Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University Preparatory Year Deanship

المملكة المعبية السعودية وزارة التُعليم العالكي
 عمـادة السنة التحضيربـة

بنك الأسئلة فى مقر الفيزياء الطيبة2 (162-تحض3)

منسق المقرر: د. هاني طلعت محسن
اساتأة المقرر : د. وليد غالي - د. عبد الرؤوف عبد الستار - د. جمال عفيفي

Ch. 13 Mechanics of Nonviscose Fluids

According to Archimedes` principle; an object floated or submerged in a fluid experiences:
$1 \quad \mid$ A downward force

A that equals the weight of the displaced fluid

An upward force that
B equals the volume of the displaced fluid.

C An upward force that equals the weight of the displaced fluid.

According to Archimedes's principal the volume of the displaced fluid the volume of the immersed object.

| 2 | A | is smaller than | B | is larger than | C |
| :--- | :--- | :--- | :--- | :--- | :--- | is equal to

When an object is suspended in a fluid by a string, the tension in the string is reduced by....

| 3 | A | the viscosity force | B $\begin{array}{l}\text { the volume of the } \\ \text { displaced fluid }\end{array}$ | C | $\begin{array}{l}\text { the weight of the } \\ \text { displaced fluid }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | The density of ice is $920 \mathrm{Kgm}^{-3}$ while that of sea water is $1025 \mathrm{Kgm}^{-3}$, what fraction of an iceberg is submerged?

4	A	0.89

B 0.98
C 8.9
A water pipe leading up to a hose has a radius of 2 cm . water leaves the hose at a rate of 4 litres/minute. Find the velocity of the water in the pipe?
$5 \quad$ A $\quad 0.005 \mathrm{~m} / \mathrm{s}$
B $\quad 0.05 \mathrm{~m} / \mathrm{s}$
$\mathrm{C} \mid$
$0.5 \mathrm{~m} / \mathrm{s}$
If a stream of fluid has its cross-sectional area halved in a certain region, its average velocity is

6 A \mid halved \quad B \mid doubled $|$| constant |
| :--- | :--- |

The pressure at the same depth at two places in a fluid at rest is \qquad

7

A | different | B | the same | C | $\begin{array}{l}\text { the atmospheric } \\ \text { pressure }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |

When a person, in an erect position, experiences an upward acceleration (a), thus the pressure in the brain $\mathrm{P}_{\text {Brain }}$ will be reduced as follow:

A| $P_{\text {Brain }}=P_{\text {Heart }}-\rho(g$ |
| :--- | :--- | :--- | :--- | :--- |
| $+a)\left(h_{\text {Brain }}+h_{\text {Heart }}\right)$ |\quad B | $P_{\text {Brain }}=P_{\text {Heart }}+\rho(g)\left(h_{\text {Brain }}-h_{\text {Heart }}\right)$ |
| :--- |$|$| $P_{\text {Brain }}=P_{\text {Heart }}-\rho$ |
| :--- |
| $(g+a)\left(h_{\text {Brain }}-h\right.$ |
| Heart $)$ |

In the reclining position, the small pressure drop between the heart and feet or brain is due to the \qquad forces.

9	A	gravitational	B	Viscous	C	Electrical

The manometer is a device used to measure the. \qquad be used also to measure liquid pressure.

Kingdom of Saudi Arabia
 Ministry of Higher Education Jazan University
 Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

	Select the correct equation that correlates between the pressures $\mathrm{P}_{\text {Feet, }}$ and $\mathrm{P}_{\text {Heart }}$ or $\mathrm{P}_{\text {Brain }}$ for adults in the standing position.					
12	buoyant force on an object in a fluid is equal to the \qquadviscosity force. B weight of the C fluid velocity					
	The volumetric flow rate of a fluid is the same at both the entering and the leaving ends; it is a statement of					
	The buoyant force depends on........................Across-sectional area of the immersedB viscosity of the liquid.C density for the immersed body.					
15	In static fluid, the pressure at a point on a depth d is determined by Atmospher pressure + \qquad					
16	The pressure at the same depth at two places in a fluid at rest is \qquad					
17	Human have adapted to the problems of moving blood upward a large distance against the force of \qquad A gravity B viscosity C \mid electricity					
18	The pressures in the lower and upper parts of the body are very different when the person is. \qquad A \square swimming B standing C 1 reclining					
19	When a person is standing, the pressure drop between the heart and feet or brain is due to the. \qquad forces. A gravitational B Viscous C Electrical					
20	The sphygmomanometer is a device used to measure.. A \mid the gas pressure $\|\mathrm{B}\|$ the blood pressure $\|\mathrm{C}\|$ the blood density					
21	The sphygmomanometer is a device used to measure the blood pressure painless at. A ${ }^{2}$ Left upper arm B \quad Left lower arm \| C \quad foot					
22	\qquad is inserted with a catheter into veins or arteries to measure the blood pressure.					

