the time interval **t** = **0** to **t** = **5 s** is:

a) $\Delta x = 100m$ b) $\Delta x = 50m$ c) $\Delta x = 125m$ d) $\Delta x = 25m$

27. (0.000 000 000 535) is equal to:

a) 5.35 x 10⁺¹⁰ **b)** 5.35 x 10⁺⁷ **c)** 5.35 x 10⁻¹⁰ **d)** 5.35 x 10⁻⁸

Situation	X1(m)	X2(m)
L	-4	10
м	-2	-12
N	-10	-9
Р	12	-5

28. In which situation of the following the displacement with **the largest magnitude**?

a) N **b)** L **c)** P **d)** M

Use the following to answer questions 29-30:

An object dropped from a building 80m high,

29. The velocity of the object before reaching the ground is

a) +78.4 m/s **b)** +39.6 m/s **c)** -19.6 m/s **d)** -39.6 m/s

30. Its **speed** after 3s is:

a) 39.8 m/s b) 19.6 m/s c) 29.4 m/s d) 9.8 m/s

- **31.** The direction of vector $\vec{A} = (-25m)\hat{i} + (55m)\hat{j}$ is:
 - **a)** -113° **b)** 29° **c)** 151° **d)** -66°
- **32.** When an object is thrown vertically upward 1, **During the descent (هبوط) from the highest point** :
 - **a)** its velocity and acceleration are both downward \downarrow
 - **b)** its velocity and acceleration are both upward \uparrow
 - c) its velocity is downward \downarrow and its acceleration is upward \uparrow
 - d) its velocity is upward \uparrow and its acceleration is downward \downarrow
- **33.** A car, initially at rest, travels 20 m in 4 s along a straight line with constant acceleration. **The acceleration of the car is:**

a) 1.3 m/s² **b)** 2.5 m/s² **c)** 4.9 m/s² **d)** 0.4 m/s²

Answer Key

- **1.** d
- **2.** a
- **3.** a **4.** b
- **5.** c
- **6.** c
- **7.** d
- **8.** c
- **9.** c
- **10.** b **11.** b
- **12.** d
- **13.** d
- **14.** a
- **15.** c
- **16.** a
- **17.** d **18.** a
- **19.** c
- **20.** d
- **21.** d
- **22.** d
- **23.** b
- **24.** c
- **25.** d
- **26.** a
- **27.** с **28.** с
- **29.** d
- **30.** c
- **31.** d
- **32.** a
- **33.** b

CHOOSE THE CORRECT ANSWER:

1.	Change in position is cal a) displacement	led: b) equations	c) acceleration	d) speed
2.	A nanosecond is: a) 10 ⁹ s	b) <mark>10⁻⁹ s</mark>	c) 10^{-10} s	d) 10 ¹⁰ s
3.	A gram is: a) 10 ⁻⁶ kg	b) 10 ³ kg	c) 1 kg	d) <mark>10⁻³ kg</mark>
4.	km / h ² is a unit of; a) velocity	b) speed	c) acceleration	d) distance
5.	A square with an edge of $a)10^{-6} m^2$	of exactly 1 cm has a b) <mark>10⁻⁴ m²</mark>	n area of: c) 10^2 m^2	d) 10^4 m^2
6.	A car starting from rest after 5 seconds? a) 100 m/s	has a constant accele b)50 m/s	eration of 4 m/s ² . How c) <mark>20 m/s</mark>	w fast is it traveling d)10 m/s
7.	 The average speed of a a) The magnitude b) the distance cov c) one-half its speed d) its acceleration 	moving object during of its average velocit vered during the time ed at the end of the in multiplied by the tin	g a given interval of t sy over the interval interval divided by th iterval ne interval	ime is always: ne time interval
8.	An object moves with a	constant velocity of	9.8 m/s, its accelerat	tion in m/s^2 is;

- a) 9.8 b) 98 c) 0 d) -9.8
- 9. In which of the following statements the acceleration is constant?

a)
$$v = -4t + 3t^2$$

b) $v = 2t + 3$
c) $v = 6 + 2t - 4t^3$
d) $v = 5t^4$

	X ₁	X ₂
a)	4m	6m
b)	-4m	-8m
c)	-4m	2m
<mark>d)</mark>	-4m	4m

10. A particle moves along the x axis from x_1 to x_2 . Of the following values of the x_1 and x_2 , which results in the displacement with the **largest magnitude**?

- 11. The position of an object is given as a function of time by $x = 4t 3t^2$, where x is in m and t is in seconds. Its average velocity over the interval from t = 0 to t = 2s is: a) 0 b) -2m/s c) 2m/s d) -4m/s
- 12. How long will it take for a falling object to reach velocity of 108 m/s if its initial velocity is –10 m/s
 - a) 98 s b) 118 s c) 0.093 s d)<mark>10 s</mark>
- 13. Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by;
 - particle 1: $x(t) = 3.5 2.7t^3$ particle 2: $x(t) = 3.5 + 2.7t^3$ particle 3: $x(t) = 3.5 + 2.7t^2$ particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$ Which of these particles have constant acceleration? a) All four b) Only 1 and 2 c) Only 2 and 3 d) Only 3 and 4
- 14. A car, initially at rest, travels 20 m in 4 s along a straight line with constant acceleration. The acceleration of the car is: a) 0.4m/s^2 b) 1.3m/s^2 c) 2.5m/s^2 d) 4.9m/s^2
- 15. You are throwing a ball straight up in the air. At the highest point, the ball's
 - a) Velocity and acceleration are zero.
 - b) Velocity is nonzero but its acceleration is zero
 - c) Acceleration is nonzero, but its velocity is zero
 - d) Velocity and acceleration are both nonzero
- 16. The Associative law is given as;
 - a) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
 - b) $(\vec{a} + \vec{b}) + \vec{c} = (\vec{a} + \vec{b}) + \vec{c}$
 - c) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
 - d) $(\vec{a} \vec{b}) = \vec{a} (\vec{b})$

