Chapter 3 The Molecules of Cells

Parisnajd.com

ORGANIC COMPOUNDS (Molecules)

INTRODUCTION TO ORGANIC COMPOUNDS (Molecules)

- **3.1 Life's molecular diversity is based on the properties of carbon**
 - Diverse molecules found in cells are composed of carbon bonded to other elements
 - Carbon-based molecules are called Organic Compounds
 - > By sharing electrons, carbon can bond to four other atoms
 - > By doing so, carbon can branch in up to four directions

Parisnajd.com 3 Copyright © 2009 Pearson Education, Inc.

Methane (CH₄) is one of the simplest organic compounds

- Four covalent bonds link four hydrogen atoms to the carbon atom
- Each of the four lines in the formula for Methane represents a pair of shared electrons

 Methane and other compounds composed of only carbon and hydrogen are called hydrocarbons
Carbon atoms, with attached hydrogens, can bond together in chains of various lengths

- **3.1 Life's molecular diversity is based on the properties of carbon**
 - > A chain of carbon atoms is called a carbon skeleton
 - Carbon skeletons can be branched or unbranched
 - Therefore, different compounds with the same molecular formula can be produced
 - > These structures are called ISOMERS ⁶

Variations in carbon skeletons التنوع في الهياكل الكربونية

- **3.2 Characteristic chemical groups help determine the properties of organic compounds**
 - An organic compound has unique properties that depend upon
 - 1. The size and shape of the molecule, and
 - 2. The groups of atoms (functional groups) attached to it.

A functional group affects a biological molecule's function in a characteristic way

Parisnajd.com 8 Copyright © 2009 Pearson Education, Inc.

- **3.2 Characteristic chemical groups help determine the properties of organic compounds**
- Compounds containing functional groups are hydrophilic (water-loving)
- This means that they are soluble in water, which is a necessary prerequisite for their roles in water-based life

- **3.2 Characteristic chemical groups help determine the properties of organic compounds**
 - The functional groups are
 - Hydroxyl group consists of a hydrogen bonded to an oxygen
 - Carbonyl group a carbon linked by a double bond to an oxygen atom
 - Carboxyl group consists of a carbon bonded to a hydroxyl group and double-bonded to an oxygen
 - Amino group composed of a nitrogen bonded to two hydrogen atoms and a carbon skeleton

 Phosphate group — consists of a phosphorus atom bonded to four oxygen atoms **3.3 Cells make a huge number of large molecules from a small set of small molecules**

There are four classes of biological molecules
1. Carbohydrates
2. Proteins

- 3. Lipids
- 4. Nucleic acids

Parisnajd.com

- The four classes of biological molecules contain very large molecules
 - They are often called macromolecules because of their large size
 - They are also called polymers because they are made from identical building blocks strung together

Parisnajd.com

The building blocks are called monomers

- Monomers are linked together to form polymers through <u>dehydration reactions</u>, which remove water
- Polymers are broken apart by <u>hydrolysis</u>, the addition of water
- All biological reactions of this sort are mediated by enzymes, which speed up chemical reactions in cells

Dehydration reactions build a polymer chain

Hydrolysis breaks a polymer chain

ORGANIC COMPOUNDS (Molecules)

CARBOHYDRATES

Parisnajd.com

Monosaccharides are the simplest carbohydrates

- Carbohydrates range from small sugar molecules (monomers) to large polysaccharides
- Sugar monomers are monosaccharides, such as glucose and fructose
- These can be hooked together to form the polysaccharides

Parisnajd.com

- The carbon skeletons of monosaccharides vary in length
 - Glucose and fructose are six carbons long
 - Others have three to seven carbon atoms

> Monosaccharides are the main fuels for cellular work

Monosaccharides are also used as raw materials to

manufacture other organic molecules

plusDESIGN

Structures of glucose and fructose ($C_6H_{12}O_6$ **)**

19

ORGANIC COMPOUNDS (Molecules)

