

1. Vectors \bar{C} and \bar{D} have magnitude of 5 units and 3.6 units, respectively (عُى نتوّتص).

What is the angle between \bar{C} and \bar{D} if $\bar{C} \times \bar{D}$ equals to+6 units
a) -18° b) 110° c) $95^{\circ}($ d) $)+19^{\circ} \quad \theta=\sin ^{-1}\left(\frac{C X D}{C D}\right)=\sin ^{-1} \frac{1}{3}=19.5^{\circ}$
2. In the figure, the signs of the \mathbf{x} and \mathbf{y} components of the vector $\bar{r}=\vec{a}+\bar{b}$ are:

$$
r_{x}=+, v_{y}=-
$$

a) $r_{x}=+, r_{y}=-$
b) $r_{x}=-, r_{y}=+$
c) $r_{x}=-, r_{y}=-$
d) $r_{x}=+, r_{y}=+$
3. A vector \bar{N} has a length 0.1 m making an angle of 30° with positive y axis, the x and y

$$
\text { components are: } \quad \begin{aligned}
A_{x} & =N \cos \theta \\
& =0.1 \cos 60=0.05 \mathrm{~m}
\end{aligned}\left\{\begin{aligned}
N_{y} & =N \sin \theta \\
& =0.1 \sin 60^{\circ}=0.086 \mathrm{~m}
\end{aligned}\right.
$$

[a) $N_{x}=0.05 \mathrm{~m}, N_{y}=0.086 \mathrm{~m} \quad$ c) $N_{x}=50 \mathrm{~m}, N_{y}=86 \mathrm{~m}$
b) $\mathrm{N}_{\mathrm{x}}=58 \mathrm{~m}, \mathrm{~N}_{\mathrm{y}}=86 \mathrm{~m}$
c) $\quad N_{x}=50 \mathrm{~m}, N_{y}=86 \mathrm{~m}$
4. The magnitude of the unit vector
a) less than 1 b) equals 1
c) greater than 1
d) equals zero

5. Which of the following is not used as a unit of time,
a) hour (h)
b) day (d) \qquad meter (m)
d) seconds (s)
6. A circle with radius r of 5 cm has an area of (area $=\pi r^{2}$) square meter given by:
a) $2.5 \times 10^{-4} \pi\left(\mathrm{~m}^{2}\right)$
b) $2.5 \times 10^{-2} \pi\left(\mathrm{~m}^{2}\right)$
[c) $2.5 \times 10^{-3} \pi\left(\mathrm{~m}^{2}\right)$
area $=\pi r^{2}=\pi\left(5 \times 10^{-2}\right)^{2}$
d) $2.5 \times 10^{-5} \pi\left(\mathrm{~m}^{2}\right)$
$=1\left(25 \times 10^{-4}\right)$
$=2.5 \times 10^{-3} 15 \mathrm{~m}^{2}$
7. $9.35 \times 10^{-12} \mathrm{~s}=$
a) $9.35 \mu \mathrm{~s} \quad$ b) $9.35 \mathrm{~ns} \quad$ c) 9.35 ms d) 9.35 ps
$P S=10^{-12} 5$
8. The position of a particle moving along the x-axis is given by: $x(t)=8+5 t+2 t^{3}$. Its acceleration function is:

$$
v(t)=0+5+\sigma t^{2}
$$

$a(t)=0+0+12 t^{2}$
$\begin{array}{lll}\text { a) } 5+12 t & \text { b) } 6 t^{2} & \text { c) } 12 t\end{array} \quad$ d) $5+6 t^{2}$
$t \quad 4$
9. A particle had a speed of $12 \mathrm{~V} / \mathrm{m}$ in the positive x direction and after 2.4 s its speed was 28 m / s in thenegative x direction. Its average acceleration during this time is:
a) $\bar{a}_{\text {avg }}=\frac{28-12}{2.4}$
c) $\vec{a}_{\text {avg }}=\frac{-28-12}{2.4}$ $a_{\text {vag }}=\frac{-28-12}{2.4}$
b) $\vec{a}_{\text {avg }}=\frac{12-28}{2.4}$
d) $\vec{a}_{\text {avg }}=\frac{12+28}{2.4}$
10. The base quantities are:
a) (Speed, Mass, Time)
c) (Length, Speed, Time)
b) (Length, Mass, Time)
d) (Length, Mass, Speed)

Use the following to answer questions 11-12:

11. Its average speed is:

$$
S_{a v g}=\frac{60+40}{1.33+0.67}=\frac{100}{2}=50 \mathrm{~km} / \mathrm{h}
$$

a) $120 \mathrm{~km} / \mathrm{h}$ b) $50 \mathrm{~km} / \mathrm{h} \quad$ c) zero
d) $30 \mathrm{~km} / \mathrm{h}$
12. Its average velocity is:
$\begin{array}{lll}\text { a) } 30 \mathrm{~km} / \mathrm{h} & \text { b) } 120 \mathrm{~km} / \mathrm{h} & \text { c) zero } \text { d) } 10 \mathrm{~km} / \mathrm{h}\end{array}$

$$
\begin{aligned}
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} & =\frac{(-40+60)-0}{(0.67+(1.33)-0} \\
& =\frac{20}{2}=10 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

13. If $\bar{a}=14 \hat{i}-30 \hat{j}$ and $\vec{b}=-66 \hat{i}+38 \hat{j}$, then $\bar{b}-\bar{a}=$

$$
\begin{aligned}
& \text { a) } \begin{array}{rl}
152 \hat{i}-38 \hat{j} & \text { b) }-70 \hat{i}+63 \hat{j} \\
b-a & \text { c) } 52 \hat{i}+8 \hat{j} \backslash(-66-14) \hat{c}+(38+30) \hat{\jmath} \\
& =-80 \hat{i}+68 \hat{j} \\
b & 6 \hat{\jmath}
\end{array}
\end{aligned}
$$

14. From the figure, the Car's speed

a) decreases b) constant c) zero d) increases
15. The position of a particle on the x axis is given by $x(t)=16 t-12 t^{3}$, at what time the
velocity $\mathrm{v}=0$?

$$
\begin{aligned}
& v(t)=16-36 t^{2} \\
& 0=16-36 t^{2} \\
& 16=36 t^{2} \Rightarrow t^{2}=\frac{16}{36} \Rightarrow t=\sqrt{\frac{16}{36}}=\frac{4}{6} \\
&=0.667
\end{aligned}
$$

$\begin{array}{lll}\text { a) } 0.17 \mathrm{~s} & \text { b) } 6.7 \mathrm{~s} & \text { c) } 0.67 \mathrm{~s}\end{array}$ d) 1.67 s
16. If $\vec{A}=2 \hat{i}-\hat{j}+3 \hat{k}$, then $-3 \vec{A}$ equals
$-3 \hat{A}=-6 \hat{\imath}+3 \hat{\jmath}-9 \hat{k}$
(a) $-6 \hat{i}+3 \hat{j}-9 \hat{k}$
c) $-3 \hat{i}-3 \hat{j}-9 \hat{k}$
b) $2 \hat{i}-3 \hat{j}-9 \hat{k}$
d) $+6 \hat{i}+\hat{j}-12 \hat{k}$
17. The position of a particle moving on an x axis is given by: $X(t)=2 t^{2}+4$, its average
velocity in the time interval from $t=1 \mathrm{~s}$ to $t=2 \mathrm{~s}$ is: $x_{t=1}^{x}(1)=2(1)^{2}+4=6 \mathrm{mg} \times(2)=2(2)^{2}+4=12 \mathrm{~m}$
a) $12 \mathrm{~m} / \mathrm{s}$
b) $9 \mathrm{~m} / \mathrm{s}$
c) $3 \mathrm{~m} / \mathrm{s}$ d) $6 \mathrm{~m} / \mathrm{s}$
$v_{\text {avg }}=\frac{12-6}{2-1}=6 \mathrm{~m} / \mathrm{s}$
18. The components of \vec{a} are: $a_{x}=25 \mathrm{~m}$, and $a_{y}=11 \mathrm{~m}$, the magnitude of \vec{a} is:

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{(25)^{2}+(11)^{2}}=27.3 \mathrm{~m}
$$

a) 27.3 m
b) $625 \mathrm{~m} \quad$ c) 32.5 m
d) 121 m
19. The conversion factor is:
a) Greater than one
b) A small number of physical quantities
(c) A ratio $\left(\begin{array}{l}\text { (النسببة) } \\ \text { (d) }\end{array}\right.$) units that is equal to unity
d) A base quantity
20. A car travels with a velocity of $11 \mathrm{~m} / \mathrm{s}$, if this car was going under acceleration of $-5 \mathrm{~m} / \mathrm{s}^{2}$. What is the distance traveled until it stops $p=0$
a) 21.2 m
b) 2.1 m
c) 11.2 m d) 12.1 m

$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right.$
21. The difference between speed and velocity that velocity includes
$0=(11)^{2}-+0\left(x-x_{0}\right)$ $x-x_{0}=\frac{121}{10}=12.1 \mathrm{~m}$
a) distance
b) time
c) mass
d) direction
22. If vector $\vec{A}=A \hat{i}+2 \hat{j}-3 \hat{k}$ is perpendicular to vector $\vec{B}=3 \hat{i}-6 \hat{j}+4 \hat{k}$, the value of A_{x} will be: $\bar{A} \perp \bar{B}=0, \vec{A} \cdot \vec{B}=0$
$\begin{array}{lll}\text { a) }-5 & \text { b) } 6 \hat{j} & \text { c) } 4 \text { d) } 8\end{array}$
23. The position of a particle is given by: $\mathbf{x}(\mathrm{t})=\mathbf{6 + 5 t + 8} \mathrm{t}^{2}$, the instantaneous acceleration at $t=1 \mathrm{~s}$ is:
$v(t)=0+5 \times 16 t \Rightarrow a(t)=16 \mathrm{~m} / \mathrm{s}^{2}$
a) $37 \mathrm{~m} / \mathrm{s}^{2}$
b) $16 \mathrm{~m} / \mathrm{s}^{2}$
c) $8 \mathrm{~m} / \mathrm{s}^{2}$
d) $31 \mathrm{~m} / \mathrm{s}^{2}$
24. A car is driven east for a distance of 50 km , then north for 30 km , and then in a direction 30° east of north for 25 km . The vector diagram that represents geometrically the motion is
a)

b)

d)

Use the following to answer questions 25-26:
The position of a body moving along the x axis is given by $\mathrm{x}=5 \mathrm{t}-2 \mathrm{t}^{2}+\mathrm{t}^{\mathbf{3}}$.
25. The position at $t=2 \mathrm{~s}$ is: $\quad x(2)=5(2)-2(2)^{2}+(2)^{3}=10-8+8=10 \mathrm{~m}$
$\begin{array}{llll}\text { a) } 36 \mathrm{~m} & \text { b) } 18 \mathrm{~m} & \text { c) } 8 \mathrm{~m} & \text { d) } 10 \mathrm{~m}\end{array}$
26. The displacement of the object in the time interval $t=0$ to $t=5 s$ is: $\begin{aligned} & \lambda(0)=0 \\ & x(5)=(5)(5)-2(5)^{2}+(5)^{3}\end{aligned}$
(a) $\Delta x=100 \mathrm{~m}$
b) $\Delta x=50 \mathrm{~m}$
c) $\Delta x=125 \mathrm{~m}$
d) $\Delta x=25 m$
$x(5)=(5)(5)-2(5)^{2}+125$
7. (0.000000000535) is equal to: 5.35×10^{-10}
a) $5.35 \times 10^{+10}$
b) $5.35 \times 10^{+7}$
c) 5.35×10^{-10}
d) 5.35×10^{-8}
28. In which situation of the following the displacement with the largest magnitude?