17. If
$$\vec{A} = (6m)\hat{t} - (8m)\hat{f}$$
 then \vec{A} has magnitude:
a) $10m$ b) $20m$ c) $30m$ c) $40m$
18. The angle between $\vec{A} = (25m)\hat{t} + (45m)\hat{f}$ and the positive x axis is:
a) 29° b) 61° c) 151° d) 209°
19. The scalar products of $\vec{P} = 2\hat{t} - 5\hat{f}$ and $\vec{Q} = -3\hat{t} + 4\hat{f}$ is
a) $P \cdot Q = -2$ b) $P \cdot Q = -26$ c) $P \cdot Q = 14$ d) $P \cdot Q = 20$
20. If $a = 10$ units, $b = 20$ units and $\phi = 60^{\circ}$, $\vec{c} = \vec{a} \times \vec{b}$
a) $c = 200$ b) $c = 173.2$ c) $c = zero$ d) $c = 100.4$
21. If $R \cdot S = 0$. Then;
a) **R** and **S** are prependicular
b) **R** and **S** are in the same direction
c) **R** and **S** are in the same direction
d) The angle between **R** and **S** is 60°
22. If the components of $a_x = 6m$ $a_y = 5m$ the direction of \vec{a} is:
a) 56.4° b) 90° c) 180° d) 39.8°
23. The position of a particle is given by $x = 2t^2 \cdot t^3$, its velocity will be zero at time:
a) $1-4/3$ b) $2/3$ s c) $1/3$ s d) $3/2$ s
24. The vector $-\vec{A}$ is:
a) greater than \vec{A} in magnitude
b) in the same direction as \vec{A} d) in the direction opposite to \vec{A}
25. Let $\vec{A} = (2m)\hat{t} + (6m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. The vector sum
 $\vec{S} = \vec{A} + \vec{B}$ is:
a) $(6m)\hat{i} + (8m)\hat{f} - (2m)\hat{k}$
b) $(-2m)\hat{i} + (4m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f} - (3m)\hat{k}$ and $\vec{B} = (4m)\hat{t} + (2m)\hat{f} + (1m)\hat{k}$. Then $\vec{A} \cdot \vec{B} =$
a) $(8m)\hat{t} + (12m)\hat{f}$

32. The vector product of \vec{a} and vector \vec{b} produces a third vector \vec{c} whose direction is:

- a) Perpendicular to the plane that contain \vec{a} and \vec{b} .
- b) Parallel to the two vectors \vec{a} and \vec{b} .
- c) In the opposite direction of \vec{a} .
- d) In the opposite direction of \vec{b} .
- 33. If the initial velocity is 4 m/s and the final velocity is 10 m/s in 3 s. What is the average acceleration?

a) 6 m/s^2 b) 12 m/s^2 c) 3 m/s^2 d)	$\frac{2 \text{ m/s}^2}{2 \text{ m/s}^2}$
--	---

KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE Physics department 1st Semester First Exam

Physics 110	27/11/1432H	Time: 2Hours
Name:	Number:	Section:

1. $(5 \times 10^4) \times (5 \times 10^6) = 25 \times 10^{10} = 2.5 \times 10^{10}$
A) 2.5×10^{10} (B) 2.5×10^{11} C) 2.5×10^{6} D) 2.5×10^{8}
2. 3 days = 3 X24 X60 X60 = 259200 5
A) 30240 s B) 1814400 s 🕢 259200 s D) 2419200 s
3. 7.87 g/cm ³ = $7.87 \frac{10^3}{10^6} = 7.87 \times 10^3 = 7870$
(A) 7870 kg/m ³ B) 0.00787 kg/m ³ C) 7.87×10 ⁶ kg/m ³ D) 7.87×10 ⁻⁶ kg/m ³
4. The conversion factor $(\frac{10^6 \text{ mm}}{1 \text{ km}})$ is used to convertKmto mm
A) 1 m B) 1 mm O) 1 km D) 1 mi
5. 500 kg = $500 \times 10^3 = 5 \times 10^3 g$
A) 5×10^{3} g B) 5×10^{4} g C) 5×10^{5} g D) 5×10^{6} g
6. 2.71 gigawatts =

(A) 2.71×10⁹ Watts B) 2.71×10⁶ Watts C) 271×10⁹ Watts D) 271×10⁶ Watts

7. The position of a body moving along the x - axis is given by $x = 3t - 4t^2 + t^3$, where x in meters and t in seconds. Its **displacment** in the time interval t = 0 to t = 4 s is **A)** $\Delta x = 140 \text{ m}$ (**B**) $\Delta x = 12 \text{ m}$ (**C**) $\Delta x = 52 \text{ m}$ (**D**) $\Delta x = 40 \text{ m}$ **8.** The **position** of an object is given by $x = t - 2t^2$, where x in meters and t in seconds. At t = 10 $X = 10 - z \times (0)^2 = -190 \text{ m}$ s, it is A) -190 m B) -100 m C) -10 m D) -90 m 9. A car travelled 50 km in 0.75 h, then travelled 100 km in 1.2 h. The average speed is $S_{avg} = \frac{X_1 + X_2}{t_1 + t_2} = \frac{50 + 100}{0.75 + 1.2}$ Speed (A) 77 km/h B) 333 km/h C) 111 km/h D) 26 km/h $V_{avg} = \frac{150 - 25}{8 - 3} = \frac{125}{5} = 25 \text{ m/s}$ 10. A car changed position from x=25 m to x=150 m in the time interval from 3 s to 8 s, the average velocity of the car is (A) 25 m/s B) 11.4 m/s C) 35 m/s D) 16 m/s

 $X_{t-o} = O$

 $X_{t=4} = (3X4) - (4X10) + (6X4) = 12$

11. The vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = \vec{b} + \vec{c}$. Which diagram below illustrates this relationship? 2-6=2

A)
$$\vec{c}$$
 \vec{b} \vec{c} \vec{b} \vec{c} \vec{c}

12. A particle is moving along x-axis according to the equation $x = 12t - 2t^2$, where x in meters and t in seconds. Its velocity and acceleration at t = 3 s, respectively (|au |), are

(A)
$$v = 0$$
, $a = -4$ m/s²
B) $v = 18$ m/s, $a = 0$

- C) $v = 24 \text{ m/s}, a = 8 \text{ m/s}^2$ D) $v = -24 \text{ m/s}, a = 4 \text{ m/s}^2$ $v = 12 4t \text{ m/s}^2$ $v = 12 4t \text{ m/s}^2$ $v = 12 4t \text{ m/s}^2$
- **13.** The position of a particale is given by $x(t) = 20t 5t^3$, where x in meters and t in seconds, its velocity is zero at t =