Cells link two single sugars to form disaccharides

- Two monosaccharides (monomers) can bond to form a disaccharide in a dehydration reaction
 - An example is glucose monomer bonding to a fructuse monomer to form success, a common disaccharide

Disaccharide formation by a dehydration reaction

Polysaccharides are long chains of sugar units

- Starch is a storage polysaccharide composed of glucose monomers and found in plants
- Glycogen is a storage polysaccharide composed of glucose, which is hydrolyzed by animals when glucose is needed
- Cellulose is a polymer of glucose that forms plant cell walls
- Chitin is a polysaccharide used by insects and crustaceans to build an exoskeleton

Parisnajd.com

Polysaccharides

ORGANIC COMPOUNDS (Molecules)

True Fats

الدهون الحقيقية

Phospholipids

اللبيدات (الدهون) الفسفورية **Steroids**

الاستيرويدات

Parisnajd.com

- **3.8 Fats are lipids that are mostly energy-storage molecules**
- Lipids are water insoluble (hydrophobic, or water fearing) compounds that are important in energy storage
 - They contain twice as much energy as a polysaccharide
- Fats are lipids made from glycerol and fatty acids
 - Fatty acids link to glycerol by a dehydration reaction
 - A fat contains one glycerol linked to three fatty acids
 - Fats are often called triglycerides because of their

Paris Structure

A fat molecule made from glycerol and three fatty acids

- **3.8 Fats are lipids that are mostly energy-storage molecules**
 - Some fatty acids contain double bonds
 - 1. This causes kinks or bends in the carbon chain because the maximum number of hydrogen atoms cannot bond to the carbons at the double bond
 - 2. These compounds are called **unsaturated fats** because they have fewer than the maximum number of hydrogens
 - 3. Fats with the maximum number of hydrogens are called saturated fats

Copyright © 2009 Pearson Education, Inc.

Parisnajd.com

- **3.9 Phospholipids and steroids are important lipids with a variety of functions**
- Phospholipids are structurally similar to fats and are an important component of all cells
 - 1. For example, they are a major part of cell membranes, in which they cluster into a bilayer of phospholipids
 - 2. The hydrophilic heads are in contact with the water of the environment and the internal part of the cell
- 3. The hydrophobic tails band in the center of the

adenina

- **3.9 Phospholipids and steroids are important lipids with a variety of functions**
- Steroids are lipids composed of fused ring structures
- Cholesterol is an example of a steroid that plays a significant role in the structure of the Cell Membrane
- In addition, cholesterol is the compound from which we synthesize Sex Hormones

Cholesterol, a steroid

Parisnajd.com

Female lion

Male lion

ORGANIC COMPOUNDS (Molecules)

PROTEINS

Parisnajd.com

- 3.11 Proteins are essential to the structures and functions of life
 - A protein is a polymer built from various combinations of 20 amino acid monomers
 - Proteins have unique structures that are directly related to their functions
 - Enzymes, proteins that serve as metabolic catalysts, regulate the chemical reactions within cells

- Structural proteins provide associations between body parts
- Contractile proteins are found within muscle
- Defensive proteins include antibodies of the immune system
- Signal proteins are best exemplified by the hormones
- Receptor proteins serve as antenna for outside signals
- Transport proteins carry oxygen

Parisnajd.com
3.12 Proteins are made from amino acids linked by peptide bonds

Amino acids, the building blocks of proteins, have an amino group and a carboxyl group

covalently bonded to a central carbon atom

- Also bonded to the central carbon is a hydrogen

atom and some other chemical group symbolized

by R

- Amino acids are classified as hydrophobic or hydrophilic
 - Some amino acids have a non-polar R group and are hydrophobic
 - Others have a polar R group and are hydrophilic,
 which means they easily dissolve in aqueous
 solutions

Examples of amino acids with hydrophobic and hydrophilic R groups

Copyright © 2009 Pearson Education, Inc.

Parisnajd.com

- Amino acid monomers are linked together to form polymeric proteins
 - This is accomplished by an enzyme-mediated dehydration reaction
- This links the carboxyl group (COOH) of one amino acid to the amino group (NH₂) of the next amino acid. The covalent linkage resulting is called a peptide bond

Copyright © 2009 Pearson Education, Inc.