Situation	X $\mathbf{1}^{(m)}$	$\mathrm{X}_{2}(\mathrm{~m})$	$\Delta x=l_{2}-x_{1}$
L	-4	10	$=10-(-4)=$
M	-2	-12	$=-12-(-2)=$
N	-10	-9	$(-10)=+$
P	12	-5	$=-5-12=-17 \Rightarrow$

a) N b) $L \sqrt{c}$) P d) M

Use the following to answer questions 29-30:
An object dropped from a building 80 m high, $v_{0}=0, y_{0}=0 \Rightarrow y=-80 \mathrm{~m}$
29. The velocity of the object before reaching the ground is $v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)=-2(9.8)(-80)$

30. Its speed after $3 s$ is: $V=v_{0}-g t=(-9.8)(3)$
speed b'y o) 1 con $10-29.4 \mathrm{~m} / \mathrm{s}$
$\begin{array}{lll}\text { a) } 39.8 \mathrm{~m} / \mathrm{s} & \text { b) } 19.6 \mathrm{~m} / \mathrm{s} \quad \text { c) } 29.4 \mathrm{~m} / \mathrm{s} & \text { d) } 9.8 \mathrm{~m} / \mathrm{s}\end{array}$
31. The direction of vector $\bar{A}=(-25 m) \hat{i}+(55 m) \hat{j}$ is:
$\begin{array}{clll}\text { a) }-113^{\circ} & \text { b) } 29^{\circ} & \text { c) } 151^{\circ}\lceil\text { d }) & -66^{\circ} \\ & \sigma=\operatorname{Tan}^{-1}\left(\frac{55}{-25}\right)=-65.55 \approx-66^{\circ} 00\end{array}$
32. When an object is thrown vertically upward \uparrow, During the descent (, from the highest point:
a) its velocity and acceleration are both downward \downarrow
b) its velocity and acceleration are both upward \uparrow
c) its velocity is downward \downarrow and its acceleration is upward \uparrow
d) its velocity is upward \uparrow and its acceleration is downward \downarrow
33. A car, initially at rest, travels $20^{x} \mathrm{~m}$ in 4 s s along a straight line with constant acceleration.

The acceleration of the car is:
a) $1.3 \mathrm{~m} / \mathrm{s}^{2}$ b) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
c) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
d) $0.4 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& x-x_{0}=v_{0}+\frac{1}{2} a t^{2} \\
& 20=\frac{1}{2}(a)(4)^{2} \\
& a=\frac{(20)(2)}{1.6}=2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Sample A Page 5

King Abdulaziz University
Faculty of Sciences
Physics Department
First Exam - Phys 110

A
Name: \quad ID No: Section:

CHOOSE THE CORRECT ANSWER

1. Vectors \vec{C} and \vec{D} have magnitude of 5 units and 3.6 units, respectively (عُى التو الْي). What is the angle between \vec{C} and \vec{D} if $\vec{C} \times \vec{D}$ equals to -6 units
a) -18^{0}
b) 110^{0}
c) 95°
d) -19^{0}
2. In the figure, the signs of the \mathbf{x} and \mathbf{y} components of the vector $\vec{r}=\vec{a}+\vec{b}$ are:

a) $r_{x}=+, r_{y}=-$
b) $r_{x}=-, r_{y}=+$
c) $r_{x}=-, r_{y}=-$
d) $r_{x}=+, r_{y}=+$
3. A vector \vec{N} has a length $\mathbf{0 . 1} \mathbf{m}$ making an angle of $\mathbf{3 0 ^ { \circ }}$ with positive y axis, the \mathbf{x} and \mathbf{y} components are:
a) $\mathrm{N}_{\mathrm{x}}=0.05 \mathrm{~m}, \mathrm{~N}_{\mathrm{y}}=0.086 \mathrm{~m}$
b) $\mathrm{N}_{\mathrm{x}}=58 \mathrm{~m}, \mathrm{~N}_{\mathrm{y}}=86 \mathrm{~m}$
c) $\mathrm{N}_{\mathrm{x}}=50 \mathrm{~m}, \mathrm{~N}_{\mathrm{y}}=86 \mathrm{~m}$
d) $\mathrm{N}_{\mathrm{x}}=0.5 \mathrm{~m}, \mathrm{~N}_{\mathrm{y}}=0.86 \mathrm{~m}$
4. The magnitude of the unit vector
a) less than 1
b) equals 1
c) greater than 1
d) equals zero
5. Which of the following is not used as a unit of time,
a) hour (h)
b) day (d)
c) meter (m)
d) seconds (s)
6. A circle with radius r of 5 cm has an area of (area $=\pi r^{2}$) square meter given by:
a) $2.5 \times 10^{-4} \pi\left(\mathrm{~m}^{2}\right)$
b) $2.5 \times 10^{-2} \pi\left(\mathrm{~m}^{2}\right)$
c) $2.5 \times 10^{-3} \pi\left(\mathrm{~m}^{2}\right)$
d) $2.5 \times 10^{-5} \pi\left(\mathrm{~m}^{2}\right)$
7. $9.35 \times 10^{-12} \mathrm{~s}=$
a) $9.35 \mu \mathrm{~s}$
b) 9.35 ns
c) 9.35 ms
d) 9.35 ps
8. The position of a particle moving along the x-axis is given by: $\mathbf{x}(\mathbf{t})=\mathbf{8 + 5 t + 2} \mathbf{t}^{\mathbf{3}}$. Its acceleration function is:
a) $5+12 t$
b) $6 t^{2}$
c) 12 t
d) $5+6 t^{2}$
9. A particle had a speed of $12 \mathrm{~m} / \mathrm{s}$ in the positive \mathbf{x} direction and after 2.4 s its speed was 28 m / s in the negative \mathbf{x} direction. Its average acceleration during this time is:
a) $\vec{a}_{\text {avg }}=\frac{28-12}{2.4}$
b) $\quad \vec{a}_{\text {avg }}=\frac{12-28}{2.4}$
c) $\quad \vec{a}_{\text {avg }}=\frac{-28-12}{2.4}$
d) $\quad \vec{a}_{\text {avg }}=\frac{12+28}{2.4}$
10. The base quantities are:
a) (Speed, Mass, Time)
c) (Length, Speed, Time)
b) (Length, Mass, Time)
d) (Length, Mass, Speed)

Use the following to answer questions 11-12:
A car travelled $\mathbf{6 0} \mathbf{~ k m}$ in $\mathbf{1 . 3 3} \mathbf{h}$ along a straight line, then returned back for $\mathbf{4 0} \mathbf{~ k m}$ in $\mathbf{0 . 6 7} \mathbf{~ h}$.
11. Its average speed is:
a) $120 \mathrm{~km} / \mathrm{h}$
b) $50 \mathrm{~km} / \mathrm{h}$
c) zero
d) $30 \mathrm{~km} / \mathrm{h}$
12. Its average velocity is:
a) $30 \mathrm{~km} / \mathrm{h}$
b) $120 \mathrm{~km} / \mathrm{h}$
c) zero
d) $10 \mathrm{~km} / \mathrm{h}$
13. If $\vec{a}=14 \hat{i}-30 \hat{j}$ and $\vec{b}=-66 \hat{i}+38 \hat{j}$, then $\vec{b}-\vec{a}=$
a) $152 \hat{i}-38 \hat{j}$
b) $-70 \hat{i}+63 \hat{j}$
c) $52 \hat{i}+8 \hat{j}$
d) $-80 \hat{i}+68 \hat{j}$
14. From the figure, the Car's speed

a) decreases
b) constant
c) zero
d) increases
15. The position of a particle on the x axis is given by $\mathbf{x}(\mathbf{t})=\mathbf{1 6} \mathbf{t - 1 2} \mathbf{t}^{\mathbf{3}}$, at what time the velocity $\mathrm{v}=0$?
a) 0.17 s
b) 6.7 s
c) 0.67 s
d) 1.67 s
16. If $\vec{A}=2 \hat{i}-\hat{j}+3 \hat{k}$, then $-3 \vec{A}$ equals
a) $-6 \hat{i}+3 \hat{j}-9 \hat{k}$
b) $2 \hat{i}-3 \hat{j}-9 \hat{k}$
c) $-3 \hat{i}-3 \hat{j}-9 \hat{k}$
d) $+6 \hat{i}+\hat{j}-12 \hat{k}$
17. The position of a particle moving on an x axis is given by: $\mathbf{X}(\mathbf{t})=\mathbf{2} \mathbf{t}^{\mathbf{2}}+\mathbf{4}$, its average velocity in the time interval from $\mathbf{t}=\mathbf{1 s}$ to $\mathbf{t}=\mathbf{2 s}$ is:
a) $12 \mathrm{~m} / \mathrm{s}$
b) $9 \mathrm{~m} / \mathrm{s}$
c) $3 \mathrm{~m} / \mathrm{s}$
d) $6 \mathrm{~m} / \mathrm{s}$
18. The components of \vec{a} are: $a_{x}=25 \mathrm{~m}$, and $a_{y}=11 \mathrm{~m}$, the magnitude of \vec{a} is:
a) 27.3 m
b) 625 m
c) 32.5 m
d) 121 m
19. The conversion factor is:
a) Greater than one
b) A small number of physical quantities
c) A ratio (النسبة) of units that is equal to unity
d) A base quantity
20. A car travels with a velocity of $11 \mathrm{~m} / \mathrm{s}$, if this car was going under acceleration of $-5 \mathrm{~m} / \mathrm{s}^{2}$. What is the distance traveled until it stops
a) 21.2 m
b) 2.1 m
c) 11.2 m
d) 12.1 m
21. The difference between speed and velocity that velocity includes
a) distance
b) time
c) mass
d) direction
22. If vector $\vec{A}=A_{x} \hat{i}+2 \hat{j}-3 \hat{k}$ is perpendicular to vector $\vec{B}=3 \hat{i}-6 \hat{j}+4 \hat{k}$, the value of A_{x} will be:
a) -5
b) $6 \hat{j}$
c) 4
d) 8
23. The position of a particle is given by: $\mathbf{x}(\mathbf{t})=\mathbf{6}+\mathbf{5 t + 8} \mathbf{8} \mathbf{t}^{\mathbf{2}}$, the instantaneous acceleration at $\mathbf{t}=\mathbf{1} \mathrm{s}$ is:
a) $37 \mathrm{~m} / \mathrm{s}^{2}$
b) $16 \mathrm{~m} / \mathrm{s}^{2}$
c) $8 \mathrm{~m} / \mathrm{s}^{2}$
d) $31 \mathrm{~m} / \mathrm{s}^{2}$
24. A car is driven east for a distance of 50 km , then north for 30 km , and then in a direction 30° east of north for 25 km . The vector diagram that represents geometrically the motion is
a)

b)

c)

d)

Use the following to answer questions 25-26:
The position of a body moving along the x axis is given by $\mathbf{x}=\mathbf{5} \mathbf{t} \mathbf{- 2} \mathbf{t}^{\mathbf{2}}+\mathbf{t}^{\mathbf{3}}$.
25. The position at $\mathbf{t}=\mathbf{2 s}$ is:
a) 36 m
b) 18 m
c) 8 m
d) 10 m
26. The displacement of the object in the time interval $\mathbf{t}=\mathbf{0}$ to $\mathbf{t}=\mathbf{5} \mathbf{s}$ is:
a) $\Delta x=100 m$
b) $\Delta x=50 m$
c) $\Delta x=125 m$
d) $\Delta x=25 m$
27. (0.000000000535) is equal to:
a) $5.35 \times 10^{+10}$
b) $5.35 \times 10^{+7}$
c) 5.35×10^{-10}
d) 5.35×10^{-8}
28. In which situation of the following the displacement with the largest magnitude?

