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Rules for Inequalities

If a, b, and ¢ are real numbers, then:
1. a<b=a+c<b+c

2. a<b=>a-c<b-c

3. a<bandc >0 = ac < bc
4

. a<bandc <0 = bc < ac
Special case:a < b = —b < —a
5. a>0= 1>

6. If a and b are both positive or both negative, thena < b = % < é
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TABLE 1.1 Types of intervals
Notation Set description Type Picture
Finite: (a, b) {x|la <x < b} Open - - s
a b
[a, b] {x|a =x = b} Closed .
a b
[a, b) {x|a =x < b} Half-open . o s
b
(a, b] {x|la <x = b} Half-open
a b
Infinite: (a, 00) {x|x > a} Open o >
a
[a, 00) {x|x = a} Closed o
a
(—00,b) {x|x < b} Open o
(—o0, b] {x|x = b} Closed .
(—o0, 00) R (set of all real
numbers) Both open >
and closed
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FIGURE 1.1 Solution sets for the
inequalities in Example 1.
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FIGURE 1.2 Absolute values give
distances between points on the number
line.
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FIGURE 1.3 |x| < a means x lies
between —a and a.
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Absolute Values and Intervals
If a 1s any positive number, then

5. |x|=a ifand only if x = *a

6. [x|<a ifandonlyif —a<x<a

7. |x|>a ifandonlyif x > a or x < —a
8. [x|=a ifandonlyif —a=x=a

9. [x|=a ifandonlyif x =a or x = —a

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sl |de 1- 10



— > X
1 2
(a)
—_— P X
1 2
(b)

FIGURE 1.4 The solution sets (a) [1, 2]
and (b) (—oo, 17U [2, 00) in Example 6.
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FIGURE 1.5 Cartesian coordinates in the
plane are based on two perpendicular axes
intersecting at the origin.
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FIGURE 1.6 Points labeled in the xy-
coordinate or Cartesian plane. The points
on the axes all have coordinate pairs but
are usually labeled with single real
numbers, (so (1, 0) on the x-axis is labeled
as 1). Notice the coordinate sign patterns
of the quadrants.
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FIGURE 1.7 Coordinate increments may
be positive, negative, or zero (Example 1).
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DEFINITION Slope
The constant

rises Ay »2—»n
run - Ay X2 T X

is the slope of the nonvertical line P, P;.
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FIGURE 1.8 Triangles P, QP, and
P{'Q' P, are similar, so the ratio of their
sides has the same value for any two points
on the line. This common value is the line’s

slope.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1- 17



> X

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 1.9 The slope of L, is

msz=6—(—2):§
Ax 3—0 3

That is, y increases 8 units every time x

increases 3 units. The slope of L; 1s

Ay 2-5_-3

Ax 4-0 4

That 1s, y decreases 3 units every time x

increases 4 units.

m:
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FIGURE 1.10 Angles of inclination
are measured counterclockwise from the
x-axis.
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The equation

has slope m.

y=y + mkx— x)

is the point-slope equation of the line that passes through the point (x;, y;) and

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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FIGURE 1.11 The slope of a nonvertical
line is the tangent of its angle of
inclination.
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FIGURE 1.12 The standard equations
for the vertical and horizontal lines
through (2, 3) are x = 2 and y = 3.
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1_

(-2, —1_)

FIGURE 1.13 The line in Example 3.
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FIGURE 1.14 Line L has x-intercept a
and y-intercept b.
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FIGURE 1.15 AADC is similar to
ACDB . Hence ¢, is also the upper angle
in ACDB . From the sides of ACDB, we

read tan ¢, = a/h.
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Distance Formula for Points in the Plane
The distance between P(x;, y1) and O(x5, y») is

d=V(Ax)? + (Ay)* = V(o — x1)> + (3, — ).
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This distance is

d=\/ |5 + |y,

A ) - 2 2 O(x,, y
_\/(xz_xl) + (¥, =) (2 72)
(Y2 J*’ll
P(x Y )
Vi 1 1\ - [ C(xz, yl)
|x2 _""1|
‘ ' > X
0 X Xy

FIGURE 1.16 To calculate the distance
between P(x;, y1) and Q(x;, y>), apply the
Pythagorean theorem to triangle PCQ.
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P(x, y)

(x —h)?+ (y — k)? =d?

