Total questions in exam: 45 | Answered: 20 Question No. 10 Which of the following functions is one-to-one $\oint f(x) = \sqrt{16 - x^2}$ $^{\odot}f(x) = -2x + 5$ $^{\odot}f(x)=5x^2-1$ $f(x) = -2x^2 + 5$ 017/02. Stre & Next , Lill, Law

MKCL OES	Mati
Total questions in exam: 40 Answered	40
Question No. 37	
Let $a > 1$. The solution set of the	the equation $\log_x(2x^2 - a^2) = 2$ is
	a citation contraction
 S = {a, 2a} S = {a} 	
◎ S = {-a}	
● S = {-a, a}	
D	
D	
Save & Next Jan .	
	and the second se
Compaq LE1711	

Total questions in exam: 40 | Answered: 19

Question No. 13

Total questions in exam: 40 | Answered: 19

Question No. 31

Which of the following functions is one-to-one

F= { (-3,-3), (0,0), (4,-2), (1,-5) }
F= { (3,5), (6,0), (3,-2), (1,-5) }
F= { (4,-3), (1,0), (5,-2), (1,-3) }
F= { (-3,-2), (0,4), (3,-2), (1,-5) }

Save & Next منظر بالتلى

WHER OF

Total questions in exam 40 | Answered, 13

Guestion No. 35

If a function f(x) has an inverse function and f(-2) = 11, then

^(a) $f^{-1}(11) = -1$ ^(a) $f^{-1}(-2) = -11$ ^(a) $f^{-1}(11) = -2$ ^(b) $f^{-1}(2) = -11$

Save & Next , 18, 4m

OL40 OL40 Question No. 14 8305 83nm $x^4 + 2x^2 - 1 = 1$ Evaluate $\lim_{x \to -\infty} \frac{x + 2x - 1}{x^3 - 2x - 2}$ 014028305 OL42 ○ -1 28305 0 0 0 - 00 0 1 28305

Question No. 4

The supplement of the angle 45° is:

45°
60°
80°
135°

Total questions in exam: 40 | Answered: 1 Question No. 2 If $x \in \mathbb{N}$, then the value of i^{4x-1} is 0 -1 0 1 -i0 i 5

MKCL OES	Math_	FT
Total questions in exam: 40 Answered	d: 13	
Question No. 18		
Which of the following points a	re on the graph of $f(x) = 4 + 2 \log_3(1 - 2x)^2$	
(0,4), (-1,6) and $(\frac{1}{3},-2)$		
⁽³⁾ (3, 1), (1, 0) and $(\frac{1}{3}, -1)$		
⁽⁶⁾ (0,4), (-1,6) and $(\frac{1}{3},2)$ ⁽⁶⁾ (0,6), (-1,4) and $(\frac{1}{3},2)$		
1		
	R	
	*	
مط باللي Save & Next		

MKCL OES Total questions in exam: 40 | Answered: 25 Question No. 24 Let $a \in (-\infty, 0]$. Solve the inequality $|2x - 2| \le |-2a|$. • $(-\infty, 1+a] \cup [1-a, +\infty)$ • [1-a, 1+a]○ [1 + a, 1 - a] \odot [-a, a] مطرفلی Save & Next

and an attempt in at	cam: 40 Answered: 15	
Total questions in ea		
Question No. 7		
	(1 + ant ² 0) equals	
The expression	$(1 + \cot^2 \theta)$ equals	
[©] cos ² θ		
[©] sec ² θ		
[©] sin ² θ		
[©] csc ² θ		
	A Standard	
على Save & Next	Da her	

MKCL OES					
Total question	s in exam; 40	Answered: 1	4		
Question No.	40	92.30-	0230	2	30
The solution	n set of the ea	quation log ₅	(x+2) + 10	$\log_5(x-2)$	= 1
ØØ	Giz				
{-3}{3}					
{-3,3}					
Ľ	1				

Total questions in exam: 40 | Answered: 38 Question No. 4 Let $a \in \mathbb{R}$ and $f(x) = 0.9^{(a^2-3a+2)x-1} - a$. Give the condition on a such that f(x) is increasing. $a \in (2,\infty)$ $a \in (-\infty,1)$ 100616 $a \in (1,2)$ $\bigcirc a \in (-\infty, 1] \cup [2, \infty)$

