
$Q(1)$

$$
v_{0}=283 \mathrm{~m} / \mathrm{s} \quad \theta_{0}=60^{\circ}
$$

$$
h=\frac{v v_{0 y}^{2}}{2 g}=\frac{v_{0}^{2}\left(\sin \theta_{0}\right)^{2}}{2 g}=\frac{(283)^{2}(\sin 60)^{2}}{2(9.8)}=3064.6 \mathrm{~m}
$$

$Q(2)$

$$
\begin{align*}
& \vec{v}_{f}=3 i+9 j \\
& \overrightarrow{V_{p}}=2 i+4 j \\
& a=\frac{v_{p}-v_{i}}{\Delta t}=\frac{i+5 j}{5}=5 S \tag{B}\\
& \text { avg. }
\end{align*}
$$

Q(3) circular path $S=|2 r|=5 \mathrm{~m} / \mathrm{s} \quad r=10 \mathrm{~m}$

$$
\begin{equation*}
\text { Period }=\frac{2 \pi r}{|v|}=\frac{2 \pi(16)}{5}=4 \pi s \tag{B}
\end{equation*}
$$

$Q(4)$

initial height launching height

Horizontal range $(R)=$,
 (return)

$$
\begin{align*}
& \text { Qs.5-6: } \quad x=5 t^{2}+16 \quad y=-t^{3}+5 \\
& \begin{aligned}
\vec{v}=v_{x} i+v_{y} j & =\frac{d x}{d t} i+\frac{d y}{d t} j \\
& =10 t i+-3 t^{2} j
\end{aligned}
\end{align*}
$$

$Q(6)$

$$
\begin{align*}
\vec{r} & =x i+y j \\
& =\left(5 t^{2}+16\right) i+\left(-t^{3}+5\right) j \\
a t t & =2 s^{\prime} \Rightarrow \vec{r}=\left[5(2)^{2}+16\right] i+\left[-(2)^{3}+5\right] j \\
1 & \vec{r}=36 i-3 j
\end{align*}
$$

Qs. 7-9
$m=5 \mathrm{~kg}$

$Q(7) \quad F_{\text {net }, x}=\sum F_{x}=0$

Free Body Diagramfor
(m)

$$
\begin{equation*}
T_{2} \cos \left(45^{\circ}\right)-T_{1} \cos (30)=0 \tag{B}
\end{equation*}
$$

Q(8) $\quad|W|=|F g|=m g=5(9.8)=+49 \mathrm{~N}$ (D) Siciñ 1

$$
\sum F_{y}=0 \Rightarrow T_{1} \sin (3 \theta)+T_{2} \sin (45)=m g
$$

$Q(a)$ (A)

$Q(10) \quad \mu_{s}$ is dimensionless (B)

$$
\begin{aligned}
& \left|f_{s}\right|=\mu_{s} \mid F_{N} \\
& N=(1 / 2) N
\end{aligned}
$$

Q(11) $v_{y}=v_{0 y}-g t=v_{0} \sin \theta_{0}-g t$ Pو 多 1 名

$$
\begin{equation*}
a=-9 \tag{C}
\end{equation*}
$$

$$
\begin{align*}
& \left|F_{\text {net }}\right|=? \text { ? } \\
& F_{\text {net }}=\sum F=\vec{F}_{1}+\vec{F}_{2} \\
& =(7-3) i+(-5+4) j=6 i-1 j \\
& \left|F_{\text {net }}\right|=\sqrt{4^{2}+1^{2}}=4.12 \mathrm{~N} \\
& \text { (B) Fad, } x \text { Fnait } y \\
& Q(13) \quad m=0.15 \mathrm{~kg} \quad a(t)=8-18 t \quad t=3.45 \\
& F_{\text {net }}=m a \\
& =0.15(8-18 t) \\
& \text { along an } x \text {-axis } \\
& \Rightarrow i \\
& \vec{a}=a i \\
& \text { at } t=3.4 \Rightarrow F_{\text {net }}=0.15(8-18(3.4)) \\
& =-7.98 \\
& \overrightarrow{F_{\text {net }}}=m \vec{a}=-7.98 \mathrm{C} \tag{A}
\end{align*}
$$