Situation	$\mathbf{X} \mathbf{1} \mathbf{(m)}$	$\mathbf{X} \mathbf{2}(\mathbf{m})$
\mathbf{L}	-4	10
\mathbf{M}	-2	-12
\mathbf{N}	-10	-9
\mathbf{P}	12	-5

a) N
b) L
c) P
d) M

Use the following to answer questions 29-30:
An object dropped from a building 80m high,
29. The velocity of the object before reaching the ground is
a) $+78.4 \mathrm{~m} / \mathrm{s}$
b) $+39.6 \mathrm{~m} / \mathrm{s}$
c) $-19.6 \mathrm{~m} / \mathrm{s}$
d) $-39.6 \mathrm{~m} / \mathrm{s}$
30. Its speed after 3 s is:
a) $39.8 \mathrm{~m} / \mathrm{s}$
b) $19.6 \mathrm{~m} / \mathrm{s}$
c) $29.4 \mathrm{~m} / \mathrm{s}$
d) $9.8 \mathrm{~m} / \mathrm{s}$
31. The direction of vector $\vec{A}=(-25 m) \hat{i}+(55 m) \hat{j}$ is:
a) -113°
b) 29°
c) 151^{0}
d) -66^{0}
32. When an object is thrown vertically upward \uparrow, During the descent (هثو) from the highest point :
a) its velocity and acceleration are both downward \downarrow
b) its velocity and acceleration are both upward \uparrow
c) its velocity is downward \downarrow and its acceleration is upward \uparrow
d) its velocity is upward \uparrow and its acceleration is downward \downarrow
33. A car, initially at rest, travels 20 m in 4 s along a straight line with constant acceleration. The acceleration of the car is:
a) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
b) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
c) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
d) $0.4 \mathrm{~m} / \mathrm{s}^{2}$

Answer Key

1. d
2. a
3. a
4. b
5. C
6. c
7. d
8. C
9. c
10. b
11. b
12. d
13. d
14. a
15. c
16. a
17. d
18. a
19. c
20. d
21. d
22. d
23. b
24. C
25. d
26. a
27. c
28. c
29. d
30. c
31. d
32. a
33. b

CHOOSE THE CORRECT ANSWER:

1. Change in position is called:
a) displacement
b) equations
c) acceleration
d) speed
2. A nanosecond is:
a) $10^{9} \mathrm{~s}$
b) $10^{-9} \mathrm{~s}$
c) $10^{-10} \mathrm{~s}$
d) $10^{10} \mathrm{~s}$
3. A gram is:
a) $10^{-6} \mathrm{~kg}$
b) $10^{3} \mathrm{~kg}$
c) 1 kg
d) $10^{-3} \mathrm{~kg}$
4. $\mathrm{km} / \mathrm{h}^{2}$ is a unit of;
a) velocity
b) speed
c) acceleration
d) distance
5. A square with an edge of exactly 1 cm has an area of:
a) $10^{-6} \mathrm{~m}^{2}$
b) $10^{-4} \mathrm{~m}^{2}$
c) $10^{2} \mathrm{~m}^{2}$
d) $10^{4} \mathrm{~m}^{2}$
6. A car starting from rest has a constant acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. How fast is it traveling after 5 seconds?
a) $100 \mathrm{~m} / \mathrm{s}$
b) $50 \mathrm{~m} / \mathrm{s}$
c) $20 \mathrm{~m} / \mathrm{s}$
d) $10 \mathrm{~m} / \mathrm{s}$
7. The average speed of a moving object during a given inter val of time is always:
a) The magnitude of its average velocity over the inter val
b) the distance covered during the time inter val divided by the time interval
c) one-half its speed at the end of the interval
d) its acceleration multiplied by the time interval
8. An object moves with a constant velocity of $9.8 \mathrm{~m} / \mathrm{s}$, its acceleration in $\mathrm{m} / \mathrm{s}^{2}$ is;
a) 9.8
b) 98
c) 0
d) -9.8
9. In which of the following statements the acceleration is constant?
a) $v=-4 t+3 t^{2}$
b) $v=2 t+3$
c) $v=6+2 t-4 t^{3}$
d) $v=5 t^{4}$
10.A particle moves along the x axis from x_{1} to x_{2}. Of the following values of the x_{1} and x_{2}, which results in the displacement with the largest magnitude?

	x_{1}	x_{2}
a)	4 m	6 m
b)	-4 m	-8 m
c)	-4 m	2 m
d)	-4 m	4 m

11. The position of an object is given as a function of time by $x=4 t-3 t^{2}$, where x is in m and t is in seconds. Its average velocity over the interval from $t=0$ to $t=2 s$ is:
a) 0
b) $-2 \mathrm{~m} / \mathrm{s}$
c) $2 \mathrm{~m} / \mathrm{s}$
d) $-4 \mathrm{~m} / \mathrm{s}$
12. How long will it take for a falling object to reach velocity of $-108 \mathrm{~m} / \mathrm{s}$ if its initial velocity is $-10 \mathrm{~m} / \mathrm{s}$
a) 98 s
b) 118 s
c) 0.093 s
d) 10 s
13. Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by;
particle 1: $x(t)=3.5-2.7 \mathrm{t}^{3}$
particle 2: $x(t)=3.5+2.7 t^{3}$
particle 3: $x(t)=3.5+2.7 \mathrm{t}^{2}$
particle 4: $\mathrm{x}(\mathrm{t})=3.5-3.4 \mathrm{t}-2.7 \mathrm{t}^{2}$
Which of these particles have constant acceleration?
a) All four
b) Only 1 and 2
c) Only 2 and 3
d) Only 3 and 4
14. A car, initially at rest, travels 20 m in 4 s along a straight line with constant acceleration. The acceleration of the car is:
a) $0.4 \mathrm{~m} / \mathrm{s}^{2}$
b) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
d) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
15. You are throwing a ball straight up in the air. At the highest point, the ball's
a) Velocity and acceleration are zero.
b) Velocity is nonzero but its acceleration is zero
c) Acceleration is nonzero, but its velocity is zero
d) Velocity and acceleration are both nonzero
16. The Associative law is given as;
a) $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
b) $(\vec{a}+\vec{b})+\vec{c}=(\vec{a}+\vec{b})+\vec{c}$
c) $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
d) $(\vec{a}-\vec{b})=\vec{a}-(\vec{b})$
17. If $\vec{A}=(6 \mathrm{~m}) \hat{\imath}-(8 \mathrm{~m}) \hat{\jmath}$ then \vec{A} has magnitude:
a) 10 m
b) 20 m
c) 30 m
c) 40 m
18. The angle between $\vec{A}=(25 \mathrm{~m}) \hat{\imath}+(45 \mathrm{~m}) \hat{\jmath}$ and the positive x axis is:
a) 29°
b) 61°
c) 151°
d) 209°
19. The scalar products of $\vec{P}=2 \widehat{i}-5 \hat{j}$ and $\vec{Q}=-3 \hat{i}+4 \hat{j}$ is
a) $P \cdot Q=-2$
b) $P \cdot Q=-26$
c) $P \cdot Q=14$
d) $P \cdot Q=20$
20. If $\mathrm{a}=10$ units, $\mathrm{b}=20$ units and $\varphi=60^{\circ}, \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$
a) $\mathrm{c}=200$
b) $\mathrm{c}=173.2$
c) $\mathrm{c}=$ zero
d) $\mathrm{c}=100.4$
21. If $R \cdot S=0$. Then;
a) R and S are perpendicular
b) R and S are in the same direction
c) R and S are in the opposite direction
d) The angle between R and S is 60°
22. If the components of $a_{x}=6 m \quad a_{y}=5 m$ the direction of \vec{a} is:
a) 56.4^{0}
b) 90°
c) 180°
d) 39.8°
23. The position of a particle is given by $x=2 t^{2}-t^{3}$, its velocity will be zero at time:
a) $t=4 / 3 \mathrm{~s}$
b) $2 / 3 \mathrm{~s}$
c) $1 / 3 \mathrm{~s}$
d) $3 / 2 \mathrm{~s}$
24. The vector $-\vec{A}$ is:
a) greater than \vec{A} in magnitude
c) less than \vec{A} in magnitude
b) in the same direction as \vec{A}
d) in the direction opposite to \vec{A}
25. Let $\vec{A}=(2 \mathrm{~m}) \hat{\imath}+(6 \mathrm{~m}) \hat{\jmath}-(3 \mathrm{~m}) \hat{k}$ and $\vec{B}=(4 \mathrm{~m}) \hat{\imath}+(2 \mathrm{~m}) \hat{\jmath}+(1 \mathrm{~m}) \hat{k}$. The vector sum $\vec{S}=\vec{A}+\vec{B}$ is:
a) $(6 \mathrm{~m}) \hat{\imath}+(8 \mathrm{~m}) \hat{\jmath}-(2 \mathrm{~m}) \hat{k}$
b) $(-2 \mathrm{~m}) \hat{\imath}+(4 \mathrm{~m}) \hat{\jmath}-(4 \mathrm{~m}) \hat{k}$
c) $(2 \mathrm{~m}) \hat{\imath}-(4 \mathrm{~m}) \hat{\jmath}+(4 \mathrm{~m}) \hat{k}$
d) $(8 \mathrm{~m}) \hat{\imath}+(12 \mathrm{~m}) \hat{\jmath}-(3 \mathrm{~m}) \hat{k}$
26. Let $\vec{A}=(2 \mathrm{~m}) \hat{\imath}+(6 \mathrm{~m}) \hat{\jmath}-(3 \mathrm{~m}) \hat{k}$ and $\vec{B}=(4 \mathrm{~m}) \hat{\imath}+(2 \mathrm{~m}) \hat{\jmath}+(1 \mathrm{~m}) \hat{k}$. Then $\vec{A} \cdot \vec{B}=$
a) $(8 \mathrm{~m}) \hat{\imath}+(12 \mathrm{~m}) \hat{\jmath}-(3 \mathrm{~m}) \hat{k}$
b) $23 \mathrm{~m}^{2}$
c) $(12 \mathrm{~m}) \hat{\imath}-(14 \mathrm{~m}) \hat{\jmath}-(20 \mathrm{~m}) \hat{k}$
d) $17 \mathrm{~m}^{2}$
27. Quantity that is defined as the rate of change of displacement:
a) velocity
b) acceleration
c) distance
d) speed
28. An object moving in the positive direction of the x-axis with a relation $\mathrm{x}(\mathrm{t})=6+\mathrm{t}+3 \mathrm{t}^{2}$. The instantaneous velocity after 4 s is:
a) $25 \mathrm{~m} / \mathrm{s}$
b) $20 \mathrm{~m} / \mathrm{s}$
c) $15 \mathrm{~m} / \mathrm{s}$
d) $10 \mathrm{~m} / \mathrm{s}$
29. Two birds are flying directly towards each other at the same speed. If the first bird is flying at a velocity v, the velocity of the second bird
a) v
b) $-v$
c) $2 v$
d) $v / 2$
30. If a person walking from point A to B to C as shown in the figure. The magnitude of the displacement is
a) 3 m
b) 4 m
c) 5 m
d) 6 m
31. The value of $\hat{\imath} \cdot(\hat{j} \times \hat{k})$ is:
a) zero
b) +1
c) -1
d) 3
32. The vector product of \vec{a} and vector \vec{b} produces a third vector \vec{c} whose direction is:
a) Perpendicular to the plane that contain \vec{a} and \vec{b}.
b) Parallel to the two vectors \vec{a} and \vec{b}.
c) In the opposite direction of \vec{a}.
d) In the opposite direction of \vec{b}.
33. If the initial velocity is $4 \mathrm{~m} / \mathrm{s}$ and the final velocity is $10 \mathrm{~m} / \mathrm{s}$ in 3 s . What is the average acceleration?
a) $6 \mathrm{~m} / \mathrm{s}^{2}$
b) $12 \mathrm{~m} / \mathrm{s}^{2}$
c) $3 \mathrm{~m} / \mathrm{s}^{2}$
d) $2 \mathrm{~m} / \mathrm{s}^{2}$

KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE
Physics department
$1^{\text {st }}$ Semester
First Exam

Physics 110

27/11/1432H

Time: 2Hours

Name: Number: Section:

Choose the correct answer:

1. $\left(5 \times 10^{4}\right) \times\left(5 \times 10^{6}\right)=25 \times 10^{10}=2.5 \times 10^{11}$
A) 2.5×10^{10}
(B) 2.5×10^{11}
C) 2.5×10^{6}
D) 2.5×10^{8}
2. 3 days $=3 \times 24 \times 60 \times 60=259200 \mathrm{~s}$
A) 30240 s
B) 1814400 s
C) 259200 s
D) 2419200 s
3. $7.87 \mathrm{~g} / \mathrm{cm}^{3}=7.87 \times 10^{-3}=7.87 \times 10^{3}=7870$
A) $7870 \mathrm{~kg} / \mathrm{m}^{3}$
B) $0.00787 \mathrm{~kg} / \mathrm{m}^{3}$
C) $7.87 \times 10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
D) $7.87 \times 10^{-6} \mathrm{~kg} / \mathrm{m}^{3}$
4. The conversion factor $\left(\frac{10^{6} \mathrm{~mm}}{1 \mathrm{~km}}\right)$ is used to convertto mm
A) 1 m
B) 1 mm
C) 1 km
D) 1 mi
5. $500 \mathrm{~kg}=500 \times 10^{3}=5 \times 10^{5} \mathrm{~g}$
A) $5 \times 10^{3} \mathrm{~g}$
B) $5 \times 10^{4} \mathrm{~g}$
C) $5 \times 10^{5} \mathrm{~g}$
D) $5 \times 10^{6} \mathrm{~g}$
6. 2.71 gigawatts $=$
A)
2.71×10^{9} Watts
B) 2.71×10^{6} Watts
C) 271×10^{9} Watts
D) 271×10^{6} Watts

$$
\begin{aligned}
& x_{t=0}=0 \\
& x_{t=4}=(3 \times 4)-(4 \times 16)+(16 \times 4)=12 \\
& x x^{2}=x_{2}-x_{1}=12-0=12 \mathrm{~m}
\end{aligned}
$$

7. The position of a body moving along the x-axis is given by $\bar{x}=3 t-4 t^{2}+t^{3}$, where x in meters and t in seconds. Its displacment in the time interval $t=0$ to $t=4 \mathrm{~s}$ is
A) $\Delta x=140 \mathrm{~m}$
B) $\Delta x=12 \mathrm{~m}$
C) $\Delta x=52 m$
D) $\Delta x=40 \mathrm{~m}$
8. The position of an object is given by $x=t-2 t^{2}$, where x in meters and t in seconds. At $t=10$ s, it is
$X=10-2 \times(10)^{2}=-190 \mathrm{~m}$
A) -190 m
B) -100 m
C) -10 m
D) -90 m
9. A car travelled 50 km in 0.75 h , then travelled 100 km in 1.2 h . The average speed is
(A) $77 \mathrm{~km} / \mathrm{h}$
B) $333 \mathrm{~km} / \mathrm{h}$
C) $111 \mathrm{~km} / \mathrm{h}$
D) $26 \mathrm{~km} / \mathrm{h}$
$S_{\text {avg }}=\frac{x_{1}+x_{2}}{t_{1}+t_{2}}=\frac{50+100}{0.75+1.2}$
speed

$$
=\frac{150}{1.95}=77
$$

10. A car changed position from $x=25 \mathrm{~m}$ to $x=150 \mathrm{~m}$ in the time interval from 3 s to 8 s , the average velocity of the car is

$$
V_{a r g}=\frac{150-25}{8-3}=\frac{125}{5}=25 \mathrm{~m} / \mathrm{s}
$$

A) $25 \mathrm{~m} / \mathrm{s}$
B) $11.4 \mathrm{~m} / \mathrm{s}$
C) $35 \mathrm{~m} / \mathrm{s}$
D) $16 \mathrm{~m} / \mathrm{s}$
11. The vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=\vec{b}+\vec{c}$. Which diagram below illustrates this relationship?
A)

B)

C)

D)

12. A particle is moving along x-axis according to the equation $x=12 t-2 t^{2}$, where x in meters and t in seconds. Its velocity and acceleration at $t=3 \mathrm{~s}$, respectively (
A) $v=0, a=-4 \mathrm{~m} / \mathrm{s}^{2}$
B) $v=18 \mathrm{~m} / \mathrm{s}, a=0$
C) $v=24 \mathrm{~m} / \mathrm{s}, a=8 \mathrm{~m} / \mathrm{s}^{2} \quad \begin{aligned} & V=12-4 t \mathrm{~m} / \mathrm{s} \\ & v=12-4 \times 3=0\end{aligned}$
D) $v=-24 \mathrm{~m} / \mathrm{s}, a=4 \mathrm{~m} / \mathrm{s}^{2}$ pole $a=-4 \mathrm{~m} / \mathrm{s}^{2}$
13. The position of a particale is given by $x(t)=20 t-5 t^{3}$, where x in meters and t in seconds, its velocity is zero at $t=$

$$
\begin{aligned}
& V=20-15 t^{2} \\
& 0=20-15 t^{2} \\
& 15 t^{2}=20 \\
& t^{2}=\frac{20}{15}, t=\sqrt{\frac{20}{15}}=1.2 \mathrm{~s}
\end{aligned}
$$

$\nu^{2}=\nu_{0}^{2}+2 a\left(x-x_{0}\right)$
 $V=0 \quad V_{0}=5 \times 10^{6}$
 $\alpha=-1.25 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$
 $0=\left(5 \times 10^{6}\right)^{2}+2\left(-1.25 \times 10^{14}\right) \times-x$

14. A particle has a constant acceleration $\left(-1.25 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\right)$ enters a region with a speed of 5×10^{6} m / s. How far does the particle take to stop
A) 0.1 m
B) -0.1 m
C) 1 m
D) -1 m

$$
x-x_{0}=\frac{-\left(5 \times 10^{6}\right)^{2}}{2\left(1.25 \times 10^{14}\right)}=0.1
$$

15. An electron has a constant acceleration $+3.2 \mathrm{~m} / \mathrm{s}^{2}$ at a certain instant, its velocity is $+9.6 \mathrm{~m} / \mathrm{s}$.

What is the velocity at $t=2.5 \mathrm{~s} \quad V=v_{0}+a t \quad V=9.6+3.2 \times 2.5$
$V=17.6 \mathrm{~m} / \mathrm{s}$
(A) $17.6 \mathrm{~m} / \mathrm{s}$
B) $8 \mathrm{~m} / \mathrm{s}$
C) $27.2 \mathrm{~m} / \mathrm{s}$
D) $0.8 \mathrm{~m} / \mathrm{s}$ \qquad
$y=-100$
16. The velocity of a stone falling from a height of 100 m just before hitting the ground is
A) $-1960 \mathrm{~m} / \mathrm{s}$
B) $-980 \mathrm{~m} / \mathrm{s}$
C) $-31.3 \mathrm{~m} / \mathrm{s}$
(D) $-44.3 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} V^{2} & =29 y \\ & =2 \times 9.8 x-100\end{aligned}$

17. A ball dropped from a building, its velocity and position after 3 s are \qquad
(A) $v=-29 \mathrm{~m} / \mathrm{s}, y=-44 \mathrm{~m}$
C) $v=0, y=0$
B) $v=-44 \mathrm{~m} / \mathrm{s}, y=-29 \mathrm{~m}$
D) $v=0, y=-44 \mathrm{~m}$
18. A baseball is thrown vertically into the air. The acceleration of the ball at its highest point is
A) $a=$ zero
B) $a>9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $a=9.8 \mathrm{~m} / \mathrm{s}^{2}$
D) $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

19. If $\vec{R} \times \vec{S}=\vec{C}$, then the direction of \vec{C} is
A. perpendicular to both \vec{R} and \vec{S}
C) perpendicular to \vec{S}
B) perpendicular to \vec{R}
D) in the same direction of \vec{R} and \vec{S}
20. The magnitudes of displacement \vec{a} and \vec{b} are 8 m and 15 m , respectively (عَى maximum possible magnitude for \vec{c} according to the equation $\vec{c}=\vec{a}+\vec{b}$ is
A) 7 m
(B) 23 m
C) 15 m
D) 8 m
$\vec{c}=8+15=23 \mathrm{~m}$
21. A displacment vector \vec{r} in $x y$ plane is 15 m long and directed at angle $\theta=30^{\circ}$ as in the figure, the x-component and y-component of the vector \vec{r} is