$$t^{2} = \frac{20}{15} - \frac{15}{15} t^{2} = \frac{20}{15} = 1.25$$

$$t^{2} = \frac{20}{15} t^{2} = \frac{20}{15} = 1.25$$

V=0 6 Vo= 5 X106 d= -1.25 X104 m/s2 0 = (5×10)+ 2(-1.25×18)×-8 14. A particle has a constant acceleration (-1.25 \times 10¹⁴ m/s²) enters a region with a speed of 5 \times 10⁶ m/s. How far does the particle take to stop $X - X_0 = -\frac{(5 \times 10^6)^2}{2(1+25 \times 10^4)} = 0.1$ A) 0.1 m B) -0.1 m C) 1 m D) -1 m **15.** An electron has a constant acceleration $+3.2 \text{ m/s}^2$ at a certain instant, its velocity is +9.6 m/s. What is the velocity at t = 2.5 V = Vo + at V = 9.6 + 3.2 $\chi 2.5$ N= 17.6 m/s A) 17.6 m/s B) 8 m/s C) 27.2 m/s D) 0.8 m/s **16.** The **velocity** of a stone falling from a height of 100 m just before hitting the ground is m/s $V^2 = 29.9$ = 2×9.8 × -100 V = -144.3 M A) -1960 m/s B) -980 m/s C) -31.3 m/s 17. A ball dropped from a building, its velocity and position after 3 s are **C)** v=0, y=0 **D)** v=0, y=-44 m U=-9t V=0, y=0(A) v = -29 m/s, y = -44 m**B)** v = -44 m/s, v = -29 m 18. A baseball is thrown vertically into the air. The acceleration of the ball at its highest point is **A)** a = zero **B)** $a > 9.8 \text{ m/s}^2$ **C)** $a = 9.8 \text{ m/s}^2$ **D)** $a = -9.8 \text{ m/s}^2$ **19.** If $\vec{R} \times \vec{S} = \vec{C}$, then the direction of \vec{C} is (A) perpendicular to both \vec{R} and \vec{S} **C)** perpendicular to \overline{S} **D**) in the same direction of \vec{R} and \vec{S} **B**) perpendicular to \overline{R} 20. The magnitudes of displacment \vec{a} and \vec{b} are 8 m and 15 m, respectively ($\frac{1}{2}$). The **maximum possible magnitude** for \vec{c} according to the equation $\vec{c} = \vec{a} + \vec{b}$ is C = 8+15 = 23 m A) 7 m (B) 23 m C) 15 m D) 8m

 $y^{2} = y^{2} + 2a(x - x_{0})$

21. A displacment vector \vec{r} in xy plane is 15 m long and directed at angle $\theta = 30^{\circ}$ as in the figure, the x - component and y - component of the vector \vec{r} is $X = 15 \cos 30$ $V = 15 \sin 30$ (A) $r_x = 13 \text{ m}, r_y = 7.5 \text{ m}$ **C)** $r_x = 0.9 \text{ m}, r_y = 0.5 \text{ m}$ **D)** $r_x = 0.5 \text{ m}, r_y = 0.9 \text{ m}$ **B)** $r_{r} = 7.5 \text{ m}, r_{s} = 13 \text{ m}$ $a_{+}b_{-}=(6-3)\hat{i}+(5-1)\hat{j}$ = $3\hat{i}+4\hat{j}$ **22.** For the vectors $\vec{a} = 6 \ \hat{i} + 5 \ \hat{j}$ and $\vec{b} = -3 \ \hat{i} - \hat{j}$. The magnitude of $|\vec{a} + \vec{b}|$ is $|a_{t}t| = \sqrt{3^2 + 4^2}$ A) 7.8 m (B) 5 m C) 2.2 m D) 10.8 m **23.** The x-component of \vec{A} is 81 m and the y-component of \vec{A} is 200 m, then **the angle** θ between the direction of \overline{A} and the positive direction of x is $o = tan \frac{y}{x} = Tan \frac{200}{81}$ (A) $\tan^{-1}(\frac{200}{81})$ B) $\tan^{-1}(\frac{-200}{81})$ C) $\tan^{-1}(\frac{81}{200})$ D) $\tan^{-1}(\frac{-81}{200})$ **24.** The **speed** of a particle moves with an instantaneous velocity v = -25 m/s is: Speed=25 m/s **A)** S = 5 m/s **B)** S = -25 m/s **(C)** S = 25 m/s **D)** S = -5 m/s**25.** In the figure, what are **the signs of** x **and** y - **components** of the sum $\vec{d_1} + \vec{d_2}$, respectively d2 darde x A) (+, -) B) (+, +) C)(-, +) D) (-, -) **26.** If $\vec{a} = 3 \hat{i} + 3 \hat{j} - 2 \hat{k}$ and $\vec{b} = -\hat{i} - 4 \hat{j} + 2 \hat{k}$, then $3\vec{a} \cdot \vec{b} =$ (A) -57 B) -19 C) 12 D) -21 $3\vec{a} \cdot \vec{b} = 3(3\hat{i} + 3\hat{j} - 2\hat{k}) \cdot (-\hat{i} - 4\hat{j} + 2\hat{k}) = 3[-3 - 12 - 4]$ = 3[-19]= - 57

27. Vectors \vec{C} and \vec{D} have magnitude of 5 units and 3.6 units, respectively (على التوالي). What is the angle between the direction of \vec{C} and \vec{D} if $\vec{C} \cdot \vec{D}$ equals to -6 units $\vec{C} \cdot \vec{D} = \vec{C} \cdot \vec{D} \cdot \vec{O} \cdot$

28. If $\vec{A} = 18$ unit, $\vec{B} = 12$ unit and $\phi = 90^\circ$. If $\vec{C} = \vec{A} \times \vec{B}$, then **the magnitude** of a vector \vec{C} is

- 30. The right-hand rule (قاعدة اليد اليمنى) is used to find
 - A) The cross product of two vectors

 - The direction of third vector produced from cross product The magnitude of third vector produced from cross product D) The angle between the vectors in the cross product
- **31.** A particle moves in the positive x direction with increasing speed
 - A) its velocity is +ve and acceleration is -ve \times

 - B) its velocity is -ve and acceleration is +ve ×
 its velocity and acceleration are both +ve ×
 its velocity is +ve and acceleration is zero×

32. In which situation of the following the velocity is in negative x – direction A) $x = -2t^2 - 2$ B) $x = 3t^3 - 5$ C) $x = -2t^2 + 1$ D) x = -5 + 5t

33. Let $\vec{C} = \vec{A} \times \vec{B}$ and ϕ is the angle between \vec{A} and \vec{B} , which of the following is **true**?