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

23	What is the buoyant force on a block of gold with a volume of $.025 \mathrm{~m}^{3}$ submerged in a tank of water (density $\left.1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) ?(\mathrm{~g}=9.8$ $\mathrm{m} / \mathrm{s}^{2}$) A 245 N B $\quad 765 \mathrm{~N}$ C\| 435 N					
	rnoulli's equation can be used under the following conditions:					
		with variable density.		The fluid is compressible, viscous and velocity is changed from point to point.		steady state, incompressible a nonviscous.
25	According to Bernoulli's equation the condition (the fluid is incompressible) means that density.. \qquad Ais constant B increased C $\mathrm{C} \mid$ decreased					
26	According to Bernoulli's equation the condition (the fluid is non-viscous) means that. \qquad Ano mechanical energy lost$\|$ B $\left.\begin{aligned} & \text { there is mechanical } \\ & \text { energy lost }\end{aligned} \right\rvert\,$friction force is high					
27	According to Bernoulli's equation the condition (the flow is streamline) means that the flow is. \qquad A not turbulent B \mid turbulent C \mid changed					
28	According to Bernoulli's equation the condition (the flow is steady-state) means that the velocity. \qquad A \mid is constant B increased C \mid decreased					
29	Blood pressure readings for a resting healthy adult are about torr. A ${ }^{\text {A }} 80 / 120$ B $\quad 120 / 80$ C $200 / 5$					
30	Systolic (peak) pressure is the \qquad pressure during complete heart pumping cycle. A \mid maximum B minimum C \mid constant					
31	Diastolic (peak) pressure is thepressure during complete heart pumping cycle. A \mid maximum \mid B \mid minimum $\|$constant					
32	According to Bernoulli's equation, for a horizontal tube with construction, at the construction the velocity increases and the pressure. \qquad A increases. $^{\text {a }}$ B \mid decreases. C \quad remains constant.					
	A person suffering from "light headedness" can be revealed by					
		lowering his head		tanding up		
34		tead of describing length and area.		s of masses and forces, w velocity and acceleration.		density and pressure.
35		left upper arm? It is closed to the pressure in the heart.		ter, why is the blood pre It is very different from the pressure in the heart		usually measured in It is closed to the pressure in the brain.

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

low					
36	A $\left\lvert\, \begin{aligned} & \text { len } \\ & \text { vis } \\ & \text { fou } \\ & \text { dia }\end{aligned}\right.$				$\begin{aligned} & \mathrm{e} \\ & \mathrm{~d} \end{aligned}$
	The flow resistance R_{f} is define				
	For spherical object of radius R moving with small velocity v through a fluid of viscosity η and density ρ_{o}, the viscous force F_{d} does not depend on...				
	The centripetal acceleration is always the gravitational acceleration. A \mid equal $\|$ much less than C much greater than				
	The aorta of an average adult human has a radius of $1.3 \times 10^{-2} \mathrm{~m}$. If the flow rate of blood is $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the flow resistance over 0.2 m distance is: $\left(n=2.084 \times 10^{-3} \mathrm{~Pa} \mathrm{~s}\right)$ A $56.8 \mathrm{kPa} \mathrm{s} \mathrm{m}^{-3}$ B $\quad 37.2 \mathrm{kPa} \mathrm{s} \mathrm{m}^{-3}$ C $66.8 \mathrm{kPa} \mathrm{s} \mathrm{m}^{-3}$				
41	The aorta of an average adult human has a radius of $1.3 \times 10^{-2} \mathrm{~m}$. If the flow rate of blood is $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and the flow resistance is $37.2 \mathrm{kPa} \mathrm{s} \mathrm{m}^{-3}$. Calculate the pressure drop over 0.2 m distance. A $\mid 0.00568 \mathrm{kPa}$ B $\quad 0.00372 \mathrm{kPa}$ C 0.00668 kPa				
42	The effective weight of an object in a centrifuge is always \qquad Its weight at rest. A \mid greater than B \mid less than C $\mathrm{C} \mid$ equal to				
42	Find the terminal velocity in air of a spherical dust particle of radius $10^{-5} \mathrm{~m}$ and density of $2 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ at $20^{\circ} \mathrm{C}$. (Viscosity of air is $1.81 \mathrm{X} 10^{-5} \mathrm{~Pa}$ s) and density of air is neglected. A $5.3 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}$ B $\quad 2.41 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}$ $\mathrm{C} \mid 7.4 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}$				
43	In a mixture of two kinds of solutes, the smaller molecules will sediment the larger one A ${ }^{\text {faster than }}$ faster than \quad B B slower than C $\mathrm{C} \mid$ equal to				
45	Find the drag force at terminal velocity $2.41 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}$ for a spherical dust particle of radius $10^{-5} \mathrm{~m}$. (Viscosity of air is $1.81 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}$) A $\mid 3.14 \times 10^{-11} \mathrm{~N}$ B 8.23×10^{-1} N C $\mathrm{C} \mid 44.2 \times 10^{12} \mathrm{~N}$				
46	What is the net resistance of the 4.73×10^{7} capillaries in the mesenteric vascular of a dog, if the radius of a single capillary is $4 \times 10^{-6} \mathrm{~m}$ and its length is 10^{-3} m.viscosity of the blood is $2.084{\mathrm{X} 10^{-3} \mathrm{~Pa} \mathrm{~s}}^{\mathrm{Pa}}$				
47	When the speed of moving object in a fluid increases slightly the high speed drag force is directly proportional to its \qquad A velocity. B ${ }^{\text {viscosity. }}$ C ${ }^{\text {C }}$ square velocity.				

