Q2. The finished inside diameter of a piston ring is normally distributed with a mean of 12 centimeters and a standard deviation of 0.03 centimeter. Then,

- 1) the proportion of rings that will have inside diameter less than 12.05 centimeters is:
- (A) 0.0475 (B) 0.9525 (C) 0.7257 (D) 0.8413
 2) the proportion of rings that will have inside diameter exceeding 11.97 centimeters is:

 (A) 0.0475 (B) 0.8413 (C) 0.1587 (D) 0.4514

 3) the probability that a piston ring will have an inside diameter between 11.95 and 12.05 centimeters is:

 (A) 0.905 (B) -0.905 (C) 0.4514 (D) 0.7257

Solution:

$$X \sim N(12, 0.03^2)$$

(1):

$$P(X < 12.05) = P\left(Z < \frac{12.05 - \mu}{\sigma}\right)$$
$$= P\left(Z < \frac{12.05 - 12}{0.03}\right) = P(Z < 1.67) = 0.9525$$

(2):

$$P(X > 11.97) = P\left(Z > \frac{11.97 - \mu}{\sigma}\right)$$
$$= P\left(Z > \frac{11.97 - 12}{0.03}\right) = P(Z > -1)$$
$$= 1 - P(Z < -1) = 1 - 0.1587 = 0.8413$$

(3):

$$P(11.95 < X < 12.05) = P\left(\frac{11.95 - 12}{0.03} < Z < \frac{12.05 - 12}{0.03}\right)$$
$$= P(-1.67 < Z < 1.67)$$
$$= P(Z < 1.67) - P(Z < -1.67)$$
$$0.9525 - 0.0475 = 0.905$$

Q6. The weight of a large number of fat persons is nicely modeled with a normal distribution with mean of 128 kg and a standard deviation of 9 kg.

(1)	The perce	centage of fa	t persor	ns with w	eights at n	10st 110 kg	is	
	(A)	0.09 %	(B)	90.3 %	(C)	99.82 %	(D)	2.28 %
(2)	The perc	entage of fat	t persor	ns with w	eights mor	e than 149	kg is	
	(A)	0.09 %	(B)	0.99 %	(C)	9.7 %	(D)	99.82 %
(3)	The wei	ght x above v	which 8	86% of th	ose person	s will be		
	(A)	118.28	(B)	128.28	(C)	154.82	(D)	81.28
(4)	The wei	ght x below	which :	50% of th	ose persor	s will be		
	(A)	101.18	(B)	128	(C)	154.82	(D)	81

Solution:

$$X \sim N(128, 9^2)$$

(1):

$$P(X \le 110) = P\left(Z < \frac{110 - 128}{9}\right) = P(Z < -2) = 0.0228$$

(2):

$$P(X > 149) = P\left(Z > \frac{149 - 128}{9}\right)$$
$$= 1 - P(Z < 2.33) = 1 - 0.9901 = 0.0099$$

(3):

$$P(X > x) = 0.86 \Rightarrow P(X < x) = 0.14 \Rightarrow P\left(Z < \frac{x - 128}{9}\right) = 0.14$$

by searching inside the table for 0.14, and transforming X to Z, we got:

$$\frac{x - 128}{9} = -1.08 \Rightarrow x = 118.28$$

(4):

P(X < x) = 0.5, by searching inside the table for 0.5, and transforming X to Z

$$\frac{x-128}{9} = 0 \Rightarrow x = 128$$

Q8. If the random variable X has a normal distribution with the mean μ and the variance σ^2 , then $P(X^{<}\mu+2\sigma)$ equals to

(A) 0.8772 (B) 0.4772 (C) 0.5772 (D) 0.7772 (E) 0.9772

Q9. If the random variable X has a normal distribution with the mean μ and the variance 1, and if P(X<3)=0.877, then μ equals to

(A) 3.84 (B) 2.84 (C) 1.84 (D) 4.84 (E) 8.84

Q10. Suppose that the marks of the students in a certain course are distributed according to a normal distribution with the mean 70 and the variance 25. If it is known that 33% of the student failed the exam, then the passing mark x is

