King Saud University Department of Mathematics

244 Final Exam, May 2016

NAME:

Group Number/Instructor's Name:

ID:

	<u></u>
Question	Grade
~	
-	
Ι	
II	
11	
III	
111	
IV	
1,	
<u> </u>	
Total	
	l

Question	1	2	3	4	5	6	7	8	9	10
Answer										

I) Choose the correct answer (write it in the table above):

1) If
$$A^{-1} = \begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
, then the adjoint adj A equals
$$\begin{bmatrix} (a) \\ \frac{1}{2} \begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} (b) \\ 2 \begin{bmatrix} -3 & -2 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} (c) \begin{bmatrix} 1 & 2 & 0 \\ -\frac{5}{2} & -4 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 2 \end{bmatrix} \begin{bmatrix} (d) \text{ None of the previous} \end{bmatrix}$$

2) If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 6$, then $\begin{vmatrix} d & 2c \\ b & 2a \end{vmatrix}$ equals

(a) 3	(b) 12	(c) 6	(d) None of the previous
-------	--------	-------	--------------------------

3) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & 3 & 0 \end{bmatrix}$, then its inverse A^{-1} equals

$ \begin{bmatrix} (a) \\ -3 & 1 & 1 \\ 6 & -2 & -3 \\ 2 & -3 & -1 \end{bmatrix} $	$ \begin{pmatrix} (b) \\ -3 & 6 & 2 \\ 1 & -2 & -1 \\ 1 & -3 & -1 \end{bmatrix} $	$ \begin{bmatrix} (c) \\ 3 & -6 & -2 \\ -1 & 2 & 1 \\ -1 & 3 & 1 \end{bmatrix} $	(d) None of the previous
---	---	--	--------------------------------

4) If $(2X - I_2)^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$, then

$X^{-1} = \begin{bmatrix} (a) \\ 3 & -1 \\ -2 & 1 \end{bmatrix}$	$X^{-1} = \begin{bmatrix} (b) \\ 3 & -2 \\ -1 & 1 \end{bmatrix}$	$X^{-1} = \begin{bmatrix} (c) \\ 1 & -1 \\ -2 & 3 \end{bmatrix}$	(d) None of the previous
--	--	--	--------------------------------

5) If the set $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ is a basis of the vector space \mathbb{R}^n , then

(a)
$$n > 8$$
 (b) $n < 8$ (c) $n = 8$ (d) None of the previous

6) If $v_1 = (1, 1, 0), v_2 = (2, 2, 0), v_3 = (1, -1, 1)$, then the dimension of Span $\{v_1, v_2, v_3\}$ is

(a) 0	(b) 1	(c) 2	(d) 3
-------	-------	-------	-------

7) If $S = \{1 + x, 2 + x, x^2\}$ is a basis for \mathcal{P}_2 and the coordinate vector of $p(x) \in \mathcal{P}_2$ is $(p)_S = (1, 2, 3)$, then p(x) is

(a) $1 + 2x + 3x^2$	(b) $3 + 2x + 3x^2$	(c) $5 + 3x + 3x^2$	(d) None of the previous
---------------------	---------------------	---------------------	--------------------------

8) If B is a 5 × 7 matrix and null (B) = 3, then null (B^T) equals

(a) 2	(b) 5	(c) 3	(d) 1
-------	-------	-------	-------

9) If $v_1 = (a, 1, 2, 6)$ and $v_2 = (2, 2a, 1, -1)$ are two orthogonal vectors, then

(a) $a = 1$ (b) $a = -1$	(c) $a = 0$	(d) None of the previous
--------------------------	-------------	--------------------------

10) If B is a 3×3 matrix with det B = 2, then

(a) nullity $(B) = 2$,	(b) nullity $(B) = 0$,	(c) nullity $(B) = 3$,	(d) None of the
rank $(B) = 1$	rank $(B) = 3$	rank $(B) = 3$	
			previous

- II) A) Let $S = \{v_1 = (1, 2, 2, 1), v_2 = (3, 6, 6, 3), v_3 = (4, 9, 9, 4), v_4 = (5, 8, 9, 5)\}.$
 - i) Find a subset of S that forms a basis for $\operatorname{span}(S)$.
 - ii) What is the dimension of $\operatorname{span}(S)$?

- B) Let $B = \{v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1,)\}$
 - i) Prove that B is a basis of \mathbb{R}^3 .
 - ii) If $v = (0, -1, -1) \in \mathbb{R}^3$, find the coordinate vector $(v)_B$.
 - iii) Find the vector $w \in \mathbb{R}^3$, if its coordinate vector is $(w)_B = (2, 1, -2)$.

C) Prove that the set $\{p_1 = 2 + 5x + x^2, p_2 = -x + 2x^2, p_3 = 3 + x^2\} \subset \mathcal{P}_2$ is linearly independent.

- III) A) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by T(x, y) = (3x, 2x + 4y).
 - i) Find the standard matrix of T.
 - ii) Is T one-to-one? Justify your answer.
 - iii) Compute T^{-1} .
 - iv) Find $(T \circ T)(x, y)$.

B) Find the standard matrix for the composed transformation in \mathbb{R}^2 given by a reflection about the line y = x, followed by a counterclockwise rotation about O, through $\theta = \frac{\pi}{6}$, followed by a reflection about the x-axis.

IV) A) Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{bmatrix}$. Is the matrix A invertible? Justify your answer.

B) Let
$$B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Find the eigenspace of B that corresponds to the eigenvalue $\lambda = 2$.

Scrap paper. It will be not be graded.