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطية2 (162-تحض3)

The flow resistance R_{f} is defined as: the

| 51 | | weight of the displaced | B |
| :--- | :--- | :--- | :--- | volumetric flow rate of a fluid is constant.

C ratio of the pressure drop to the flow rate.
The sedimentation velocity for a small spherical particle moves downward through a fluid in a centrifuge depends on: The.

52 A high speed drag force.
B sphere and the viscosity
C gravity of earth.

Drag force of an object in a fluid is fluid. force.
53

A \begin{tabular}{l|l|l|l|l|}

an upward \& B \& a downward \& C \& | an opposite |
| :--- |
| direction of motion |

\hline
\end{tabular}

Ch. 15 Cohesive Forces in Liquids

The surface tension γ is defined as the force per unitexerted by one surface.
54 A \quad area

B length
C
The specific form of Laplace's law depends on

55	the mass of the fluid.	B	$\begin{array}{l}\text { the } \\ \text { structure }\end{array}$	molecular	C	$\begin{array}{l}\text { the shape of the } \\ \text { closed surface }\end{array}$

B structure. closed surface

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطية2 (162-تحض3)

	Laplace 's law for a spherical bubble takes the fo					
58		$\mathrm{Pi}-\mathrm{Po}=4 \gamma / \mathrm{r}$	B			Po
	Laplace 's law for a cylindrical tube takes the form:...................					
59		$\mathrm{Pi}-\mathrm{Po}=2 \gamma / \mathrm{r}$		$\mathrm{Pi}-\mathrm{Po}=\gamma / 2 \mathrm{r}$		Pi
	Laplace 's law for a spherical membrane takes the form.....................					
60		$\mathrm{Pi}-\mathrm{Po}=2 \gamma / \mathrm{r}$		$\mathrm{Pi}-\mathrm{Po}=\gamma$		
61	A rubber balloon is inflated to a radius of 0.1 m . The pressure inside is $1.002 \times 10^{5} \mathrm{~Pa}$, and the pressure outside is $10^{5} \mathrm{~Pa}$, the tension in its wall is:					
	The unit of surface tension is					
62						
63	Laplace's law relates the pressure difference across a closed elastic membrane or liquid film to. \qquad					
64	If the surface tension (γ) of a liquid $=7.28 \times 10^{-2} \mathrm{Nm}^{-1}$, and the length of the wire is 0.1 m , the total weight will the liquid support in the apparatus of the U-shaped loop is \qquad A $1.46 \times 10^{-2} \mathrm{~N}$ B $\quad 3.76 \times 10^{-2} \mathrm{~N}$ C $5.33 \times 10^{-2} \mathrm{~N}$					
65	What is the wall tension γ for a spherical soap bubble of a radius 0.05 m . The pressure inside is $1.002 \times 10^{5} \mathrm{~Pa}$ and the pressure outside $1 \times 10^{5} \mathrm{~Pa}$? A $\left\lvert\, \begin{aligned} & 2.5 \mathrm{~N} \mathrm{~m}^{-1}\end{aligned}\right.$ B $\mid 5 \mathrm{Nm}^{-1}$ C $10 \mathrm{~N} \mathrm{~m}^{-1}$					
Ch. 17 Direct Current						
66	For fully charged capacitor, the current across the capacitor is equal to. A \mid maximum B ${ }^{\text {one }}$ C ${ }^{\text {C }}$ zero					
67	After elapsing one time constant of charging process, the capacitor charge in the circuit can \qquad percent of its initial value.					
68	What is the final charge on the capacitor in a circuit containing resistance, capacitor and battery, $\mathrm{C}=3 \mu \mathrm{~F}, \mathrm{R}=2 \mathrm{~K} \Omega$, and $\mathrm{EMF}=6 \mathrm{~V}$ A $1.2 \times 10^{-5} \mathrm{C}$ B $1.8 \times 10^{-5} \mathrm{C}$ C $\quad 3.6 \times 10^{-5} \mathrm{C}$					
69	Small resistance is used in artificial pacemaker's charging circuits to make the capacitor....................					
70	During discharging of a capacitor the current reaches 37% of its initial value after \qquad time constant (T). A ${ }^{\prime}$ two B \mid one C ${ }^{\text {C four }}$					
71	Each cycle in the human heart begins with an \qquad pace maker pulse from a group of nerve fibres. A mechanical B thermal \square C electrical					

