

Chapter Five

Gases

Substances That Exist as Gases

1A	2A											3A	4A	5A	6A	7A	8A He
H																	
Li	Be											B	C	N	0	F	Ne
Na	Mg	3B	4B	5B	6B	7B		8 B		1B	2B	Al	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	C0	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	P0	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

- Element in blue are Gases
- Noble gases are monatomic
- All other gases $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}\right)$ diatomic molecules.

Chapter Five / Gases

Substances That Exist as Gases

TABLE 5.1

Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements

H_{2} (molecular hydrogen)
N_{2} (molecular nitrogen)
O_{2} (molecular oxygen)
O_{3} (ozone)
F_{2} (molecular fluorine)
Cl_{2} (molecular chlorine)
He (helium)
Ne (neon)
Ar (argon)
Kr (krypton)
Xe (xenon)
Rn (radon)

Compounds

HF (hydrogen fluoride)
HCl (hydrogen chloride)
HBr (hydrogen bromide)
HI (hydrogen iodide)
CO (carbon monoxide)
CO_{2} (carbon dioxide)
NH_{3} (ammonia)
NO (nitric oxide)
NO_{2} (nitrogen dioxide)
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
SO_{2} (sulfur dioxide)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
HCN (hydrogen cyanide)*
${ }^{*}$ The boiling point of HCN is $26^{\circ} \mathrm{C}$, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

Chapter Five / Gases

Gas pressure

Unites of pressure :
Pascal (Pa), atm, mmHg, torr

1 torr $=1 \mathrm{mmHg}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$.
Example1:
convert the pressure of 688 mmHg to atmospheric pressure?
$1 \mathrm{~atm} \overline{\bar{x}} 760 \mathrm{mmHg}$
? $\mathrm{atm}=688 \mathrm{mmHg}$
$760 \times$? $=1 \times 688$
Pressure $=688 / 760=0.905 \mathrm{~atm}$.

Chapter Five / Gases

Gas Laws

- For every gas there are :

P (pressure), T (Temperature) V (volume), n (mole number).
The Pressure - Volume Relationships
Boyle's Law

- Boyles's law study the relationship between the pressure and volume of gas.
- Boyel's law stated that the pressure of a fixed amount of gas at a constant temperature in inversely proportional to the volume of the gas.

$$
\mathrm{P} \alpha \frac{1}{\mathrm{~V}}
$$

Chapter Five / Gases

Gas Laws- Boyle's Law

$$
\mathrm{P}_{1} \alpha \frac{1}{\mathrm{~V}_{1}} \Rightarrow \mathrm{P}_{1}=\frac{\mathrm{k}}{\mathrm{~V}_{1}} \mathrm{P}_{2} \mathrm{k} \mathrm{~N}_{2} \frac{1}{\mathrm{~V}_{2}} \Rightarrow \mathrm{P}_{2}=\frac{\mathrm{k}}{\mathrm{~V}_{2}}
$$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Boyle's Law

Example 1 :

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?
$P_{1}=726 \mathrm{mmHg}, \mathrm{V}_{1}=946 \mathrm{ml}, \mathrm{P}_{2}=$?, $\mathrm{V}_{2}=154 \mathrm{~mL}$.
$P_{1} V_{1}=P_{2} V_{2}$
$726 \times 946=P_{2} \times 154$
$\mathrm{P}_{2}=\frac{726 \times 946}{154}$
$=4459.7 \mathrm{mmHg}$

Gas Laws

The Temperature - Volume Relationships Charle's and Gay-Lussac's Law

- Charle's and Gay-Lussac's law study the relationship between the temperature and volume of gas.
- Charle's and Gay-Lussac's law stated that the volume of a fixed amount of gas at a constant pressure is directly proportional to the absolute temperature of the gas.

(a)

(b)

Chapter Five / Gases

Gas Laws- Charle's Law

$$
\begin{gathered}
\mathrm{T} \alpha \mathrm{~V} \\
\mathrm{~T}_{1} \alpha \mathrm{~V}_{1} \Rightarrow \mathrm{~T}_{1}=\mathrm{kx} \mathrm{~V}_{1} \Rightarrow \mathrm{~T} \\
\mathrm{~T}_{2} \alpha \mathrm{~V}_{2} \Rightarrow \mathrm{~T}_{2}=\mathrm{kxx}_{2}, \mathrm{k}=\frac{T_{2}}{V_{2}} \\
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}
\end{gathered}
$$

T in Kelvin

Gas Laws- Charle's Law

Example:

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{aligned}
& \frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \\
& \frac{125+273}{3.2}=\frac{T_{2}}{1.54}
\end{aligned}
$$

$\mathrm{T}_{2} \times 3.2=398 \times 1.54$
$\mathrm{T}_{2}=612.92 / 3.2$
$=191.5 \mathrm{~K}$

Chapter Five / Gases

The Volume - Amount Relationships
 Avogadro's Law

- Avogadro's law study the relationship between the volume and number of mole of gas.
- Avogadro's law stated that at constant pressure and temperature, the volume is directly proportional to the number of moles of the gas

Chapter Five / Gases

Gas Laws- Avogadro’s Law

$$
\begin{aligned}
& \mathrm{n} \alpha \mathrm{~V}
\end{aligned}
$$

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

Chapter Five / Gases

Summery of Gas Laws

$P_{1} V_{1}=P_{2} V_{2}$

$$
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}
$$

Charle's Law
Constant P and n

$$
\frac{n_{1}}{V_{1}}=\frac{n_{2}}{V_{2}}
$$

Avogadro's Law
Constant P and T

Chapter Five / Gases

Ideal Gas Equation

We know that

$V \alpha \frac{1}{\mathrm{P}}$	Boyle's law
$\mathrm{V} \alpha \mathrm{T}$	Charle's law
$\mathrm{V} \alpha \mathrm{n}$	A vogadro law

Then

$$
\begin{aligned}
& \mathrm{V} \alpha \frac{\mathrm{nT}}{\mathrm{P}} \\
& V=\frac{n R T}{P}
\end{aligned}
$$

Ideal Gas Equation

$\mathrm{PV}=\mathrm{nRT}$	$\mathrm{P}=$ pressure $(\mathrm{atm}), \mathrm{V}=$ volume $(\mathrm{L}), \mathrm{n}=$ moles $\mathrm{R}=$ gas constant, $\mathrm{T}=$ temperature (K)

Chapter Five / Gases

Ideal Gas Equation

- Ideal gas is a hypothetical gas whose pressure-volume-temperature behavior can be completely accounted for by the ideal gas equation.
- STP : standard Temperature and pressure
- Standard Temperature $=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
- Standard Pressure $=1 \mathrm{~atm}$.
- At STP 1mole of an ideal gas occupies 22.414L.
- R (gas constant) $=0.0821$ L.atm / K.mol

Chapter Five / Gases

Ideal Gas Equation

Example 1:

Calculate the pressure (in atm) exerted by 1.82 moles of the sulphur hexaflouride in a steel vessel of volume 5.43 L at $69.5^{\circ} \mathrm{C}$.?

$$
\begin{aligned}
\mathrm{PV} & =n R T \\
\mathrm{P} & =\mathrm{nRT} / \mathrm{V} \\
& =1.82 \times 0.0821 \times(69.5+273) / 5.43 \\
& =9.41 \mathrm{~atm} .
\end{aligned}
$$

Chapter Five / Gases

Ideal Gas Equation

Example 2:

Calculate the volume (in liters) occupied by 7.40 g of NH_{3} at STP condition.?
PV=nRT
$\mathrm{n}=$ mass/molar mass
$\mathrm{n}=7.40 / 17=0.435 \mathrm{~mol}$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$V=0.435 \times 0.082 \times 273 / 1$
$=9.74 \mathrm{~L}$

Chapter Five / Gases

Ideal Gas Equation

- We can use the ideal gas law if we know three out of four variable namely: $\mathrm{P}, \mathrm{T}, \mathrm{V}, \mathrm{n}$. we can calculate one unknown if we know the other three from the equation of ideal gas.
- However, sometime we have to deal with two conditions, this means we have two P , two V , two T , and two n . thus we need to apply some modification into the equation of ideal gas that take into account the initial and final conditions.

$$
\begin{array}{rr}
P V=n R T \quad R=\frac{P V}{n T} & \text { Normally } n_{1}=n_{2} \\
R=\frac{P_{1} V_{1}}{n_{1} T_{1}} \text { befor change } & \text { And the law become } \\
R=\frac{P_{2} V_{2}}{n_{2} T_{2}} \text { after change } & \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} &
\end{array}
$$

Ideal Gas Equation

Example 1:

A small bubble rises from the bottom of a lake, where the temperature and pressure are $8^{\circ} \mathrm{C}$ and 6.4 atm , to the water surface, where the temperature $25^{\circ} \mathrm{C}$ and the pressure is 1 atm. Calculate the final volume (in mL) of the bubble if its initial volume was 2.1 mL ?

