Final Exam, May 2014

NAME:

Group Number:

ID:

Question	Grade
I	
II	
III	
IV	
V	
Total	

Question	1	2	3	4	5	6
Answer						

I) Choose the correct answer:

1) If A is a 3×3 matrix, such that $\operatorname{det}(2 A)^{2}=64$, then $\operatorname{det} A$ equals
(A) ± 8
(B) ± 4
(C) ± 1
(D) None of the previous
2) If u and v are orthogonal vectors of \mathbb{R}^{n}, such that $\|u\|=3$ and $\|v\|=4$, then the distance $d(u, v)$ between u and v is

(A) 1	(B) 5	(C) 7	(D) None of the previous

3) If A is a 3×6 matrix, such that $\operatorname{rank}(A)=3$, then $\operatorname{nullity}(A)$ is
(A) 2
(B) 6
(C) 3
(D) None of the previous
4) If $T_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ and $T_{B}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ are matrix transformations, such that $T_{A}(x)=T_{B}(x)$ for all $x \in \mathbb{R}^{4}$, then
(A) $\operatorname{det}(A) \neq \operatorname{det}(B)$
(B) $A=B$
(C) T_{A} and T_{B} are one-to-one
(D) None
5) The values of k that make the linear system $\left\{\begin{array}{l}9 x+k y=a \\ k x+y=b\end{array}\right.$ consistent, for all $a, b \in \mathbb{R}$ are
(A) $\{-3,3\}$
(B) $\mathbb{R} \backslash\{-3,3\}$
(C) $\{-3,0,3\}$
(D) None of the previous
6) If $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linear independent set of vectors in $\mathcal{P}_{4}[x]$, then
(A) S is a basis of $\mathcal{P}_{4}[x]$
(B) $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set of vectors
(C) $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly dependent set of vectors
(D) None of the previous
II) A) For the linear system of equations

$$
\left\{\begin{array}{c}
x-y+z=1 \\
-x+2 y+z=0 \\
-x+y+2 z=0
\end{array}\right.
$$

find the unknown x, using Cramer's rule.
B) If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, write the matrix $B=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$ as a linear combination of A and A^{2}.
C) If u, v, w are pairwise orthogonal vectors in \mathbb{R}^{n}, prove that

$$
(u+3 v+w) \cdot(2 u-6 v)=2\|u\|^{2}-18\|v\|^{2} .
$$

D) If $\{u, v\}$ is a linearly independent set of vectors, prove that $\{u-v, u+v\}$ is a linearly independent set of vectors.
III) A) i) Give the definition of a symmetric matrix;
ii) If B is a 3×3 symmetric matrix with $\operatorname{det}(B)=-2$, find $\operatorname{det}\left[2 B^{2} B^{T}+\left(B^{T}\right)^{2} B\right]$.
B) Prove that

$$
W=\left\{A \in \mathcal{M}_{22}, \quad A=A^{T}\right\}
$$

is a subspace of \mathcal{M}_{22}.
IV) A) Let

$$
A=\left[\begin{array}{lllll}
1 & -1 & 2 & 1 & 2 \\
1 & -1 & 3 & 0 & 5 \\
2 & -2 & 6 & 1 & 9
\end{array}\right] .
$$

i) Find a basis for the null space of A;
ii) Find a basis for the row space of A;
iii) Find a basis for the column space of A;
iv) Find the rank and the nullity of A.
B) If $B=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right]$, find the eigenvalues of B.
C) If $M=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$, find the eigenspace of M that corresponds to the eigenvalue $\lambda=1$.
V) A) Suppose that $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a matrix transformation, with standard matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] .
$$

a) Show that T_{A} is one-to-one;
b) Find the inverse matrix $\left[T_{A}^{-1}\right]$;
c) Evaluate $T_{A}^{-1}(1,2,3)$.
B) Find the standard 2×2 matrix that first rotates a vector counterclockwise about the origin, through an angle $\theta=\frac{\pi}{4}$, then reflects the resulting vector about the y-axis and then projects that vector orthogonally on the x-axis.

