CHEM 101 - CHEM 103 SECOND SEMESTER SECOND MIDTERM EXAM 1438-1439H / 2017-2018G

COLLEGE OF SCIENCE

Chemistry Department

Student's Name	Write your answer in the table below						
Student's Name:	Q1:	Q6:	<i>Q11</i> :				
Student ID No	<i>Q2:</i>	Q 7:	<i>Q12</i> :				
Group No	Q3:	Q8:	<i>Q13</i> :				
Sunday 22/07/1439H 07:00-08:30 pm	<i>Q4</i> :	Q9:	Q14:				
Time allowed : 90 minutes	Q5:	Q10:	<i>Q15</i> :				

IA																	VIIIA
1																	2
H	2											13	14	15	16	17	He
1.008	IIA											IIIA	IVA	VA	VIA	VIIA	4.003
3	4											5	6	7	8	9	10
Li	Be	key	atomicr	number								В	С	N	0	F	Ne
6.94	9.01		sym	bol								10.811	12.01	14.01	16.00	19.00	20.18
11	12		atomic	weight								13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	CI	Ar
23.00	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.98
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.09	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.546	65.41	69.72	72.64	74.9216	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.23	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.760	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.980	[209]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113					
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut					
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]	[286]					

Constants:

1 atm = 760 torr

R=0.082 atm L mol^-1 $K^{\text{-}1}$

 N_A (Avogadro's Number) = 6.022×10^{23} mol⁻¹

Q1: When the following equation is balanced: $CuO \ + \ NH_3 \ \rightarrow \ Cu \ + \ N_2 + \ H_2O$ the coefficient of "CuO", is: A) 3 **B**) 2 C) 1 D) 4 Q2: The mass in "g" of "C" present in 5.0 g of " $C_3H_3N_3O_9F_2$ " (molar mass = 263 g/mol), is: A) 2.74 B) 0.06 C) 0.68 D) 0.80 **03**: The number of "C" atoms present on 1.0 kg of $[C_6H_{12}N_2O_4Pt]$ (molar mass = 371 g/mol), is: A) 6.49×10²⁴ B) 9.73×10²⁴ C) 1.95×10²⁵ D) 3.24×10²⁴ *O4*: The empirical formula of a compound containing 19.36% Ca, 34.26% Cl and 46.38% O by mass, is: A) CaCl₂O₃ B) CaCl₂O₄ C) CaCl₃O₄ D) CaCl₂O₆ Q5: When 5.80 g of "CoSO₄.xH₂O" were heated untill all of the water "xH₂O" was driven off and 3.20 g of "CoSO₄" were left over. The value of "x" is:

$$CoSO_4.xH_2O \rightarrow CoSO_4 + xH_2O$$
A) 5
B) 4
C) 7
D) 6

Q6: A 0.8715 g of a compound is burned completely in oxygen to give 2.053 g of "CO₂" and 0.5601 g of "H₂O". The empirical formula of this compound, is:

A) $C_{3}H_{4}O$ B) $C_{9}H_{12}O_{3}$ C) $C_{6}H_{8}O_{2}$ D) $C_{4}H_{10}O_{2}$

Q7: What is the mass of "Cl₂" in "g" needed to react **completely** with 22.5 g of "S₈"?

 $S_8(l) + 4Cl_2(g) \rightarrow 4S_2Cl_2(l)$ A) 99.68 B) 24.96 C) 49.74 D) 74.88

Q8: According to:

 $3\text{CCl}_4 + 2\text{SbF}_3 \rightarrow 2\text{SbCl}_3 + 3\text{CCl}_2\text{F}_2$ If 146.0 kg of "SbF₃" were allowed to react with an excess of "CCl₄", producing 117.0 kg of "CCl₂F₂". The

percentage yield (%) of "CCl₂F₂", is:

- A) 29.1 B) 63.7
- C) 96.3
- D) 78.9

Q9: 5 g of "CO" occupied 5.0 L at 25 °C. If the temperature increased to 120 °C at constant pressure, the gas volume in "L" will be:

A) 6.6 B) 8.3 C) 9.9 D) 11.6

Q10: The diagram below shows the change in "P" with "1/V" of an ideal gas at constant "T" and "n":

The final volume "V" in "*L*" is:

A) 2.5 B) 1.0 C) 0.75 D) 1.5

Q11: A gas initially at STP is raised to 250°C at constant volume. The final pressure of the gas in "*atm*", is:

A) 1.55 B) 2.65

C) 1.92 D) 2.28

, ______

Q12: The volume of an ideal gas sample measured at STP is 8.3 L. If the temperature of this gas sample is raised to 30°C and its pressure is reduced to 0.8 atm, the volume in "L" will be:

A) 46.1

- B) 11.5
- C) 15.4
- D) 23.0

Q13: The density in "g/L" of "CCl₂F₂" gas at **STP**, is:

- A) 5.4 B) 0.2
- C) 2.7
- D) 1.3

Q14: A sample of gas mixture contains 50 g of "CO" and 50 g of "CO₂". If the partial pressures of "CO" 568 mmHg, the total pressure of this sample in "mmHg" is:

- A) 772 B) 687
- C) 929
- D) 838

Q15: A compound contains 36.84% "N" and 63.16% "O" by mass. If 3.61 g of this compound exerted a pressure of 1.2 atm when put in a 0.5 L container at 35°C, what is the molecular formula of the compound ?

A) N₆O₄
B) N₃O₂
C) N₂O₃
D) N₄O₆