0

FIGURE 1.17 A circle of radius a in the
xy-plane, with center at (4, k).
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y
T Exterior: (x — 1) + (y — k)2 > a2

On: (x — h)? + (y — k)? = &°

(h, k)

Interior: (x — h)? + (y — k)? < a?

: > X
0 h

FIGURE 1.18 The interior and exterior of
the circle (x — #)* + (y — k)? = a>.
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FIGURE 1.19 The parabola
y = x* (Example 8).
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The Graphof y = ax* + bx+c¢, a# 0
The graph of the equation y = ax® + bx + ¢,a # 0, is a parabola. The para-
bola opens upward if @ > 0 and downward if a < 0. The axis is the line

X =—7. (2)

The vertex of the parabola is the point where the axis and parabola intersect. Its
x-coordinate is x = —b/2a; its y-coordinate is found by substituting x = —b/2a
in the parabola’s equation.
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FIGURE 1.20 Besides determining the
direction in which the parabola y = ax?
opens, the number « is a scaling factor.
The parabola widens as a approaches zero
and narrows as |a | becomes large.
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FIGURE 1.21 The parabola in Example 9.
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DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unique (single) element
f(x) e Y to each element x € D.
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x > f » f(x)
Input Output

(domain) (range)

FIGURE 1.22 A diagram showing a
function as a kind of machine.
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“—__— 2N

a fla) %)
D = domain set Y = set containing
the range

FIGURE 1.23 A function from a set D to
a set Y assigns a unique element of Y to
each element in D.
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Function Domain (x) Range (y)

y = x* (—o0, 00) [0, o)

y = 1/x (—00,0) U (0, 00) (—00,0)U (0, o0)
y = Vx [0, 00) 0, 00)
y=V4-—x (—00, 4] 0, 00)

y=VI1 — x? [—1, 1] 0, 1]
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y=x+2

/2 0 > X

FIGURE 1.24 The graph of
f(x) = x + 2 is the set of points (x, y) for
which y has the value x + 2.
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FIGURE 1.25 If (x, y) lies on the graph of
£, then the value y = f(x) is the height of
the graph above the point x (or below x 1f
f(x) is negative).
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FIGURE 1.26 Graph of a fruit fly
population versus time (Example 3).
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TABLE 1.2 Tuning fork data

Time Pressure Time Pressure
0.00091 —0.080 0.00362 0.217
0.00108 0.200 0.00379 0.480
0.00125 0.480 0.00398 0.681
0.00144 0.693 0.00416 0.810
0.00162 0.816 0.00435 0.827
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581
0.00216 0.603 0.00489 0.346
0.00234 0.368 0.00507 0.077
0.00253 0.099 0.00525 —0.164
0.00271 —0.141 0.00543 —0.320
0.00289 —0.309 0.00562 —0.354
0.00307 —0.348 0.00579 —0.248
0.00325 —0.248 0.00598 —0.035
0.00344 —0.041
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p (pressure)
A
1.0
0.8
0.6 -
04
0.2

® Data

|
0001 0.002 §.003 0.004 0.0

' > ¢ (sec)
0oL 0.006 0.007
~0.4}F

0.6 -

FIGURE 1.27 A smooth curve through the plotted points
gives a graph of the pressure function represented by
Table 1.2.
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(@ x> +y*=1 b y=VI1-x? © y=-V1-x*

FIGURE 1.28 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of a function
f(x) = V1 — x2. (c) The lower semicircle is the graph of a function g(x) = —V'1 — x2.
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-3 -2 -1 O 1 2 3

FIGURE 1.29 The absolute value
function has domain (—0c0, 00)
and range [0, 00).
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FIGURE 1.30 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain
(Example 5).
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FIGURE 1.31 The graph of the
greatest integer function y = | x |
lies on or below the line y = x, so
it provides an integer floor for x
(Example 6).

