Lab-2

Microscopes

Types of microscopes

- **1- Compound light Microscope**
- **2- Electron Microscope**

1- Compound Light Microscope

It is called compound because it depends on two types of lenses (optical and objective lenses)

Commonly, It has two ocular lenses and four objective lenses.

These lenses are used to magnify objects.

The term light refers to the method by which light transmits to the naked eye.

It is one of the most important instrument/tool in the field of Biology.

Parts of the Compound Light Microscope

The most important and sensitive single part in the light microscope is the objective lens.

As mentioned before there are usually four different objective lenses.

The shorter they are, the lower their magnification ability and vice versa.

It is the closest part of the microscope to the object/specimen.

Objective lenses

Magnification

To calculate the total magnification power, we use the following equation:

Total Magnification= ocular lens magnification X Objective lens magnification

Property	Low power	Medium Power	High power	Oil immersion power
Magnification of objective lens	4x	10x	40x	100x
Magnification of ocular lens	10x	10x	10x	10x
Total magnification	40x	100x	400x	1000x

Principle of light microscope

Examples of Samples under the

light microscope

Bacteria

Fungi

2- Electron Microscope

It is called Electron because it uses a beam of electrons rather than visible light.

I has a better resolution than a light microscope.

The resolution is defined as the shortest distance between two points on a specimen that can still be distinguished

There are two types of electron microscope: 1- Transmission Electron Microscope (TEM).

2- Scanning Electron Microscope (SEM).

Resolving power of microscopes

Principle of electron microscope

Transmission Electron Microscope (TEM)

Scanning Electron Microscope (SEM)

Euglena under transmission microscope

Light vs electron microscope

characteristic	Light	Electron
Image produced by	Visible light	Electron beam
Image focused by	Glass objective lens	Electromagnetic objective lenses
Image viewed through	Glass ocular lens	Fluorescent screen
Specimen placed on	Glass slide	Copper mesh
Specimen may be alive	Yes	No
Specimen requires special treatment or stains	Not always	Yes
Colored images produced	Yes	No

Prepare a slide of onion peel under light microscope .

Draw what you see.

What you need

A thin onion membrane Microscope glass slide Microscope cover slip A needle Blotting paper Dropper Iodine Solution Water Microscope

1- Add a drop of water at the center of the microscopic slide2- Use tweezers to pull of a thin membrane from the onion layer,lay it at the center of the microscope glass slide (the drop of water will help flatten the membrane).

3- Add a drop of iodine solution on the onion membrane.

4- Gently lay a microscope cover slip on the membrane and press it down gently using a needle to remove air bubbles.

5- Touch a blotting paper on one side of the slide to drain excess iodine/water solution.

6- Place the slide on the microscope stage under low power to observe.

7- Adjust focus for clarity to observe.

Observation

Onion peel cells under light microscope

To learn more, type the following on YouTube: How to use a light microscope. How to prepare a wet mount slide.

