

المملكة العربية السعودية وزارة التعليم العالي جامعــة جـازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء الطبية 2 (162-تحض 3)

منسق المقرر: د. هاني طلعت محسن استذة المقرر: د. وليد غالى – د. عبد الرؤوف عبد الستار – د. جمال عفيفي

ı	#		ر : د. وليد عا <i>لي - د. عبد الر</i> وواد		
			ics of Nonviscose Fluid		
	_	es` prind	ciple; an object floated o	or s	ubmerged in a fluid
1	A that equals	the the	An upward force that equals the volume of the displaced fluid.	С	An upward force that equals the weight of the displaced fluid.
		edes's r	orincipal the volume of	of t	
2	the vol	ume of th	ne immersed object.		is equal to
	When an object is sus	pended i	n a fluid by a string, the	ter	sion in the string is
3	reduced by A the viscosity force	В	the volume of the displaced fluid	C	the weight of the displaced fluid
4	The density of ice is 9 fraction of an iceberg i	_	⁻³ while that of sea wat		
5	A water pipe leading u		ose has a radius of 2 cm d the velocity of the wat 0.05 m/s	. Wa	ater leaves the hose
		s its cro	ss-sectional area halved	l in	a certain region, its
6	average velocity is A halved		1 35 11	C	constant
7	The pressure at the sa different	me dept	h at two places in a fluid the same	at i C 	rest is the atmospheric pressure
	When a person, in a	n erect	position, experiences a	in u	ipward acceleration
	(a),thus the pressure i	n the bra	ain P _{Brain} will be reduced	as f	ollow:
8	$A \begin{vmatrix} P_{Brain} = P_{Heart} - \rho \\ + a \end{vmatrix} (h_{Brain} + h_{Hea})$	o (g _{rt})	$P_{Brain} = P_{Heart} + \rho (g + a) (h_{Brain} - h_{Heart})$	С	$P_{Brain} = P_{Heart} - \rho$ $(g + a) (h_{Brain} - h_{Heart})$
			mall pressure drop betw	een	the heart and feet
9	or brain is due to the	1	1	С	Floctrical
	A gravitational The manometer is a de	B avice use	Viscous		Electrical
10	A gas pressure and be used also measure lic	1	gas humidity	С	gas density
	pressure.				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

		ect the correct equation			he	pressures P _{Feet} , and
	P_{He}	_{art} or P _{Brain} for adults in t		tanding position.	l	
11	A	$P_F = P_H + \rho g (h_{Brain} + h_{Heart})$	В	$P_F = P_H + \rho g h_{Foot}$	С	$P_F = P_H + \rho g$ h_{Haert}
	The	e buoyant force on an obj	ect i	n a fluid is equal to the		
12	A	viscosity force.	В			fluid velocity
	The	e volumetric flow rate o	of a	fluid is the same at both	th th	ne entering and the
10	lea	ving ends; it is a statemer	nt of		۱ ــ	
13	A	Archimedes principle	В	The work and energy concepts	С	the equation of continuity
	The	e buoyant force depends	on		۱ ــ	
14		cross-sectional area	-	/	C	density for the
	A	of the immersed body.	В	viscosity of the liquid.	1	immersed body.
	In :	static fluid, the pressure	at a	point on a depth d is de	eteri	nined by Atmospher
1.5	pre	essure +	7.		١؞	10.00
15	A	ρ+g+d	В	ρgd	C	ρ/(gd)
	The	e pressure at the same de	pth	at two places in a fluid at	1	
16		the same.	-	1100	C	equal to
	A		В	differed		atmospheric
	Цп	man have adapted to the	nro	phlome of moving blood	112247	pressure.
		ninst the force of			upw	aru a large uistance
17	A	gravity	В	viscosity	C	electricity
	The	e pressures in the lower	and		are	very different when
	the	person is	1.			
18	A		В	3	C	
		en a person is standing			n th	e heart and feet or
19	bra	in is due to the gravitational	. for	ces.	C	Floatrical
1)	H Th					Electrical
20	A	e sphygmomanometer is the gas pressure				the blood density
	The	e sphygmomanometer i			ire	the blood pressure
	pai	nless at.				-
21	A	Left upper arm	В	Left lower arm	С	foot
		is insert	ed v	with a catheter into veins	s or	arteries to measure
	tne	blood pressure.				
22	A	Sphygmomanometer	В	Thermometer	С	Strain gauge