Slide 1 - 47
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FIGURE 1.32 The graph of the
least integer function y = | x | lies
on or above the line y = x, so 1t
provides an integer ceiling for x
(Example 7).
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y = fx)
(1, 1) 2, 1)

' > X

FIGURE 1.33 The segment on the

left contains (0, 0) but not (1, 1).
The segment on the right contains

both of its endpoints (Example 8).
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FIGURE 1.34 The collection of lines
y = mx has slope m and all lines pass
through the origin.
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FIGURE 1.35 A constant function
has slope m = 0.
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" y=x 2 y=x? r o y=4x1 r y=x
I 1 L7\
1 L > ¥ | | > x ] ] > x | |
-1 0 1 -1 0 1 -1/70 | -1 0 1
-1F -1 -1 -1

FIGURE 1.36 Graphs of f(x) = x",n = 1, 2, 3,4, 5 defined for —c0 < x < 00,
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> =

1 L
Domain: x # 0
Range: y # 0 0
Domain: x # 0
Range: y> 0
(a) (b)

FIGURE 1.37 Graphs of the power functions f(x) = x“ for part
(@) a = —1 and for part (b) a = —2.
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I y = Vx
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| > X ' > X
0 1 0 1
Domain: 0 = x < Domain: —oc < x << o
Range: O0=y<w Range: - <y<w
y
A
Yy
A
y=x¥2
y=x2/3
1 1
: > X ' > X
0 1 0 1
Domain: 0 = x < x Domain: —o < x < ®
Range: O0=y<® Range: O0=y<

FIGURE 1.38 Graphs of the power functions f(x) = x* fora = %, %, %, and % .
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XXt 1
y= > 2x + 3
y
A
4r y
1 — 4 3
B Xy 8xt— 14x — 022 4 11k — | 16_3’—("—2)(x+1)(x—1)
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/N > x
-1 1 2
] | | X V-
-4 4 B ] o |
4 I\ 0 1 2 *
-6
-8}
10}
-1
4+ -12
(a) (b) (c)
FIGURE 1.39 Graphs of three polynomial functions.
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y 5x* + 8x — 3
4 - y - — - 6 -
YT a2 2
5L /-\ )
_2x* -3 : 5
I A (L[ Liney=3
! ! f/l.’. . \ A | T B ! > X
1§ -2r
2 -4
- NOT TO SCALE
4 - -6
-8
(@) (b) (c)
FIGURE 1.40 Graphs of three rational functions.
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M _ A 2/5
y = x]f3(x —4) -}: y=x(1—-x)
y= %(xz —1)23
2| I
1 -
L > X > X ' > x
-10 0 0 51
—1F 7
-2 1k
3
(a) (b) (c)
FIGURE 1.41 Graphs of three algebraic functions.
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(a) f(x) = sinx (b) f(x) = cosx

FIGURE 1.42 Graphs of the sine and cosine functions.
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y y
y = 10" y=107*
12| 12
10} 10+
8| 8|
6_ y = 24X 6_
4 41
2 P 2
5F=="|'/ [ ] \'I'===’I=‘.
1 05 0 05 1 1 05 0 05 1
(@y=2%y=3%y=10" b)yy=2"%y=3%y=10"

FIGURE 1.43 Graphs of exponential functions.
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FIGURE 1.44 Graphs of four
logarithmic functions.
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> X

FIGURE 1.45 Graph of a catenary or
hanging cable. (The Latin word catena
means ‘“chain.”)
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Function Where increasing Where decreasing

y=x2 0=x< @ —0 < x =0

y=x —00 < x < X0 Nowhere

y=1/x Nowhere —00 < x<0and0 < x < o
y=l/x2 —00 < x <0 0<x< @

y = Vx 0=x<o Nowhere

y = x*3 0 =x<x -0 <x=0
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DEFINITIONS Even Function, 0dd Function
A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.
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(=x, y) &e

FIGURE 1.46 In part (a) the graph of

y = x? (an even function) is symmetric
about the y-axis. The graph of y = x° (an
(=x, =) odd function) in part (b) is symmetric
about the origin.