A) The angle between \vec{C} and $\vec{A} = 0^{\circ}$ **B)** The magnitude of $\vec{C} = AB\cos\phi$

C
$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

D $-\vec{C} = \vec{A}$

King Abdulaziz University Faculty of Sciences Physics Department		Second Term 1432-1433 H	
First Exam - Phys 110		Date: 15/ 4 / 1433	
Name:	ID No:	: Sec	tion:
CHOOSE THE CORRECT ANSWE	ER		
1. Convert 5.86 x 10 ⁶ cm to kn	n [5.88x18	cm] (1km)=5.86×10
a) 5.86 km b) 586 km c)	0.586 km 📵 58	8.6 km	= 385 Km
2. How many seconds are in 3	6 days (36 day	·'s)(24h)(60	min) (60 5) = 31. 104 ×15
 a) 31.104 x 10⁵ s b) 31.104 x 10⁶ s 	c) 31.d) 31.	.104 x 10 ⁴ s .104 x 10 ² s	
3. If $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$, the qu	vantities (a_x, a_y, a_z)) are called:	
a) vector sum	c) veo d) uni	ctor components it vectors	
4. Electric power of magnitude	2.17 x 10 ⁹ watts e	equals:	
a) 2.17 kilowattsb) 2.17 megawatts	c) 2.1 (d) 2.1	7nanowatts 7 gigawatts	
5. The conversion factor used	to convert a volun	ne of 64 cm ³ to SI	units is
a) $\frac{10^2 cm}{1m}$ b) $\frac{10^6 cm^3}{1m^3}$ c)	$\frac{1m}{10^2 cm} \boxed{\text{d}} \frac{1m^3}{10^6 cm}$	C • F =	1 m3 log Cm3 north
6. A car moved a distance of 215 north . How far east and north	km ,in a direction m h has the car move	naking an angle of 2 ed? © = 98-	2 ⁰ east of 22 = 68
a) 199 km east, and 81km rb) 91 km east, and 188 km	north (c) 81 I north d) 188	km east, and 199 8 km east, and 91	km north km north
dx (cast) = 215 cos	(68°) = 80 5	545 81 Km	-
dy (north)= 215 Sin	(68°)= 199.3	35199 K.	n

Use the following to answer questions 7-8:

Two vectors, \vec{C} , and \vec{D} , have magnitudes $|\vec{C}| = 16m$, and $|\vec{D}| = 78m$

- 7. If the vectors are anti-parallel (متوازيان ومتعاكسان في الإنجام) , Their vector sum has a magnitude = | Sum | = 78 - 16 = 62 m
 - a) 0 (b) 62 m c) 80 m d) 94 m

8. If the vectors are perpendicular, their vector sum has a magnitude = $\sqrt{16^2 + 78^2}$

- a) 62 m b) 94 m c) 0 d) 80 m
- 9. If $\vec{A} = 3\hat{i} 3\hat{j}$, $\vec{B} = \hat{i} 2\hat{j}$, and $C = 5\hat{i} 12\hat{j}$ then $\vec{A} 2\vec{B} + C = (3\hat{C} 3\hat{J}) 2(\hat{C} 2\hat{J}) + (5\hat{C} 12\hat{J})$ (a) $6\hat{i} 11\hat{j}$ b) $8\hat{i} 17\hat{j}$ c) $\hat{i} + \hat{j}$ d) $9\hat{i} + 17\hat{j} = (3\hat{C} 2\hat{L} 5\hat{L}) + (-3\hat{J} + 4\hat{J} 12\hat{J})$ $= 8\hat{C} 11\hat{J}$

= 79.64 80m

10. In the diagram, the magnitude of $\left|\vec{A}\right| = 12m$, the magnitude of $\left|\vec{B}\right| = 10m$ and the

magnitude of $|C| = 6m \cdot 1.12$ $(A_x + B_x + C_x) = 12 + 10 \cos 6\delta^2 - 6$ = 12 + 5 - 6 = 11 m $B_{60^{\circ}}$

a) 23 m (b) 11 m c) 17 m d) 28 m

11. The density of silver is 10.49 g/cm³, its density in kg/m³ equals: = 10.49×15^{3} kg a) 10.49 x 10⁻³ kg/m³ c) 10.49 x 10⁻⁶ kg/m³ b) 10.49 x 103 kg/m3 d) 10.49 x 106 kg/m3

12. If $\vec{a} = 4\hat{i} - 3\hat{j}$ and $\vec{b} = 6\hat{i} - 8\hat{j}$, then the magnitude of $\vec{b} - \vec{a} = (\delta\hat{c} - \delta\hat{j}) - (4\hat{c} - 3\hat{j})$ a) 12.5 b) 14.87 c) 18.9 (1) 5.4 $= 2\hat{c} - 5\hat{j}$ $|\vec{b} - \vec{a}| = \sqrt{2^2 + (-5)^2} = \sqrt{2q} = 5\cdot q$

13. Here are three vectors in meters $\vec{d_1} = 3\hat{i} - 3\hat{j}$, $\vec{d_2} = \hat{i} - \hat{j}$, and $\vec{d_3} = 2\hat{i} - 4\hat{j}$. What is the result of $\vec{d_1} \cdot (\vec{d_2} + \vec{d_3})$ $\vec{d_2} + \vec{d_3} = (\hat{L} - \hat{J}) \times (2\hat{L} - 4\hat{J}) = 3\hat{L} - 5\hat{J}$ $\vec{d_3} + \vec{d_3} = (\hat{L} - \hat{J}) \times (2\hat{L} - 4\hat{J}) = 3\hat{L} - 5\hat{J}$ a) 34 m (b) 24 m c) 14 m d) 4 n 14. If $|\vec{A}| = 44$ units, $|\vec{B}| = 16$ units, and the angle $\phi = 30^\circ$, then the vector product $\vec{C} = \vec{A} \times \vec{B}$ is = (44)(18) Sin30° = 352 units a) $|\vec{C}| = 352$ units, perpendicular to \vec{A} and \vec{B} b) $|\vec{C}| = 532$ units, perpendicular to \vec{A} and \vec{B} c) $|\vec{C}| = 352$ units, parallel to \vec{A} and \vec{B} d) $|\vec{C}| = 532$ units, parallel to \vec{A} and \vec{B} d) $|\vec{c}| = 532$ units, parallel to \vec{A} and \vec{B} 15. If $\vec{a} = 2\hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + 3\hat{k}$, then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \\ \hat{c} & \hat{c} \end{vmatrix} + \begin{vmatrix} \hat{c} & \hat{c} \end{pmatrix} + \begin{vmatrix}$ **(a)** $6\hat{i} - 6\hat{j} - 2\hat{k}$ **(b)** $2\hat{i} - \hat{j} - 6\hat{k}$ **(c)** $2\hat{i} - 6\hat{j} - 2\hat{k}$ **(d)** $6\hat{i} - 2\hat{j} - 6\hat{k}$ 16. If $\vec{C} = 35\hat{i} + 21\hat{j} - 14\hat{k}$, then $\frac{2\vec{C}}{7} = \frac{2}{7} (35\hat{L} + 21\hat{J} - 14\hat{R}) = 16\hat{L} + 6\hat{J} - 4\hat{k}$ **a**) $6\hat{i} + 6\hat{j} - 10\hat{k}$ **b**) $5\hat{i} + 3\hat{j} - 2\hat{k}$ **c**) $10\hat{i} + 3\hat{j} - 4\hat{k}$ **d**) $10\hat{i} + 6\hat{j} - 4\hat{k}$ **17.** For the following two vectors: $\vec{A} = 2\hat{i} + 3\hat{j}$, $\vec{B} = -3\hat{i} + 2\hat{j}$. Find $\vec{A} \cdot 2\vec{B}$ **a**) 6 **b**) 12 **(c)** zero **d**) 5 $\vec{A} \cdot 2\vec{B} = (2\hat{c} + 3\hat{c}) - 2(-3\hat{c} + 2\hat{c})$ $\vec{A} \cdot 2\vec{B} = (2\hat{c} + 3\hat{c}) - 2(-3\hat{c} + 2\hat{c})$ $\vec{A} \cdot 2\vec{B} = (2\hat{c} + 3\hat{c}) - 2(-3\hat{c} + 2\hat{c})$ 18. A particle enters a region with a speed of 4×10^6 m/s and then slowed at the rate of -1.5×10^{12} m/s². The distance the particle takes to stop is a) 0.15 m b) 2 m c) 0.2 m (d) 5.33 m $o = (4 \times 10^{6}) - 2 (1.5 \times 10^{12}) (x - x_{0}) = 3.33 m$ 19. An apple fell from a 19.6 m tree, how long did it take to reach the ground $\begin{array}{c} Y-Y_{0} = V_{0}t - \frac{1}{2}gt^{2} \\ t = \sqrt{\frac{19\cdot6}{4\cdot8}} \\ z_{s} - 19\cdot6 = -\frac{1}{2}gt^{2} \implies t = \sqrt{\frac{19\cdot6}{4\cdot8}} \\ y_{1}g \end{array}$ level? Voro a) 4.9 s b) 4 s c) 9.8 s (d) 2 s 20. An object is thrown straight up from ground level and reached its highest v=o point after $\frac{3.4}{5.4}$ s. Its initial velocity is: $\sqrt{22}$. $\sqrt{2}\sqrt{2}-9t$ = $\sqrt{2}-(9.8)(3.4)=>\sqrt{2}-33.32$ m/s d) 43.31 m/s