المملكة العربية السعودية وزارة التعليم العالي جامعــة جـازان عمادة السنة التحضيرية

				on a block of goles of water (density 1.0)				
	m/s ²)	Subinergeu in a	Laiin	Of Water (defisity 1.0)	(10	kg/III): (g = 9.6		
23	$A \mid 24$	15 N	В	765 N	С	435 N		
	Bernoulli's equation can be used under the following conditions:							
24		ne flow is streamline ith variable density.	В	The fluid is compressible, viscous and velocity is changed from point to point.	С	The fluid is in steady state, incompressible and nonviscous.		
				ion the condition (the	fluid	is incompressible)		
25		that density			ا ہا			
25			В	increased	С	decreased		
		ling to Bernoulli's equ 	ıatio	n the condition (the flui	d is	non-viscous) means		
26		mechanical energy	В	there is mechanical energy lost	C	friction force is high		
				on the condition (the flo	w is	streamline) means		
		e flow is				inf. /		
27		t turbulent	В		C	changed		
				on the condition (the flow	v is	steady-state) means		
	that th	e velocity						
28	A is	constant	В	increased	C	decreased		
				ng healthy adult are about				
29	<u> </u>)/120	В		C	200/50		
20				pressure during comple				
30		aximum		minimum	C	constant		
31				pressure during compl	ete h C			
31			B			constant		
				on, for a horizontal tube and the pressure		construction, at the		
	2011311	socion the volocity mere	<i>a</i> 303	and the pressure				
32	A inc	creases.	В	decreases.	C	remains constant.		
	A pers	on suffering from "ligh	t hea	dedness" can be revealed l	оу			
33	A lo	wering his head.	В	standing up.	C	running.		
	Instead	l of describing fluids in	tern	ns of masses and forces, we				
34	A lei	ngth and area.	В	velocity and acceleration.	С	density and pressure.		
		using the sphygmomar upper arm?	nome	eter, why is the blood pres	ssure	-		
35	A It pro	is closed to the essure in the heart.	В	It is very different from the pressure in the heart	С	It is closed to the pressure in the brain.		

المملكة العربية السعودية وزارة التعليم العالي جامعــة جــازان عمادة السنة التحضيرية

		Ch. 1	14 V	iscose Fluid Flow		
36	Flo	w resistance in blood dep	end	s on	I (1 '' 611
30	A	length of the blood vessel, viscosity of the blood and	В	atmospheric	С	velocity of the blood
	11	fourth power of blood vessel diameter.		pressure.		blood
	Th	e flow resistance R _f is def	inec	as the ratio of the pressi	are o	lrop to the
37	A	length.	В	flow rate.	C	viscosity.
		spherical object of radi		C	_	O
38		cosity η and density ρ_0 , the	ie vi: B		eper C	1
30	A	fluid density		fluid viscosity	_	object velocity
39	A	e centripetal acceleration equal		much less than	C C	
	The	e aorta of an average a	adult	t human has a radius d	of 1.	3 x 10 ⁻² m. If the
		w rate of blood is 10 ⁻⁴	m³ s	s ⁻¹ , the flow resistance	ove	r 0.2 m distance is:
40		= 2.084 x 10 ⁻³ Pa s)	L D	27.2 LD3		CC 0 I-D3
40		56.8 kPa s m ⁻³		7 1 1		66.8 kPa s m ⁻³
	The	e aorta of an average a	adult	t human has a radius c	of 1.	3×10^{-2} m. If the
		w rate of blood is 10^{-4}			ance	is 37.2 kPa s m ° .
41		culate the pressure dro			La	0.0066015
41	A	0.00568 kPa	B			0.00668 kPa
		e effective weight of an ight at rest.	obje	ct in a centrifuge is always	ays	Its
42	A		В	less than	C	equal to
		d the terminal velocity in				
		asity of $2 \times 10^3 \text{ kg m}^{-3}$	at 2	0° C. (Viscosity of air is	1.81	X 10 ⁻⁵ Pa s) and
	den	nsity of air is neglected.				/
42	A	5.3 X 10 ⁻² m s ⁻¹	В	2.41 X 10 ⁻² m s ⁻¹	C	7.4 X 10 ⁻² m s ⁻¹
	In	a mixture of two kind	ls o	f solutes, the smaller	mole	cules will sediment
		the larger	one	TINIVERSIT	٧.	/
43	A			slower than		equal to
	Fin	d the drag force at termin radius 10 ⁻⁵ m. (Viscosity o	al ve	elocity 2.41 X 10^{-5} m s ⁻¹ for $^{-5}$ $^{-5}$ $^{-5}$	or a	spherical dust particle
45	A	3.14 X 10 ⁻¹¹ N	В	8.23 X 10 ⁻¹² N	C	44.2 X 10 ¹² N
		nat is the net resistance of				
		a dog, if the radius of a sir				
	m.v	riscosity of the blood is 2.	084	X 10 ⁻³ Pa s		
46		I		I		1 20 V 10 ⁵ l. Do C
40	A	2.073 X 10 ¹³ k Pa S m ⁻³	В	1.326 X 10 ¹³ k Pa S m ⁻³		m ⁻³
		nen the speed of moving o	obje	ct in a fluid increases slig	htly	the high speed drag
477		ce is directly proportiona	i	1	۱ ~	, ,
47	Α	velocity.	В	viscosity.	C	square velocity.