(A) 67.8 (B) 60.8 (C) 57.8 (D) 50.8 (E) 70.8

Solution of Q8

$$P(X < \mu + 2\sigma) = P\left(Z < \frac{(\mu + 2\sigma) - \mu}{\sigma}\right) = P(Z < 2) = 0.9772$$

Solution of Q9

Given that
$$\sigma = 1$$

 $P(X < 3) = 0.877 \Rightarrow P\left(Z < \frac{3-\mu}{1}\right) = 0.877$
 $3-\mu = 1.16 \Rightarrow \mu = 1.84$

Solution of Q10

$$X \sim N(70,25)$$

 $P(X < x) = 0.33 \Rightarrow P\left(Z < \frac{x - 70}{5}\right) = 0.33$

by searching inside the table for 0.33, and transforming X to Z, we got:

$$\frac{x - 70}{5} = -0.44 \Rightarrow x = 67.8$$

Sampling Distribution

Sampling Distribution: Single Mean

$$* \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
$$* E(\bar{X}) = \bar{X} = \mu \qquad * Var(\bar{X}) = \frac{\sigma^2}{n}$$

Sampling Distribution: Two Means

$$* \bar{X}_1 - \bar{X}_2 \sim N \left(\mu_1 - \mu_2 , \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$
$$* E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2 \quad * Var(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Sampling Distribution: Single Proportion

$$* \hat{p} \sim N\left(p, \frac{pq}{n}\right)$$
$$* E(\hat{p}) = p \qquad * Var(\hat{p}) = \frac{pq}{n}$$

Sampling Distribution: Two Proportions

Q2. The average life of a certain battery is 5 years, with a standard deviation of 1 year. Assume that the live of the battery approximately follows a normal distribution.

1) The sample mean \overline{X} of a random sample of 5 batteries selected from this product has a mean

 $E(\overline{X}) = \mu_{\overline{X}}$ equal to: (A) 0.2 (B) 5 (C) 3 (D) None of these 2) The variance $Var(\overline{X}) = \sigma_{\overline{X}}^2$ of the sample mean \overline{X} of a random sample of 5 batteries selected from this product is equal to: (A) 0.2 (C) 3 (D) None of these (B) 5 3) The probability that the average life of a random sample of size 16 of such batteries will be between 4.5 and 5.4 years is: (A) 0.1039 (B) 0.2135 (C) 0.7865 (D) 0.9224 4) The probability that the average life of a random sample of size 16 of such batteries will be less than 5.5 years is: (A) 0.9772 (B) 0.0228 (C) 0.9223 (D) None of these 5) The probability that the average life of a random sample of size 16 of such batteries will be more than 4.75 years is: (B) 0.1587 (C) 0.9452 (D) None of these (A) 0.8413 6) If $P(\overline{X} > a) = 0.1492$ where \overline{X} represents the sample mean for a random sample of size 9 of such batteries, then the numerical value of a is:

(A) 4.653 (B) 6.5 (C) 5.347 (D) None of these

Solution:

$$\mu = 5$$
 ; $\sigma = 1$; $n = 5$

$$\begin{aligned} (1): E(\bar{X}) &= \mu = 5 \\ (2): Var(\bar{X}) &= \frac{\sigma^2}{n} = \frac{1}{5} = 0.2 \\ (3): n &= 16 \to \frac{\sigma}{\sqrt{n}} = \frac{1}{4} \\ P(4.5 < \bar{X} < 5.4) &= P\left(\frac{4.5 - \mu}{\frac{\sigma}{\sqrt{n}}} < Z < \frac{5.4 - \mu}{\frac{\sigma}{\sqrt{n}}}\right) = P\left(\frac{4.5 - 5}{\frac{1}{4}} < Z < \frac{5.4 - 5}{\frac{1}{4}}\right) \\ &= P(-2 < Z < 1.6) \\ &= P(Z < 1.6) - P(Z < -2) \\ &= 0.9452 - 0.0228 = 0.9224 \\ \end{aligned}$$
$$(4): P(\bar{X} < 5.5) &= P\left(Z < \frac{5.5 - \mu}{\frac{\sigma}{\sqrt{n}}}\right) = P\left(Z < \frac{5.5 - 5}{1/4}\right) = P(Z < 2) = 0.9772 \end{aligned}$$

