All forks in 225(braches)

My way of memorizing

1- why we need to measure things?

• I chose the easiest four to memorize

We call them the Cite

- 1- costumer satisfaction
 - 2- interchangeability
 - 3-true dimensions
- 4- establish standards

Methods of measurements

- This one is easy you can memorize all six of them
 - Lets put them as letters again

• 3 D's

- Direct , in Direct, and Deflection
 - And the 3 C's
- Comparison , Complementary , Contact

Measurement applications

• CEM

- Control of (process and operations)
- Experimental engineering analysis
- Monitoring of (process and operations)

Choosing appropriate measuring instruments

- We call this one (nice CARS)
 - Cost-effectiveness
 - Accuracy
 - Resolution
 - Sensitivity
- And we finished the first lecture , easy right?

Lecture 2

Its mostly definitions so its easy to understand Last slide there is (necessity of calibration) FDDM , is the easiest thing I found to memorize it

- Fumes or smoke
 - Dust
 - Dirt
- Mechanical wear

Lecture 3

• Sources of systematic errors

I think you know it by now, its gonna be new letters so better start to write them and organize them nicely

SWEC

1- Systematic errors due to measurement
2- Wear of instruments
3-Error due to environmental input
Connecting leads

How to reduce them ?

- By using the 4 C's
 - Careful designe
- Careful analysis of test conditions
- Comparing your results with other obtained independently
 - Calibration

The principles of calibrations should be understood imo not memorized

Causes of induced noise

• PPP and internal

1-proximity to mains-powered equipment2-proximity to fluorescent lighting circuit3- proximity to radio and audio frequencies

And

Internal noise include shot noise and thermoelectric potentials

Types of biomedical sensors

• PEC

1- physical sensors

2-Electrical sensors

3-Chemical sensors

Three types of devices

(Displacement) And (Elastic resistive) transducers
 L=n^2*G*M R=p*(I/A)

- Potentiometers
- Linear proportion between V and Displacement

Biomedical measurement

• ECG (heart)most common is "floating"

• EMG (muscles)*non-invasive* *circular disc most common*

• EEG (brain)*Cup and subdermal electrodes*

Non-invasive measurements for o2 and CO2 are based on two discoveries

• O2 and CO2 diffuse through skin

• Blood changes color depending on the amount of oxygen bonded to hemoglobin

Oxygen transportation

- 2% carried dissolved in plasma
- 98% is inside the erythrocytes

Pulse oximetry

- 1- red wavelength
- 2- the near infrared region of the spectrum

beer-lamberts law : Pt=Po*10^abc a:wavelength b:is the light path length c:is the concentration of the sample

Ph electrodes

• Reference and Active electrodes

Intrinsic changes:

- (اصفر) ASFR
- Absorbance
 - Scattering
- Fluorescence
- Reflectance

Light sources and detectors

Sources are LLL

- tungsten-filament LAMPS
 - Laser diodes
 - Light-emitting diodes

Detectors are Ph

- Photo(cells)
- Photo(transistors)
 - Photo(diodes)

Advantages of optical sensors

- Small and flexible
- Free from electrical interference

• Instantaneous response to microenvironment

Presenting digital data

LCD can stand for all three of them • L for LCD

• C for computer monitor

• D for segment Display

Improving reliability

CCPR

- Choice of instrument
 - Calibration
 - Protection
 - Redundancy