Q (14) in circular path $\Rightarrow v=$ dir. (nay)
tangent $S:|v|$

年
at $(0,3) \quad v=6 i$

$$
v=3
$$

at point B
(A) $(x$, anus eosin \Leftarrow Th, $(i$ jo l, $)$

$$
=0.58 \mathrm{~N}, \text { North }
$$

Q(15)

$$
\begin{aligned}
r_{f} & =-2 i+8 j-2 k \\
r_{i} & =(+5) i(-6) j(-2) k \quad \Delta t=105 \\
r_{f}-r_{i}- & =-7 i+14 j-4 k \\
v_{\text {avg. }}=\frac{r_{f}-r_{i}}{\Delta t} & =\frac{-7}{10} i+\frac{14}{10} j-\frac{4}{10} k \\
& =-0.7 i+1.4 j-0.4 k \quad \text { (B) }
\end{aligned}
$$

$Q(17)$

$$
\begin{aligned}
& m=980 \mathrm{~kg} \quad|r|=28 \mathrm{~m} / \mathrm{s} \quad r=230 \mathrm{~m} \\
& \text { circular track } \Rightarrow\left|F_{\perp}\right|=m a_{\perp}=m \frac{z^{2}}{r} \\
&|f|=\left|F_{\perp}\right|=m \frac{v^{2}}{r}=980 \\
& \frac{(28)^{2}}{230}=3340.5 \mathrm{~N}
\end{aligned}
$$

$Q(18) \quad \sum F_{x}=m a_{x}$

$$
\begin{align*}
& 9-8 \cos 62=3 a_{x} \\
& a_{x}=\frac{5.2}{3}=1.75 \mathrm{~m} / \mathrm{s}^{2} \tag{B}
\end{align*}
$$

$Q(19) \quad v_{0}=\underset{v_{0 x}}{5} i+\underset{v_{0 y} y}{4} j$
at any point $\Rightarrow v_{x}=v_{\delta x}=$ const

$$
\begin{equation*}
v_{x}=v_{o x}=5 \mathrm{~m} / \mathrm{s} \tag{D}
\end{equation*}
$$

$\frac{\text { s }}{\text { q }}$

$$
\begin{align*}
& V_{0 x}=23 \mathrm{~m} / \mathrm{s} \quad V_{0 y}=54 \mathrm{~m} / \mathrm{s} \\
& \theta_{0}=\tan ^{-1} \frac{V_{0} y}{v_{0 x}}=\tan ^{-1} \frac{54}{23}=66.9 \simeq 67^{\circ} \tag{B}
\end{align*}
$$

$Q(21) \quad F=4 N \quad W=10 \mathrm{~N}$

$$
\begin{align*}
& F-f_{k}=0 \\
& f_{k}=F=\mu_{k} F_{N} \Rightarrow \mu_{k}=\frac{F}{F_{N}}=\frac{4}{10}=0.4 \tag{D}
\end{align*}
$$

$Q(22\}-23)$

$Q(22)$

$$
\begin{aligned}
\vec{F}=\left(m_{1}+m_{2}+m_{3}+m_{4}\right) a & =(10+3+5+\eta) 3= \\
& =20 \times 3=60 \mathrm{~N}
\end{aligned}
$$

Q(23) at cord (3)

$$
F_{3}=T_{3}=(\underbrace{\left(m_{1}+m_{2}+m_{3}\right.}_{\text {total }}) 9
$$

$$
\begin{equation*}
\text { total mass }=m_{1}+m_{2}+m_{3}=10+3+5=18 \mathrm{~kg} \tag{A}
\end{equation*}
$$

Q(24) $m=75 \mathrm{~kg} \Rightarrow w=m g=735 \mathrm{~N}$
downward acceleration $\Rightarrow a_{y}=-1.7 \mathrm{~m} / \mathrm{s}^{2}=-a$

$$
\begin{aligned}
F_{N}=m\left(g+a_{y}\right) & =75(9.8-1.7) \\
& =607.5 \mathrm{~N}
\end{aligned}
$$

Q(25)

$$
\begin{align*}
& \sum F_{y}=0 \quad\left(F_{N}-m g \cos 60=0\right) \\
& F_{N}=m g \cos 60=m g \cos \theta \tag{C}
\end{align*}
$$

Q(26)

$$
\begin{align*}
& \sum F_{x}=m a_{x} \\
& \begin{aligned}
\left|\sum F_{x}\right|=|-m g \sin 60|=m g \sin 60= & 25(a .8) \sin 60 \\
& =212.17 \mathrm{~N}
\end{aligned}
\end{align*}
$$

$Q(27)$

Force F on A from $B=F_{1} \quad A$ usjit, B vo A نَ

$$
\begin{aligned}
-F_{10} & =+F_{2} \\
j=\left|F_{1}\right| & =\left|F_{2}\right|
\end{aligned}
$$