Peptide bond formation

3.13 A protein's specific shape determines its function

A polypeptide chain contains hundreds or thousands of amino acids linked by peptide bonds

The amino acid sequence causes the polypeptide to assume a particular shape

The shape of a protein determines its specific function

- 3.14 A protein's shape depends on four levels of structure
- A protein can have four levels of structure

التركيب الاولي

التركيب الثانوى

التركيب الثالثي

التركيب الربا

- Primary structure
- Secondary structure
- Tertiary structure
- Quaternary structure

3.14 A protein's shape depends on four levels of structure

- The primary structure of a protein is its unique amino acid sequence
 - The correct amino acid sequence is determined by the cell's genetic information
 - The slightest change in this sequence affects the protein's ability to function

Copyright © 2009 Pearson Education, Inc.

- Protein secondary structure results from coiling or folding of the polypeptide
 - Coiling results in a helical structure called an alpha helix
 - Folding may lead to a structure called a pleated sheet
 - Coiling and folding result from hydrogen bonding between certain areas of the polypeptide chain

- The overall three-dimensional shape of a protein is called its tertiary structure
 - Tertiary structure generally results from interactions between the R groups of the various amino acids
 - Disulfide bridges are covalent bonds that further strengthen the protein's shape

Globular Polypeptide (single subunit of transthyretin)

Tertiary structure

- Two or more polypeptide chains (subunits) associate providing quaternary structure
 - Collagen is an example of a protein with quaternary structure
 - Its triple helix gives great strength to connective tissue, bone, tendons and ligaments

Polypeptide chain (alpha helix)

- Collagen is a fibrous protein with helical subunits interwind into a larger triple helix.
- This arrangement gives the long fibers great strength

Triple helix

Transthyretin, with four identical globular polypeptide subunits

Quaternary structure

Copyright © 2009 Pearson Education, Inc.

Transthyretin: A plasma protein consisting of 127 amino acids that binds retinol and thyroxine

- **3.13** A protein's specific shape determines its function
- If for some reason a protein's shape is altered, it can no longer function
 - Denaturation will cause polypeptide chains to unravel and lose their shape and, thus, their function
 - Proteins can be denatured by changes in salt concentration and pH

NUCLEIC ACIDS

Parisnajd.com

Copyright © 2009 Pearson Education, Inc.

- 3.16 Nucleic acids are information-rich polymers of nucleotides
 - DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are composed of monomers called nucleotides
 - Nucleotides have three parts
 - 1. A five-carbon sugar called ribose in RNA and deoxyribose in DNA
 - 2. A phosphate group
 - 3. A nitrogenous base

Nucleotide, consisting of a phosphate group, sugar, and a nitrogenous base

- 3.16 Nucleic acids are information-rich polymers of nucleotides
- **DNA nitrogenous bases are:**
 - adenine (A), thymine (T), cytosine (C), and guanine (G)
- RNA also has A, C, and G, but instead of thymine
 (T), it has uracil (U)

- **3.16 Nucleic acids are information-rich polymers of nucleotides**
 - A nucleic acid polymer is a polynucleotide. It is formed when the phosphate group of a nucleotide monomer bonds to the sugar of the next nucleotide
 - The result is a repeating sugar-phosphate backbone with protruding nitrogenous bases

			N	H			

- 3.16 Nucleic acids are information-rich polymers of nucleotides
 - Two polynucleotide strands wrap around each other to form a DNA double helix
 - The two strands are associated because particular bases always hydrogen bond to one another
 - Usually A pairs with T, and C pairs with G, producing base pairs
 - RNA is usually a single polynucleotide strand

DNA double helix

- A particular nucleotide sequence that can instruct the formation of a polypeptide is called a gene
- Most DNA molecules consist of millions of base pairs and, consequently, many genes
- These genes, many of which are unique to the species, determine the structure of proteins and, thus, life's structures and functions

Parisnaid.com