21. A change from an initial position to a final position is called:

a) speed b) displacement c) acceleration d) velocity

- 22. A car can go from zero to 32 m/s in 16 s. The average acceleration of the car is: $a_{13} = \frac{v_2 v_1}{t_2 t_1} = \frac{32 \sigma}{15 \sigma} = 2 m / 5^2$ (a) 2 m/s² b) 3 m/s² c) 4 m/s² d) 7 m/s²
- 23. The speed of a particle moving with instantaneous velocity of 15 m/s is: [a) 15 m/s b) 10 m/s c) 5 m/s d) 12 m/s

Use the following to answer questions 24-25:

A particle moves from $y_1 = -5$ m to $y_2 = -2$ m

24. The magnitude of the displacement is: $\Delta y = y_2 - y_1 = -2 - (-5) = 3m$.

a) -3 m (b) 3 m c) -7 m d) 7 m

- 25. The direction of the displacement is:
 - a) up b) down c) right d) left

26. A particle's position on x-axis is: $x(t) = \frac{2}{t^2} - \frac{4}{t} + 9$ with x in meters and t in seconds. Its position at t = 3 s is $X(3) = \frac{2}{9} - \frac{4}{3} + 79 = \frac{2 - 12 - 8}{7 - 89}$ a) 10.34 m b) 7.89 m c) 6.87 m d) 9.37 m

27. A man drives a truck from a gasoline station a long a straight road for 11.2 km in 0.23 h , then he returns back to the station in 45 min , his average speed and average velocity, respectively, are: a) $s_{avg} = 0$, $v_{avg} = 22.86$ km/h b) $s_{avg} = 22.86$ km/h, $v_{avg} = 0$ d) $s_{avg} = 12.7$ km/h, $v_{avg} = 0$ d) $s_{avg} = 12.7$ km/h, $v_{avg} = 0$ d) $v_{avg} = 12.7$ km/h, $v_{avg} = 0$ b savg = 22.86 km/h , vavg = 0

28. A particle's position on x-axis is: $x(t) = 13 - 24t + 2t^3$ with x in meters and t in seconds. Its acceleration at t = 5 s is: $V(t) = a - 24 + 6t^2 m/s$ $A(t) = 12t \Rightarrow A(5) = 12x5 = 6am/s^2$ (a) 60 m/s² b) 12 m/s² c) 36 m/s² d) 52 m/s²

29. In the following sentences, which one is wrong? " the free fall acceleration"

- a) is the same for all objects.
- b) has a magnitude of 9.8 m/ss.
- c) is the same during ascent and descent.
- (d) is equal to zero at the highest point.

30. From the figure, the angle that vector \vec{a} makes with the +x axis (counterclockwise) is: $G_{\pm} = 156^{\circ} + 30 = 216^{\circ}$

a) 30° b) 210° c) 150° d) 120°

Use the following to answer questions 31-32:

Two vectors: $\vec{A} = 3\hat{i} + 2\hat{j}$ and $\vec{C} = 5\hat{i}$

31. The angle between vector \overline{A} and the x axis is: $G = \tan \left(\frac{2}{3}\right) = 33.7^{\circ}$

a) 21.8° b) 30.9° c) 56.3° \overrightarrow{a} 33.7° 32. The angle between vector \overrightarrow{A} and vector \overrightarrow{C} is: $Q = cos^{-1} + \overrightarrow{A} \cdot \overrightarrow{C} + Acc$ (a) 33.7° b) 137° c) 130° d) 37.3° $\overrightarrow{A} \cdot \overrightarrow{C} = 15$ $A = \sqrt{3^2 + 2^2} + \sqrt{5^2} + \frac{1}{2} = 18$ $\overrightarrow{C} = 5c$ $\overrightarrow{A} = \sqrt{3^2 + 2^2} + \sqrt{5^2} = 18$

33. In which figure of the following \vec{C} is the vector sum?

Sample A Page 6

King Abdulaziz University Faculty of Sciences **Physics Department**

First Exam - Phys 110

Second Term 1432-1433 H

Date: 13/ 4 / 1433H

Name: ID No: Section:	

CHOOSE THE CORRECT ANSWER

1.	1. Convert 5.86 x 10 ⁶ cm to km					
	a)	5.86 km b) 586 km c) 0.586 km	d d)58.6 km		
2.	Но	w many seconds are in 36 days				
	a) b)	31.104 x 10⁵ s 31.104 x 10⁶ s	c) d)	31.104 x 10 ⁴ s 31.104 x 10 ² s		
3.	lf ā	$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$, the quantities (a	a_x, a_y	(a_z) are called:		
	a) b)	vector sum scalar components	c) d)	vector components unit vectors		
4.	Ele	ectric power of magnitude 2.17 x 10	⁹ wa	itts equals:		
	a) b)	2.17 kilowatts 2.17 megawatts	c) d)	2.17nanowatts 2.17 gigawatts		
5.	Th	e conversion factor used to convert	tav	olume of 64 cm ³ to SI		
	a)	$\frac{10^2 cm}{1m}$ b) $\frac{10^6 cm^3}{1m^3}$ c) $\frac{1m}{10^2 cm}$ d	l) <u>-</u>	$\frac{1m^3}{D^6cm^3}$		

- 6. A car moved a distance of 215 km , in a direction making an angle of 22° east of north . How far east and north has the car moved?