(1)

on $A: \sum F_{x}=m_{A} a_{x}$ F_{2} : Force on B from A

$$
\begin{equation*}
60-F_{1}=5(2) \Rightarrow F_{1}=60-10=50 \mathrm{~N} \tag{A}
\end{equation*}
$$

or.
(2) on $B: \sum F_{X}=m_{B} a_{x}$

$$
\begin{equation*}
F_{2}=25(2)=50 \mathrm{~N} \Rightarrow F_{1}=F_{2}=50 \mathrm{~N} \tag{A}
\end{equation*}
$$

$$
F_{N}=m\left(g+a_{y}\right)=m g+m a_{y}
$$

scale readiy: $: F_{N}>m g \Rightarrow a_{y}=+a$
\Rightarrow accelerati ig up ward (A)
Q(29) $\quad \theta_{0}=25^{\circ} \quad \tau_{0}=? \quad R=140 \mathrm{~m}$

$$
R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g} \Rightarrow v_{0}=\sqrt{\frac{R g}{\sin 2 \theta_{0}}}=\sqrt{\frac{140(9.8)}{(\sin 50)}}=42.3 \mathrm{~m} / \mathrm{s}
$$

Q(30) (D) Normal force always 1 the surface.
$Q(31)$

$$
\begin{array}{rlr}
m_{1}=1 \mathrm{~kg} \\
a_{1} & =\frac{\left|v_{1}\right|^{2}}{r}=\frac{1}{1}=1 & v_{1}=v_{2}=v=1 \mathrm{~kg} / \mathrm{s} \quad r_{1}=r_{2}=r_{2} 1 \mathrm{~m} \\
& \Rightarrow a_{2}=\frac{\left|v_{2}\right|^{2}}{r_{2}}=\frac{1}{1}=1
\end{array}
$$

$Q(32)$ along an x_{1} axis $\Rightarrow \sum F_{x}=m q_{x}$

A] $10=m a_{x}$

D

B]

$$
\begin{aligned}
& \left.10+5=m a_{x} \quad \quad\right] 10+5 \cos \theta=m a_{x} \\
& 15=m_{x}
\end{aligned}
$$

D] $10-5=\mathrm{ma}_{x}$

$$
5=m q_{x}
$$

家う,

Q(33)

before it slips \Rightarrow start to mave but not maving

$$
\begin{align*}
& x f_{s, \max }=\mu_{s}^{\mu} F_{N}=\mu_{s} m g=0.4(5)(9.8)=19.6 \mathrm{~N} \\
& F_{a p p, \max }=f_{s, \max }=19.6 \mathrm{~N} \text { B } \tag{B}
\end{align*}
$$

$Q(1)$

$$
v_{0}=283 \mathrm{~m} / \mathrm{s} \quad \theta_{0}=60^{\circ}
$$

$$
h=\frac{v v_{0 y}^{2}}{2 g}=\frac{v_{0}^{2}\left(\sin \theta_{0}\right)^{2}}{2 g}=\frac{(283)^{2}(\sin 60)^{2}}{2(9.8)}=3064.6 \mathrm{~m}
$$

$Q(2)$

$$
\begin{align*}
& \vec{v}_{f}=3 i+9 j \\
& \overrightarrow{V_{p}}=2 i+4 j \\
& a=\frac{v_{p}-v_{i}}{\Delta t}=\frac{i+5 j}{5}=5 S \tag{B}\\
& \text { avg. }
\end{align*}
$$

Q(3) circular path $S=|2 r|=5 \mathrm{~m} / \mathrm{s} \quad r=10 \mathrm{~m}$

$$
\begin{equation*}
\text { Period }=\frac{2 \pi r}{|v|}=\frac{2 \pi(16)}{5}=4 \pi s \tag{B}
\end{equation*}
$$

$Q(4)$

initial height launching height

Horizontal range $(R)=$,
 (return)

$$
\begin{align*}
& \text { Qs.5-6: } \quad x=5 t^{2}+16 \quad y=-t^{3}+5 \\
& \begin{aligned}
\vec{v}=v_{x} i+v_{y} j & =\frac{d x}{d t} i+\frac{d y}{d t} j \\
& =10 t i+-3 t^{2} j
\end{aligned}
\end{align*}
$$

$Q(6)$

$$
\begin{align*}
\vec{r} & =x i+y j \\
& =\left(5 t^{2}+16\right) i+\left(-t^{3}+5\right) j \\
a t t & =2 s^{\prime} \Rightarrow \vec{r}=\left[5(2)^{2}+16\right] i+\left[-(2)^{3}+5\right] j \\
1 & \vec{r}=36 i-3 j
\end{align*}
$$