المملكة العربية السعودية وزارة التعليم العالي جامعــة جــازان عمادة السنة التحضيرية

		a mixture of two kind		f solutes, the larger m	olec	cules will sediment
48		the smaller or faster than	_	slower than	С	equal to
	The	e effective weight of				
49	 A	$w^e = mg$	В	$w^e = m^2(g - a_r)$	С	$w^e = m(g - a_r)$
	He	moglobin has a density	of 1	$1.35 \times 10^3 \text{ Kgm}^{-3} \text{ and a}$	mole	ecular mass 1.129 x
	10	kg. The factor ϕ R fo	r he	emoglobin in water is 9.	46 x	10 ⁻⁸ m. If it is in a
	cer	ntrifuge with centripe	tal	acceleration of 10 ⁶	g	and, then the
		dimentation velocity is			of	water 10 ³ Kgm ⁻³ ,
	vis	cosity η = 0.695 x 10 ⁻³ Pa s a	and g	g= 9.8ms ⁻²).		
50	A	$v_s = 3.74 \times 10^{-5} \text{ ms}^{-1}$	В	$v_s = 4.36 x \ 10^{-6} \ ms^{-1}$	C	$v_s = 7.34 \text{ x } 10^{-7} \text{ ms}^{-1}$
	Th	e flow resistance R_f is define	ned a	as: the		
51		/			C	ratio of the pressure
	A	weight of the displaced fluid.	В	volumetric flow rate of		drop to the flow
		fluid.		a fluid is constant.		rate.
		e sedimentation velocity			ticle	moves downward
	tnr	ough a fluid in a centrifu l		effective weight of the		oravity of earth
52	A	high speed drag force.				gravity of caran
32		[AST	Ŋ	of the fluid.		
53	Dr	ag force of an object in a fl	uid i		C	l an annosita
33	A	an upward	В	a downward		an opposite direction of motion
			1			//
		Ch. 15 C	ohe	sive Forces in Liquids		1
		- TA7A	N	HNIVERSIT	V.	2
	The	e surface tension γ is defi	ned	as the force per unit	exe	rted by one surface.
54	A	area	В	length	C	volume
	The	e specific form of Laplace	's lav	w depends on		
55		the mass of the fluid.	_	the molecular	C	the shape of the
	A	the mass of the nata	В	structure.		closed surface
	The	e pressure inside a balloo	n	the atmosphe	ric p	ressure.
56	A	is equal to	В	is larger than	С	is smaller than
				1		
57	The	e specific form of Laplace's		does not depend on the tension in the		the shape of the
,	A	the volume of fluid	В	membrane film		closed surface

المملكة العربية السعودية وزارة التعليم العالي جامعـــة جــازان عمادة السنة التحضيرية

