King Saud University Department of Mathematics

244 Final Exam, May 2014

NAME:

Group Number:

ID:

Question	Grade
Ι	
II	
III	
IV	
V	
Total	

1	2	3	4	5	6
	1	1 2	1 2 3	1 2 3 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

I) Choose the correct answer:

1) If A is a 3×3 matrix, such that $det(2A)^2 = 64$, then det A equals

None of the previous

2) If u and v are orthogonal vectors of \mathbb{R}^n , such that ||u|| = 3 and ||v|| = 4, then the distance d(u, v) between u and v is

(A) 1 (B) 5 (C) 7 (D) None of the previou

3) If A is a 3×6 matrix, such that rank(A) = 3, then nullity(A) is

(A) 2	(B) 6	(C) 3	(D) None of the previous
-------	-------	-------	--------------------------

4) If $T_A : \mathbb{R}^4 \to \mathbb{R}^3$ and $T_B : \mathbb{R}^4 \to \mathbb{R}^3$ are matrix transformations, such that $T_A(x) = T_B(x)$ for all $x \in \mathbb{R}^4$, then

(A) $\det(A) \neq \det(B)$	(B) $A = B$	(C) T_A and T_B are	(D) None
		one-to-one	

5) The values of k that make the linear system $\begin{cases} 9x + ky = a \\ kx + y = b \end{cases}$ consistent, for all $a, b \in \mathbb{R}$ are

(A) $\{-3,3\}$	(B) $\mathbb{R} \setminus \{-3,3\}$	(C) $\{-3, 0, 3\}$	(D) None of the previous
----------------	-------------------------------------	--------------------	--------------------------

6) If $S = \{v_1, v_2, v_3, v_4\}$ is a linear independent set of vectors in $\mathcal{P}_4[x]$, then

(A) S is a basis of $\mathcal{P}_4[x]$ (B) $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors	(C) $\{v_1, v_2, v_3\}$ is a linearly dependent set of vectors	(D) None of the previous
---	--	--------------------------

II) A) For the linear system of equations

$$\begin{cases} x - y + z &= 1\\ -x + 2y + z &= 0\\ -x + y + 2z &= 0 \end{cases}$$

find the unknown x, using Cramer's rule.

B) If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, write the matrix $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ as a linear combination of A and A^2 .

C) If u, v, w are pairwise orthogonal vectors in \mathbb{R}^n , prove that

 $(u + 3v + w) \cdot (2u - 6v) = 2||u||^2 - 18||v||^2.$

D) If $\{u, v\}$ is a linearly independent set of vectors, prove that $\{u - v, u + v\}$ is a linearly independent set of vectors.

III) A) i) Give the definition of a symmetric matrix;

ii) If B is a 3×3 symmetric matrix with det(B) = -2, find det $[2B^2B^T + (B^T)^2B]$.

B) Prove that

$$W = \{ A \in \mathcal{M}_{22}, \quad A = A^T \}$$

is a subspace of \mathcal{M}_{22} .

IV) A) Let

i) Find a basis for the null space of A;

ii) Find a basis for the row space of A;

iii) Find a basis for the column space of A;

iv) Find the rank and the nullity of A.

B) If
$$B = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
, find the eigenvalues of B .

C) If $M = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, find the eigenspace of M that corresponds to the eigenvalue $\lambda = 1$.

V) A) Suppose that $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ is a matrix transformation, with standard matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{array} \right].$$

- a) Show that T_A is one-to-one; b) Find the inverse matrix $[T_A^{-1}]$; c) Evaluate $T_A^{-1}(1, 2, 3)$.

B) Find the standard 2×2 matrix that first rotates a vector counterclockwise about the origin, through an angle $\theta = \frac{\pi}{4}$, then reflects the resulting vector about the *y*-axis and then projects that vector orthogonally on the *x*-axis.