MKCL OES Mi
Total questions in exam: 40 Answered: 36
Question No. 27
If $a \neq 1$ is a positive real number such that $5^x = a$ then $x =$
• $\frac{\ln 5}{\ln a}$ • $\ln(\frac{a}{5})$ • $\frac{\ln a}{\ln 5}$ • $\ln(\frac{5}{a})$

Total questions in exam: 40 | Answered: 31 **Question No. 2** Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8|+a>0 is $(-\infty,2) \cup (2,+\infty)$ a=1 a=0 a=2 a=-1

MKCL OES Total questions in exam: 40 | Answered Question No. 12 Evaluate $\lim_{x \to -\infty} \frac{x^4 + 2x^2 - 1}{x^3 - 2x - 2} =$ 0 -1 01 00 0 - x

MKCL OES

Total questions in exam: 40 | Answered: 5 Question No. 11 If $a \neq 1$ is a positive real number such that $5^x = a$ then x = $\ln(\frac{5}{a})$ 🔍 in a In S $\log\left(\frac{a}{s}\right)$ 1 In 5 In a

MKCL OES Total questions in exam: 40 | Answered: 5 Question No. 10 The expression $(\cos^2\theta + \sin^2\theta)$ equals ^O sec²θ 0 1 © csc²θ 0 -1

Question No. 1 Evaluate $\lim_{x \to 2} \frac{x^3 - 1}{x - 1} =$ 01 07 0 2 0 4

Question No. 2 Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8|+a>0 is $(-\infty,2) \cup (2,+\infty)$ then 0 a=1 ● a=0 @ a=2 ◎ a=-1

Total questions in exam: 40 | Answered: 14 **Question No. 28** Factoring $8x^3 - y^3$ gives $2x^3 - y^3$ $(2x-y)(x^2-2xy+y^2)$ $(2x-y)(4x^{2'}+2xy+y^2)$ $(2x+y)(x^2+2xy+y^2)$

Total questions in exam: 40 | Answered: 12 Question No. 30 The supplement of the angle 20° is: 0. 70° ◎ 80° 0 180° 160°

Question No. 2 Let $a \in \mathbb{R}$. If the solution set of the inequality |4x-8| + a > 0 is $(-\infty, 2) \cup (2, +\infty)$ then a = 1 a=0 a=2 a = -1

Total questions in exam: 40 | Answered: 12

Question No. 39

Use set notation, and write the elements belonging to the set $\{x | x \text{ is a natural number less than 3}\}$

Ø
{0}
{1,2}
{1,2,3}

Saun & Marrie Marrie

	MKCL OES
	Total questions in exam: 40 Answered: 11
	Total question
	Question No. 9
	Question No. 0
	Evaluate $\lim_{x \to 2} \frac{x-2}{ x-2 } =$
	0-2
	00
	02
N N N N N N N N N N N N N N N N N N N	O Does not exist
	Save & Next and a law

Compag LE1711

Total questions in exam: 40 | Answered: 13

Question No. 40

The graph of
$$f(x) = -\left(\frac{1}{2}\right)^x$$
 is

Increasing

Constant

Decreasing

Decreasing and Increasing

Total questions in exam: 40 | Answered: 7 Question No. 27 If $f(x) = -\frac{1}{3}x + 1$, the domain of $f^{-1}(x)$ is • [-3,1)• $[-\frac{1}{3},1)$ ◎ [0,∞) all real numbers

MKCL OES
Total questions in exam: 40 Answered: 11

MKCL OES

Total questions in exam: 40 | Answered: 0

Question No. 11

If x+a is a factor of the polynomial f(x) then

$$f(-a) = 0$$

$$f(a) = -a$$

$$f(-a) \neq 0$$

$$f(a) = 0$$

A

Total questions in exam: 40 | Answered: 7 Question No. 22 Let $a \in \mathbb{R}$. Give the condition on a that makes the relation $F = \{(-1, 1), (2, 1), (a, 3), (-2, a)\}$ a function of a that makes the relation $F = \{(-1, 1), (2, 1), (a, 3), (-2, a)\}$ $a \in \{-1, -2, 1, 2, 3\}$ $\bigcirc a \in \mathbb{R} \setminus \{1,3\}$ \circ $a \in \mathbb{R}$ $\bigcirc a \in \mathbb{R} \setminus \{-1, 2, -2\}$ Save & Next util sink