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} \\
\mathrm{~V}_{2}=\frac{6.4 \times 2.1 \times(25+273)}{1 \times(8+273)} \\
\mathrm{V}_{2}=14.25 \mathrm{~mL}
\end{gathered}
$$

Ideal Gas Equation

Example 2:

An inflated helium balloon with a volume of 0.55 L at sea level (1 atm) is allowed to rise to a high of 6.5 km . where the pressure is about 0.40 atm . Assuming that the temperature remains constant. What is the final volume of the balloon?

We assume that $n_{1}=n_{2}$ and $T_{1}=T_{2}$

$$
\begin{aligned}
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}} \\
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
1 \times 0.55 & =0.4 \times \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =0.55 / 0.4 \\
& =1.4 \mathrm{~L}
\end{aligned}
$$

Chapter Five / Gases

Density Calculations

$$
\begin{gathered}
P V=n R T \\
P=\frac{n}{V} R T \\
\frac{n}{V}=\frac{P}{R T}
\end{gathered}
$$

I know that $\mathrm{n}=$ mass /molar mass
$\frac{m}{M M V}=\frac{P}{R T}$
I know d= mass/volume

$$
\frac{d}{M M}=\frac{P}{R T}
$$

$$
P M M=d R T
$$

$$
\mathrm{d}=\frac{\mathrm{P} \mathrm{MM}}{\mathrm{R} \mathrm{~T}}
$$

Unite for gas density is g / L
$\mathrm{d}=$ density (g / L), $\mathrm{P}=$ pressure (atm)
$\mathrm{MM}=$ molar mass ($\mathrm{g} / \mathrm{mol}$), $\mathrm{R}=$ gas
constant, $\mathrm{T}=$ temperature (K)

Chapter Five / Gases

Density Calculations

Example 1:

Calculate the density of CO_{2} in g / L at 0.990 atm and $55^{\circ} \mathrm{C}$?

$$
\begin{gathered}
d=\frac{P M M}{R ~ T} \\
M M\left(\mathrm{CO}_{2}\right)=40 \mathrm{~g} / \mathrm{mol} \\
\mathrm{~d}=\frac{0.99 \times 40}{0.0821 \times(55+273)} \\
\mathrm{d}=1.47 \mathrm{~g} / \mathrm{L}
\end{gathered}
$$

Chapter Five / Gases

The molar mass of a gaseous substance

- Normally we can determine the molar mass of a compound from the chemical formula.
- However, sometime we work with unknown compound or partially known compound. If the unknown substance is gaseous, its molar mass can be determine from the ideal gas equation. All needed is the density of the gas (or mass and volume of the gas).

$$
\begin{aligned}
& d=\frac{P M M}{R T} \\
& d R T=P M M
\end{aligned}
$$

$M M=\frac{d R T}{P}$

Chapter Five / Gases

The molar mass of a gaseous substance

Example 1:

A chemist has synthesised a green-yellow gaseous compound of chlorine and oxygen and finds that its density is $7.71 \mathrm{~g} / \mathrm{L}$ at $36^{\circ} \mathrm{C}$ and 2.88 atm. Calculate the molar mass of the compound?

$$
\begin{gathered}
\mathrm{MM}=\frac{\mathrm{dR} \mathrm{~T}}{\mathrm{P}} \\
\mathrm{MM}=\frac{7.71 \times 0.0821 \times(36+273)}{2.88}
\end{gathered}
$$

$\mathrm{MM}=67.9 \mathrm{~g} / \mathrm{mol}$

Chapter Five / Gases

The molar mass of a gaseous substance

Example 2:

Chemical analysis of a gaseous compound showed that it contained 33.0 percent Si and 67.0 percent F by mass. At $35^{\circ} \mathrm{C}, 0.210 \mathrm{~L}$ of the compound exerted a pressure of 1.70 atm . If the mass of 0.210 L of the compound was 2.38 g , calculate the molar mass and determine the molecular formula of the compound?
$\mathrm{Si}=33 \%, \mathrm{~F}=67 \%, \mathrm{~T}=35^{\circ} \mathrm{C}, \mathrm{V}=0.210 \mathrm{~L}, \mathrm{P}=1.7 \mathrm{~atm}$, mass $=2.38 \mathrm{~g}$,
$\mathrm{MM}=$?, Molecular formula ??