(5):
$$P(\bar{X} > 4.75) = P\left(Z > \frac{4.75 - \mu}{\frac{\sigma}{\sqrt{n}}}\right) = P\left(Z > \frac{4.75 - 5}{\frac{1}{4}}\right) = P(Z > -1)$$

= $1 - P(Z < -1) = 1 - 0.1587 = 0.841$

(6): $P(\bar{X} > a) = 0.1492$; n = 9

$$P\left(Z > \frac{a-\mu}{\frac{\sigma}{\sqrt{n}}}\right) = 0.1492$$
$$\Rightarrow 1 - P\left(Z < \frac{a-5}{\frac{1}{3}}\right) = 0.1492$$
$$\Rightarrow P\left(Z < \frac{a-5}{\frac{1}{3}}\right) = 0.8508$$
$$\frac{a-5}{\frac{1}{3}} = 1.04$$
$$a = 5 + \frac{1.04}{3} = 5.347$$

Q4. Suppose that you take a random sample of size n=64 from a distribution with mean μ =55 and standard deviation σ =10. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean.

- (a) What is the approximated sampling distribution of \overline{X} ?
- (b) What is the mean of \overline{X} ?
- (c) What is the standard error (standard deviation) of \overline{X} ?

(d) Find the probability that the sample mean \overline{X} exceeds 52.

Solution

$$\mu = 55$$
 ; $\sigma = 10$; $n = 64$

(a)
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = \bar{X} \sim N\left(55, \frac{100}{64}\right)$$

(b) $E(\bar{X}) = \mu = 55$
(c) $S.D(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{64}} = \frac{10}{8}$
(d) $P(\bar{X} > 52) = P\left(Z > \frac{52-55}{\frac{10}{8}}\right)$
 $= P(Z > -2.4)$
 $= 1 - P(Z < -2.4)$
 $= 1 - 0.0082 = 0.9918$

Old exams:

Question: Suppose that the hemoglobin levels (in g/dl) of healthy Saudi females are approximately normally distributed with mean of 13.5 and a standard deviation of 0.7. If 15 healthy adult Saudi female is randomly chosen, then:

(1) The mean of	$\overline{x} (E(\overline{x})_{or} \mu_{\overline{x}})$ is:		
(A) 0.7	(B) 13.5	(C) 15	(D) 3.48
(2) The standar	d error of $\overline{m{x}}$ ($\sigma_{\overline{x}}$) :	is:	
<mark>(A)</mark> 0.181	(B).0327	(<i>C</i>) 0.7	(D) 13.5
(3) $P(\overline{X} < 14) =$			
(A) 0.99720	(B) 0.99440	(C) 0.76115	<mark>(D)</mark> 0.9971
(4) $P(\overline{X} > 13.5)$	=		
(A) 0.99	<mark>(B)</mark> 0.50	(C) 0.761	(D) 0.622
(5) $P(13 < \overline{X} < $	(14) =		
(A) 0.9972	(<mark>B) 0.994</mark> 2	(C) 0.7615	(D) 0.5231

Question: If the uric acid value in normal adult males is approximately normally distributed with a mean and standard derivation of 5.7 and 1 mg percent, respectively, find the probability that a sample of size 9 will yield a mean:

(1) Greater than 6 is

(2) At most 5.2 is					
$(A) 0.6915 \qquad (B) 0.9331 \qquad (C) 0.8251 \qquad (D) \qquad 0.000$	<u>668</u>				
(3) Between 5 and 6 is					

(A)	0.1662	<u>(B)</u>	<u>0.7981</u>	(C)	0.8791	(D)	0.9812

Sampling Distribution: Two Means:

$$* \bar{X}_{1} - \bar{X}_{2} \sim N \left(\mu_{1} - \mu_{2} , \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}} \right)$$
$$* E(\bar{X}_{1} - \bar{X}_{2}) = \mu_{1} - \mu_{2} \quad * Var(\bar{X}_{1} - \bar{X}_{2}) = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}$$

Q1. A random sample of size $n_1 = 36$ is taken from a normal population with a mean $\mu_1 = 70$ and a standard deviation $\sigma_1 = 4$. A second independent random sample of size $n_2 = 49$ is taken from a normal population with a mean $\mu_2 = 85$ and a standard deviation $\sigma_2 = 5$. Let \overline{X}_1 and \overline{X}_2 be the averages of the first and second samples, respectively.

b) Find $E(\overline{X}_1 - \overline{X}_2)$ and $Var(\overline{X}_1 - \overline{X}_2)$. d) Find $P(\overline{X}_1 - \overline{X}_2 > -16)$.

