Chapter 10

EXCRETION

Control of Body Temperature and Water Balance

Control of Body Temperature and Water Balance as a part of homeostasis

Homeostasis means

-Maintenance of steady internal conditions despite fluctuations in the external environment

- Examples of homeostasis
 - Thermoregulation: the maintenance of internal temperature within narrow limits
 - Osmoregulation: the control of the gain and loss of water and solutes
 - Excretion: the disposal of nitrogen-containing wastes

Thermoregulation: An animal's regulation of body temperature helps maintain homeostasis

Thermoregulation

- The process by which animals maintain an internal temperature within a tolerable range
- Ectothermic animals
 - Absorb heat from their surroundings
 - Many fish, most amphibians, lizards, most invertebrates
- Endothermic animals
 - Derive body heat mainly from their metabolism
 - Birds, mammals, a few reptiles and fish, many insects

Heat is gained or lost in four ways

Heat exchange with the environment may occur by

- 1. Conduction
- **2.** Convection
- 3. Radiation
- 4. Evaporation

Mechanisms of heat exchange

Copyright © 2009 Pearson Education, Inc.

Adaptations that balance heat gain and loss

- Five general categories of adaptations promote thermoregulation
- 1- Increased metabolic heat production
 - Hormonal changes boost metabolic rate in birds and mammals
 - Shivering
 - Increased physical activity
 - Honeybees cluster and shiver

Thermoregulation involves adaptations that balance heat gain and loss

2- Insulation

- Hair
- Feathers
- Fat layers

3- Circulatory adaptations

- Increased or decreased blood flow to skin by changing diameter of skin blood vessels
- Large ears in elephants
- Countercurrent heat exchange

Thermoregulation involves adaptations that balance heat gain and loss

- 4- Evaporative cooling
 - Sweating
 - Panting
- 5- <u>Behavioral responses</u>
 - Used by endotherms and ectotherms
 - Examples:
 - Moving to the sun or shade
 - Migrating
 - Bathing

Osmoregulation and Excretion

Osmoregulation is the active regulation of the <u>osmotic</u> <u>pressure</u> of an <u>organism's fluids</u> to maintain the <u>homeostasis</u> of the organism's <u>water content</u>; that is, it keeps the organism's fluids from becoming too diluted or too concentrated.

Animals balance the gain and loss of water and solutes through osmoregulation

Osmoconformers

- Have the same internal solute concentration as sea water
- Many marine invertebrates are osmoconformers
- Osmoregulators control their solute concentrations
 - Freshwater fishes
 - Gain water by osmosis
 - Excrete excess water
 - Uptake salt across their gills

EXCRETION

- Excretion is the process by which waste products of <u>metabolism</u> and other non-useful materials are eliminated from an <u>organism</u>.
- In vertebrates this is primarily carried out by the <u>kidneys</u> and <u>skin</u>

The Mammalian Excretory System

- The mammalian excretory system centers on paired kidneys, which are also the principal site of water balance and salt regulation
- Urine exits each kidney through a duct called the ureter
- Both ureters drain into a common urinary bladder, and urine is expelled through a urethra

Anatomy of the human excretory system

The urinary system plays several major roles in homeostasis

- The excretory system
 - Expels wastes
 - Regulates water balance
 - Regulates ion balance
- Nephrons
 - Functional units of the kidneys
 - Extract a filtrate from the blood
 - Refine the filtrate to produce urine

Anatomy of the human excretory system (L.Sec. Kidney)

Copyright © 2009 Pearson Education, Inc.

Bowman's Capsule

Renal artery ~

Renal vein -

Anatomy of the human excretory system (C. Sec. Kidney)

-Collecting Duct

To

renal

Pelvis

Tubule

Renal cortex

Renal medulla

Excretory Processes The key processes of the urinary system are filtration, reabsorption, secretion and excretion

- **1)** Filtration
 - Blood pressure forces water and many small solutes into the nephron
- 2) Reabsorption
 - Valuable solutes are reclaimed from the filtrate
- **3)** Secretion
 - Excess toxins and other solutes from the body fluids are added to the filtrate
- **4) Excretion**

The final product, urine, is excreted

Major Excretory Processes of the urinary system

Blood filtrate is refined to urine through reabsorption and secretion

- Reabsorption in the proximal and distal tubules removes Nutrients, Salt, Water
- pH is regulated by
 - Reabsorption of HCO₃[–]
 - Secretion of H⁺
- High NaCl concentration in the medulla promotes reabsorption of water.
- Antidiuretic hormone (ADH) regulates the amount of water excreted by the kidneys

Dispose of nitrogenous wastes in animals

- Nitrogenous wastes are toxic breakdown products of protein and nucleic acids (DNA and RNA)
- Animals dispose of nitrogenous wastes such as
- 1) Ammonia (NH₃)
 - Poisonous
 - Soluble in water
 - Easily disposed off by aquatic animals
- 2) Urea
 - Less toxic
 - Easier to store
 - Some land animals save water by excreting uric acid (dry waste)
 - 3) Urea and uric acid take energy to produce

Kidney dialysis can be a lifesaver

- Compensating for kidney failure
- A dialysis machine
 - Removes wastes from the blood
 - Maintains its solute concentration

Excretion of Gases

- Excess of CO₂ or O₂ in the leaves exit through stomata to the air.
- Or they are brought by phloem and xylem from anywhere in the plant body to where there are stomata to exit to the air
- They can also penetrate external cell surfaces directly to the air

Excretion of water

Guttation

- Secretion of water and its solutes by hydathodes found in the leafs epidermis of some plants in hummed environment.

Transpiration

- Water evaporates from the surface of leaves through stomata

Excretion of Nitrogenous Compounds

- Terrestrial plants convert excess amino acids into uric acid and Keto acids by deamination and deposited as crystals in the leafs
- In Aquatic plants the excess of amino acids are converted to ammonia and keto acids; ammonia exit outside the plant through stomata

Excretion by Salt glands

 Excretion of excess salts outside plant body by special salt glands as in halophytes (plants grow in waters of high salinity).