(b)
Slide 1- 65
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y y
A y — x2 + 1 A
y=x°
> X
0
(a) (b)

FIGURE 1.47 (a) When we add the constant term 1 to the function

y = x?, the resulting function y = x? + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.

The symmetry about the origin is lost (Example 2).
Slide 1- 66
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3 Simplification

Real-world N Model
data
~
Verification Analysis
h 4
Predictions/ Mathematical
explanations [€ . conclusions
Interpretation

FIGURE 1.48 A flow of the modeling process
beginning with an examination of real-world data.
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DEFINITION  Proportionality

Two variables y and x are proportional (to one another) if one is always a con-
stant multiple of the other; that 1s, 1f

y = kx

for some nonzero constant k.

Slide 1- 68
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TABLE 1.3 Orbital periods and mean distances of planets
from the sun

T R Mean distance
Planet Period (days) (millions of miles)
Mercury 88.0 36
Venus 224.7 67.25
Earth 365.3 93
Mars 687.0 141.75
Jupiter 4,331.8 483.80
Saturn 10,760.0 887.97
Uranus 30,684.0 1,764.50
Neptune 60,188.3 2,791.05
Pluto 90,466.8 3,653.90

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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FIGURE 1.49 Graph of Kepler’s third law as a
proportionality: 7 = 0.410R%? (Example 3).
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Function Formula Domain

f+eg (f + 2@ = Vx+ V1—x [0, 1] = D(f) N D(g)
f-g (f — &) = Vx—-V1-x [0, 1]

g~ f (g - ) =V1-—x— Vx [0, 1]

fg (f-2)x) = flx)gx) = Vx(1 — x) [0, 1]

flg g( ) = g((—i; =T [0, 1) (x = 1 excluded)

(x) —
g/f %(x) i(i) 1 ¥ al (0, 1] (x = 0 excluded)

Copyright © 2008 Pearso
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8_
v = (F+ )

e —— —

.-—"""'—_-_————.
— +f(a) + g(a)

FIGURE 1.50 Graphical addition of two
functions.
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FIGURE 1.51 The domain of the function f + g is
the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the

function f - g (Example 1).
Slide 1- 74
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DEFINITION  Composition of Functions

If f and g are functions, the composite function f ° g (“f composed with g”) is
defined by

(f ° g)x) = flgx)).

The domain of f © g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f.

Slide 1- 75
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X g g(x) [ — f(g(x))

FIGURE 1.52 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite 1s denoted by

fe°g.
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flg(x))

g(x)

FIGURE 1.53 Arrow diagram for f o g.
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Shift Formulas

Vertical Shifts
y=fx) +k

Horizontal Shifts
y=flx+h)

Shifts the graph of fup kunits if £ > 0
Shifts it down | k| units if k£ < 0

Shifts the graph of fleft h units if 4 > 0
Shifts it right | h|units if A < 0

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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A y=x%+2
y = 241
y=x’
y=x2-2

1 unit

> X

2 units

RN

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 1.54 To shift the graph
of f(x) = x*up (or down), we add
positive (or negative) constants to
the formula for f (Example 4a
and b).
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Add a positive Add a negative
constant to x. constant to x.
< Y
_ 2
y=(x+3)
| | |
-3

FIGURE 1.55 To shift the graph of y = x? to the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x
(Example 4c¢).