<u>Solution</u>

$$n_1 = 36$$
, $\mu_1 = 70$, $\sigma_1 = 4$
 $n_2 = 49$, $\mu_2 = 85$, $\sigma_2 = 5$

(b): $E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2 = 70 - 85 = -15$

$$Var(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{16}{36} + \frac{25}{49} = 0.955$$

(d):
$$P(\bar{X}_1 - \bar{X}_2 > -16) = P\left(Z > \frac{-16 - (-15)}{\sqrt{0.955}}\right) = 1 - P\left(Z < \frac{-16 - (-15)}{\sqrt{0.955}}\right)$$

= $1 - P(Z < -1.02) = 0.8461$

Q2. A random sample of size 25 is taken from a normal population (first population) having a mean of 100 and a standard deviation of 6. A second random sample of size 36 is taken from a different normal population (second population) having a mean of 97 and a standard deviation of 5. Assume that these two samples are independent.

- the probability that the sample mean of the first sample will exceed the sample mean of the second sample by at least 6 is
- (A) 0.0013 (B) 0.9147 (C) 0.0202 (D) 0.9832
 (2) the probability that the difference between the two sample means will be less than 2 is
 (A) 0.099 (B) 0.2480 (C) 0.8499 (D) 0.9499

Solution

$$n_1 = 25$$
 , $\mu_1 = 100$, $\sigma_1 = 6$
 $n_2 = 36$, $\mu_2 = 97$, $\sigma_2 = 5$

$$E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2 = 100 - 97 = 3$$
$$Var(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{36}{25} + \frac{25}{36} = 2.35$$

$$(1)P(\bar{X}_1 > \bar{X}_2 + 6) = P(\bar{X}_1 - \bar{X}_2 > 6)$$

= $P(Z > \frac{6-(3)}{\sqrt{2.35}}) = P(Z > 2.05)$
= $1 - P(Z < 2.05)$
= $1 - 0.9798 = 0.0202$

(2)
$$P(\bar{X}_1 - \bar{X}_2 < 2) = P\left(Z < \frac{2-(3)}{\sqrt{2.35}}\right)$$

= $P(Z < -0.68) = 0.2483$

Question: Given two normally distributed populations with equal means and variances of

 $\sigma_1^2 = 100$, $\sigma_2^2 = 350$. Two random samples of sizes $n_1 = 40$, $n_2 = 35$ are drawn and the sample means $\overline{X_1}$, $\overline{X_2}$ are calculated, respectively, then

(1) $P(\bar{X}_1 - \bar{X}_2 > 12)$ is

(A)	0.1499	<i>(B)</i>	0.8501	(<i>C</i>)	0.9997	(D)	<u>0.0003</u>
(2) P($\overline{(5 < \overline{X}_1 - \overline{X}_2 > 1)}$	2) <i>is</i>					

<u>(A)</u>	<u>0.0783</u>	(B)	0.9217	(C)	0.8002	(D)	None of these
------------	---------------	-----	--------	-----	--------	-----	---------------

Sampling Distribution: Single Proportion

$$* \hat{p} \sim N\left(p, \frac{pq}{n}\right)$$

$$* E(\hat{p}) = p \qquad * Var(\hat{p}) = \frac{pq}{n}$$

Q1. Suppose that 20% of the students in a certain university smoke cigarettes. A random sample of 5 students is taken from this university. Let \hat{p} be the proportion of smokers in the sample.

(1) Find E(p̂) = μ_{p̂}, the mean p̂.
 (2) Find Var(p̂) = σ_{p̂}², the variance of p̂.
 (3) Find an approximate distribution of p̂.
 (4) Find P(p̂ > 0.25).