$$
\begin{array}{rlr}
\mathrm{MM}=\frac{\mathrm{d} \mathrm{R} \mathrm{~T}}{\mathrm{P}} & \mathrm{~d}=11.33 \mathrm{~g} / \mathrm{L} \\
\mathrm{~d} & =\frac{\mathrm{m}}{\mathrm{~V}} & \mathrm{MM}=\frac{11.33 \times 0.0821 \times(35+273)}{1.70} \\
\mathrm{~d}=\frac{2.38}{0.210} & M M=168.5 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Chapter Five / Gases

The molar mass of a gaseous substance

1- change from $\%$ to g

33 g of $\mathrm{Si}, 67 \mathrm{~g}$ of F ,

2- change from g to mole using

$$
\begin{aligned}
& n_{S i}=\frac{33}{28.09}=1.17 \mathrm{~mol} \text { of } S i \\
& n_{F}=\frac{67}{19}=3.53 \mathrm{~mol} \text { of } F
\end{aligned}
$$

Divided by the smallest number of mole which is 1.17

Thus the empirical formula is SiF_{3} Then we calculate the molar mass of the empirical formula $\mathrm{SiF}_{3}=85.09 \mathrm{~g} / \mathrm{mol}$

$$
\text { Ratio }=\frac{\text { molar mass of compound }}{\text { empirical molar mass }}
$$

$$
\text { Ratio }=\frac{168.5}{85.09} \approx 2
$$

Molecular formula $=$ empirical formula x ratio

$$
=\mathrm{SiF}_{3} \times 2=\mathrm{Si}_{2} \mathrm{~F}_{6}
$$

Chapter Five / Gases

Gas Stoichiometry

- In chapter 3 we learned how to calculate the product amount if we know the amount of reactant or how to calculate the amount of reactant if know the amount of product.
- The relationship was between n and m .
- In gases we can do the same however the relationship is between V and n .

We can use the volume only when the product and reactant are gases. And when T and P are constant

Chapter Five / Gases

Gas Stoichiometry

Example 1:

Calculate the volume of $\mathrm{O}_{2}(\mathrm{in} \mathrm{L})$ required for the complete combustion of 7.64 L of $\mathrm{C}_{2} \mathrm{H}_{2}$ measured at the same temperature and pressure.?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

From equation $2 \mathrm{molC}_{2} \mathrm{H}_{2} \longrightarrow 5 \mathrm{~mol} \mathrm{O}_{2}$ $2 \mathrm{LC}_{2} \mathrm{H}_{2} \longrightarrow 5 \mathrm{LO}_{2}$
$7.64 \mathrm{LC}_{2} \mathrm{H}_{2} \xrightarrow{\mathrm{X}} \mathrm{LOO}_{2}$
$5 \times 7.64=2 \times$?
Volume of $\mathrm{O}_{2}=5 \times 7.64 / 2=19.1 \mathrm{~L}$

Chapter Five / Gases

Gas Stoichiometry

Example 2:

Sodium azide (NaN_{3}) is used in some automobile air bags. The impact of a collision triggers the decomposition of NaN_{3} as follows:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

The nitrogen gas produced quickly inflates the bag between the driver and the
windshield and dashboard. Calculate the volume of N_{2} generated at $80^{\circ} \mathrm{C}$ and 823 mmHg by the decomposition of $60 \mathrm{~g} \mathrm{NaN}{ }_{3}$?
$\mathrm{T}=80^{\circ} \mathrm{C}=80+273=353 \mathrm{~K}$
$\mathrm{P}=823 \mathrm{mmHg}$
1 atm $=760 \mathrm{mmHg}$
?atm $=823 \mathrm{mmHg}$
$823 \times 1=760 \times ?=823 / 760=1.083 \mathrm{~atm}$
$m=60 \mathrm{~g}$.
First convert g to mole
$\mathrm{n}=\mathrm{m} / \mathrm{MM}$
$=60 / 65.02=0.923 \mathrm{~mol}$

From equation
$2 \mathrm{~mol} \mathrm{NaN} 3 \longrightarrow 3 \mathrm{~mol} \mathrm{~N}_{2}$
$0.923 \mathrm{~mol} \mathrm{NaN}_{3} \xrightarrow{\mathrm{X}}$? $\mathrm{mol} \mathrm{N}_{2}$
$3 \times 0.923=2 \times$?
Mole of $\mathrm{N}_{2}=3 \times 0.923 / 2$
Mole of $\mathrm{N}_{2}=1.38 \mathrm{~mol}$