	Laplace 's law for a spherical	bubl	ble takes the form:					
58	$A \mid Pi - Po = 4\gamma/r$	В	$Pi - Po = \gamma/2r$	C	$Pi - Po = \gamma/r$			
	Laplace 's law for a cylindrica	al tul	be takes the form:					
59	A Pi - Po = $2\gamma/r$	В	$Pi - Po = \gamma/2r$	C	$Pi - Po = \gamma/r$			
	Laplace 's law for a spherical	men	nbrane takes the form:					
60	$A \mid Pi - Po = 2\gamma/r$	В	$Pi - Po = \gamma/2r$	C	$Pi - Po = \gamma/r$			
	A rubber balloon is inflat	ed	to a radius of 0.1 m.	The	pressure inside is			
	1.002×10^5 Pa, and the pres							
61	A 15 N/m	В	5 N/m	C	10 N/m			
	The unit of surface tension i	S						
62	A N/sec	В	N/m^3	C	N/m			
	Laplace's law relates the pro	essu	re difference across a clo	sed	elastic membrane or			
	liquid film to							
63	A the volume of fluid	В	the tension.	C	the shape of the			
		- U			closed surface			
	If the surface tension (γ) of	_			_			
	0.1 m, the total weight will	the	liquid support in the ap	para	itus of the U-shaped			
<i>C</i> 1	loop is	م ا	0.7637.10-237		5 00 X 10-2 X			
64	A 1.46 X 10 ⁻² N	В	3.76 X 10 ⁻² N	C	5.33 X 10 ⁻² N			
	What is the wall tension γ	fo	r a spherical soap bubble	of	a radius 0.05m. The			
	pressure inside is 1.002 ×10 ⁵			_	11,			
	pressure misiae is 11002 / 10		ma the pressure outside 1					
65	A 2.5 N m ⁻¹	В	5 N m ⁻¹	C	10 N m ⁻¹			
Ch. 17 Direct Current								
		_			10 IV III			
		n. 17	7 Direct Current					
66	Cl	n. 17	7 Direct Current					
66	Cl For fully charged capacitor,	1. 17 the B	7 Direct Current current across the capaci one	tor is	s equal to zero			
66	For fully charged capacitor, A maximum	the B	7 Direct Current current across the capaci one at of charging process, the	tor is	s equal to zero			
66	For fully charged capacitor, A maximum After elapsing one time con circuit can perce	the B	7 Direct Current current across the capaci one at of charging process, the	tor is	s equal to zero			
	For fully charged capacitor, A maximum After elapsing one time con	the B	7 Direct Current current across the capaci one at of charging process, the process of the capacitation of	tor is C e cap	s equal to zero pacitor charge in the			
	For fully charged capacitor, A maximum After elapsing one time con circuit can perce A increase to about 36 What is the final charge of	the B stan	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit	tor is C	s equal to zero pacitor charge in the increase to about 63			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V	tor is C	s equal to zero pacitor charge in the increase to about 63 entaining resistance,			
	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C	tor is C C C C C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C	tor is C C C C C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can percentage to about 36 What is the final charge capacitor and battery, C = 3 A 1.2 x 10 ⁻⁵ C Small resistance is used in a capacitor	the B stan	The process of the capacity one and the capacity of the capacity of its initial value. The capacitor in a circuit of the capacitor of the	tor is C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent (B B B B B B B B B B B B B B B B B B B	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging	tor is C C C C C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent (B B B B B B B B B B B B B B B B B B B	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge	tor is C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can percentage to about 36 What is the final charge capacitor and battery, C = 3 A 1.2 x 10 ⁻⁵ C Small resistance is used in a capacitor showly discharge During discharging of a cap	the B stan ent (B B B B B B B B B B B B B B B B B B B	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge	tor is C	s equal to			
68 69	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent C B B rtifi	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circumon across R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge or the current reaches 37%	tor is C	s equal to			
67	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent (B B B B B B B B B B B B B B B B B B B	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge or the current reaches 37% one	tor is C C C C C C C C C	s equal to			
68 69	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent C B B rtifi	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge or the current reaches 37% one	tor is C C C C C C C C C	s equal to			
68 69	For fully charged capacitor, A maximum After elapsing one time concircuit can	the B stan ent C B B rtifi	T Direct Current current across the capaci one at of charging process, the of its initial value. drop to about 73 the capacitor in a circuit R = 2 KΩ, and EMF = 6 V 1.8 x 10 ⁻⁵ C cial pacemaker's charging stopping charge or the current reaches 37% one	tor is C C C C C C C C C	s equal to			

المملكة العربية السعودية وزارة التعليم العالي جامعـــة جــازان عمادة السنة التحضيرية