- a) 199 km east, and 81 km north c) 81 km east, and 199 km north
- b) 91 km east, and 188 km north d) 188 km east, and 91 km north

units is

Use the following to answer questions 7-8:

Two vectors, \vec{C} , and \vec{D} , have magnitudes $\left|\vec{C}\right| = 16m$, and $\left|\vec{D}\right| = 78m$

- 7. If the vectors are anti-parallel (متوازيان ومتعاكسان في الإتجام) , Their vector sum has a magnitude =
 - a) 0 b) 62 m c) 80 m d) 94 m
- 8. If the vectors are perpendicular, their vector sum has a magnitude =
 - a) 62 m b) 94 m c) 0 d) 80 m
- **9.** If $\vec{A} = 3\hat{i} 3\hat{j}$, $\vec{B} = \hat{i} 2\hat{j}$, and $C = 5\hat{i} 12\hat{j}$ then $\vec{A} 2\vec{B} + C =$
 - **a**) $\hat{6i} 11\hat{j}$ **b**) $\hat{8i} 17\hat{j}$ **c**) $\hat{i} + \hat{j}$ **d**) $\hat{9i} + 17\hat{j}$
- **10.** In the diagram, the magnitude of $|\vec{A}| = 12m$, the magnitude of $|\vec{B}| = 10m$ and the magnitude of $|\vec{C}| = 6m$. The **x component** of $\vec{A} + \vec{B} + \vec{C} =$

a) 23 m **b**) 11 m **c**) 17 m **d**) 28 m

11. The density of silver is 10.49 g/cm³, its density in kg/m³ equals:

- a) 10.49 x 10⁻³ kg/m³
 b) 10.49 x 10³ kg/m³
 c) 10.49 x 10⁻⁶ kg/m³
 d) 10.49 x 10⁶ kg/m³
- 12. If $\vec{a} = 4\hat{i} 3\hat{j}$ and $\vec{b} = 6\hat{i} 8\hat{j}$, then the magnitude of $\vec{b} \vec{a} =$

a) 12.5 b) 14.87 c) 18.9 d) 5.4

- 13. Here are three vectors in meters $\vec{d_1} = 3\hat{i} 3\hat{j}$, $\vec{d_2} = \hat{i} \hat{j}$, and $\vec{d_3} = 2\hat{i} 4\hat{j}$. What is the result of $\vec{d_1} \cdot (\vec{d_2} + \vec{d_3})$
 - a) 34 m b) 24 m c) 14 m d) 4 m
- 14. If $|\vec{A}| = 44$ units, $|\vec{B}| = 16$ units, and the angle $\phi = 30^\circ$, then the vector product $\vec{C} = \vec{A} \times \vec{B}$ is
 - a) $\left| \vec{C} \right| = 352$ units, perpendicular to \vec{A} and \vec{B}
 - **b**) $|\vec{C}| = 532$ units, perpendicular to \vec{A} and \vec{B}
 - c) $\left| \vec{C} \right| = 352$ units, parallel to \vec{A} and \vec{B}
 - d) $\left| \vec{C} \right| = 532$ units, parallel to \vec{A} and \vec{B}
- **15.** If $\vec{a} = 2\hat{i} + 2\hat{j}$ and $\vec{b} = \hat{i} + 3\hat{k}$, then $\vec{a} \times \vec{b} =$

a)
$$6\hat{i} - 6\hat{j} - 2\hat{k}$$
 b) $2\hat{i} - \hat{j} - 6\hat{k}$ **c**) $2\hat{i} - 6\hat{j} - 2\hat{k}$ **d**) $6\hat{i} - 2\hat{j} - 6\hat{k}$

16. If
$$\vec{C} = 35\hat{i} + 21\hat{j} - 14\hat{k}$$
, then $\frac{2C}{7} =$

a)
$$6\hat{i} + 6\hat{j} - 10\hat{k}$$
 b) $5\hat{i} + 3\hat{j} - 2\hat{k}$ **c**) $10\hat{i} + 3\hat{j} - 4\hat{k}$ **d**) $10\hat{i} + 6\hat{j} - 4\hat{k}$

17. For the following two vectors: $\vec{A} = 2\hat{i} + 3\hat{j}$, $\vec{B} = -3\hat{i} + 2\hat{j}$. Find $\vec{A} \cdot 2\vec{B}$

a) 6 **b**) 12 **c**) zero **d**) 5

18. A particle enters a region with a speed of 4×10^6 m/s and then slowed at the rate of -1.5 x 10^{12} m/s². **The distance the particle takes to stop** is

a) 0.15 m b) 2 m c) 0.2 m d) 5.33 m

19. An apple fell from a 19.6 m tree, **how long did it take to reach the ground level?**

a) 4.9 s b) 4 s c) 9.8 s d) 2 s

- **20.** An object is thrown straight up from ground level and reached its highest point after 3.4 s . **Its initial velocity** is:
 - a) 35.3 m/s b) 30.32 m/s c) 33.32 m/s d) 43.31 m/s

- **21.** A change from an initial position to a final position is called:
 - a) speed b) displacement c) acceleration d) velocity
- 22. A car can go from zero to 32 m/s in 16 s. The average acceleration of the car is:
 - a) 2 m/s² b) 3 m/s² c) 4 m/s² d) 7 m/s²
- 23. The speed of a particle moving with instantaneous velocity of 15 m/s is:
 - a) 15 m/s b) 10 m/s c) 5 m/s d) 12 m/s

Use the following to answer questions 24-25:

A particle moves from $y_1 = -5$ m to $y_2 = -2$ m

24. The magnitude of the displacement is:

a) -3 m b) 3 m c) -7 m d) 7 m

- 25. The direction of the displacement is:
 - a) up b) down c) right d) left
- 26. A particle's position on x-axis is: $x(t) = \frac{2}{t^2} \frac{4}{t} + 9$ with x in meters and t in seconds. Its position at t = 3 s is
 - a) 10.34 m b) 7.89 m c) 6.87 m d) 9.37 m
- 27. A man drives a truck from a gasoline station a long a straight road for 11.2 km in 0.23 h, then he returns back to the station in 45 min, his average speed and average velocity, respectively, are :
 - a) $s_{avg} = 0$, $v_{avg} = 22.86$ km/hc) $s_{avg} = 0$, $v_{avg} = 12.7$ km/hb) $s_{avg} = 22.86$ km/h, $v_{avg} = 0$ d) $s_{avg} = 12.7$ km/h, $v_{avg} = 0$
- 28. A particle's position on x-axis is: $x(t) = 13 24t + 2t^3$ with x in meters and t in seconds. Its acceleration at t = 5 s is:
 - a) 60 m/s² b) 12 m/s² c) 36 m/s² d) 52 m/s²

- 29. In the following sentences, which one is wrong?" the free fall acceleration"
 - a) is the same for all objects.
 - b) has a magnitude of 9.8 m/s^s.
 - c) is the same during ascent and descent.
 - d) is equal to zero at the highest point.
- **30.** From the figure, the angle that vector \vec{a} makes with the +x axis (counterclockwise) is:

a) 30° b) 210° c) 150° d) 120°

Use the following to answer questions 31-32:

Two vectors: $\vec{A} = 3\hat{i} + 2\hat{j}$ and $\vec{C} = 5\hat{i}$

31. The angle between vector \vec{A} and the x axis is:

a) 21.8° b) 30.9° c) 56.3° d) 33.7°

32. The angle between vector \vec{A} and vector \vec{C} is:

a) 33.7° b) 137° c) 130° d) 37.3°

33. In which figure of the following \vec{C} is the vector sum?

Answer Key

- **1.** d
- **2.** a
- **3.** b
- 4. d 5. d
- 5. u 6. c
- 7. b
- **8.** d
- **9.** a
- 10. b
- **11.** b
- 12. d 13. b
- 14. a
- 15. a
- **16.** d
- 17. c
- **18.** d
- 19. d 20. c
- 20. c 21. b
- **22.** a
- **23.** a
- 24. b 25. a
- **26.** b
- **27.** b
- **28.** a
- **29.** d
- **30.** b **31.** d
- **32.** a
- **33.** b

افتحان الدوري الأول لعام عليما ه- الترم لت King Abdulaziz University Second Term Faculty of Sciences 1433-1434 H **Physics Department** Date:7/5/1434 H First Exam - PHYS 110 Name: _____ ID No: _____ Section: _____ for part of a start of the second CHOOSE THE CORRECT ANSWER: 1. The time rate of position is $V = \frac{\chi_2 - \chi_1}{c_2 - b_1}$ A) acceleration B) distance C) speed D velocity The SI units of base quantities (Length, Mass, Time) are
 A) Km, Kg, s
 B) cm, g, s
 C) cm, Kg, s
 D) m, Kg, s 3. (0.000 000 0782) is equal to: A) 7.82×10^{-6} B) 7.82×10^{-8} C) 7.82×10^{-9} D) 7.82×10^{-7} Use the following to answer questions 4-6: If $\overline{a} = 4\hat{i} - 3\hat{j}$ and $\overline{b} = 6\hat{i} + 8\hat{j}$ ^{4.} $\vec{b} - \vec{a}$ is equal $(6 - 4)\hat{L} + (8 - (-3))\hat{J} = 2\hat{L} + 1\hat{J}$ A) $\hat{i} + 3\hat{j}$ B) $-2\hat{i} - 5\hat{j}$ C) $4\hat{i} - 3\hat{j}$ D) $2\hat{i} + 11\hat{j}$ • 1 1 1 11 5. The direction of \tilde{b} A) 58° B) 53° C) 43° D) 60° $G = tan' (\frac{bs}{bx}) = tan' (\frac{s}{b}) = 53.1°$ ^{6.} The magnitude of \vec{a} $|a| = \sqrt{a_x^2 + a_y^2} = \sqrt{(4)^2 + (-3)^2} = 5$ (A) 5 B) 6 C) 7 D) 4 Sample A Page 1

Use the following to answer questions 7-8:

The position of a body moving along the x axis is given by: $x = 3 t - 4 t^2 + t^3$.

7. The average velocity for the time interval from t=0 to t=5 s is: A) $v_{avg} = 48 \text{ m/s}$ B) $v_{avg} = 20 \text{ m/s}$ C) $v_{avg} = 8 \text{ m/s}$ D) $v_{avg} = 40 \text{ m/s}$ $t_1 = 0 \text{ f} t_1 = 0 \text{ f} t_2 = 55 \text{ f} t_2 = 40 \text{ f} \text{ f} t_1 = 40 \text{ f} \text{ f} t_2 = 50 \text{ f} t_2 = 50 \text{ f} \text{ f} t_2 = 50 \text$ 8. The position of a body at t=4s is: B) x = -3m (C) x = 12m (D) x = -12m (-:4) (4)(4) A) x = 3mUse the following to answer questions 9-10: Two vectors \vec{a} and \vec{b} of magnitudes 10 units and 6 units respectively and the angle between the directions of \vec{a} and \vec{b} is 60°. $\alpha = 10$ mits, b = 6 mits, $\alpha = 6$ a. 5 9. The scalar product of the two vectors \vec{a} and \vec{b} is: $\vec{a} \cdot \vec{b} = ab Gas (\mathbf{q} = 10) K Cas (\mathbf{k})$ A) 50 units B) 20 units \vec{C} 30 units D) 60 units = 30 G mits 10. The magnitude of the vector product of \vec{a} and \vec{b} is: $\vec{a} \times \vec{b} = ab \sin a = 1 a \times b \times b \times b$ (A) 52 units B) 40 units C) 26 units D) 20 units = 51.96 52° 1m= 109m 11. $(1 \text{ nm})^2$ B) $10^{+9} m^2$ C) $10^{+18} m^2$ D) $10^{-18} m^2$ (10m) = (10m) = 10 m = 10 A) $10^{-9} m^2$ 13. The position of a particle is given by: $x(t) = 20 t - 5t^3$ (with x in meters and t in seconds). Is there ever a time when a = 0? t = 7, $\Rightarrow a = 0, a = 0,$ a = -30ta=0, t=0 A boat ^(قررب) moves (10 km west), then (5 km north), and finally (10 km east). The displacement of the boat from its initial position is B) 5 km, South A) 0 km (C)) 5 km, North D) 10 km, East Sample A Page 2 wesd