Qs. 7-9
$m=5 \mathrm{~kg}$

$Q(7) \quad F_{\text {net }, x}=\sum F_{x}=0$

Free Body Diagramfor
(m)

$$
\begin{equation*}
T_{2} \cos \left(45^{\circ}\right)-T_{1} \cos (30)=0 \tag{B}
\end{equation*}
$$

Q(8) $\quad|W|=|F g|=m g=5(9.8)=+49 \mathrm{~N}$ (D) Siciñ 1

$$
\sum F_{y}=0 \Rightarrow T_{1} \sin (3 \theta)+T_{2} \sin (45)=m g
$$

$Q(a)$ (A)

$Q(10) \quad \mu_{s}$ is dimensionless (B)

$$
\begin{aligned}
& \left|f_{s}\right|=\mu_{s} \mid F_{N} \\
& N=(1 / 2) N
\end{aligned}
$$

Q(11) $v_{y}=v_{0 y}-g t=v_{0} \sin \theta_{0}-g t$ Pو 多 1 名

$$
\begin{equation*}
a=-9 \tag{C}
\end{equation*}
$$

$$
\begin{align*}
& \left|F_{\text {net }}\right|=? \text { ? } \\
& F_{\text {net }}=\sum F=\vec{F}_{1}+\vec{F}_{2} \\
& =(7-3) i+(-5+4) j=6 i-1 j \\
& \left|F_{\text {net }}\right|=\sqrt{4^{2}+1^{2}}=4.12 \mathrm{~N} \\
& \text { (B) Fad, } x \text { Fnait } y \\
& Q(13) \quad m=0.15 \mathrm{~kg} \quad a(t)=8-18 t \quad t=3.45 \\
& F_{\text {net }}=m a \\
& =0.15(8-18 t) \\
& \text { along an } x \text {-axis } \\
& \Rightarrow i \\
& \vec{a}=a i \\
& \text { at } t=3.4 \Rightarrow F_{\text {net }}=0.15(8-18(3.4)) \\
& =-7.98 \\
& \overrightarrow{F_{\text {net }}}=m \vec{a}=-7.98 \mathrm{C} \tag{A}
\end{align*}
$$

Q (14) in circular path $\Rightarrow v=$ dir. (nay)
tangent $S:|v|$

年
at $(0,3) \quad v=6 i$

$$
v=3
$$

at point B
(A) $(x$, anus eosin \Leftarrow Th, $(i$ jo l, $)$

$$
=0.58 \mathrm{~N}, \text { North }
$$

Q(15)

$$
\begin{aligned}
r_{f} & =-2 i+8 j-2 k \\
r_{i} & =(+5) i(-6) j(-2) k \quad \Delta t=105 \\
r_{f}-r_{i}- & =-7 i+14 j-4 k \\
v_{\text {avg. }}=\frac{r_{f}-r_{i}}{\Delta t} & =\frac{-7}{10} i+\frac{14}{10} j-\frac{4}{10} k \\
& =-0.7 i+1.4 j-0.4 k \quad \text { (B) }
\end{aligned}
$$

$Q(17)$

$$
\begin{aligned}
& m=980 \mathrm{~kg} \quad|r|=28 \mathrm{~m} / \mathrm{s} \quad r=230 \mathrm{~m} \\
& \text { circular track } \Rightarrow\left|F_{\perp}\right|=m a_{\perp}=m \frac{z^{2}}{r} \\
&|f|=\left|F_{\perp}\right|=m \frac{v^{2}}{r}=980 \\
& \frac{(28)^{2}}{230}=3340.5 \mathrm{~N}
\end{aligned}
$$

$Q(18) \quad \sum F_{x}=m a_{x}$

$$
\begin{align*}
& 9-8 \cos 62=3 a_{x} \\
& a_{x}=\frac{5.2}{3}=1.75 \mathrm{~m} / \mathrm{s}^{2} \tag{B}
\end{align*}
$$

$Q(19) \quad v_{0}=\underset{v_{0 x}}{5} i+\underset{v_{0 y} y}{4} j$
at any point $\Rightarrow v_{x}=v_{\delta x}=$ const

$$
\begin{equation*}
v_{x}=v_{o x}=5 \mathrm{~m} / \mathrm{s} \tag{D}
\end{equation*}
$$

$\frac{\text { s }}{\text { q }}$

$$
\begin{align*}
& V_{0 x}=23 \mathrm{~m} / \mathrm{s} \quad V_{0 y}=54 \mathrm{~m} / \mathrm{s} \\
& \theta_{0}=\tan ^{-1} \frac{V_{0} y}{v_{0 x}}=\tan ^{-1} \frac{54}{23}=66.9 \simeq 67^{\circ} \tag{B}
\end{align*}
$$