Total questions in exam: 40 | Answered: 7 Question No. 23 Simplify $\frac{1}{9}\left(\frac{12}{4}m - \frac{9}{2}n - 27\right)$ $\frac{m}{15} - \frac{n}{6} - 9$ ◎ 12 m-3n-9 $^{\odot} \quad \frac{1}{3}m - \frac{n}{2} - 3$ 0 27 Save & Next منظ والألى HPC

		n	C. S.	
		1.000		G
MKCL OES				Math_F
Total questions in exa	um 40 Answered 0			
Question No. 10				
Let $f(x) = x^{q} + c$ $\bigcirc c = 0$ $\bigcirc c = 1$ $\bigcirc c = d$ $\bigcirc c = -1$	and $g(x) = x$, give	the value of <i>c</i> suc	that $f(x + 1)$ =	= xg(x) +
Α				

a of the second second second second		
MKCL OES Orfine Evolucition System		
Total questions in exam: 40	Answered: 0	

Total questions in exam: 40 | Answered: 0 Online Evoluction Question No. 3 Evaluate $\lim_{x \to \infty} (x^4 - x^2 + x - 4) =$ 0 -4 0 4 0 0 0 00

Total questions in exam. 40 | Answored: 0 MKCL OES Question No. 15 Solve the inequality $|x^2 - 5x + 4| \le 0$. \circ $S = (1, +\infty)$ ◎ S = {1,4} S = (1, 4) \odot S = $[4, +\infty)$

Total questions in exam: 40 | Answered: 0

Question No. 6

Use the quadratic formula to solve this equation:

 $8x^2 = 6x - 1$

 $x = \{4, \frac{1}{2}\}$ $x = \{-\frac{1}{2}, \frac{1}{4}\}$ $x = \{\frac{1}{2}, \frac{1}{4}\}$ $x = \{2, \frac{1}{4}\}$

MKCL OF	S	
Total ques	itions in exam: 40 Answered: 0	
Question (No. 14	
The range	e of the function $f(x) = -x^2 + 1$ is	
● (-=,1] ● [1,=)	$y(x) = -x^2 + 1$ is	
· [-1,)		
© (-=,-1]		
10.00		

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 16 Compute the product (x-2)(x-3) $x^2 + 5x + 6$ ⊙ x²-5x - 6 $x^2 - 6x + 5$ $x^2 - 5x + 6$

MKCL OES Creffere Evolution System			
Total questions in exam	40 Answered: 0		
Question No. 9			
If A is an agent			
If θ is an acute and	igle in a right tri	angle, then tank	9 =
opposite hypotenuse			
opposite			
adjacent			
adjacent opposite			
adjacent			
hypotenuse			

Math_F MKCL OES Total questions in exam 40 | Answered: 0 Question No. 29 If f(x) is a polynomial such that the remainder of the division $f(x) \div (x + 4)$ equals 10 then ⁽ⁱ⁾ f(10) = -4^(a) f(-4) = 10⁽⁰⁾ f(4) = 10f(10) = 4Save & Next مسلر الدلي

	uestion No. 8	1A
	ruestion No. 8	
	$\csc\theta =$	
	L3C0 =	
0	1	
	cos0	
0	cosθ	
	sinθ	
0	1	
	sin0	
No.	sinθ	
all fill	cosθ	
1		
11		
1000		

HIKCI OF

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 24 The equation $y = \log_2(3x)$ can be written as $x = \frac{2^{y}}{3}$ $^{\bigcirc} y = \frac{2^x}{3}$ • $y = 3^x$ $x = 2^y$ •

MKCL OES

Total questions in exam 40 | Answered: 0

Question No. 26

Which of the following functions is not one-to-one

$$f(x) = x^{3}$$

$$f(x) = \sqrt{x}$$

$$f(x) = -x^{2}$$

$$f(x) = -x$$

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 25 Find the quotient $\frac{6x^2}{2x^5} \div \frac{3x}{x^4}$, where $x \neq 0$ 0 <u>1</u> 3 0 1 ① 1
 2
 0 -1