Slide 1- 80

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



FIGURE 1.56 Shifting the graph of
¥y = |x| 2 units to the right and 1 unit

down (Example 4d).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sl |de 1- 81



Vertical and Horizontal Scaling and Reflecting Formulas

Forc > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % f(x) Compresses the graph of f vertically by a factor of c.

y = f(ex) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y = —f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.
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FIGURE 1.57 Vertically stretching and
compressing the graph y = Vx by a
factor of 3 (Example 5a).
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FIGURE 1.58 Horizontally stretching and
compressing the graph y = Vx by a factor of

3 (Example 5b).
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FIGURE 1.59 Reflections of the graph
y = Vx across the coordinate axes
(Example 5c¢).
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FIGURE 1.60 (a) The original graph of /. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed
by a reflection across the y-axis. (c¢) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection

across the x-axis (Example 6).
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(a) circle (b) ellipse, 0 < ¢ < 1 (c) ellipse, ¢ > 1

FIGURE 1.61 Horizontal stretchings or compressions of a circle produce graphs of ellipses.
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y FIGURE 1.62 Graph of the ellipse
1 x?2 Y 2
— +t—=5=1La> b, where the major
a b
axis 1s horizontal.
b
Major axis .
’ Center a m
-b
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FIGURE 1.63 The radian measure of
angle ACB 1s the length 6 of arc AB on the
unit circle centered at C. The value of 6
can be found from any other circle,
however, as the ratio s/r. Thus s = rf is
the length of arc on a circle of radius r
when 6 1s measured in radians.
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Conversion Formulas

— L ~ 1
1 degree = ™ 0.02) radians
T

Degrees to radians: multiply by 130

1 radian = iﬂp(%S?) degrees

Radians to degrees: multiply by 1_1870
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FIGURE 1.64 The angles of two common
triangles, in degrees and radians.
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FIGURE 1.65 Angles in standard position in the xy-plane.

ray
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FIGURE 1.66 Nonzero radian measures can be positive or
negative and can go beyond 2.
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FIGURE 1.67 Trigonometric
ratios of an acute angle.
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FIGURE 1.68 The trigonometric
functions of a general angle 0 are
defined in terms of x, y, and r.
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FIGURE 1.69 The new and old
definitions agree for acute angles.
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FIGURE 1.70 The CAST rule,
remembered by the statement “All
Students Take Calculus,” tells
which trigonometric functions are
positive in each quadrant.

Slide 1- 98



FIGURE 1.71 The triangle for
calculating the sine and cosine of 27/3
radians. The side lengths come from the
geometry of right triangles.
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TABLE 1.4 Values of sin 6, cos 6, and tan @ for selected values of €
Degrees —180 -—-135 -90 —45 0 30 45 60 90 120 135 150 180 270 360
. =37 —aT —T T T T T 27 37 57 73
0 (radians) T 4 2 4 0 6 4 3 2 3 4 6 T 2 27
sin @ 0 _—\/E —1 __\/E 0 l ﬁ ﬁ 1 ﬁ \/5 l 0 -1 0
2 2 2 2 2 2 2 2
0 -1 __\/E 0 ﬁ 1 ﬁ ﬁ l 0 _ l — \/E — \/5 —1 0 1
€os 2 2 2 2 2 2 2 2
tan 0 0 1 ~1 0 ? 1 V3 V3 -1 _T\/g 0 0
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FIGURE 1.72 The triangle for
calculating the trigonometric functions in
Example 1.
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DEFINITION  Periodic Function
A function f(x) i1s periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period

of f.
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FIGURE 1.73 Graphs of the (a) cosine, (b) sine, (¢) tangent, (d) secant, (e) cosecant, and (f) cotangent
functions using radian measure. The shading for each trigonometric function indicates its periodicity.
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FIGURE 1.74 The reference
triangle for a general angle 6.
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Even Odd

cos(—x) = cosx sin(—x) = —sinx

sec(—x) = secx tan(—x) = —tanx
csc(—x) = —cscx
cot(—x) = —cotx

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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cos’ @ + sin’ @ = 1. (1)
1 + tan® @ = sec? 0.
1 + cot’ @ = csc? 6.
Addition Formulas
cos(4 + B) = cosAcos B — sinAsin B @
sin(4 + B) = sin4 cosB + cosA4sin B
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 1- 106