$Q(21) \quad F=4 N \quad W=10 \mathrm{~N}$

$$
\begin{align*}
& F-f_{k}=0 \\
& f_{k}=F=\mu_{k} F_{N} \Rightarrow \mu_{k}=\frac{F}{F_{N}}=\frac{4}{10}=0.4 \tag{D}
\end{align*}
$$

$Q(22\}-23)$

$Q(22)$

$$
\begin{aligned}
\vec{F}=\left(m_{1}+m_{2}+m_{3}+m_{4}\right) a & =(10+3+5+\eta) 3= \\
& =20 \times 3=60 \mathrm{~N}
\end{aligned}
$$

Q(23) at cord (3)

$$
F_{3}=T_{3}=(\underbrace{\left(m_{1}+m_{2}+m_{3}\right.}_{\text {total }}) 9
$$

$$
\begin{equation*}
\text { total mass }=m_{1}+m_{2}+m_{3}=10+3+5=18 \mathrm{~kg} \tag{A}
\end{equation*}
$$

Q(24) $m=75 \mathrm{~kg} \Rightarrow w=m g=735 \mathrm{~N}$
downward acceleration $\Rightarrow a_{y}=-1.7 \mathrm{~m} / \mathrm{s}^{2}=-a$

$$
\begin{aligned}
F_{N}=m\left(g+a_{y}\right) & =75(9.8-1.7) \\
& =607.5 \mathrm{~N}
\end{aligned}
$$

Q(25)

$$
\begin{align*}
& \sum F_{y}=0 \quad\left(F_{N}-m g \cos 60=0\right) \\
& F_{N}=m g \cos 60=m g \cos \theta \tag{C}
\end{align*}
$$

Q(26)

$$
\begin{align*}
& \sum F_{x}=m a_{x} \\
& \begin{aligned}
\left|\sum F_{x}\right|=|-m g \sin 60|=m g \sin 60= & 25(a .8) \sin 60 \\
& =212.17 \mathrm{~N}
\end{aligned}
\end{align*}
$$

$Q(27)$

Force F on A from $B=F_{1} \quad A$ usjit, B vo A نَ

$$
\begin{aligned}
-F_{10} & =+F_{2} \\
j=\left|F_{1}\right| & =\left|F_{2}\right|
\end{aligned}
$$

(1)

on $A: \sum F_{x}=m_{A} a_{x}$ F_{2} : Force on B from A

$$
\begin{equation*}
60-F_{1}=5(2) \Rightarrow F_{1}=60-10=50 \mathrm{~N} \tag{A}
\end{equation*}
$$

or.
(2) on $B: \sum F_{X}=m_{B} a_{x}$

$$
\begin{equation*}
F_{2}=25(2)=50 \mathrm{~N} \Rightarrow F_{1}=F_{2}=50 \mathrm{~N} \tag{A}
\end{equation*}
$$

$$
F_{N}=m\left(g+a_{y}\right)=m g+m a_{y}
$$

scale readiy: $: F_{N}>m g \Rightarrow a_{y}=+a$
\Rightarrow accelerati ig up ward (A)
Q(29) $\quad \theta_{0}=25^{\circ} \quad \tau_{0}=? \quad R=140 \mathrm{~m}$

$$
R=\frac{v_{0}^{2} \sin 2 \theta_{0}}{g} \Rightarrow v_{0}=\sqrt{\frac{R g}{\sin 2 \theta_{0}}}=\sqrt{\frac{140(9.8)}{(\sin 50)}}=42.3 \mathrm{~m} / \mathrm{s}
$$

Q(30) (D) Normal force always 1 the surface.
$Q(31)$

$$
\begin{array}{rlr}
m_{1}=1 \mathrm{~kg} \\
a_{1} & =\frac{\left|v_{1}\right|^{2}}{r}=\frac{1}{1}=1 & v_{1}=v_{2}=v=1 \mathrm{~kg} / \mathrm{s} \quad r_{1}=r_{2}=r_{2} 1 \mathrm{~m} \\
& \Rightarrow a_{2}=\frac{\left|v_{2}\right|^{2}}{r_{2}}=\frac{1}{1}=1
\end{array}
$$

$Q(32)$ along an x_{1} axis $\Rightarrow \sum F_{x}=m q_{x}$

A] $10=m a_{x}$

D

B]

$$
\begin{aligned}
& \left.10+5=m a_{x} \quad \quad\right] 10+5 \cos \theta=m a_{x} \\
& 15=m_{x}
\end{aligned}
$$

D] $10-5=\mathrm{ma}_{x}$

$$
5=m q_{x}
$$

家う,

Q(33)

before it slips \Rightarrow start to mave but not maving

$$
\begin{align*}
& x f_{s, \max }=\mu_{s}^{\mu} F_{N}=\mu_{s} m g=0.4(5)(9.8)=19.6 \mathrm{~N} \\
& F_{a p p, \max }=f_{s, \max }=19.6 \mathrm{~N} \text { B } \tag{B}
\end{align*}
$$

Phys 110

Sertinn.

