SECOND SEMESTER

a Ω
 المـكـ

King Saud University

SECOND MIDTERM EXAM
1438-1439H / 2017-2018G

COLLEGE OF SCIENCE

Chemistry Department

Student's Name:	Write your answer in the table below		
	Q1:	Q6:	Q11:
Student ID No. ..	Q2:	Q7:	Q12:
Group No. ..	Q3:	Q8:	Q13:
Sunday 22/07/1439H ${ }^{\text {d }}$ 07:00-08:30 pm	Q4:	Q9:	Q14:
Time allowed: 90 minutes	Q5:	Q10:	Q15:

IA																	VIIIA
1																	2
H	2											13	14	15	16	17	He
1.008	IIA											IIIA	IVA	VA	VIA	VIIA	4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	\bigcirc	F	Ne
6.94	9.01											10.811	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
23.00	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	26.98	28.09	30.97	32.07	35.45	39.98
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.09	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.546	65.41	69.72	72.64	74.9216	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	1 n	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.23	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.760	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	1 r	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.980	[209]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut					
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]	[286]					

Constants:

$1 \mathrm{~atm}=760$ torr
$\mathrm{R}=0.082 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{N}_{\mathrm{A}}($ Avogadro's Number $)=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Q1: When the following equation is balanced:

$$
\mathrm{CuO}+\mathrm{NH}_{3} \rightarrow \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the coefficient of "CuO", is:
A) 3
B) 2
C) 1
D) 4

Q2: The mass in " g " of " C " present in 5.0 g of " $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~F}_{2}$ " (molar mass $=263 \mathrm{~g} / \mathrm{mol}$), is:
A) 2.74
B) 0.06
C) 0.68
D) 0.80

Q3: The number of " C " atoms present on 1.0 kg of $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}\right]$ (molar mass $=371 \mathrm{~g} / \mathrm{mol}$), is:
A) 6.49×10^{24}
B) 9.73×10^{24}
C) 1.95×10^{25}
D) 3.24×10^{24}

Q4: The empirical formula of a compound containing $19.36 \% \mathrm{Ca}, 34.26 \% \mathrm{Cl}$ and $46.38 \% \mathrm{O}$ by mass, is:
A) $\mathrm{CaCl}_{2} \mathrm{O}_{3}$
B) $\mathrm{CaCl}_{2} \mathrm{O}_{4}$
C) $\mathrm{CaCl}_{3} \mathrm{O}_{4}$
D) $\mathrm{CaCl}_{2} \mathrm{O}_{6}$

Q5: When 5.80 g of ${ }^{2} \mathrm{CoSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ " were heated untill all of the water " $\mathrm{xH}_{2} \mathrm{O}$ " was driven off and 3.20 g of " CoSO_{4} " were left over. The value of "x" is:
$\mathrm{CoSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{CoSO}_{4}+\mathrm{xH}_{2} \mathrm{O}$
A) 5
B) 4
C) 7
D) 6

Q6: A 0.8715 g of a compound is burned completely in oxygen to give 2.053 g of $" \mathrm{CO}_{2}$ " and 0.5601 g of " $\mathrm{H}_{2} \mathrm{O}$ ". The empirical formula of this compound, is:
A) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$
B) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$
C) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$

Q7: What is the mass of ${ } \mathrm{Cl}_{2}$ " in " g " needed to react completely with 22.5 g of " S 8 "?

$$
\mathrm{S}_{8}(l)+4 \mathrm{Cl}_{2}(g) \rightarrow 4 \mathrm{~S}_{2} \mathrm{Cl}_{2}(l)
$$

A) 99.68
B) 24.96
C) 49.74
D) 74.88

Q8: According to:

$$
3 \mathrm{CCl}_{4}+2 \mathrm{SbF}_{3} \rightarrow 2 \mathrm{SbCl}_{3}+3 \mathrm{CCl}_{2} \mathrm{~F}_{2}
$$

If 146.0 kg of " SbF_{3} " were allowed to react with an excess of " CCl_{4} ", producing 117.0 kg of " $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ ". The percentage yield (\%) of " $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ ", is:
A) 29.1
B) 63.7
C) 96.3
D) 78.9

Q9: 5 g of "CO" occupied 5.0 L at $25^{\circ} \mathrm{C}$. If the temperature increased to $120^{\circ} \mathrm{C}$ at constant pressure, the gas volume in " L " will be:
A) 6.6
B) 8.3
C) 9.9
D) 11.6

Q10: The diagram below shows the change in " P " with " $1 / \mathrm{V}$ " of an ideal gas at constant " T " and " n ":

The final volume "V" in " \boldsymbol{L} " is:
A) 2.5
B) 1.0
C) 0.75
D) 1.5

Q11: A gas initially at STP is raised to $250^{\circ} \mathrm{C}$ at constant volume. The final pressure of the gas in "atm", is:
A) 1.55
B) 2.65
C) 1.92
D) 2.28

Q12: The volume of an ideal gas sample measured at STP is 8.3 L . If the temperature of this gas sample is raised to $30^{\circ} \mathrm{C}$ and its pressure is reduced to 0.8 atm , the volume in " L " will be:
A) 46.1
B) 11.5
C) 15.4
D) 23.0

Q13: The density in " $\boldsymbol{g} / \mathbf{L}$ " of " $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ " gas at $\mathbf{S T P}$, is:
A) 5.4
B) 0.2
C) 2.7
D) 1.3

Q14: A sample of gas mixture contains 50 g of "CO" and 50 g of " CO_{2} ". If the partial pressures of "CO" 568 mmHg , the total pressure of this sample in " $\mathbf{m m H g}$ " is:
A) 772
B) 687
C) 929
D) 838

Q15: A compound contains 36.84% " N " and 63.16% "O" by mass. If 3.61 g of this compound exerted a pressure of 1.2 atm when put in a 0.5 L container at $35^{\circ} \mathrm{C}$, what is the molecular formula of the compound ?
A) $\mathrm{N}_{6} \mathrm{O}_{4}$
B) $\mathrm{N}_{3} \mathrm{O}_{2}$
C) $\mathrm{N}_{2} \mathrm{O}_{3}$
D) $\mathrm{N}_{4} \mathrm{O}_{6}$