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

	Once the capacitor is fully charged, the currentA \| increases					
	The \qquad in the circuit steadily diminish, reaching very small values after few time constant A \mid resistance \square B \mid charge and the current \| C \quad capacitance					
	Each cycle in the human heart begins with an electrical \qquad pulse from a group of nerve fibers.					
	circuit containing a resistance of 120Ω, a capacitor $C=3 \mu \mathrm{~F}$, and an EMF $(\xi)=24$ V . The initial current will be. \qquad					
	What is the time constant (T) of an artificial pacemaker has pulses triggered 75 times per minute? A 0.013 s B $\quad 0.8 \mathrm{~s}$ CC 1.25 s					
	$\ldots \ldots \ldots \ldots \ldots \ldots$. is the rate at which the charge on a capacitor increase or decrease. A \mid Time delay B \mid Time Constant C \mid Potential difference					
	At long time $(\mathrm{t}=\infty)$, the capacitor will be fully charged and its potential difference must equal ξ, the charge q is then.					
	What is the final charge on the capacitor in a circuit containing resistance, capacitor and battery, $\mathrm{C}=3 \mu \mathrm{~F}, \mathrm{R}=2 \mathrm{~K} \Omega$, and $\mathrm{EMF}=6 \mathrm{~V}$? A $1.2 \times 10^{-5} \mathrm{C}$ B $\quad 3.6 \times 10^{-5} \mathrm{C}$ C $1.8 \times 10^{-5} \mathrm{C}$					
	In a circuit containing resistance of $2 \mathrm{~K} \Omega$, capacitor of $3 \mu \mathrm{~F}$ and battery EMF $=6 \mathrm{~V}$. $\mathrm{T}=$? A 0.018 s B $\quad 0.006 \mathrm{~s}$ C $\quad 0.036 \mathrm{~s}$					
82	Small resistance is used in artificial pacemaker's charging circuits to make the capacitor. \qquad A $\begin{aligned} & \text { stopping charge }\end{aligned}$ B slowly charge C \quad rapidly charge					
	Between 10 and 20 mA will paralyze some muscles and prevent person from releasing \qquad A fuse B \|circuit breaker C \mid Conductor					
	About 18 mA and causes breathing to stop. A produce heart ventricular fibrillation Bproduce tingling sensation C contracts muscles chest					
85	\qquad mA current applied directly to the human heart is sufficient to produce ventricular fibrillation. A 0.1 B 0.02 C 3					

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطبية2 (162-تحض3)

In hospitals, the special hazards associated with patients connected directly to electrical circuits led to \qquad their beds.

In electrical safety, to prevent electrical hazards, we must apply the following precautions:

Calculate the lethal current passing through a person grapes a defective electric appliance at 220 V with body resistance of 500 ohms. $\mathrm{I}=$
88 A 2.27 mA
B $\quad 110 \mathrm{~mA}$
C $\quad 440 \mathrm{~mA}$
The resistance of dry skin of human body is.
in case of wet skin.