Choose The Correct Statement (True) or (False)?

1. In projectile motion the horizontal acceleration is Zero.
a) True
b) False
2. The horizontal range R is maximum for a launch angle of 90
a) True
b) False
3. A nanosecond is $10^{8} \mathrm{~s}$
a) True
b) False
4. If no net force acts on a body the body's velocity cannot change, then the body cannot accelerate.
a) True
b) False
5. The instantaneous acceleration is $\vec{a}=\frac{\vec{v}_{1}-\vec{v}_{2}}{\Delta t}$
a) True
b) False
6. The magnitude of \vec{f}_{s} has maximum value that is given by: $f_{s \text { max }}=\mu_{s} F_{N}$
a) True
b) False
7. The value of $\hat{k} \cdot \hat{\imath}$ is Zero .
a) True
b) False
8. The magnitude of the gravitational force is equal to the product (ma).
a) True
b) False
9. The SI unit of kinetic energy is: $\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$.
a) True
b) False
10. In Newton's $2^{n d}$ law, the net force and acceleration are in the same directions.
a) True
b) False
11. The velocity is defined as the change in position from initial position to final position.
a) True
b) False
12. Watt is equal to: Joule per second
a) True
b) False
13. The SI base unit for mass is gram.
a) True
b) False
14. The angle between the vector \vec{A} given by; $\vec{A}=(25 m) \hat{\imath}+(45 m) \hat{\jmath}$ and the positive $\mathrm{x}-$ axis is: 61°.
a) True
b) False
15. A 5 kg object moving at a speed of $6 \mathrm{~m} / \mathrm{s}$, its kinetic energy is 80 Joule.
a) True
b) False
16. The time rate of change of the linear momentum of a particle is equal to the net force acting on it (i.e $\vec{F}_{n e t}=\frac{d \vec{P}}{d t}$).
a) True
b) False

Choose the Correct Answers :

17. A man weighing 800 N is standing in an elevator moving with a constant velocity. The force exerted by the man on the floor of the elevator is:
a) less than 80 N
b) 800 N
c) between 80 and 800 N
d) more than 800 N
18. What is the speed of a 55 kg woman running with a kinetic energy of 412.7 J ?
a) $15 \mathrm{~m} / \mathrm{s}$
b) $3.87 \mathrm{~m} / \mathrm{s}$
c) $2.7 \mathrm{~m} / \mathrm{s}$
d) $4 \mathrm{~m} / \mathrm{s}$
19. A ball kicked with a velocity of $15 \mathrm{~m} / \mathrm{s}$ and with an angle of $\theta=45^{\circ}$ from the horizontal. The maximum range is:
a) 25.85 m
b) 40.82 m
c) 50.20 m
d) 22.96 m
20. In the projectile motion, the maximum range is:
a) $\frac{v_{0}^{2}}{g}(\cos \theta)$
b) $\frac{v_{0}^{2}}{g}$
c) $\frac{v_{0}}{g}$
d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$
21. A man stands on the groun, if his mass is 80 kg , his weight is:
a) 7.84 N
b) 784 N
c) 78.4 N
d) 7840 N
22. Having two vectors $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=\hat{i}-2 \hat{j}+\hat{k}$, the result of $\vec{A} \times \vec{B}$ is:
a) $3 \hat{q}+5 \hat{j}-3 \hat{k}$
b) 0
c) $3 \hat{i}-2 \hat{j}-7 \hat{k}$
d) $\hat{i}-\hat{j}$
23. One Newton $(1 \mathrm{~N})$ in SI is equal to
a) $\frac{1 \mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
b) $\frac{1 \mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$
c) $\frac{1 \mathrm{~kg} \mathrm{~cm}}{\mathrm{~s}}$
d) $\frac{1 g \cdot m}{s}$
24. The position of a car changes from $x_{1}=30 \mathrm{~m}$ to $x_{2}=120 \mathrm{~m}$ in the time interval from 2 s to 4 s , the average velocity of the car is :
a) $30 \mathrm{~m} / \mathrm{s}$
b) $40 \mathrm{~m} / \mathrm{s}$
c) $20 \mathrm{~m} / \mathrm{s}$
d) $45 \mathrm{~m} / \mathrm{s}$
25. An object dropped from a height of 80 m , its speed after 3 s is:
a) $33 \mathrm{~m} / \mathrm{s}$
b) $-29.4 \mathrm{~m} / \mathrm{s}$
c) $-9.8 \mathrm{~m} / \mathrm{s}$
d) $39.5 \mathrm{~m} / \mathrm{s}$
26. The expression that represents a stationary box in the figure is:
a) $F_{N}+F \sin \theta=m g$
b) $F_{N}-F \sin \theta=m g$
c) $F \cos \theta-F_{k}=m g$
d) $F_{N}+F \cos \theta-m g$