<u>Solution</u>

p = 0.2; n = 5; q = 1 - p = 0.8

(1): $E(\hat{p}) = p = 0.2$

(2):
$$Var(\hat{p}) = \frac{pq}{n} = \frac{0.2 \times 0.8}{5} = 0.032$$

(3): $\hat{p} \sim N(0.2, 0.032)$

(4):
$$P(\hat{p} > 0.25) = P\left(Z > \frac{0.25 - 0.2}{\sqrt{0.032}}\right) = P(Z > 0.28)$$

= $1 - P(Z < 0.28) = 1 - 0.6103 = 0.3897$

Question: A random sample of 35 students in a certain university resulted in the sample proportion of smokers $\hat{p} = 0.15$ *. Then:* **1.** *The point estimate of* p *is:*

(A) 0.35	(B) 0.85	(C) 0.15	(D) 0.80
----------	----------	-----------------	----------

2. The standard deviation of \hat{p} is:

(A) 0.3214	(B) .0036	(C) 0.1275	(D) 0.0604
------------	-----------	------------	-------------------

Question: In a study, it was found that 31% of the adult population in a certain city has a diabetic disease. 100 people are randomly sampled from the population. Then

(6) The mean for the sample proportion $(\mu_{\hat{p}} \text{ or } E(\hat{p}))$ is: (A) 0.4 (B) 0.31 (C) 0.69 (D) 0.1 (7) $P(\hat{p} > 0.4) =$ (A) 0.02619 (B) 0.02442 (C) 0.0256 (D) 0.7054

Sampling Distribution: Two Proportions:

Q1. Suppose that 25% of the male students and 20% of the female students in a certain university smoke cigarettes. A random sample of 5 male students is taken. Another random sample of 10 female students is independently taken from this university. Let \hat{p}_1 and \hat{p}_2 be the proportions of smokers in the two samples, respectively.

(1) Find $E(\hat{p}_1 - \hat{p}_2) = \mu_{\hat{p}_1 - \hat{p}_2}$, the mean of $\hat{p}_1 - \hat{p}_2$. (2) Find $Var(\hat{p}_1 - \hat{p}_2) = \sigma_{\hat{p}_1 - \hat{p}_2}^2$, the variance of $\hat{p}_1 - \hat{p}_2$. (3) Find an approximate distribution of $\hat{p}_1 - \hat{p}_2$. (4) Find P(0.10< $\hat{p}_1 - \hat{p}_2 < 0.20$).

<u>Solution</u>

$$p_1 = 0.25$$
; $n_1 = 5$
 $p_2 = 0.2$; $n_2 = 10$

(1):
$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2 = 0.25 - 0.2 = 0.05$$

(2): $Var(\hat{p}_1 - \hat{p}_2) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = \frac{0.25 \times 0.75}{5} + \frac{0.2 \times 0.8}{10} = 0.054$
(3): $\hat{p}_1 - \hat{p}_2 \sim N(0.05, 0.054)$
(4): $P(0.1 < \hat{p}_1 - \hat{p}_2 < 0.2) = \left(\frac{0.1 - 0.05}{\sqrt{0.054}} < Z < \frac{0.2 - 0.05}{\sqrt{0.054}}\right)$
 $= (0.22 < Z < 0.65)$
 $P(Z < 0.65) - P(Z < 0.22)$
 $= 0.7422 - 0.5871 = 0.1551$

Question: Suppose that 7 % of the pieces from a production process A are defective while that proportion of defective for another production process B is 5 %. A random sample of size 400 pieces is taken from the production process A while the sample size taken from the production process B is 300 pieces. If \hat{P}_1 and \hat{P}_2 be the proportions of defective pieces in the two samples, respectively, then:

3. The sampling distribution of $\hat{P}_1 \cdot \hat{P}_2$ is:

(A) N(0, 1) (B) Normal	(C) T	(D) unknown
------------------------	-------	-------------

4. The value of the standard error of the difference $(\hat{P}_1 - \hat{P}_2)$ is:

(A) 0.02 (B)) 0.10	c) 0	(D) 0.22
---------------------	--------	------	----------