89	A	decreased by factor 100	B	increased by factor 100	C	$\begin{array}{l}\text { increased by factor } \\ 1000\end{array}$

90
An electrophoresis is an efficient technique in which
separate proteins by electric field

B
separate proteins by magnetic field

C separate proteins by centrifuge

A strain gauge exploits the dependence of the resistance of a wire on its geometry is used to measure. ...of human body.
91
A temperature changes
B pressure within the
digestive tarct C skin resistance

In an electrophoresis, large protein molecule that has mass of thousands atomic mass unit drifts \qquad small ions as Na^{+}or Cl^{-}.

The average adult can detect a current as small as \qquad
93 A $\quad 20 \mathrm{~mA}$
B $\quad 18 \mathrm{~mA}$
C 11 mA

A device called \qquad is installed in the ground wire of three-wire circuits. If the current exceeds 5 mA , this device opens the circuit.

Ch. 18 Nerve Conduction

The short space between Schwan cells, in called

A	node of Ranvier	B	dendrite	C	synapses

The axon membrane has capacitance due to \qquad accumulate on the two sides.

A | charges of opposite signs | B | leakage current |
| :--- | :--- | :--- |

C \quad charges of same signs
Since charges of opposite signs accumulate on the two sides of the axon membrane, so the axon membrane has \qquad
A ${ }^{\text {nuclear filed }}$
B capacitance
C ${ }^{\text {diffusion process }}$

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطبية2 (162-تحض3)

98		$\mathrm{R}=2.5$ ohms	B	$\mathrm{R}=2.5 \times 10^{-6}$		$\mathrm{R}=2.5 \mathrm{X10} 0^{8}$ ohn
99	The resistance of a length of the axon to a current ($\mathrm{i}_{\text {axon }}$) along the axon is proportional to.					
100	The permeability of a cell membrane is a measure of the ease in which a given ion can. \qquad the membrane A \mid strike B \mid stick with C \mid pass through					
101	The capacitance of nerve cell can be reduced by					
102		e space parameter λ ind leaked out through the $\lambda=\sqrt{\frac{2 \rho_{a}}{R_{m} r}}$	dica me	es how far a current mbrane is given by $\lambda=\sqrt{\frac{R_{m} r}{2 \rho_{a}}}$	ave	s before most of it $\lambda=\sqrt{\frac{2 \rho_{a}}{R_{m}}}$
103	The net flows of Na^{+}into the cell and K^{+}out of the cell due to diffusion and electric forces are passive flow because			and K^{+}out of the cell no metabolic energy need for both flows.		diffusion and electric both flows need metabolic energy.
104		Nernst Equation has the	for	$q\left(V_{i}-V_{o}\right)=K_{B} T \ln$		$q\left(V_{o}-V_{i}\right)=K_{B} T \ln$ $\frac{C_{o}}{c_{i}}$
105	The shape and peak size of the action potential curve are \qquad the strength of the initial above threshold stimulus.					
106	What is the equilibrium potential difference for K^{+}? Assume that the temperature is $37^{\circ} \mathrm{C}(310 \mathrm{~K}), \quad \mathrm{K}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}, \mathrm{q}=\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{C}_{\mathrm{o}}=4$ and $\mathrm{C}_{\mathrm{i}}=155$.					
107		electrical changes reac action potential chang olications of moister and temperature measurements.	S,	the surface of the body they can be amplified pressure measurements.	d	about 0.1% of the ecorded as medical electroencephalogra ph and electrocardiograph.
108	Epilepsy and accidental brain damage are diagnosed by.................					electroretinogra
109	An electrocardiograph records electrical activity associated with the					

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

المملكة المعبية السعودية وزارة التعلِيم العالئي

بنك الأسئلة فى مقرر الفيزياء الطبية2 (162-تحض3)

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

المملكة المعربية الستودية
وزارة التَعليم العالئي
جامعــــة جـــازان
عمـادة السنـة التحضيرية