V2-V3+2a(X-X) $(15)^{2} = (30)^{2} + 29(50)$ X-Xa V VO 15. A car's speed is 30 m/s , after travels 50 m it reaches 15 m/s with constant a= - 6.75m/2 acceleration ,a car's acceleration is 0=11. C) 6.75 m/s² D) 11.25 m/s² B) -11.25 m/s^2 (A)) -6.75 m/s^2 16. The position of an object moving on an x axis is given by $x = 4 - 46t - 4t^3$ (with x in V = - 46-12 +2 meters and t in seconds), therefore, at t=0 s : t=0= V=-46-(12)(0)=-46 m/s A) The speed is zero. B) The speed is in the positive direction of x with 50 m/s. (C)) The speed is in the negative direction of x with 46 m/s. \overline{D}) The speed is in the positive direction of x with 46 m/s. 17. A vector $2\overline{B}$ has x,y and z -components as 2,4 and 10 respectively. The vector $2\overline{B} = 2\hat{c} + 4\hat{j} + 16\hat{k}$ \overline{B} can be written as A) $2\hat{i} + 2\hat{j} + 10\hat{k}$ B) $2\hat{j} + 5\hat{k}$ C) $\hat{i} + 2\hat{j} + 5\hat{k}$ D) $2\hat{i} + 4\hat{j} + 10\hat{k}$ 18. 467 micrometer = A) 4.67×10^{-2} m B) 4.67×10^{-4} m C) 4.67×10^{-5} m D) 4.67×10^{-3} m 19. Which of the following situations is NOT possible? A) A body having positive velocity and negative acceleration. B) A body having changing velocity and constant acceleration. (C)) A body having constant velocity and changing acceleration. D) A body having positive velocity and positive acceleration. 20. As shown in the figure, if the magnitudes of \vec{a} and \vec{b} are 10 units and 25 units respectively, the x-component of the resultant of \vec{a} and \vec{b} is: azlounits b=25units 1x = ax+bx = a cosl660)+b cos(180) = - 20 units đ A) $r_x = -2.5$ units (B) $r_x = -20$ units (C) $r_x = -22.5$ units (D) $r_x = -30$ units 4-9=-1700 ; V=0, V=?? 21. Raindrops (فظرات المطر) fall 1700 m from a cloud to the ground, the drops's velocity as they reached the ground is: A) v = 58 m/s B) v = -129 m/s (C) v = -183 m/s D) v = 0V2=V2-2g(y-y) V=0-2(9.8)(-1700) Page 3 V= V33320=+182,55+183m/s V=-183m/s I direction V of velocity

1. 12 6 8 6 22. If 1 inch = 2.54 cm, the conversion factor to convert 2 inch to cm is C) B) $\frac{1 \text{ inch}}{2.54 \text{ cm}}$ $\frac{2.54 \ cm}{1 \ inch}$ 2.54 cm 2 inch D) 2 inch 2.54 cm 23. How long does it take an apple falling from a 29.4m high tree to hit the ground ? (A) 2.45 s B) 1.56 s C) 3.72 s D) 2.04 s $3-5 - 34 - 29t^2$ -29.4=0-12(9.8)t2 24. The x-component of \bar{a} is $a_x=2.6m$, if the angle between \bar{a} and the positive x-axis is -41°, then the magnitude of \vec{a} is equal A) 4.58m B) 2m C) 3.45 m D) 3m a = 9x - 2.625. The vector sum \vec{S} of the vectors in the diagram is equal to: A) $\vec{S} = \vec{b} + \vec{a}$ (B) $\vec{S} = \vec{b} + \vec{a} - \vec{c}$ (C) $\vec{S} = \vec{a} + \vec{b} + \vec{c}$ (D) $\vec{S} = \vec{b} - \vec{a} - \vec{c}$ 26. A vector has a magnitude of 1 unit and in a direction 10° with the positive x-axis 323 323 316 20174we can write it in unit vector notation as (A) 0.98i + 0.17i B) 0.000 100(A) $0.98\hat{i} + 0.17\hat{j}$ B) $0.29\hat{i} + 20\hat{j}$ C) $0.53\hat{i} + 0.42\hat{j}$ D) $0.23\hat{i} + 14\hat{j}$ 27. The speedometer ^{(عرد السرعة})</sup> in a car measures : Speed (D)) speed A) displacement B) velocity C) acceleration $\frac{10^3 kg}{m^3} = \frac{13^3 k}{m^3}$ 28. 10³ kg/m³ = A) 10 g/cm^3 B) 10^2 g/cm^3 C) 10^3 g/cm^3 D) 1 g/cm^3 A) $\vec{A} \cdot \vec{B} = 1$ (B) $\vec{A} \times \vec{B} = 0$ (C) $\vec{A} \times \vec{B} = -1$ (D) $\vec{A} \cdot \vec{B} = 0$ ($\vec{A} \cdot \vec{B} = -\vec{A} \cdot \vec{A} \cdot \vec{B} = -\vec{A} \cdot \vec{A} \cdot \vec{B} = -\vec{A} \cdot \vec{B} = -\vec{A} \cdot \vec{A} \cdot \vec{B} = -\vec{A} \cdot \vec{A} = -\vec{A} \cdot \vec{A} \vec{A} = -\vec{A} \cdot \vec{A} \vec{A} = -\vec{$ ^{29.} \vec{A} and \vec{B} are two vectors as shown in the figure, which of the following is True? Sample A Page 4 응 같이 있는 것 같은 Service Level

^{30.} In the figure, the signs of the x and y components of the vector $\vec{D}_1 - \vec{D}_2$ are: D, A) (-,-) (1+,-) C) (-,+) D) (+,+) 31. A particle had a speed of 15m/s in the positive x direction and 2s later its speed was 33m/s in the opposite direction. The average acceleration of the particle is: A) 24 m/s^2 B) -20 m/s^2 C) -24 m/s^2 D) 20 m/s^2 Que -33-15 -33-15A) 24 m/s^2 B) -20 m/s^2 C) -24 m/s^2 D) 20 m/s^2 Que -33-15 -34 m/s^2 D) 20 m/s^2 Que -33-1532. Two vectors of the same magnitude(1 unit) are added; one is directed east and one is west. The magnitude of the resultant vector is west Lunits east A) 3 (B) 0 C) 1 D) 2 33. If the vectors $\vec{A} = \hat{i} + \hat{j}$ and $\vec{B} = -\hat{i} + \hat{j}$, then $\vec{A} \times \vec{B}$ is (A) $+2\hat{i} + 2\hat{k}$ (B) $2\hat{k}$ (C) $-2\hat{i} - 2\hat{k}$ (D) $-\hat{i} + \hat{j} - \hat{k}$ $\vec{A} \times \vec{B} = \begin{bmatrix} t & j & k \\ -1 & j & k \\ -1 & 1 & 0 \end{bmatrix} = (1x_0 - (0x_1)\hat{L} - (1x_0 - (-1)x_0)\hat{J} + (1x_1 - (-1)x_0)\hat{k}$