Double-Angle Formulas

cos 20 = cos’ 0 — sin’ 0

o (3)
sin 20 = 2sinf cos 0
Half-Angle Formulas
cos ) = 1 + gos 20 (4)
sin 0 = +— 5 20 (5)
c?=a*+ b? — 2abcosh. (6)
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FIGURE 1.75 The square of the distance
between 4 and B gives the law of cosines.
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Vertical stretch or compression; Vertical shift
reflection about x-axis if negative

y =af(b(x +c¢)) +d

Horizontal stretch or compression; / \ Horizontal shift

reflection about y-axis if negative
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y=A5in(%’T(x—C))+D

D+ AR
Horizontal

A

~ Amplitude (A
shift (C) mplitude (4) This axis is the
<—>| liney=D
D __________________________________
Vertical
D_ A shift (D) & |
<——This distance 18 —
the period (B).
5 > X

FIGURE 1.76 The general sine curve y = A sin [(27/B)(x — C)] + D,
shown for 4, B, C, and D positive (Example 2).
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FIGURE 1.77 Normal mean air temperatures for Fairbanks, Alaska, plotted as data points
(red). The approximating sine function (blue) 1s

F(x) = 37sin [(27/365)(x — 101)] + 25.
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FIGURE 1.78 The graph of f(x) = x> — 7x* + 28 in different viewing windows (Example 1).
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(a) (b) (©)

FIGURE 1.79 Graphs of the perpendicular lines y = xand y = —x + 3\/5, and the semicircle
y = V9 — x2, in (a) a nonsquare window, and (b) and (c) square windows (Example 2).
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FIGURE 1.80 Graphs of the function y =
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(Example 3).
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FIGURE 1.81 Graphs of the function y = sin 100x in three viewing windows. Because the period is 277/100 ~ 0.063,

the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 4).
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1 1.02

FIGURE 1.82 In (b) we see a close-up view of the function

y = cosx + % sin 50x graphed in (a). The term cos x clearly dominates the

second term, % sin 50x, which produces the rapid oscillations along the

cosine curve (Example 5).
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FIGURE 1.83 The graph of y = x!/3 is missing the left branch in (a). In
X

(b) we graph the function f(x) = ]

+|x|'/? obtaining both branches. (See

Example 6.)
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TABLE 1.5 Price of a
U.S. postage stamp
Year x Cost y
1968 0.06
1971 0.08
1974 0.10
1975 0.13
1977 0.15
1981 0.18
1981 0.20
1985 0.22
1987 0.25
1991 0.29
1995 0.32
1998 0.33
2002 0.37
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TABLE 1.6 Price of a U.S postage stamp since 1968

X 0 3 6 7 9 13 17 19 23 27 30 34
6 8 10 13 15 20 22 25 29 32 33 37
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FIGURE 1.84 (a) Scatterplot of (x, y) data in Table 1.6. (b) Using the
regression line to estimate the price of a stamp in 2010. (Example 7).
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FIGURE 1.85 Biomass of a yeast culture versus

elapsed time (Example 8).
(Data from R. Pearl, “The Growth of Population,” Quart. Rev.
Biol., Vol. 2 (1927), pp. 532-548.)
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FIGURE 1.86 Fitting a quadratic to
Pearl’s data gives the equation

y = 6.10x%> — 9.28x + 16.43 and the
prediction y(17) = 1622.65 (Example 8).
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FIGURE 1.87 The rest of Pearl’s data (Example 8).
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Regression Analysis
Regression analysis has four steps:

1. Plot the data (scatterplot).

2. Find a regression equation. For a line, it has the form y = mx + b, and for a
quadratic, the form y = ax? + bx + c.

3. Superimpose the graph of the regression equation on the scatterplot to see the fit.

4. If the fit is satisfactory, use the regression equation to predict y-values for val-
ues of x not in the table.
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