Chapter Five / Gases

Gas Stoichiometry

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P} \\
& V=\frac{1.38 \times 0.0821 \times 353}{1.083} \\
& V=36.9 L
\end{aligned}
$$

$$
\begin{aligned}
& P_{A}=\frac{n_{A} R T}{V} \\
& P_{B}=\frac{n_{B} R T}{V} \\
& P_{T}=P_{A}+P_{B}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{P}_{\mathrm{T}}=\frac{\mathrm{n}_{A} \mathrm{RT}}{\mathrm{~V}}+\frac{\mathrm{n}_{\mathrm{B}} \mathrm{RT}}{\mathrm{~V}}\right) \\
& \mathrm{P}_{\mathrm{T}}=\frac{\mathrm{RT}}{\mathrm{~V}}\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}\right)
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{T}}=\frac{\mathrm{nR} \mathrm{~T}}{\mathrm{~V}}
$$

Where $n=n_{A}+n_{B}$

Dalton's Law of Partial Pressure

- Mole fraction: is a dimensionless quantity that expresses the ratio of the number of moles of one component to the number of moles of all components present.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} \mathrm{RT} / \mathrm{V} \quad \text { Divided by } \mathrm{P}_{\mathrm{T}} \\
& \begin{aligned}
\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{T}}} & =\frac{\mathrm{n}_{\mathrm{A}} \mathrm{RT} / \mathrm{V}}{\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}} / \mathrm{RT} / \mathrm{V}\right.} \\
\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{T}}} & =\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}} \\
& =X_{A} \quad P_{i}=X_{i} P_{T} \\
X_{i} & =\frac{\mathrm{n}_{i}}{\mathrm{n}_{\mathrm{T}}} \quad \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{T}}}=X_{i} \quad
\end{aligned}
\end{aligned}
$$

If we have gas mixture consist of two gases (A and B)

Then the sum of all mole fraction for the same mixture is 1

$$
X_{A}+X_{B}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{A}}}+\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}=1
$$

Chapter Five / Gases

Dalton's Law of Partial Pressure

Example:

A mixture of gasses contains 4.46 moles of $\mathrm{Ne}, 0.74$ mole of Ar , and 2.15 moles of Xe. Calculate the partial pressures of the gases if the total pressure is 2.00 atm at a certain temperature.?
First we have to determine the molar fraction of each gas

$$
\begin{gathered}
X_{i}=\frac{\mathrm{n}_{i}}{\mathrm{n}_{\mathrm{T}}} \\
X_{N e}=\frac{4.46}{4.46+0.74+2.15}=0.607 \\
X_{A r}=\frac{0.74}{4.46+0.74+2.15}=0.1 \\
X_{X e}=\frac{2.15}{4.46+0.74+2.15}=0.293
\end{gathered}
$$

$$
\begin{aligned}
& P_{N e}=X_{N e} P_{T}=0.607 x 2=1.214 \mathrm{~atm} \\
& P_{A r}=X_{A r} P_{T}=0.1 \times 2=0.2 \mathrm{~atm} \\
& P_{X e}=X_{X e} P_{T}=0.293 \times 2=0.586 \mathrm{~atm}
\end{aligned}
$$

Examples

If the temperature and pressure are kept constant during the process, how many liters of TiCl_{4} gas will be produced when 20.0 L of chlorine $\left(\mathrm{Cl}_{2}\right)$ react with titanium (Ti) according to the reaction: $\mathbf{T i}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}$ (g.
a) 5.0 L
b) 10.0 L

From the equation
c) 20.0 L

2 L of Cl 2 produce 1 L of TiCl 4
d) 40.0 L

20 L of Cl2 ------------X L of TiCl4

$$
X \operatorname{L} \text { of Cl2 = } 10 \mathrm{~L}
$$

What is the pressure in atmospheres of a gas mixture that consists of $\mathbf{0 . 2 0}$ moles of nitrogen and 0.30 moles of oxygen in a 1250 mL container at $0^{\circ} \mathrm{C}$?

N moles of $\mathrm{N} 2=0.20$ mole N moles of $\mathrm{O} 2=0.30$ mole $\mathrm{V}=1250 \mathrm{ml} / 1000=1.25 \mathrm{~L}$

$$
\mathrm{P}_{\mathrm{T}}=\frac{\mathrm{nR} \mathrm{~T}}{\mathrm{~V}} \quad \text { Where } \mathrm{n}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}
$$

$\mathrm{T}=0+273=273 \mathrm{~K}$

$$
\begin{aligned}
& =(0.20+0.30) \times 0.0821 \times 273 / 1.25 \\
& =8.95 \mathrm{~atm}
\end{aligned}
$$

You have a sample of CO_{2} gas in a flask (A) with a volume of 265 mL . At $22.5^{\circ} \mathrm{C}$, the pressure of the gas is $\mathbf{1 3 6 . 5} \mathbf{~ m m H g}$. To find the volume of another flask (B), you move the CO_{2} to that flask and find that its pressure is now 94.3 mmHg at $24.5^{\circ} \mathrm{C}$. What is the volume of flask B ?