Thein the circuit steadily diminish, reaching very small after few time constant A resistance B charge and the current C capacitance Each cycle in the human heart begins with an electricalpulse group of nerve fibers. A pace maker B ground fault interrupters C thermistor	from a (ξ)= 24							
after few time constant A resistance B charge and the current C capacitance Each cycle in the human heart begins with an electricalpulse group of nerve fibers. A pace maker B ground fault interrupters C thermistor	from a (ξ)= 24							
A resistance B charge and the current C capacitance Each cycle in the human heart begins with an electricalpulse group of nerve fibers. A pace maker B ground fault interrupters C thermistor	(ξ)= 24							
Each cycle in the human heart begins with an electricalpulse group of nerve fibers. A pace maker B ground fault interrupters C thermistor	(ξ)= 24							
group of nerve fibers. A pace maker B ground fault interrupters C thermistor	(ξ)= 24							
A pace maker B ground fault interrupters C thermistor								
interrupters								
In a circuit containing a resistance of 120 Ω , a capacitor C = 3μ F, and an EMF								
V. The initial current will be	red 75							
75 A 0.2A B 8A C 40A	red 75							
What is the time constant (T) of an artificial pacemaker has pulses trigg	İ							
times per minute?								
76 A 0.013 s B 0.8 s C 1.25 s								
is the rate at which the charge on a capacitor inc	ease or							
decrease. 77 A Time delay B Time Constant C Potential diff	erence							
II Time delay								
must equal ξ , the charge q is then	At long time $(t=\infty)$, the capacitor will be fully charged and its potential difference must equal ξ , the charge α is then							
78 A $ q_f = RC $ $ B q_f = \xi C $ $ C q_f = I V$								
What is the final charge on the capacitor in a circuit containing resistance, or	apacitor							
and battery, $C = 3 \mu F$, $R = 2 K\Omega$, and $EMF = 6 V$?								
79 A 1.2 x 10 ⁻⁵ C B 3.6 x 10 ⁻⁵ C C 1.8 x 10 ⁻⁵ C								
In a circuit containing resistance of 2 K Ω , capacitor of 3 μ F and battery EM	= 6 V.							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	20							
81	<i>.</i> 3.							
A battery powered circuit B coils and resistances C coils and capacitances	circuit							
Small resistance is used in artificial pacemaker's charging circuits to m								
capacitor								
82 A stopping charge B slowly charge C rapidly char	ge							
	n from							
Between 10 and 20 mA will paralyze some muscles and prevent personal releasing	11 11 0111							
83 A fuse B circuit breaker C Conductor								
About 18 mA and causes breathing to stop.								
84 A produce heart B produce tingling C contracts	chest							
A ventricular fibrillation B sensation muscles								
mA current applied directly to the human heart is suffice	ent to							
produce ventricular fibrillation .	52 60							
85 A 0.1 B 0.02 C 3								

المملكة العربية السعودية وزارة التعليم العالي جامعــة جـازان عمادة السنة التحضيرية

		hospitals, the special ha		_	its c	onnected directly to
96		ectrical circuits led to	ı	1	١؞	1.
86	Α	charge	В	ground	С	insulate
		electrical safety, to prevecautions:	ent	electrical hazards, we n	nust	apply the following
87		circuit breakers and ground fault	Б	. 1 1 .	С	all constructions are well insulated and
	A	interrupters are not used.	В	using two-prong plugs		devices are grounded.
	Ca	lculate the lethal current	pas	sing through a person gr	ape	
		pliance at 220V with bod				
88	A	2.27 mA	В	110 mA		440 mA
90	The	e resistance of dry skin of h	numa	n body is		
89	A	-/-		increased by factor 100	C	increased by factor 1000
00	An	electrophoresis is an effi	cien	t technique in which	1	
90	A	separate proteins by	В	separate proteins by	С	separate proteins
	Α	electric field	Б	magnetic field	7	by centrifuge
		strain gauge exploits the de			a w	ire on its geometry is
91	use	d to measure	(alain magistanaa
<i>)</i> 1	A	r	В	digestive tarct		
		an electrophoresis, large pr			of th	ousands atomic mass
92	A	t drifts sma similar to	В		C	faster than
		e average adult can detec			Ü	ruster than
93	A		В		C	1 mA
		levice calledis				
		current exceeds 5 mA, th			V.,	/
94	A	ground-fault-interrupter	В	fuse	C	thermistor
				Verve Conduction		
0.5		e short space between S				
95	A	node of Ranvier	В	dendrite	C	synapses
	Th	a ayan mambrana bas s	2026	sitanco duo to	266	umulata an tha two
	sid	e axon membrane has ca	apac	litarice due to	acc	unitulate on the two
96	A	charges of opposite signs	В	leakage current	С	charges of same signs
	Sin	ce charges of opposite sig	gns a		les o	f the axon
	me	mbrane, so the axon men	nbra	ne has		
97	A	nuclear filed	В	capacitance	С	diffusion process

المملكة العربية السعودية وزارة التعليم العالي جامعــة جــازان عمادة السنة التحضيرية