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 23 Evaluate: |-12 + (5 - 2)|0 9 06 0 -3 04

Question No. 31 Evaluate $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} =$ 0 1 4 0 1-6 $\frac{1}{2}$ $\bigcirc \frac{1}{6}$

Total questions in exa	m 40 Answe	red: 0	
Question No. 39			
The supplement	of the angle	50° is:	
© 50°			
[©] 150°			
© 130°			
[©] 40°			

Total questions in exam: 40 | Answered: 0

Question No. 40

The graph of $f(x) = 3^x$ is

- O Increasing
- O Constant
- Decreasing and Increasing
- Decreasing

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 33 Give the slope of the line 4y - 8x + 28 = 00 -2 0 -7 0 2 07

Ma MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 32 The solution set of the equation $2 \log_2 x - \log_2(4x + 5) = 0$ is 0 (5) 0 {-1.5} 00 ◎ {-1} Save & Next J.B., Lin

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 34 Evaluate $\lim_{x \to 1^*} \frac{x^2 - 1}{|x - 1|}$ 02 06 0 -2 0.1

Total questions in exam: 40 | Answered: 17 Question No. 4 What are the factors of this quadratic equation $2x^2 - 6x - 5 = 0$ (4x - 5)(2x + 1) (8x + 5)(x - 1) (4x - 1)(2x + 5) (x + 1)(8x - 5)

Total questions in exam: 40 | Answered: 10 Question No. 11 If $\sin \theta = \frac{4}{5}$ then $\cot \theta =$, where 0°<9<90° 0 4 3 0 3 | 5 <u>5</u>
 <u>3</u> ◎ <u>3</u> 4

Question No. 15
Simplify
$$\left(\frac{-4n^6m^4}{n^2}\right)^{1/2}$$
 where $m \neq 0$
 $a = \frac{1}{8n^9m^3}$
 $a = -8n^9m^3$
 $a = \frac{1}{8n^9m^3}$
 b is not a real number

Question No. 34 Find the sum $\frac{3}{2y} - \frac{5}{2y}$ $\bigcirc \frac{1}{y}$ 0 1 44 $-\frac{1}{y}$ 0 11 $\overline{4y^2}$

Question No. 33 If $f(x) = x^3 + 2x^2 - 1$ then $f(a^4) =$ $a^7 + 2a^6 - 1$ $a+2a^{-1}-1$ $a^{12} + 2a^8 - 1$ [◎] a⁹ -1

Total questions in exam: 40 | Answered: 0 OLAD OLAD Question No. 8 8305 $3x^4 + x + 1 =$ Evaluate $\lim_{x\to -1}$ x+4014028305 0-4028305 01 01403 00 143028305

OLAD OLAU Question No. 11 28305 Factor: $5x^2 - tx^2 - 5z + tz$ • $(x^2 - z)(5 - t)$ • $(x^2 - z)(5 + t)$ $(x^2 + z)(5 + t)$ $(x^2 + z)(5 - t)$ 4028305

Total questions in exam; 40 | Answered; 0 Question No. 6 Simplify $\left(x^{\frac{1}{2}}-3\right)\left(x^{\frac{1}{2}}+3\right)$ 014028305 • x-9 • x+9 05 ⊙ x − 3 0 x - 3 0 x + 3 0 (4028305

MKCL OES

Total questions in exam: 40 | Answered: 22 Question No. 23 Let $f(x) = -\frac{3}{2}x + 4$, find the value of a such that f(2a) = 7. ◎ a = 0. ◎ a=1. ◎ a = -1. ◎ a = 2.