[^0]a) 184.0 mL
b) 365.1 mL
c) 381.5 mL
d) 386.2 mL

V of $\mathrm{B}=$?
T of $B=24.5+273=297.5 K$
P of $\mathrm{B}=94.3 \mathrm{mmHg} / 760=0.124 \mathrm{~atm}$

$$
\begin{aligned}
& \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{~A} \quad \mathrm{~B} \\
& \mathrm{P} 1 \mathrm{~V} 1 \mathrm{~T} 2=\mathrm{P} 2 \mathrm{~V} 2 \mathrm{~T} 1 \\
& \mathrm{~V} 2=\mathrm{P} 1 \mathrm{~V} 1 \mathrm{~T} 2 / \mathrm{P} 2 \mathrm{~T} 1 \\
& =386.2 \mathrm{~mL}
\end{aligned}
$$

The pressure of 6.0 L of an ideal gas in a flexible container is decreased to one-third of its original value, and its absolute temperature is decreased by one-half. What is the final volume of the gas?

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

$$
\mathrm{V} 1=6 \mathrm{~L}
$$

$$
\mathrm{P} 2=\mathrm{P} 1 / 3
$$

$$
\mathrm{T} 2=\mathrm{T} 1 / 2
$$

$\mathrm{V} 2=?$
$\mathrm{~V} 2=\frac{\mathrm{P} 1 \mathrm{~V} 1 \mathrm{~T} 2}{\mathrm{P} 2 \mathrm{~T} 1}$
a) 9.0 L
b) 6.0 L
c) 4.0 L
d) 1.0 L

A fixed quantity of a gas is subjected to a decrease in pressure at constant temperature. The volume of the gas:
a) remains the same
b) Decreases
c) Increases
d) can't be determined

A student adds 4.00 g of dry ice (solid CO_{2}) to an empty balloon. What will be the volume of the balloon at STP after all the dry ice sublimes (converts to gaseous CO_{2})?

STP conditions means :
يجب ان نوجد عدد المو لات
$\mathrm{T}=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$

$$
P=1 \mathrm{~atm} .
$$

$$
\mathrm{n}=4 / 44=0.0909 \text { mole }
$$

$$
P V=n R T
$$

$$
\mathrm{V}=\frac{0.0909 \times 0.0821 \times 273.15}{1}=2.038 \mathrm{~L}
$$

OR

At STP 1mole of an ideal gas occupies 22.414L.

$$
\begin{aligned}
V & =n \times 22.414 \\
& =0.0909 \times 22.414=2.037 \mathrm{~L}
\end{aligned}
$$

A compound is solid at room temperature, but it boils at $56{ }^{\circ} \mathrm{C}$. Determine the density of the compound at $60^{\circ} \mathrm{C}$ and 745 torr (molar mass of the compound $=352 \mathrm{~g} / \mathrm{mol}$).

$$
\mathrm{d}=\frac{\mathrm{PMM}}{\mathrm{R} \mathrm{~T}}
$$

$$
\begin{aligned}
& \mathrm{T}=60+273=333 \mathrm{~K} \\
& \mathrm{P}=745 \mathrm{torr} / 760=0.9802 \mathrm{~atm} \\
& \mathrm{MM}=352 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\mathrm{d}=\frac{0.9802 \times 352}{0.0821 \times 333}=12.64 \mathrm{~g} / \mathrm{L}
$$

A mixture of two gases (A and B) are mixed in the same container. Calculate the mole fraction of gas B if the total pressure is 2 atm and the partial pressure of gas A is 1.5 atm ?
$\mathrm{P}_{\mathrm{T}}=2$ atom
$\mathrm{P}_{\mathrm{A}}=1.5 \mathrm{~atm}$
$\mathrm{X}_{\mathrm{B}}=$?
$X_{A}=\frac{P_{A}}{P_{T}}$

$$
X_{A}=\frac{1.5}{2}=0.75
$$

$$
\begin{aligned}
& X_{A}+X_{B}=1 \\
& X_{B}=1-X_{A} \\
& X_{B}=1-0.75=0.25
\end{aligned}
$$

A certain amount of gas at $25^{\circ} \mathrm{C}$ and at a pressure of $\mathbf{0 . 8 0 0} \mathrm{atm}$ is contained in a glass vessel. Suppose that the vessel can withstand a pressure of 2.00 atm. How high can you raise the temperature of the gas without bursting the vessel?

