King Saud University Department of Mathematics

244
Final Exam, May 2016

NAME:

Group Number/Instructor's Name:

ID:

Question	Grade
I	
II	
III	
IV	
Total	

Question	1	2	3	4	5	6	7	8	9	10
Answer										

I) Choose the correct answer (write it in the table above):

1) If $A^{-1}=\left[\begin{array}{rrr}-3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2\end{array}\right]$, then the adjoint adj A equals
$\frac{1}{2}\left[\begin{array}{rrr}-3 & -2 & 2 \\
2 & 1 & -1 \\
1 & 0 & 2\end{array}\right]\left[\begin{array}{rrr}\text { (b) } & \\
-3 & -2 & 2 \\
2 & 1 & -1 \\
1 & 0 & 2\end{array}\right]$ (c) \(\left[\begin{array}{rrr}1 \& 2 \& 0 \\
-\frac{5}{2} \& -4 \& \frac{1}{2} \\

-\frac{1}{2} \& 0 \& 2\end{array}\right]\) (d) None of | the |
| :--- |
| trevious |

2) If $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=6$, then $\left|\begin{array}{cc}d & 2 c \\ b & 2 a\end{array}\right|$ equals
(a) 3
(b) 12
(c) 6
(d) None of the previous
3) If $A=\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & 3 & 0\end{array}\right]$, then its inverse A^{-1} equals
$\left[\begin{array}{rrr}-3 & (a) \\ 6 & 1 & 1 \\ 2 & -2 & -3 \\ 2 & -3 & -1\end{array}\right]$
$\left[\begin{array}{rrr} & (\mathrm{b}) \\ -3 & 6 & 2 \\ 1 & -2 & -1 \\ 1 & -3 & -1\end{array}\right]$
$\left[\begin{array}{rrr}3 & -6 & -2 \\ -1 & 2 & 1 \\ -1 & 3 & 1\end{array}\right]$
(d) None of the previous
4) If $\left(2 X-I_{2}\right)^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$, then

$$
X^{-1}=\left[\begin{array}{rr}
3 & -1 \\
-2 & 1
\end{array}\right] \quad X^{-1}=\left[\begin{array}{rr}
3 & -2 \\
-1 & 1
\end{array}\right] \quad X^{-1}=\left[\begin{array}{rr}
(\mathrm{c}) & -1 \\
1 & -2
\end{array}\right] \quad \begin{gathered}
\text { (d) None of } \\
\text { the } \\
\text { previous }
\end{gathered}
$$

5) If the set $\left\{v_{1}, v_{2} \cdot v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a basis of the vector space \mathbb{R}^{n}, then
(a) $n>8$
(b) $n<8$
(c) $n=8$
(d) None of the previous
6) If $v_{1}=(1,1,0), v_{2}=(2,2,0), v_{3}=(1,-1,1)$, then the dimension of $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$ is
(a) 0
(b) 1
(c) 2
(d) 3
7) If $S=\left\{1+x, 2+x, x^{2}\right\}$ is a basis for \mathcal{P}_{2} and the coordinate vector of $p(x) \in \mathcal{P}_{2}$ is $(p)_{S}=(1,2,3)$, then $p(x)$ is
(a) $1+2 x+3 x^{2}$
(b) $3+2 x+3 x^{2}$
(c) $5+3 x+3 x^{2}$
(d) None of the previous
8) If B is a 5×7 matrix and null $(B)=3$, then null $\left(B^{T}\right)$ equals

(a) 2	(b) 5	(c) 3

$9)$ If $v_{1}=(a, 1,2,6)$ and $v_{2}=(2,2 a, 1,-1)$ are two orthogonal vectors, then
(a) $a=1$
(b) $a=-1$
(c) $a=0$
(d) None of the previous
10) If B is a 3×3 matrix with $\operatorname{det} B=2$, then
(a) nullity $(B)=2$, $\operatorname{rank}(B)=1$
(b) nullity $(B)=0$, $\operatorname{rank}(B)=3$
(c) nullity $(B)=3$, $\operatorname{rank}(B)=3$
(d) None of the previous
II) A) Let $S=\left\{v_{1}=(1,2,2,1), v_{2}=(3,6,6,3), v_{3}=(4,9,9,4), v_{4}=(5,8,9,5)\right\}$.
i) Find a subset of S that forms a basis for $\operatorname{span}(S)$.
ii) What is the dimension of $\operatorname{span}(S)$?
B) Let $B=\left\{v_{1}=(1,0,0), v_{2}=(1,1,0), v_{3}=(1,1,1),\right\}$
i) Prove that B is a basis of \mathbb{R}^{3}.
ii) If $v=(0,-1,-1) \in \mathbb{R}^{3}$, find the coordinate vector $(v)_{B}$.
iii) Find the vector $w \in \mathbb{R}^{3}$, if its coordinate vector is $(w)_{B}=(2,1,-2)$.
C) Prove that the set $\left\{p_{1}=2+5 x+x^{2}, p_{2}=-x+2 x^{2}, p_{3}=3+x^{2}\right\} \subset \mathcal{P}_{2}$ is linearly independent.
III) A) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given by $T(x, y)=(3 x, 2 x+4 y)$.
i) Find the standard matrix of T.
ii) Is T one-to-one? Justify your answer.
iii) Compute T^{-1}.
iv) Find $(T \circ T)(x, y)$.
B) Find the standard matrix for the composed transformation in \mathbb{R}^{2} given by a reflection about the line $y=x$, followed by a counterclockwise rotation about O, through $\theta=\frac{\pi}{6}$, followed by a reflection about the x-axis.
IV) A) Find the eigenvalues of the matrix $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4\end{array}\right]$. Is the matrix A invertible? Justify your answer.
B) Let $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$

Find the eigenspace of B that corresponds to the eigenvalue $\lambda=2$.

Scrap paper. It will be not be graded.