$x=15 \cos 30$
$y=15 \sin 30$
(A) $r_{x}=13 \mathrm{~m}, r_{y}=7.5 \mathrm{~m}$
C) $r_{x}=0.9 \mathrm{~m}, r_{y}=0.5 \mathrm{~m}$
B) $r_{x}=7.5 \mathrm{~m}, r_{y}=13 \mathrm{~m}$
D) $r_{x}=0.5 \mathrm{~m}, r_{y}=0.9 \mathrm{~m}$
22. For the vectors $\vec{a}=6 \hat{i}+5 \hat{j}$ and $\vec{b}=-3 \hat{i}-\hat{j}$. The magnitude of $|\vec{a}+\vec{b}|$ is
A) 7.8 m
(B) 5 m
C) 2.2 m
D) 10.8 m
$\vec{a}+\vec{b}=(6-3) \hat{i}+(5-1) \hat{j}$
23. The x-component of \vec{A} is 81 m and the y-component of \vec{A} is 200 m , then the angle θ between the direction of \vec{A} and the positive direction of x is
(A) $\tan ^{-1}\left(\frac{200}{81}\right)$
B) $\tan ^{-1}\left(\frac{-200}{81}\right)$
C) $\tan ^{-1}\left(\frac{81}{200}\right)$
D) $\tan ^{-1}\left(\frac{-81}{200}\right)$
$\theta=\tan ^{-1} \frac{y}{x}=\operatorname{Tan}^{-1} \frac{200}{81}$
24. The speed of a particle moves with an instantaneous velocity $v=-25 \mathrm{~m} / \mathrm{s}$ is:
A) $S=5 \mathrm{~m} / \mathrm{s}$
B) $S=-25 \mathrm{~m} / \mathrm{s}$
C) $S=25 \mathrm{~m} / \mathrm{s}$
D) $S=-5 \mathrm{~m} / \mathrm{s}$
25. In the figure, what are the signs of x and y-components of the sum $\vec{d}_{1}+\vec{d}_{2}$, respectively

A) $(+,-)$
B) $(+,+)$
(C) $(-,+)$
D) $(-,-)$
26. If $\vec{a}=3 \hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=-\hat{i}-4 \hat{j}+2 \hat{k}$, then $3 \vec{a} \cdot \vec{b}=$
(A) -57
C) 12
D) -21

$$
\begin{aligned}
& 57 \text { B) }-19 \text { C) } 12 \text { D) }-21 \\
& 3 \vec{a} \cdot \vec{b}=3(3 \hat{i}+3 \hat{j}-2 \hat{k}) \cdot(-\hat{i}-4 \hat{j}+2 \hat{k})=3[-3-12-4] \\
&=3[-19] \\
&=-57
\end{aligned}
$$

 the angle between the direction of \vec{C} and \vec{D} if $\vec{C} \cdot \vec{D}$ equals to -6 units
A) 109.5°
B) -19.4^{0}
C) -18.4^{0}
D) 95°
$\vec{C} \cdot \vec{D}=$
28. If $\vec{A}=18$ unit, $\vec{B}=12$ unit and $\phi=90^{\circ}$. If $\vec{C}=\vec{A} \times \vec{B}$, then the magnitude of a vector \vec{C} is
A) 216
B) 0
C) 187.1
D) 108
29. The value of $\hat{i} \cdot(\hat{k} \times \hat{i})=$

A) Zero
B) 1
C) $\hat{i} \cdot \hat{i}$
D) $\hat{i} \cdot \hat{k}$

A) The cross product of two vectors
B) The direction of third vector produced from cross product
C) The magnitude of third vector produced from cross product
D) The angle between the vectors in the cross product
31. A particle moves in the positive x-direction with increasing speed
A) its velocity is +re and acceleration is -vex x
B) its velocity is -ve and acceleration is +eve x
C) its velocity and acceleration are both +ve
D) its velocity is +ve and acceleration is zero \times
32. In which situation of the following the velocity is in negative x-direction
$V=-4 t$
$V=9 t^{2}$
$V=+4 t^{-3}$
$V=+5$
(A) $x=-2 t^{2}-2$
B) $x=3 t^{3}-5$
C) $x=-2 t^{-2}+1$
D) $x=-5+5 t$
33. Let $\vec{C}=\vec{A} \times \vec{B}$ and ϕ is the angle between \vec{A} and \vec{B}, which of the following is true?
A) The angle between \vec{C} and $\vec{A}=0^{\circ}$
C) $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$
B) The magnitude of $\vec{C}=A B \cos \phi$
D) $-\vec{C}=\vec{A}$

King Abdulaziz University
Faculty of Sciences
Physics Department
First Exam - Phys 110

Second Term 1432-1433 H

Date: $13 / 4$ / 1433H

A
Name: ID No: Section:

CHOOSE THE CORRECT ANSWER

1. Convert $5.86 \times 10^{6} \mathrm{~cm}$ to $\mathrm{km}\left[5.86 \times 10^{8} \mathrm{~cm}\right]\left(\frac{1 \mathrm{~km}}{1.5}\right)=5.86 \times 10$

$$
=58.6 \mathrm{~km}
$$

a) 5.86 km
b) 586 km
c) 0.586 km
(d) 58.6 km
2. How many seconds are in 36 days (36 day's) $\left(24 \mathrm{~h}\right.$) (6 omin) (60 s) $=31.104 \times 1 \mathrm{~m}^{5}$
(a) $31.104 \times 10^{5} \mathrm{~s}$
c) $31.104 \times 10^{4} \mathrm{~s}$
b) $31.104 \times 10^{6} \mathrm{~s}$
d) $31.104 \times 10^{2} \mathrm{~s}$
3. If $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$, the quantities $\left(a_{x}, a_{y}, a_{z}\right)$ are called:
a) vector sum
c) vector components
(b)) scalar components
d) unit vectors
4. Electric power of magnitude 2.17×10^{9} watts equals:
a) 2.17 kilowatts
c) 2.17 nanowatts
b) 2.17 megawatts
(d) 2.17 gigawatts
5. The conversion factor used to convert a volume of $64 \mathrm{~cm}^{3}$ to SI units is
a) $\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}$
b) $\frac{10^{6} \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}}$
c) $\frac{1 \mathrm{~m}}{10^{2} \mathrm{~cm}} \frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}$
$c \cdot F=\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}$
6. A car moved a distance of 215 km , in a direction making an angle of 22° east of north. How far east and north has the car moved?
a) 199 km east, and 81 km north
b) 91 km east, and 188 km north
c) 81 km east, and 199 km north
d) 188 km east, and 91 km north

$d_{x}($ cast $)=215 \cos \left(68^{\circ}\right)=80.54 \approx 81 \mathrm{~km}$
$d_{y}($ north $)=215 \sin \left(68^{\circ}\right)=199.3 \approx 199 \mathrm{~km}$

Use the following to answer questions 7-8:
Two vectors, \vec{C}, and \vec{D}, have magnitudes $|\vec{C}|=16 m$, and $|\vec{D}|=78 m$
7. If the vectors are anti-parallel (has a magnitude $=154 \mathrm{~m} 1=78-16=62 \mathrm{~m}$
a) $0 \sqrt{\text { b) }} 62 \mathrm{~m}$
c) 80 m
d) 94 m
8. If the vectors are perpendicular, their vector sum has a magnitude $=\sqrt{16^{2}+78^{2}}$
a) 62 m
b) 94 m
c) $0 \sqrt{d}) 80 \mathrm{~m}$
$=79.6$ u 80 m
9. If $\vec{A}=3 \hat{i}-3 \hat{j}, \vec{B}=\hat{i}-2 \hat{j}$, and $C=5 \hat{i}-12 \hat{j}$ then $\vec{A}-2 \vec{B}+C=$
(a) $\mathbf{6 i}-11 \hat{j}$
b) $8 \hat{i}-17 \hat{j}$
c) $\hat{i}+\hat{j}$
d) $\begin{aligned} 9 \hat{i}+17 \hat{j} & =(3 \hat{c}-3 \hat{\jmath})-2(\hat{\imath}-2 \hat{j})+(5 \hat{\imath}-12 \hat{\jmath}) \\ & =6 \hat{\imath}-11)+(-3 \hat{\jmath}+4 \hat{\jmath}-12 \hat{\jmath})\end{aligned}$
10. In the diagram, the magnitude of $|\vec{A}|=12 \mathrm{~m}$, the magnitude of $|\vec{B}|=10 \mathrm{~m}$ and the magnitude of $|\vec{C}|=6 \mathrm{~m}$. The \mathbf{x} component of $\vec{A}+\vec{B}+\vec{C}=$

$$
\begin{aligned}
\left(A_{x}+B_{x}+C_{x}\right) & =12+10 \cos 60^{\circ}-6 \\
& =12+5-6=11 \mathrm{~m}
\end{aligned}
$$

$\begin{array}{lll}\text { a) } 23 \mathrm{~m} & \text { b) } 11 \mathrm{~m} & \text { c) } 17 \mathrm{~m} \\ \text { d) } 28 \mathrm{~m}\end{array}$
11. The density of silver is $10.49 \mathrm{~g} / \mathrm{cm}^{3}$, its density in $\mathrm{kg} / \mathrm{m}^{3}$ equals: $=\frac{10.49 \times 10_{0}^{3} \mathrm{~kg}}{\mathrm{~m}^{3}}$
a) $10.49 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}$
c) $10.49 \times 10^{-6} \mathrm{~kg} / \mathrm{m}^{3}$
[b) $10.49 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
d) $10.49 \times 10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
12. If $\vec{a}=4 \hat{i}-3 \hat{j}$ and $\vec{b}=6 \hat{i}-8 \hat{j}$, then the magnitude of $\vec{b}-\vec{a}=(6 \hat{c}-8 \hat{j})-(4 \hat{\imath}-3 \hat{j})$
a) 12.5
b) 14.87
c) $18.9 \quad$ d) 5.4

$$
\begin{aligned}
& =2 \hat{c}-5 \hat{\jmath} \\
|\vec{b}-\vec{a}| & =\sqrt{2^{2}+(-5)^{2}}=\sqrt{29}=5 \cdot 4
\end{aligned}
$$

13. Here are three vectors in meters $\vec{d}_{1}=3 \hat{i}-3 \hat{j}, \vec{d}_{2}=\hat{i}-\hat{j}$, and $\vec{d}_{3}=2 \hat{i}-4 \hat{j}$.