	Cal	culate the resistance R o	of ar	axon of length /= 0.01	m a	and radius $r = 5 \times 10^{\circ}$
00	° n	n. (axoplasm resistivity ρ R= 2.5 ohms	a =	2 ohm m)		D 2 5 77108 1
98	A	R= 2.5 ohms	В	R=2.5 X10 ohms	C	R=2.5 X10° ohms
		e resistance of a length of the	he a	xon to a current (1_{axon}) alor	ig th	e axon is proportional
99				. \	C	membrane
	A	axoplasm resistivity	В	membrane capacitance		resistance
	The	permeability of a cell me	emb	rane is a measure of the	ease	in which a given ion
		the mo				in which w given ion
100	A	strike	В	stick with	C	pass through
	The	e capacitance of nerve co	ell c	an be reduced by		
101	A	myelin sheath	В	Schwan cell	С	Node of ranvier
	The	e space parameter λ inc	dicat	tes how far a current to	ave	ls before most of it
		leaked out through the				
102						
	A	$\lambda = \sqrt{\frac{2 \rho_a}{R_m r}}$	В	$\lambda = \left \frac{R_m I}{2} \right $		$\lambda = \frac{\sum \rho_a}{D}$
		$\sqrt{R_m T}$		$\sqrt{2 \rho_a}$		$\sqrt{R_m}$
	The	e net flows of Na ⁺ into the	cell	and K ⁺ out of the cell du	e to	diffusion and electric
		ces are passive flow becaus				
		/ 1			i	\
103	A	of Na-K pump	В	no metabolic energy	C	both flows need
						metabolic energy.
104	Ine	Nernst Equation has the	IOTI		l C	$a(V - V_1) = K_2 T \ln$
	A	$q(V_i - V_o) = K_B T \ln \frac{c_o}{c_i}$	В	$q(V_i - V_o) = K_B T \ln \frac{c_i}{c}$		$\frac{Q(V_0 - V_1) - KBT in}{C_0}$
		1 6		741		ι c _i
		shape and peak size			rve	are the
105		ength of the initial above	thr	eshold stimulus.		nuonoutional ta
103	A Wh	dependent on at is the equilibrium poten				
	37°	C (310K), $K_B=1.3$	1111a1 8x 10	0^{-23} JK ⁻¹ $a = e = 1.6 \times 10^{-19}$ (ile u	$= 4$ and $C_i = 155$
106	A	-98 mV	В	-88 mV	C	-78 mV
	The	e electrical changes read	hine	the surface of the bod	y is	about 0.1 % of the
		action potential change			•	
	app	olications of				
107		moister and temperature			C	electroencephalogra
	A	measurements.	В	pressure measurements.		ph and
	En:	languand agaidental hasin	dom	aga ara diagnagad by		electrocardiograph.
108	Epi A	lepsy and accidental brain electroencephalograph	B	electromyograph		electroretinograph
	11	orect conceptiatograph	ע	olocu om y ogrupm		oroca oromiograph
	An	electrocardiograph records	s ele	ctrical activity associated v	vith 1	the
109	A	heart	В	brain	С	artery

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

	An intercontinental submarine cable with periodic amplifiers									
	An intercontinental submarine cable with periodic amplifiers resembles									
110	A dendrites B myelinated axon C unmyelinated axon									
	Ch. 26 Particle properties of Light									
	Einstein suggested that the amount of energy in each light quantum or photon depends									
	only on the									
111	A intensity of light B number of light photons C frequency of light									
	An electron will leave the metal surface if it absorbs a light photon of energy equal to									
	or greater than									
112	A kinetic energy B work function C threshold velocity									
	The light photon has a frequency (f) above the threshold frequency. The maximum									
	kinetic energy (½ mv²) of the escaped electron from the metal surface will be:									
113	$\frac{1}{2} \text{ mv}^2 = \text{hf} - \frac{1}{2} C \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ hf} - W$									
	$A \mid \frac{1}{2} \operatorname{mv}^{2} = \operatorname{hf} - W \qquad B \qquad W$									
	Light is incident on the surface of a metal for which the work function is 3 eV. If the									
	frequency of the incident light is 8×10^{14} Hz, what is the maximum kinetic energy of									
114	the electron? (Where $h=4.135 \times 10^{-15} \text{ eVs}$).									
114	A 0.308 ev B 1.103 ev C 3.308 ev									
	The work function is defined as the required to pull electrons from inside									
	to outside a certain metal producing photoelectrons.									
	to dutolide a deritain metal producing priotocicci ono.									
115	A maximum energy B minimum energy C intensity of light									
	Light is incident on the surface of a metal for which the work function is 3.11 eV.									
	The minimum light frequency f_o can cause the emission of electrons, will be									
	(where h=4.135x10 ⁻¹⁵ eVs).									
116	A $ 5.6 \times 10^{14} \text{ Hz} $ $ B 7.5 \times 10^{14} \text{ Hz} $ $ C 6.0 \times 10^{14} \text{ Hz} $									
	Light incident on the metal plate causes electrons to be emitted. These can travel to the									
117	collector producing									
	When light, of frequency higher than threshold frequency, strikes metallic surface									
	it will eject									
118	A x-ray B Neutrons C electrons									
	Above the threshold frequency, by increasing incident light intensity, the number									
	of ejected electrons will									
119	A decreases B be the same C increases									
	Above the threshold frequency, by increasing incident light frequency, the									
	number of ejected electrons will									
120	A decrease B be the same C increase									
	Above the threshold frequency, by increasing incident light frequency, the									
	energy of ejected electrons will									
121	A decrease B be the same C increase									