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

$$
\mathrm{T}_{1}=25+273=298 \mathrm{~K}
$$

$$
\mathrm{P}_{1}=0.800 \mathrm{~atm}
$$

We assume that $V_{2}=V_{1}$

$$
T_{2}=\frac{P_{2} W_{2} T_{1}}{P_{1} W_{1} S_{1}}=\frac{P_{2} T_{1}}{P_{1}}
$$

$$
P_{2}=2 \mathrm{~atm}
$$

$$
\mathrm{T} 2=\frac{2 \times 298}{0.800}=745 \mathrm{~K} \text { or } 472 \mathrm{C}^{0}
$$

A sample of oxygen occupies 47.2 liters under a pressure of 1240 torr at 25 。C. What volume would it occupy at $25 . \mathrm{C}$ if the pressure were decreased to 730 torr?
a) 27.8 L
b) 29.3 L
c) 32.3 L
d) 80.2 L

اولا : حول درجة الحرارة الى كالفن وكذلك الضغط الى ضغط جوي ثم استخدم القانون اعلاه لحساب V2 والاجابة الصحيحة باللون الاحمر

Under conditions of fixed temperature and amount of gas, Boyle's law requires that
I. $P_{1} V_{1}=P_{2} V_{2}$
II. $\mathrm{PV}=$ constant
III. $\mathrm{P}_{1} / \mathrm{P}_{2}=\mathrm{V}_{2} / \mathrm{V}_{1}$

نفرض ان ادينا القيم التالية من الضغط والحجم
a) I only
$\mathrm{P} 1=1 \mathrm{~atm} \quad \mathrm{P} 2=2 \mathrm{~atm}$
I. $\mathbf{P}_{\mathbf{1}} \mathbf{V}_{1}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
b) II only
$\mathrm{V} 1=1 \mathrm{~L} \quad \mathrm{~V} 2=0.50 \mathrm{~L}$
$1 \times 1=2 \times 0.50$
c) III only
d) I, II, and III
$1=1$
II. $\mathbf{P V}=$ constant
$\mathrm{P} 1 \times \mathrm{V} 1=1 \times 1=1$
$\mathrm{P} 2 \times \mathrm{V} 2=2 \times 0.50=1$
III. $\mathbf{P} 1 / \mathbf{P} 2=V 2 / V 1$
$1 / 2=0.50 / 1$
$0.5=0.5$

The volume of a sample of nitrogen is 6.00 liters at $35 . \mathrm{C}$ and 740 torr. What volume will it occupy at STP?
a) 6.59 L
b) 5.46 L

$$
\begin{aligned}
& \text { او لا نستخدم القانون } \\
& \text { PV=nRT } \\
& \text { لايجاد عدد المو لات ثم بعد ذلك نضرب عدد المو لات الناتجه في } \\
& 22.414 \\
& \text { الاجابة } \\
& 5.18 \text { L }
\end{aligned}
$$

What is the density of chlorine gas at STP, in grams per liter?.
a) 6.2
b) 3.2
c) 3.9
d) 4.5

STP means :
$\mathrm{P}=1$ atom
$\mathrm{T}=273.15$

$$
\begin{gathered}
\mathrm{d}=\frac{\mathrm{PMM}}{\mathrm{R} \mathrm{~T}} \quad \text { نستخدم العلاقة } \\
\mathrm{d}=\frac{1 \mathrm{X} \mathrm{71}}{0.0821 \times 273}=3.2
\end{gathered}
$$

What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37.C?
a) 26 atm
b) 4.1 atm
c) $19,600 \mathrm{~atm}$
d) 84 atm

$$
P V=n R T
$$

P =
$25.97=26 \mathrm{~atm}$

$$
\begin{aligned}
& \mathrm{V}=1.5 \mathrm{~L} \\
& \mathrm{~T}=273-37=236 \mathrm{~K}
\end{aligned}
$$

What is the density of ammonia gas at 2.00 atm pressure and a temperature of 25.0.C?
a) $0.720 \mathrm{~g} / \mathrm{L}$

$$
\mathrm{d}=\frac{\mathrm{PMM}}{\mathrm{R} \mathrm{~T}}
$$

b) $0.980 \mathrm{~g} / \mathrm{L}$
c) $1.39 \mathrm{~g} / \mathrm{L}$
d) $16.6 \mathrm{~g} / \mathrm{L}$