What is the result of $\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}\right) \quad \vec{d}_{2}+\vec{d}_{3}=(\hat{\imath}-\hat{\jmath}) \times(2 \hat{\imath}-4 \hat{\jmath})=3 \hat{\imath}-5 \hat{\jmath}$
$\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}=(3 \hat{\imath}-3 \hat{\jmath}) \cdot(3 \hat{\imath}-5 \hat{\jmath})=9+15\right.$
a) $34 \mathrm{~m} \sqrt{\text { b })} 24 \mathrm{~m}$
c) 14 m
d) 4 m

$$
=24 \mathrm{~m}
$$

14. If $|\vec{A}|=44$ units, $|\vec{B}|=16$ units, and the angle $\phi=30^{\circ}$, then the vector product

$$
\vec{C}=\vec{A} \times \vec{B} \text { is }=(44)(13) \sin 30^{\circ}=352 \text { units }
$$

(a)) $|\vec{C}|=352$ units, perpendicular to \vec{A} and \vec{B}
b) $|\vec{C}|=532$ units, perpendicular to \vec{A} and \vec{B}
c) $|\vec{C}|=352$ units, parallel to \vec{A} and \vec{B}
d) $|\vec{C}|=532$ units, parallel to \vec{A} and $\vec{B} \quad \begin{array}{ccc}\hat{t} & \hat{+} & + \\ \text { 15. If } \vec{a}=2 \hat{i}+2 \hat{j} \text { and } \vec{b}=\hat{i}+3 \hat{k} \text {, then } \vec{a} \times \vec{b}=\left|\begin{array}{lll}2 & 0 \\ 2 & 2 & 0 \\ 1 & 0 & 3\end{array}\right|=6 \hat{\imath}-6 \hat{\jmath}-(6-0) \hat{\jmath}+(0-2) \hat{k}\end{array}$
[a) $6 \hat{i}-6 \hat{j}-2 \hat{k}$
b) $2 \hat{i}-\hat{j}-6 \hat{k}$
c) $2 \hat{i}-6 \hat{j}-2 \hat{k}$
d) $6 \hat{i}-2 \hat{j}-6 \hat{k}$
16. If $\vec{C}=35 \hat{i}+21 \hat{j}-14 \hat{k}$, then $\frac{2 \vec{C}}{7}=\frac{2}{7}(35 \hat{\imath}+21 \hat{\jmath}-14 \hat{k})=10 \hat{\imath}+6 \hat{\jmath}-4 \hat{k}$
a) $6 \hat{i}+6 \hat{j}-10 \hat{k}$
b) $5 \hat{i}+3 \hat{j}-2 \hat{k}$
c) $10 \hat{i}+3 \hat{j}-4 \hat{k} \quad$ d) $\int 10 \hat{i}+6 \hat{j}-4 \hat{k}$
17. For the following two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}, ~ \vec{B}=-3 \hat{i}+2 \hat{j}$. Find $\vec{A} \cdot 2 \vec{B}$
a) 6
b) 12 (c) zero
d) 5
$\vec{A} \cdot 2 \vec{B}=(2 \hat{\imath}+3 \hat{\jmath})-2(-3 \hat{c}+2 \hat{\jmath})$
8. A particle enters a region with a speed of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and then slowed at the rate of $-1.5 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$. The distance the particle takes to stop is
a) 0.15 m
b) $2 \mathrm{~m} \quad \begin{array}{ll}\text { c) } \\ y\end{array}$
19. An apple fell from a 19.6 m tree, how long did it take to reach the ground level? $v_{0}=0 \quad, \quad y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}$
a) $4.9 \mathrm{~s} \quad$ b) $4 \mathrm{~s} \quad$ c) $9.8 \mathrm{~s} \sqrt{\text { d) }} 2 \mathrm{~s}$
$-19.6=-\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{19.6 x^{2}}{4.8}}=2 S$
20. An object is thrown straight up from ground level and reached its highest
$V=0$ point after 3.4 s . Its initial velocity is: $V_{0}=2 . \quad \begin{aligned} & V=V_{0}-g t \\ & 0\end{aligned}$
a) $35.3 \mathrm{~m} / \mathrm{s}$
b) $30.32 \mathrm{~m} / \mathrm{s}$
c) $33.32 \mathrm{~m} / \mathrm{s}$
d) $43.31 \mathrm{~m} / \mathrm{s}$
21. A change from an initial position to a final position is called:
a) speed $\sqrt{\text { b) Jdisplacement c) acceleration }}$
d) velocity
22. A car can go from zero to $32 \mathrm{~m} / \mathrm{s}$ in 16 s . The average acceleration of the car is: $a_{a v}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{32-0}{\sigma-0}=2 \mathrm{~m} / \mathrm{s}^{2}$
$\begin{array}{lll}\text { a) } & 2 \mathrm{~m} / \mathrm{s}^{2} & \text { b) } 3 \mathrm{~m} / \mathrm{s}^{2}\end{array}$ c) $4 \mathrm{~m} / \mathrm{s}^{2}$ d) $7 \mathrm{~m} / \mathrm{s}^{2}$
23. The speed of a particle moving with instantaneous velocity of $-15 \mathrm{~m} / \mathrm{s}$ is:
[a) $15 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $5 \mathrm{~m} / \mathrm{s}$
d) $12 \mathrm{~m} / \mathrm{s}$

Use the following to answer questions 24-25:

A particle moves from $y_{1}=-5 m$ to $y_{2}=-2 m$

24. The magnitude of the displacement is: $\Delta y=y_{2}-y_{1}=-2-(-5)=3 m$
a) $-3 \mathrm{~m} \sqrt{\text { b) }} 3 \mathrm{~m}$
c) -7 m
d) 7 m
25. The direction of the displacement is:
(a) up
b) down
c) right
d) left
26. A particle's position on \mathbf{x}-axis is: $x(t)=\frac{2}{t^{2}}-\frac{4}{t}+9$ with \mathbf{x} in meters and \mathbf{t} in seconds. Its position at $t=3 \mathrm{~s}$ is $\quad x(3)=\frac{2}{9}-\frac{4}{3}+9=\frac{2-12-81}{9}$
a) $10.34 \mathrm{~m} \sqrt{\text { b) }} \backslash 7.89 \mathrm{~m}$
c) 6.87 m
d) 9.37 m
$=7.89 \mathrm{~m}$
27. A man drives a truck from a gasoline station a long a straight road for 11.2 km in 0.23 h , then he returns back to the station in 45 min , his average speed and average velocity, respectively, are: $\left.\overline{S_{\text {avg }}}=\frac{\text { total distance }}{\text { Eotah time }}=\frac{2 \times 11.2 \mathrm{~km}}{(0.23) *(45}\right)$
a) $\mathrm{Savg}=0, V_{\text {avg }}=22.86 \mathrm{~km} / \mathrm{h}$
c) $S_{\text {avg }}=0, V_{\text {avg }}=12.7 \mathrm{~km} / \mathrm{h}=22.86 \mathrm{~km} / \mathrm{h}^{60}$
(b) $\mathrm{S}_{\text {avg }}=22.86 \mathrm{~km} / \mathrm{h}, \mathrm{V}_{\text {avg }}=0$
d) $\mathrm{Savg}=12.7 \mathrm{~km} / \mathrm{h}, v_{\text {avg }}=0 \vee_{\text {avg }}=0$
28. A particle's position on x-axis is: $x(t)=13-24 t+2 t^{3}$ with x in meters and t in seconds. Its acceleration at $t=5 \mathrm{~s}$ is: $V(t)=0-24+6 t^{2} \mathrm{~m} / \mathrm{s}$
$a(t)=12 t \Rightarrow a(5)=12 \times 5=60 \mathrm{~m} / \mathrm{s}^{2}$
(a) $60 \mathrm{~m} / \mathrm{s}^{2}$
b) $12 \mathrm{~m} / \mathrm{s}^{2}$
c) $36 \mathrm{~m} / \mathrm{s}^{2}$
d) $52 \mathrm{~m} / \mathrm{s}^{2}$
29. In the following sentences, which one is wrong?
" the free fall acceleration \qquad
a) is the same for all objects.
b) has a magnitude of $9.8 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$.
c) is the same during ascent and descent
d) is equal to zero at the highest point.
30. From the figure, the angle that vector \vec{a} makes with the +x axis
is Lute, less un ts (counterclockwise) is: $Q=180^{\circ}+30=210^{\circ}$

a) 30° b) 210°
c) 150°
d) 120°

Use the following to answer questions 31-32:
Two vectors: $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{C}=5 \hat{i}$
31. The angle between vector \vec{A} and the x axis is: $G=\tan ^{-1}\left(\frac{2}{3}\right)=33 \cdot 7^{\circ}$
a) 21.8^{0}
b) 30.9°
c) 56.3° d) 33.7°
32. The angle between vector (A) and vector (C is: $Q=\cos ^{-1} \frac{\vec{A} \cdot \vec{C}}{A C}$
(a) 33.7°
b) 137°
c) 130°
d) 37.3°

$$
\begin{aligned}
\vec{A} \cdot \vec{C} & =15 \\
A C & =\sqrt{3^{2}+2^{2}} \sqrt{5^{2}} \\
& =18 \\
\therefore Q & =\cos ^{-1} \frac{15}{18}=33.7^{\circ}
\end{aligned}
$$

33. In which figure of the following \vec{C} is the vector sum?

a)
b)

c)

Sample A Page 6

King Abdulaziz University
Faculty of Sciences
Physics Department
First Exam - Phys 110

CHOOSE THE CORRECT ANSWER

1. Convert $5.86 \times 10^{6} \mathbf{~ c m}$ to km
a) 5.86 km
b) 586 km
c) 0.586 km
d) 58.6 km
2. How many seconds are in 36 days
a) $31.104 \times 10^{5} \mathrm{~s}$
b) $31.104 \times 10^{6} \mathrm{~s}$
c) $31.104 \times 10^{4} \mathrm{~s}$
d) $31.104 \times 10^{2} \mathrm{~s}$
3. If $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$, the quantities $\left(a_{x}, a_{y}, a_{z}\right)$ are called:
a) vector sum
c) vector components
b) scalar components
d) unit vectors
4. Electric power of magnitude 2.17×10^{9} watts equals:
a) 2.17 kilowatts
b) 2.17 megawatts
c) 2.17 nanowatts
d) 2.17 gigawatts
5. The conversion factor used to convert a volume of $64 \mathrm{~cm}^{3}$ to SI units is
a) $\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}$
b) $\frac{10^{6} \mathrm{~cm}^{3}}{1 m^{3}}$
c) $\frac{1 \mathrm{~m}}{10^{2} \mathrm{~cm}}$
d) $\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}$
6. A car moved a distance of 215 km ,in a direction making an angle of 22° east of north. How far east and north has the car moved?
a) 199 km east, and 81 km north
b) 91 km east, and 188 km north
c) 81 km east, and 199 km north
d) 188 km east, and 91 km north