المملكة العربية السعودية وزارة التعليم العالي جامعــة جــازان عمادة السنة التحضيرية

	Light incident on a metal	•			be emitted. These
100	can travel to the collector pr			ent.	1
122	0.000.01.0	В	protons	C	gamma ray
	An electron will leave the m			litior	n that if it absorbs a
102	light photon of energy				
123		В	101101	C	faster than
	When electrons from a heate				· · ·
124	difference and allowed to strik			1	ī
124		В	x-ray	C	Gamma ray
125	The Bragg condition for x- r	-			
123	J. J. 10	В	$2d = m\lambda \sin \alpha$	C	2d sina = mλ
	The interatomic spacing (d) of	•		•	-
	angle α of the incident x-rays			_	-
126	0.05 nm, which wavelengths w $A \mid 0.0167$ nm	ліі қ В	be reflected strongly from 0.0025 nm	tne p	0.1039 nm
120				logu	
	has been applied vand nucleic acids that can be				
127			Pacemaker	C	
	X-rays are electromagnetic v				<u> </u>
	well suited to study molecula				min wavelength, are
128		В	5	C	500
	The wavelength in the electron	mi	croscopeor	otical	
129	is the same as	В	is much smaller than	C	is much larger than
	1 19/				
130	Scanning electron microscope	_		1	. 1
130		В	bulk	C	crystal structure
131	Transmission electron microsc A bulk	ope B		ew n C	
131			~ 0.==0.0	C	crystal structure
132	Electron microscope image is A black	В	coloured	C	gray scale
	> 10 CO		HIMIVERNII	Y o	6
	Scanning and transmission e	lect	ron microscopes are usir	1g	as a beam.
133	A x-ray	В	electrons	C	neutrons
	7		1 31 Nuclear Physics		neutrons
	Electron has charge	- CI	1 of Nuclear I mysics		
134		В	negative	С	no
	Proton has charge		<u>. </u>		
135		В	negative	C	no
	Neutron has charge				
136		В	negative	C	no
	Nuclear species with the sam	ie a	tomic number but differe	ent n	eutron numbers are
	called				
137	A Isotopes.	В	Isomers.	C	Isobars.

المملكة العربية السعودية وزارة التعليم العالي جامعــة جــازان عمادة السنة التحضيرية