	TU2NS	
The degree of the polyn	nomial $5x^2 + 3x$	
© 5 0/4		
• 5 • 3 • 2		
 2 52 		
52		
94405	199	
1000	100	
	/	
C. Ala		

Total questions in exam: 40 | Answered: 0 Question No. 9 If f(x) is a polynomial such that f(5) = -7 then the remainder of the $f(x) \div (x-5)$ equals: ● 5 ¹28305 0-7 07

🔳 7.V1 🕑

۹:۰۵ ص +966 59 372 4422 می ۸:۵۹، ۲۰۱۸/۱۲/۲۰

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 3 The solution set of $-2 \le 3 - 5x \le 18$ is ● (-∞,1) ◎ (-3,∞) • (-3,1) ◎ [-3,1]

معنظ والقلى Save & Next	
	and the second division of the second divisio

MKCL OES Total questions in exam: 40 | Answered: 0 Question No. 5 The horizontal asymptote to the graph of $f(x) = 3^{x-1} + 2$. ♥ y = 2 0 x=-2 ◎ y = -2

014041305 Question No. 13 Use the square root property to solve this quadratic equation 305 014028305 ● ±4i ● √16 305 0 -4 ● ±√24

Total questions in exam, 40 | Answered Question No. 25 Given that $f(x) = \log_{\frac{1}{2}}(x+2)$, then f(2) =0 1 28305 $\bigcirc \frac{1}{2}$ 0 2 0 -2

MKCL OES	
Total questions in exam: 40	Answered: 0

Total questions in exam: 40 | Answered: 0 014028305 Question No. 2 The solution of the equation $2^x = 3^{2x-1}$ is ln 2 2 ln 3-ln 2 O ln2 ln 2-2 ln 3 In 3 ln 2-2 ln 3 In 3 2 ln 3-ln 2 حمنظ والقالي Save & Next

MKCL OES Total questions in exam 40 | Answered 5 Ouestion No. 8 The product z(1+i) is a real number if ○ = ∈ R. BD > 2 ∈ R.
2 is the complex conjugate of 1+i. © z is a pure imaginary number.

معدراتش Save & Next	
	Scanned by C
Question No. 1	017/90
The solution of the equ	ation $\ln(3x) = 2$ is
$\circ e^2$ $\circ e^3$	
$ \stackrel{\circ}{=} \frac{e^3}{2} \\ \stackrel{\circ}{=} \frac{3e^2}{2} \\ \stackrel{\circ}{=} \frac{e^2}{3} $	
3	
D	
معند راقدان Save & Next	
	Scanned by C

Total questions in exam: 40 | Answered: 0 Question No. 12 Let a be an integer. Give all values of a such that the function F is a one-to-one function. $F = \{(7, -1), (5, 1 - a), (0, 5), (-2, a), (1, 3)\}$ $2\}$ 4028305 • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2\}$ • $a \in \mathbb{R} \setminus \{-1, 5, 3, 2, -4, -2\}$ $\bigcirc a \in \mathbb{R} \setminus \{5,3,2\}$ • $a \in \{1, 5, -2\}$ • $a \in \{1, 5, -2\}$ ~28305 حظ والثلي Save & Next

 Total questions in exam: 40 | Answered: 0

 Question No. 12

 Question No. 12

•

ت ۲:۳۱ 📼 الستا ۲:۳۱ 🐨 😵 🕸 ۲:۳۱ من الته که ۲:۳۱ من الته کې 🕸 🖉 ۲:۳۱ من

 \leftarrow

MATH Final2018... Q

OLAO 0130 Question No. 15 The graph of $f(x) = -3x^2 + x + 4$ is Open left Open right Open down Open up 0

MKCL OES Math_r Total questions in exam: 40 | Answered: 17 Question No. 18 9636 Which of the following is a pair of inverse functions? • f(x) = 2x - 1, where $x \in \mathbb{R}$, and $g(x) = x + \frac{1}{2}$, where $x \in \mathbb{R}$. • $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 - 3$, where $x \in [0, \infty)$. • f(x) = x, where $x \in \mathbb{R}$, and g(x) = -x, where $x \in \mathbb{R}$. • $f(x) = \sqrt{3+x}$, where $x \in [-3, \infty)$, and $g(x) = x^2 + 3$, where $x \in [0, \infty)$.

otal questions in exam: 40 | Answered: 0

Question No. 20 The solution set of the equation 3(x+3) = 3x - 9 is • the set of real numbers ● {2,3} 0 1 O Ø 01403

MKCL OES

MKCL OES Total questions in exam: 40 | Answered: 6 Question No. 7 The horizontal asymptote to the graph of $f(x) = 2^x - 3$. ⊙ y = -3 ⊙ x = -2 ⊙ y = 3 ◎ x = 2 2 حظ والثلي Save & Next HP Compaq LE2002×