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

	Light incident on a metal plate can causes \qquad to be emitted. These can travel to the collector producing photoelectric current.				
122	A electrons	B	protons		
123	An electron will leave the metal surface under the condition that if it absorbs a light photon of energy \qquad its work function				
124	When electrons from a heated filament are accelerated through a large potential difference and allowed to strike a metallic target. \qquad will be produced.				
125	The Bragg condition for x - ray diffraction of crystalline structures is :				
126	The interatomic spacing (d) of parallel planes of atoms in a crystal is 0.25 nm , and the angle α of the incident x-rays is 12°. If the shortest wavelength in the x-ray beam is 0.05 nm , which wavelengths will be reflected strongly from the planes? $(\mathrm{m}=1)$				
127	\qquad .has been applied with success to biological molecules, such as proteins and nucleic acids that can be put into crystalline form like DNA.				
128	X-rays are electromagnetic waves with typically a \qquad nm wavelength, are well suited to study molecular structure.				
129	The wavelength in the electron A is the same as	mi	croscope is much smaller than	C	microscope. is much larger than
130	Scanning electron microscope can imagemorpholo				
131	Transmission electron microscope can image within few micrometers.				
132	Electron microscope image is...				
133	Scanning and transmission ele A \| x-ray	ect	ron microscopes are electrons	g...as a beam. neutrons
Ch 30 - Ch 31 Nuclear Physics					
134	Electron has charge				
135	Proton has \qquad charge				
136	Neutron has charge				no
37	Nuclear species with the same atomic number but different neutron numbers are called				

Kingdom of Saudi Arabia

Ministry of Higher Education

الفيزياء الطبية2 (162-تحض3)
بنك الأسئلة

138	Transmutation of the radioactive elements occurs in					
	A	α decays and γ decays.	B	α decays, β decays and γ decays.	C	α decays and β decays.
139	When a uranium nucleus emits an alpha particle, its atomic number is reduce by. \qquad protons B ${ }^{\text {two }}$ C $\mathrm{C} \mid$ three					
140						
141	The decay constant λ is related to the half life T by................					
142	The activity (A) of (n) moles for radioactive sample is related to its half-life (T) and the number of radioactive nuclei (N) by the relation \qquad , where $\left(N_{A}\right)$ is the Avogadro's number.					
143	The exponential decay formula has the form					
144 is the result of instability of the nucleus.					
145	A radionuclide has a half-life of 10 hours. What percentage of radionuclide remains after 20 hours? A $\mid 0.25$ B 0.5 C 0.75					
146	${ }^{131}$ I half-life is 8.1 days. If a patient ingests a small quantity of ${ }^{131}$ I. What fraction $\mathrm{N} / \mathrm{N}_{\mathrm{o}}$ after 60 days? A 0.059 B $\mid 0.0059$ C 0.59					
147	What is the unit of source activity?					
148	What is the SI unit of activity?					
149	What is the mass of a $1000-\mathrm{Ci}$ cobalt source? (Co half life $=5.27$ years), ($\mathrm{N}_{\mathrm{A}}=6.02 \mathrm{X}$ 10^{23} mole $\left.^{-1}\right)$ and $\left(1\right.$ mole of $\left.{ }^{60} \mathrm{Co}=60 \mathrm{~g}\right)$					
150	Exposure is defined as the amount of ionization produced in a unit mass of at standard temperature and pressure (STP).					
151	Exposure is defined only for					
152	Exposure depends on the properties of................					both material and bea
153	What is the unit of source exposure?					
154						

Kingdom of Saudi Arabia

Ministry of Higher Education Jazan University
Preparatory Year Deanship

بنك الأسئلة فى مقرر الفيزياء الطيبة2 (162-تحض3)

Living tissues exposed to 10000 rads completely destroyed. By how much this absorbed dose rise the temperature of the tissue? $\mathrm{C}_{\text {water }}=4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
$160 \mathrm{~A} \mid 0.0239 \mathrm{~K}$
B 239 K
C 20 K

Radiation is so lethal to living tissue because it imparts energy in relatively large amounts

161	A	uniformly at all points.	B	uniformly to very small number of atoms.	C	to single atom at random locations.
A						

Exposure to gamma ray $=2$ roentgens produce a soft tissue absorbed dose of gray (Gy).

A	0.02	B	2	C

Exposure to x-ray $=500$ roentgens produce a soft tissue absorbed dose of $\ldots . .$. . rads. 168 A 5

B $\quad 50$

C	500

The quality factor (QF) of a particular radiation is defined by comparing its effect to....

169	A	$200-\mathrm{keV}$ x-ray	B	1 M -eV x-ray	C	60 ke-V gamma ray

A cancer is irradiated with 1000 rads of ${ }^{60} \mathrm{Co}$ gamma rays with QF of 0.7. Find the biologically equivalent dose in rems?
170 A 700 rems
B 70 rems
C 7 rems
A cancer is irradiated with 10 Gy of ${ }^{60} \mathrm{Co}$ gamma rays with QF of 0.7 . Find the biologically equivalent dose in Sv ?

171	A	700 Sv

B $\quad 70 \mathrm{~Sv}$
C $\quad 7 \mathrm{~Sv}$