	Tra	insmutation of the radioa	ctive			i e	
138	A	α decays and γ decays.	В	α decays, β decays	C	α decays a	nd β
	Α.	α decays and γ decays.	ט	and γ decays.			
	Wh	en a uranium nucleus e	mits	an alpha particle, its a	tomi	ic number is re	duce
		protons					
139	À	one	В			three	
	60 C	o beta decays into ⁶⁰ Ni wh	ich i	s promptly emits two gam	ma ra	ays, ⁶⁰ Co is a	
140	A	transmutation element	В	stable element	С	gamma de element	ecays
		e decay constant λ is rela	ated	to the half life Tby			
141		$\lambda = \ln 2 X T$	В	$\lambda = \ln 2 / T$	C	$\lambda = T/\ln 2$	
	The	e activity (A) of (n) mole	s fo	r radioactive sample is r	elate	ed to its half-life	e (T)
	anc	the number of radioa	ctive	e nuclei (N) by the rela	ation	ı , w	here
	$(N_A$) is the Avogadro's num	ber.				
142	A	0.639 nT/N _A	В	$0.693 \text{ nN}_A/T$	C	0.639 nN _A /T	
	The	e exponential decay formul	a ha	s the form	_	/	
143		$N = N_o e^{-\lambda t}$			C	$N = e^{-\lambda t} / N_o$	
		is the result of in	ıstal	oility of the nucleus.	7.10	- A	
144	A	Continuity	В	Radioactivity	C	Resistivity	
	_	radionuclide has a			•		of
		ionuclide remains after 2				. \	
145	Α	0.25	В	0.5		0.75	
		half-life is 8.1 days. If a	pat	ient ingests a small quan	tity o	of ¹³¹ I. What frac	ction
		No after 60 days?		1.36/11/			
146				0.0059	C	0.59	
		at is the unit of source acti				1	
147	A			Newton	C	Pascal	
	1	at is the SI unit of activity		1100-	ı	1	
148	A			becquerel	C	rad	
	Wh	at is the mass of a 1000-C	i cot	palt source? (Co half life =	= 5.2′	7 years), $(N_A = 6.0)$	02 X
1.40		3 mole ⁻¹) and (1 mole of 60			IZ	Loo	
149	A	0.882 g	В	8 g	C	80 g	
	_	oosure is defined as the a		-	i in a	a unit mass of	at
150	stai	ndard temperature and pr				l :ac	
150	A	water	В	dry air	C	ice	
151	Exp A	oosure is defined only for Electrons	В	Neutrons	C	x-ray and gamma ray	
101		Electrons sure depends on the properties of		11000000			
152	A	material only	В	radiation beam only	C	both material and b	eam
	ļ.	at is the unit of source exp		•			
153	A	roentgen	B	gray	C	rad	
		= coulomb pe			<u> </u>	144	
154	A	2.58 X 10 ⁻⁴	B B	ogram 58 X 10 ⁻⁴	С	28 X 10 ⁻⁴	
	Λ	2.30 A 10	ט	JU / 10		20 A 10	

المملكة العربية السعودية وزارة التعليم العالي جامعــة جـازان عمادة السنة التحضيرية

	The absorbed radiation dose for any material depends on the properties of					
155	A material only	В	radiation beam only	С	material and beam	
	The unite of absorbed dose is					
156	A roentgen	В		C	rad	
157	The SI unite of absorbed dose			1 ~	l c	
137	A roentgen	В	gray	C	Sv	
158	1 Gy =rad A 10	В	100	С	1000	
	1 rad = J/kg		100	Ü	1000	
159	A 0.01	В			10	
	Living tissues exposed to 10000 rads completely destroyed. By how much this					
160	absorbed dose rise the temper			0 J k		
100	A 0.0239 K	В	239 K	C	20 K	
	Radiation is so lethal to living tissue because it imparts energy in relatively large					
161	amounts	1	uniformly to very small	l C	to single atom at	
	A uniformly at all points.	В	number of atoms.		random locations.	
	A cancer is irradiated with 1000 rads. Find the exposure in roentgens?					
162	A 10 R	В	100 R	C	1000 R	
	A tumour is irradiated with 15 Gy. Find the exposure in roentgens?					
163	A 15 R	В	150 R	C	1500 R	
	The unite of biological effect					
164	A 163		163	A	163	
	The SI unite of biological effect is					
165	A 164	Α	164	Α	164	
166	The effects of radiation on b					
166	A the type of radiation	В	the type of radiation	C	the value of energy	
	Only.		and its energy.		only.	
	Exposure to gamma ray = 2 roentgens produce a soft tissue absorbed dose of gray (Gy) .					
167	A $\begin{bmatrix} 0.02 \end{bmatrix}$	В	2	C	200	
	Exposure to x-ray = 500 roentgens produce a soft tissue absorbed dose of rads.					
168	A 5	В	50	C	500	
	The quality factor (QF) of a particular radiation is defined by comparing its effect to					
169	A 200-k eV x-ray	В	1 M-eV x-ray	C	60 ke-V gamma ray	
	A cancer is irradiated with 1000 rads of ⁶⁰ Co gamma rays with QF of 0.7. Find the					
150	biologically equivalent dose i	1	1	l =	l –	
170	A 700 rems	В	70 rems	С	7 rems	
	A cancer is irradiated with 10 Gy of ⁶⁰ Co gamma rays with QF of 0.7. Find the					
171	biologically equivalent dose i	1 _	1		7.5	
171	A 700 Sv	В	70 Sv	C	7 Sv	