27. If $\vec{A}=2 \hat{\imath}+2 \hat{\jmath}$ and $\vec{B}=2 \hat{\imath}-4 \hat{\jmath}$, the resultant vector $\vec{A}+\vec{B}$ is:
a) $2 \hat{\imath}+4 \hat{\jmath}$
b) $4 \hat{i}-2 \hat{d}$
c) $4 \hat{\imath}+2 \hat{\jmath}$
d) $2 \hat{\imath}-4 \hat{\jmath}$
28. if $\mathrm{A}=10$ units and $\mathrm{B}=6$ units, the angle between them is 60°, the dot product of the vectors $(\vec{A} \cdot \vec{B})$ is:
a) 20 unit
b) 30 unit
c) 51.96 unit
d) 60 unit
29. A force was applied on an object of mass 50 kg with speed $32 \mathrm{~m} / \mathrm{s}$, the linear momentum is:
a) $1600 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
b) $1900 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
c) $1500 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
d) $1700 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
30. A 20 kg object is sliding down in an incline smooth plane with 30° with the horizontal , the net force in direction of sliding is:
a) 49 N
b) 98 N
c) 196 N
d) 294 N

31. A force acts on a spring with length 30 cm . This force compressed it by 25 cm . The spring constant is $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$, the work done by the spring is:
a) 10 joule
b) 1.6 joule
c) 0.69 joule
d) 0.55 joule
32. An object is moving in the positive direction of the x -axis with a relationship $x(t)=8+2 t+3 t^{2}$, the instantaneous velocity after $2 s$ is:
a) $24 \mathrm{~m} / \mathrm{s}$
b) $2+6 \mathrm{t}$
c) $14 \mathrm{~m} / \mathrm{s}$
d) $12 \mathrm{~m} / \mathrm{s}$
33. The direction of friction is always \qquad to the direction in which the object is moving.
a) perpendicular
b) opposite
c) normal
d) similar
34. When a 20 N force acts on an object then it moves 20 m in the same direction. The work is:
a) -40 J
b) 40 J
c) 400 J
d) -400 J
35. Which of the following relation gives negative displacement
a) $x_{1}=-2 m, x_{2}=4 m$
b) $x_{1}=6 m, x_{2}=-2 m$
c) $\mathrm{x}_{1}=-8 \mathrm{~m}, \mathrm{x}_{2}=-1 \mathrm{~m}$
d) $\mathrm{x}_{1}=7 \mathrm{~m}, \mathrm{x}_{2}=9 \mathrm{~m}$
36. A ball is thrown with initial velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle 30° from the positive x direction. The y-component of the initial velocity is :
a) $30 \mathrm{~m} / \mathrm{s}$
b) $7.5 \mathrm{~m} / \mathrm{s}$
c) $15 \mathrm{~m} / \mathrm{s}$
d) $13 \mathrm{~m} / \mathrm{s}$
37. In the figure, what is the magnitude of the force F_{3} acting on particle 3 if the center of mass of the system is stationary?
a) 8 N
b) -2 N
c) -8 N
d) 2 N

38. The vectors $\overrightarrow{\boldsymbol{a}}, \overrightarrow{\boldsymbol{b}}$, and $\overrightarrow{\boldsymbol{c}}$ are related by $\overrightarrow{\boldsymbol{a}}+\overrightarrow{\boldsymbol{c}}=\overrightarrow{\boldsymbol{b}}$. Which diagram below illustrates (يوضح) this relationship (العلاقة)?