Convert 2.0 atm to mmHg
a) 150 mmHg
b) 0.27 mmHg
c) 150 mmHg
d) 1520 mmHg

A container with volume 71.9 mL contains water vapor at a pressure of 10.4 atm and a temperature of $465 \circ \mathrm{C}$. How many grams of the gas are in the container?
a) 0.421 g
b) 0.222 g
c) 0.183 g
d) 0.129 g

$$
\mathrm{n}=\mathrm{PV} / \mathrm{RT}=0.0719 \times 10.4=0.0821 \times(465+273)=0.012 \text { mole }
$$

$$
\text { Mass }=\mathbf{n} \times \text { molar mass }=0.012 \times 18=0.222 \mathrm{~g}
$$

A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of hydrogen. At STP, 33.6 mL of the gas has a mass of 0.087 g . What is the molecular (true) formula for the compound?
a) CH_{3}
b) $\mathrm{C}_{2} \mathrm{H}_{6}$
c) $\mathrm{C}_{2} \mathrm{H}_{5}$
d) $\mathrm{C}_{4} \mathrm{H}_{10}$

Gas occupy 6 L at $37 . \mathrm{C}$ what will be its volume when its temperature is doubled?
a) 12 L
b) 6 L
c) 3.2 L
d) 2 L

$$
\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}}
$$

A mixture of 90.0 grams of CH_{4} and 10.0 grams of argon has a pressure of 250 torr under conditions of constant temperature and volume. The partial pressure of CH_{4} in torr is:
(a) 143
(b) 100
(c) 10.7
(d) 239

$$
\begin{aligned}
& \text { n } \mathrm{CH} 4=90 / 16=5.625 \mathrm{~mol} \\
& \text { n } \mathrm{Ar}=10 / 39.9=0.250 \mathrm{~mol} \\
& \mathrm{X}_{\mathrm{CH} 4}=5.625 / 5.875=0.957 \\
& \mathrm{P}_{\mathrm{CH} 4}=\mathrm{X}_{\mathrm{CH} 4} \times \mathrm{P}_{\mathrm{T}} \\
& 0.957 \times 250=239 \text { torr }
\end{aligned}
$$

What pressure (in atm) would be exerted by a mixture of 1.4 g of nitrogen gas and 4.8 g of oxygen gas in a 200 mL container at 57.C?
a) 4.7
b) 34
c) 47
d) 27

$$
\begin{aligned}
& P=n_{\text {toaa }} R T / V \\
& n ~ N 2=1.4 / 2 \times 14=0.05 \text { mole } \\
& n ~ O 2=4.8 / 2 \times 16=0.15 \mathrm{~mole} \\
& P=(0.05+0.15) 0.0821 \times(57+273) / 0.2=27 \mathrm{~atm}
\end{aligned}
$$

A sample of hydrogen gas collected by displacement of water occupied 30.0 mL at $24 . C$ and pressure 736 torr. What volume would the hydrogen occupy if it were dry and at STP? The vapor pressure of water at 24.0 .C is 22.4 torr

$$
\begin{aligned}
& \mathrm{P}_{\text {Total }}=736 / 760=0.968 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=22.4 / 760=0.029 \mathrm{~atm} \\
& \mathrm{~T}=24+273=297 \mathrm{~K}
\end{aligned}
$$

From dalton's law :

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} & \mathrm{~V} \text { of } \mathrm{H} 2=0.00115 \times 22.4=0.026 \mathrm{~L} \\
\mathrm{P}_{\mathrm{H} 2}=736-22.4=713.6 \text { torr } & \mathrm{V} \text { in } \mathrm{ml}=0.026 \times 1000=25.8 \mathrm{ml}
\end{array}
$$

$$
\mathrm{n}=\mathrm{PV} / \mathrm{RT}
$$

$$
\mathrm{n}=(713.6 / 760) \times 0.03 / 0.0821 \times(24+273)=0.00115 \mathrm{~mol}
$$

$$
\begin{aligned}
& \text { بعد ايجاد عدد مو لات } \\
& \text { الهيّروجين نضربها } \\
& \text { في } \\
& 22.4
\end{aligned}
$$

[^0]: V of $\mathrm{A}=256 \mathrm{ml} / 1000=0.256 \mathrm{~L}$
 T of $A=22.5+273=295.5 \mathrm{~K}$
 P of $A=136.5 \mathrm{mmHg} / 760=0.179 \mathrm{~atm}$

