

مختصر توصيف المقرر

(Course Information) معلومات المقرر *

	اسم المقرر:	
	رقم المقرر:	
	اسم ورقم المتطلب السابق:	
	اسم ورقم المتطلب المرافق:	
	مستوى المقرر:	
	(0+0+3) 3	الساعات المعتمدة:
Module Title:	Nodule Title: Solid state physics II	
Module ID:	Module ID: PHYS 4722	
Prerequisite (Co-requisite) :	Prerequisite (Co-requisite): PHYS 3712	
Co-requisite :	Co-requisite:	
Course Level:	Course Level: Seventh	
Credit Hours: 3 (3+0+0)		

وصف المقرر:

Free electron theory (classical model of free electron, Fermi gas of free electrons, Maxwell-

Boltzmann distribution, Fermi-Dirac distribution function)

Statistical view of free electrons

Semiconductor materials – Band theory in semiconductors – energy gap in semiconductors – holes – Fermi level in semiconductor – effect of impurities on semiconductors – applications)

Magnetism in solid state – Superconductivity – Electrical properties of semiconductors – Electrical and thermodynamic properties of semiconductors

Dielectric and optical properties of solids

أهداف المقرر: : Module Aims

The student is expected to:

- -Understand the Free electron theory (classical model of free electron, Fermi gas of free electrons, Maxwell-Boltzmann distribution, Fermi-Dirac distribution function)
- Learn the statistical view of free electrons
- Understand the Semiconductor materials Band theory in semiconductors energy gap in semiconductors holes Fermi level in semiconductor effect of impurities on semiconductors applications)
- Understand the magnetism in solid state Superconductivity Electrical properties of semiconductors Electrical and thermodynamic properties of semiconductors
- Learn the dielectric and optical properties of solids

Learning Outcomes: مخرجات التعليم:

1	Revision of the free-electron model and further details of the nearly-free electron model of electronic structure; modifications to the Fermi surface near zone boundaries. The tight binding method.	
2	 demonstrate an understanding of the semi-classical dynamics of electrons in solids demonstrate an understanding of the Fermi surface and how it is modified by the presence of a weak crystal potential describe the microscopic origins of the magnetic and electrical properties of solids and explain some ground-state and finite-temperature properties of ferromagnets. Explain the physical principles for different types of electric and magnetic phenomena in solid materials (like e.g. para-electricity, dielectricity, ferroelectricity, superconductivity, paramagnetism, diamagnetism, ferromagnetism, anti-ferromagnetism etc.) and in relevant cases relate this to macroscopically measured physical quantities. 	

Course Contents:

محتوى المقرر:

ساعات التدريس	عدد الأسابيع	قائمة الموضوعات	
(Hours)	(Weeks)	(Subjects)	
3	1	Free electron theory (classical model of free electron, Fermi gas of free electrons, Maxwell-Boltzmann distribution, Fermi-Dirac distribution function)	
9	3	Statistical view of free electrons	
9	3	Semiconductor materials – Band theory in semiconductors – energy gap in semiconductors – holes – Fermi level in semiconductor – effect of impurities on semiconductors – applications)	
12	4	Magnetism in solid state – Superconductivity – Electrical properties of semiconductors – Electrical and thermodynamic properties of semiconductors	
6	2	Dielectric and optical properties of solids	

Textbook and References:

المقرر والمراجع المساندة:

سنة النشر Publishing Year	اسم الناشر Publisher	اسم المؤلف (رئيسي) Author's Name	اسم الكتاب المقرر Textbook title
(2004) ISBN: 9780471415268. 8 th ed. New York, NY: John Wiley & Sons.		Kittel, Charles.	Introduction to Solid State Physics.
سنة النشر	اسم الناشر	اسم المؤلف (رئيسي)	اسم المرجع
Publishing Year	Publisher	Author's Name	Reference
	New York,		
(1976) ISBN:	NY: Holt,	Ashcroft, Neil W., and N.	Solid State Physics
9780030839931	Rinehart and	David Mermin.	
	Winston.		

(1994) Ac ISBN: 0201607336 W