Total questions in exam: 40 | Answered: 0 Evaluate $\lim_{x \to -3} \frac{x^2 + 7x + 12}{x + 3} =$ OLAO 0 13 28305 0 4 028305 0-3 00

Total questions in exam: 40	Answered: 0	
	0	0/
Question No. 16	0240283	14038

Total questions in exam: 40 | Answered: 0 Question No. 17 The domain of the function $f(x) = e^{x^2 - 3x + 1} - 2$ is: R • $(0,\infty)$ • $(-1,\infty)$ • $(-\infty,0)$

17/ ۲۸

Math_ Total questions in exam: 40 | Answered: 0 Question No. 21 Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$, and $A = \{1, 3, 5, 7\}$ the complement of A is 00 0 {1, 2, 3, 4, 5, 6, 7}

014028305 Question No. 23 Evaluate $\lim_{x \to -3} \frac{|x+3|}{x+3}$ x+-3 m 014028305 00 28305 02 01 O Does not exist

Question No. 18 2400 2400 2400

Total questions in exam: 40 | Answered: 0 0130283n-Question No. 22 $\begin{cases} x^4 & \text{if } x \le 1 \\ x \le 1 \end{cases} \text{ is continuous if } \end{cases}$ The function $f(x) = \begin{cases} x^4 & \text{if } x \le 1 \\ k - x^4 & \text{if } x > 1 \end{cases}$ -1.4028305 214028305 4640-● k=-1 • k=1 • k=0 0 k=2

۲:10 IIII WIFiCall الله 36 ℃ \$ \$ ۲:10 III WIFiCall © \$ © \$ 10 III WIFiCall

 \leftarrow

: 💦 🗋 MATH Final-BAT...

Question No. 15 If $p(x) = \sqrt{x+3}$ and $q(x) = \sqrt{x-4}$. Determine the domain of $(p \cdot q)(x)$. $x \in (-\infty, -3) \cup (4, \infty)$ • $x \in [-3, 4]$ • $x \in [4, \infty)$ ○ $x \in (-3, 4)$ الالى Ive & Next الالى

Ma RCLOB our parsiters is exam. 40 | Answered 1 Downton No. 2 The solution set of the equation 12(x-2) = 4 - 2x is 0.2 00 0 (2,-2) 9 (2) Name & Street, all, and

.Dr.Shadi 🧒 @ Plan (A) باحث مقدمة في الرياضيات طلاب و طالبات النهائي • 🖻 ورقتان ۲ MACL UES Question No. 33 $x^2 - 1$ $x \neq 1$ then $\lim_{x \to 1} f(x)$ is if f(x) =6 x-1 1 x=1 if 0 -2 02 01 03

MKCL OES Total questions in exam: 40 | Answered: 5 Question No. 6 Evaluate $\lim_{x \to \infty} (x^3 + x - 3) =$ 0 0 0 3 0 -3 0 00 65

Total questions in exam: 40 | Answered: 2 AA40 Question No. 3 8800 Evaluate $\lim_{x \to -\infty} \frac{x^3 + x^2 - 1}{x^2 - x - 1} =$ AA1-0 -1 8820 0 0 0 - 00 0 1

MKCL OES 33 من 151 Question No. 18 The function $f(x) = -2x^2 + 4x + 1$ is equivalent to $Gf(x) = -2(x-1)^2 - 3$ $\circ f(x) = -2(x-1)^2 + 3$ $f(x) = 2(x-1)^2 + 3$ $f(x) = -2(x+1)^2 + 3$ a-

MKCL OES Creating Evaluation System		
Total questions in exam: 40 Answered: 0		
Question No. 1		

ANK A	the second s	No. of Concession, Name
,	MKCL OES Culare Endoator System	- States
(ASSA	Total questions in exam: 40 Answered: 0	
	Question No. 1	24400
	Factoring $x^3 - 8y^3$ gives	2
	$(x-2y)(x^2+2xy+4y^2)$	
	$(x + 2y)(x^2 - 2xy + 4y^2)$	6
	• $(x - 2y)(x^2 - 2xy + y^2)$ • $x^3 - 8y^3$	
	Δ	
1		
	L3	
	Save & Next معط والالى	