Use the following to answer questions 7-8:
Two vectors, \vec{C}, and \vec{D}, have magnitudes $|\vec{C}|=16 m$, and $|\vec{D}|=78 m$
7. If the vectors are anti-parallel (متَوازبان ومتَعاكسان في الإنجَاه) , Their vector sum has a magnitude $=$
a) 0
b) 62 m
c) 80 m
d) 94 m
8. If the vectors are perpendicular, their vector sum has a magnitude =
a) 62 m
b) 94 m
c) 0
d) 80 m
9. If $\vec{A}=3 \hat{i}-3 \hat{j}, \vec{B}=\hat{i}-2 \hat{j}$, and $C=5 \hat{i}-12 \hat{j}$ then $\vec{A}-2 \vec{B}+C=$
a) $6 \hat{i}-11 \hat{j}$
b) $8 \hat{i}-17 \hat{j}$
c) $\hat{i}+\hat{j}$
d) $9 \hat{i}+17 \hat{j}$
10. In the diagram, the magnitude of $|\vec{A}|=12 \mathrm{~m}$, the magnitude of $|\vec{B}|=10 \mathrm{~m}$ and the magnitude of $|\vec{C}|=6 \mathrm{~m}$. The \mathbf{x} component of $\vec{A}+\vec{B}+\vec{C}=$

a) 23 m
b) 11 m
c) 17 m
d) 28 m
11. The density of silver is $10.49 \mathrm{~g} / \mathrm{cm}^{3}$, its density $\mathbf{i n} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$ equals:
a) $10.49 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}$
b) $10.49 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
c) $10.49 \times 10^{-6} \mathrm{~kg} / \mathrm{m}^{3}$
d) $10.49 \times 10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
12. If $\vec{a}=4 \hat{i}-3 \hat{j}$ and $\vec{b}=6 \hat{i}-8 \hat{j}$, then the magnitude of $\vec{b}-\vec{a}=$
a) 12.5
b) 14.87
c) 18.9
d) 5.4
13. Here are three vectors in meters $\vec{d}_{1}=3 \hat{i}-3 \hat{j}, \vec{d}_{2}=\hat{i}-\hat{j}$, and $\vec{d}_{3}=2 \hat{i}-4 \hat{j}$. What is the result of $\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}\right)$
a) 34 m
b) 24 m
c) 14 m
d) 4 m
14. If $|\vec{A}|=44$ units, $|\vec{B}|=16$ units, and the angle $\phi=30^{\circ}$, then the vector product $\vec{C}=\vec{A} \times \vec{B}$ is
a) $|\vec{C}|=352$ units, perpendicular to \vec{A} and \vec{B}
b) $|\vec{C}|=532$ units, perpendicular to \vec{A} and \vec{B}
c) $|\vec{C}|=352$ units, parallel to \vec{A} and \vec{B}
d) $|\vec{C}|=532$ units, parallel to \vec{A} and \vec{B}
15. If $\vec{a}=2 \hat{i}+2 \hat{j}$ and $\vec{b}=\hat{i}+3 \hat{k}$, then $\vec{a} \times \vec{b}=$
a) $6 \hat{i}-6 \hat{j}-2 \hat{k}$
b) $2 \hat{i}-\hat{j}-6 \hat{k}$
c) $2 \hat{i}-6 \hat{j}-2 \hat{k}$
d) $6 \hat{i}-2 \hat{j}-6 \hat{k}$
16. If $\vec{C}=35 \hat{i}+21 \hat{j}-14 \hat{k}$, then $\frac{2 \vec{C}}{7}=$
a) $6 \hat{i}+6 \hat{j}-10 \hat{k}$
b) $5 \hat{i}+3 \hat{j}-2 \hat{k}$
c) $10 \hat{i}+3 \hat{j}-4 \hat{k}$
d) $10 \hat{i}+6 \hat{j}-4 \hat{k}$
17. For the following two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}, \vec{B}=-3 \hat{i}+2 \hat{j}$. Find $\vec{A} \cdot 2 \vec{B}$
a) 6
b) 12
c) zero
d) 5
18. A particle enters a region with a speed of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and then slowed at the rate of $-1.5 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$. The distance the particle takes to stop is
a) 0.15 m
b) 2 m
c) 0.2 m
d) 5.33 m
19. An apple fell from a 19.6 m tree, how long did it take to reach the ground level?
a) 4.9 s
b) 4 s
c) 9.8 s
d) 2 s
20. An object is thrown straight up from ground level and reached its highest point after 3.4 s . Its initial velocity is:
a) $35.3 \mathrm{~m} / \mathrm{s}$
b) $30.32 \mathrm{~m} / \mathrm{s}$
c) $33.32 \mathrm{~m} / \mathrm{s}$
d) $43.31 \mathrm{~m} / \mathrm{s}$
21. A change from an initial position to a final position is called:
a) speed
b) displacement
c) acceleration
d) velocity
22. A car can go from zero to $32 \mathrm{~m} / \mathrm{s}$ in 16 s . The average acceleration of the car is:
a) $2 \mathrm{~m} / \mathrm{s}^{2}$
b) $3 \mathrm{~m} / \mathrm{s}^{2}$
c) $4 \mathrm{~m} / \mathrm{s}^{2}$
d) $7 \mathrm{~m} / \mathrm{s}^{2}$
23. The speed of a particle moving with instantaneous velocity of $-15 \mathrm{~m} / \mathrm{s}$ is:
a) $15 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) $5 \mathrm{~m} / \mathrm{s}$
d) $12 \mathrm{~m} / \mathrm{s}$

Use the following to answer questions 24-25:
A particle moves from $y_{1}=-5 m$ to $y_{2}=-2 m$
24. The magnitude of the displacement is:
a) -3 m
b) 3 m
c) -7 m
d) 7 m
25. The direction of the displacement is:
a) up
b) down
c) right
d) left
26. A particle's position on x -axis is: $x(t)=\frac{2}{t^{2}}-\frac{4}{t}+9$ with \mathbf{x} in meters and \mathbf{t} in seconds. Its position at $\mathbf{t}=\mathbf{3 s}$ is
a) 10.34 m
b) 7.89 m
c) 6.87 m
d) 9.37 m
27. A man drives a truck from a gasoline station a long a straight road for 11.2 km in 0.23 h , then he returns back to the station in 45 min , his average speed and average velocity, respectively, are :
a) $\mathrm{S}_{\text {avg }}=0, \mathrm{~V}_{\text {avg }}=22.86 \mathrm{~km} / \mathrm{h}$
b) $\mathrm{S}_{\text {avg }}=22.86 \mathrm{~km} / \mathrm{h}, \mathrm{V}_{\text {avg }}=0$
c) $\mathrm{Savg}=0, \mathrm{~V}_{\text {avg }}=12.7 \mathrm{~km} / \mathrm{h}$
d) $\mathrm{Savg}=12.7 \mathrm{~km} / \mathrm{h}, \mathrm{V}_{\text {avg }}=0$
28. A particle's position on \mathbf{x}-axis is: $x(t)=13-24 t+2 t^{3}$ with \mathbf{x} in meters and \mathbf{t} in seconds. Its acceleration at $\mathbf{t}=\mathbf{5} \mathbf{s}$ is:
a) $60 \mathrm{~m} / \mathrm{s}^{2}$
b) $12 \mathrm{~m} / \mathrm{s}^{2}$
c) $36 \mathrm{~m} / \mathrm{s}^{2}$
d) $52 \mathrm{~m} / \mathrm{s}^{2}$
29. In the following sentences, which one is wrong?
" the free fall acceleration \qquad ."
a) is the same for all objects.
b) has a magnitude of $9.8 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$.
c) is the same during ascent and descent.
d) is equal to zero at the highest point.
30. From the figure, the angle that vector \vec{a} makes with the +x axis (counterclockwise) is:

a) 30°
b) 210°
c) 150°
d) 120°

Use the following to answer questions 31-32:
Two vectors: $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{C}=5 \hat{i}$
31. The angle between vector \vec{A} and the x axis is:
a) 21.8^{0}
b) 30.9°
c) 56.3°
d) 33.7^{0}
32. The angle between vector \vec{A} and vector \vec{C} is:
a) 33.7^{0}
b) 137°
c) 130°
d) 37.3^{0}
33. In which figure of the following \vec{C} is the vector sum?

a)

b)
c)
d)

Answer Key

1. d
2. a
3. b
4. d
5. d
6. c
7. b
8. d
9. a
10. b
11. b
12. d
13. b
14. a
15. a
16. d
17. c
18. d
19. d
20. c
21. b
22. a
23. a
24. b
25. a
26. b
27. b
28. a
29. d
30. b
31. d
32. a
33. b

King Abdulaziz University
Faculty of Sciences
Physics Department
First Exam - PHYS

ID No: \qquad

Section: \qquad
Name: \qquad

CHOOSE THE CORRECT ANSWER:

1. The time rate of position is $V=\frac{x_{2}-x_{1}}{b_{2}-t_{1}}$
A) acceleration
B) distance
C) speed
velocity
2. The SI units of base quantities (Length, Mass, Time) are

- A) $\mathrm{Km}, \mathrm{Kg}, \mathrm{s}$
B) $\mathrm{cm}, \mathrm{g}, \mathrm{s}$
C) $\mathrm{cm}, \mathrm{Kg}, \mathrm{s}$
(D) $\mathrm{m}, \mathrm{Kg}, \mathrm{s}$

3. (0.0000000782) is equal to:
A) 7.82×10^{-6}
(B) 7.82×10^{-8}
C) 7.82×10^{-9}
D), 7.82×10^{-7}

Use the following to answer questions 4-6:
If. ' $\bar{a}=4 \hat{i}-3 \hat{j}$ and $\vec{b}=6 \hat{i}+8 \hat{j}$
4. $\vec{b}-\vec{a}$ is equal $(6-4) \hat{\imath}+(8-(-3)) \hat{\jmath}=2 \hat{\imath}+11 \hat{J}$
A) $\hat{i}+3 \hat{j}$
B) $-2 \hat{i}-5 \hat{j}$
C) $4 \hat{i}-3 \hat{j}$
(D) $2 \hat{i}+11 \hat{j}$
5. The direction of \vec{b}
A) 58°
(B) 53°
C) 43°
D) $60^{\circ} \quad C=\tan ^{-1}\left(\frac{b y}{b x}\right)=\tan ^{-1}\left(\frac{8}{6}\right)=53.1^{\circ}$
6. The magnitude of \vec{a}
(A) 5
B) 6
C) 7

$$
|a|=\sqrt{a_{x}^{2} \times a_{y}^{2}}=\sqrt{(y)^{2}+(-3)^{2}}=5
$$

D) 4

Use the following to answer questions 7-8:
The position of a body moving along the x axis is given by: $x=3 t-4 t^{2}+t^{3}$.
7. The average velocity for the time interval from $t=0$ to $t=5 \mathrm{~s}$ is:
A) $v_{\mathrm{avg}}=48 \mathrm{~m} / \mathrm{s}$
B) $v_{\text {avg }}=20 \mathrm{~m} / \mathrm{s}$
(C) $v_{\text {avg }}=8 \mathrm{~m} / \mathrm{s}$
D) $v_{\text {avg }}=40 \mathrm{~m} / \mathrm{s}$
$t_{1}=0 \rightarrow x$ $x_{1}=0, t_{2}=5 \mathrm{~s} \rightarrow x_{2}=40$
, $V_{a v_{g}}=\frac{x_{2}-x_{1}}{e_{2}-t_{1}}=\frac{90-0}{50-0}=8 \mathrm{~m} / \mathrm{s}$
8. The position of a body at $t=4 \mathrm{~s}$ is:
D) $\begin{aligned} x=-12 m t=4 s \rightarrow x & =3(4)-(4)(4)^{2}+(4) \\ x & =12 \mathrm{~m}\end{aligned}$
A) $x=3 m$
B) $x=-3 m$
(C) $x=12 m$

Use the following to answer questions 9-10:
Two vectors \vec{a} and \bar{b} of magnitudes 10 units and σ units respectively and the angle between the directions of \vec{a} and \vec{b} is 60°. $a=1$ units, $b=6$ units, $a=60^{\circ}$

$$
\vec{a} \cdot \vec{b}
$$

9. The scalar product of the two vectors \vec{a} and \vec{b} is: $\vec{a} \cdot b=a b \cos \phi=10 \% b_{k} \cos 6 \hat{d}$
A) 50 units
B) 20 units
(C) 30 units
D) 60 units

$$
=30 \text { units }
$$

$\vec{a} \times \vec{b}$
10. The magnitude of the vector product of \vec{a} and \vec{b} is: $\vec{a} \times b=a b \sin Q=10 \times 6 \times \sin b 0$
(A) 52 units
B) 40 units
C) 26 units
D) 20 units $=51.96 \sim 52^{\circ}$
11. $(1 \mathrm{~nm})^{2}$
A) $10^{-9} \mathrm{~m}^{2}$
B) $10^{+9} \mathrm{~m}^{2}$
C) $10^{+18} \mathrm{~m}^{2}$
(D) $10^{-18} m^{2}$
$(1 n m)^{2}=\left(10^{-9}\right)^{2} m^{2}=10^{=18} \mathrm{~m}^{2}$
$1 n M=10{ }^{-9}$
Δx avg t
A) 200 m
B) 100 m
) 144 m
D) 150 m
A) 200 m
D) 150 m $\Delta x=\mathrm{Vavg}^{\circ} \Delta t=(1.2)(2)(60)$
$=144 \mathrm{~m}$
13. The position of a particle is given by: $x(t)=20 t-5 t^{3}$ (with x in meters and t in z
seconds). Is there ever a time when $a=0$? $t=? \Rightarrow a=0, a=\frac{d^{2} x}{d t^{2}}=-30 t$
A) at $t=30 \mathrm{~s}$
B) at $t=10$ s
$a t t=0$
D) at $t=15 \mathrm{~s}$
$a=-30 t$
14. A boat ((10 km west), then (5 km north), and finally (10 km east). The displacement of the boat from its initial position is
A) 0 km
B) 5 km , South
(C) 5 km , North
D) 10 km , East

$$
\begin{aligned}
& v^{2}=v_{d}^{2}+2 a\left(x-x_{0}\right) \\
& (15)^{2}=(30)^{2}+2 a(50)
\end{aligned}
$$

15. A car's speed is $30 \mathrm{~m} / \mathrm{s}$, after travels 50 m it reaches $15 \mathrm{~m} / \mathrm{s}$ with constant acceleration , a, car's acceleration is $a=22$.
(A) $-6.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $-11.25 \mathrm{~m} / \mathrm{s}^{2}$
C) $6.75 \mathrm{~m} / \mathrm{s}^{2}$
D) $11.25 \mathrm{~m} / \mathrm{s}^{2}$
16. The position of an object moving on an x axis is given by $x=4-46 t-4 t^{3}$ (with x in meters and t in seconds), therefore, at $t=0 \mathrm{~s}$:
A) The speed is zero.

$$
\begin{aligned}
v & =-46-12 t^{2} \\
t & =0 \Rightarrow v=-46-(12)(0)=-46 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

B) The speed is in the positive direction of x with $50 \mathrm{~m} / \mathrm{s}$.
(C) The speed is in the negative direction of x with $46 \mathrm{~m} / \mathrm{s}$.
D) The speed is in the positive direction of x with $46 \mathrm{~m} / \mathrm{s}$.

17: A vector $2 \bar{B}$ has x, y and z-components as 2,4 and 10 respectively. The vector \vec{B} can be written as
A) $2 \hat{i}+2 \hat{j}+10 \hat{k}$
B) $2 \hat{j}+5 \hat{k}$
(C) $\hat{i}+2 \hat{j}+5 \hat{k}$
D) $2 \hat{i}+4 \hat{j}+10 \hat{k}$
18. 467 micrometer $=467 \times 10^{-6} \mathrm{~m} \Rightarrow 4.67 \times 10^{-4}$
A) $4.67 \times 10^{-2} \mathrm{~m}$
(B) $4.67 \times 10^{-4} \mathrm{~m}$
C) $4.67 \times 10^{-5} \mathrm{~m}$
D) $4.67 \times 10^{-3} \mathrm{~m}$
19. Which of the following situations is NOT possible?
A) A body having positive velocity and negative acceleration.
B) A body having changing velocity and constant acceleration.

- (C) A body having constant velocity and changing acceleration.
D) A body having positive velocity and positive acceleration.

20. As shown in the figure, if the magnitudes of \vec{a} and \bar{b} are 10 units and 25 units respectively, the x-component of the resultant of \bar{a} and \bar{b} is:

$$
\begin{aligned}
a & =10 \text { units } \\
b & =25 \text { units } \\
r_{x} & =a_{x}+b x \\
\because & =a \cos \left(66_{6}\right)+b \cos (180)=-20 \text { units }
\end{aligned}
$$

A) $r_{x}=-2.5$ units
(B)) $r_{x}=-20$ units
C) $r_{x}=-22.5$ units
D) $r_{x}=-30$ units

$$
y-y_{0}=-1700 ; v_{0}=0, \quad v=? ?
$$

21. Raindrops (((1) 1700 m from a cloud to the ground, the drops's velocity as they reached the ground is:
A) $v=58 \mathrm{~m} / \mathrm{s}$
B) $v=-129 \mathrm{~m} / \mathrm{s}$
(C) $v=-183 \mathrm{~m} / \mathrm{s}$
D) $v=0$

$$
\begin{aligned}
& V^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right) \\
& v^{2}=0-2(9.8)(-1700) \\
& V=\sqrt{33320}=+182.5 \sim+183 \mathrm{~m} / \mathrm{s}=-183 \mathrm{~m} / \mathrm{s} \quad v \text { direction } \\
& V=-18 \text { of velocity }
\end{aligned}
$$

22．If 1 inch $=2.54 \mathrm{~cm}$ ，the conversion factor to convert 2 inch to cm is．
（A）$\frac{2.54 \mathrm{~cm}}{1 \mathrm{inch}}$
B）$\frac{1 \mathrm{mch}}{2.54 \mathrm{~cm}}$
C）$\frac{2.54 \mathrm{~cm}}{2 \text { inch }}$
D）$\frac{2 \mathrm{incth}}{2.54 \mathrm{~cm}}$

$$
y-y_{0}, y=0, t=3 ?
$$

23．How long does it take an apple falling from a 29.4 m high tree to hit the ground ？$g t^{2}$
（A） 2.45 s
B） 1.56 s
C） 3.72 s
D） $2.04 \mathrm{~s} \quad y-y_{0}=v_{0} t-\frac{1}{2}$ ？$g t$

$$
29 \cdot 4=0-\frac{1}{2}(9.8) t^{2}
$$

24．The x－component of \vec{a} is $\mathrm{a}_{\mathrm{x}}=2.6 \mathrm{~m}$ ，if the angle between \vec{a} and the positive
x－axis is -41° ，
$q=a \cos \theta$
A） 4.58 m

B） 2 m
（C） 3.45 m
$\left.\begin{array}{lll}\text { A）} 4.58 \mathrm{~m} & \text { B）} 2 \mathrm{~m} & \text {（C）} 3.45 \mathrm{~m} \\ \text { D）} 3 \mathrm{~m} \quad a & =\frac{9 x}{\cos \theta}=\frac{2.6}{\cos \left(-41^{\circ}\right)} & =3.45 \mathrm{~m}\end{array}\right]$
125．The vector sum \bar{S} of the vectors in the diagram is equal to：

A）$\vec{S}=\vec{b}+\vec{a}$
（B） $\bar{s}=\vec{b}+\vec{a}-\bar{c}$
C）$\vec{S}=\vec{a}+\vec{b}+\bar{c}$
D）$\vec{s}=\vec{b}-\vec{a}-\bar{c}$

26．A vector has a magnitude of 1 unit and in a direction 10° with the positive x－axis,$y=a \sin \theta=0.174$
we can write it in unit vector notation as
（A） $0.98 \hat{i}+0.17 \hat{j}$
B） $0.29 \hat{i}+20 \hat{j}$
C） $0.53 \hat{i}+0.42 \hat{j}$
D） $0.23 \hat{i}+14 \hat{j}$
$\vec{a}=0.98 \hat{c}+0.17 \hat{\jmath}$

27．The speedometer ${ }^{(x, m)}$ 测）in a car measures：Sp Ped
A）displacement
B）velocity
C）acceleration
speed

28． $10^{3} \mathrm{~kg} / \mathrm{m}^{3}=$
A） $10 \mathrm{~g} / \mathrm{cm}^{3}$
B） $10^{2} \mathrm{~g} / \mathrm{cm}^{3}$
C） $10^{3} \mathrm{~g} / \mathrm{cm}^{3}$
（D） $1 \mathrm{~g} / \mathrm{cm}^{3}$
 $=\quad=1 \mathrm{~g} / \mathrm{am}^{31 \mathrm{~m}^{3}}$

29． \bar{A} and \vec{B} are two vectors as shown in the figure，which of the following is True？
A）$\vec{A} \cdot \vec{B}=1$
（B） $\bar{A} \times \vec{B}=0$
C） $\bar{A} \times \bar{B}=-1$
D） $\bar{A} \cdot \vec{B}=0$
30. In the figure, the signs of the x and y components of the vector $\vec{D}_{1}-\vec{D}_{2}$ are:

A) $(-,-)$ (B) $(+,-)$
C) $(-,+)$
D) $(+,+)$
31. A particle had a speed of $15 \mathrm{~m} / \mathrm{s}$ in the positive x direction and 2 s later its speed was
$Y=33 \mathrm{~m} / \mathrm{s}$ in the opposite direction. The average acceleration of the particle is:
A) $24 \mathrm{~m} / \mathrm{s}^{2}$
B) $-20 \mathrm{~m} / \mathrm{s}^{2}$
(C) $-24 \mathrm{~m} / \mathrm{s}^{2}$
D) $20 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { e particle is: } \\
& \begin{aligned}
a_{2}=\frac{v_{2}-v_{1}}{\Delta t} & =\frac{-33-15}{2} \\
& =-24 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

32. Two vectors of the same magnitude (1 unit) are added; one is directed east and one is west. The magnitude of the resultant vector is
A) 3
(B) 0
C) 1
D) 2

33. If the vectors $\vec{A}=\hat{i}+\hat{j}$ and $\vec{B}=-\hat{i}+\hat{j}$, then $\vec{A} \times \vec{B}$ is
A) $+2 \hat{i}+2 \hat{k}$
(B)) $2 \hat{k}$
C) $-2 \hat{i}-2 \hat{k}$
D) $-\hat{i}+\hat{j}-\hat{k}$

$$
\begin{aligned}
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
t & \bar{i} & + \\
i & j & k \\
1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right|=(1 \times 0-/ 0 \times 1) \hat{\imath}-(1 \times 0 y(-1) \times 0) \hat{\jmath}+(1 \times 1-(-1) \mid()) \hat{k} \\
=(1+1) \hat{k}=2 \hat{k}
\end{aligned}
$$