A

B

C

D
39. If the components of the vector A are given by $\mathrm{A}_{x}=8.6 \mathrm{~cm}$ and $\mathrm{A}_{y}=4.20 \mathrm{~cm}$, then the direction of this vector with respect to the positive x -axis is:
a) 32°
b) 60°
c) 26°
d) 180°
40. In the figure shown; m_{2} moves down with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the tension in the rope is 10 N . The value of m_{2} is:
a) 2.5 kg
b) 1.28 kg
c) 8.0 kg
d) 50 kg

41. A block was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough (خشن) surface. The magnitude of the frictional force is:
a) 26 N
b) 15 N
c) 98 N
d) 3 N

42. Each of four particles moves along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by:
particle 1: $\mathrm{x}(\mathrm{t})=3.5-2.7 \mathrm{t}^{3}$
particle 2: $\mathrm{x}(\mathrm{t})=3.5+2.7 \mathrm{t}^{3}$ particle 3: $\mathrm{x}(\mathrm{t})=3.5+2.7 \mathrm{t}^{2}$
particle 4: $\mathrm{x}(\mathrm{t})=3.5-3.4 \mathrm{t}-2.7 \mathrm{t}^{2}$
Which of these particles have constant acceleration?
a) All four
b) Only 1 and 2
c) Only 2 and 3
d) Only 3 and 4
43. If $\mathrm{A}=10$ and $\mathrm{B}=6$, the angle between them is 60°, the magnitude of the vector product $\vec{A} \times \vec{B}=$
a) 20
b) 30
c) 51.96
d) 60
44. A particle moves through a displacement $\vec{d}=(15 m) \hat{i}-(12 m) \hat{j}$ along a straight line while being acted on by a force $\vec{F}=(210 N) \hat{i}-(150 N) \hat{j}$. The work done on the particle by this force is:
a) 4950 J
b) 1350 J
c) 3150 J
d) 1800 J

King Abdulaziz University

1. A 0.4 kg ball is dropped from a window and landed on the street with speed $35 \mathrm{~m} / \mathrm{s}$, and then rebound with a speed $25 \mathrm{~m} / \mathrm{s}$. The magnitude of the change of its momentum is:
a) $40 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
c) $20 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(d) $24 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2. In the figure, what is the magnitude of the force \mathbf{F}_{3} acting on particle 3 if the center of mass of the system is stationary?

a) 2 N
b) -9 N
© 7 N
d) 10 N
3. The kinetic energy of a $\mathbf{2 g}$ particle traveling at $500 \mathrm{~m} / \mathrm{s}$ is:
a) 0.5 J
b) 500 J
© 250 J
d) 2500 J
4. A box slides to the right over a frictionless table, in which figure the net force does a negative work?
(a)

b)

d)

5. In which situation of the following the work done by the force is positive ?
a) The angle between F and d is 76°
c) $\vec{F}=7 \hat{i}+9 \hat{j}$ and $\vec{d}=-2 \hat{i}$
b) The angle between F and d is 100°
d) $\vec{F}=5 \hat{i}-10 \hat{j}$ and $\vec{d}=2 \hat{j}$
6. In the figure, four objects are subjected to external forces. The x and y components of acceleration of the center of mass \mathbf{a}_{x} and $\mathbf{a}_{\mathbf{y}}$ are:

a) $\mathrm{a}_{\mathrm{com}, \mathrm{x}}=0.14 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{com}, \mathrm{y}}=0.17 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\mathrm{a}_{\text {com }, \mathrm{x}}=0.57 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\text {com }, y}=-0.29 \mathrm{~m} / \mathrm{s}^{2}$
c) $\mathrm{a}_{\mathrm{com}, \mathrm{x}}=0.71 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{com}, \mathrm{y}}=0.24 \mathrm{~m} / \mathrm{s}^{2}$
d) $\mathrm{a}_{\mathrm{com}, \mathrm{x}}=0.19 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{com}, \mathrm{y}}=-0.51 \mathrm{~m} / \mathrm{s}^{2}$
7. Which quantity of the following is a scalar quantity ?
a) acceleration
b) force
(c) work
d) linear momentum
8. Which figure of the following give the correct direction of the tension \mathbf{T} ?
a)

c)

b)

(d)

9. A particle moves along an x axis, if the velocity of the particle changes from $-3 \mathrm{~m} / \mathrm{s}$ to $2 \mathrm{~m} / \mathrm{s}$, the kinetic energy of the particle
a) increase
(b) decrease
c) remain constant
d) zero
10. A body of mass of 10 kg and speed of $5 \mathrm{~m} / \mathrm{s}$, suddenly split into three bodies. The momentum of the body before the split is:
(a) $50 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $25 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
c) $15 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
d) $10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
11. What is the \mathbf{y}-coordinate of the 4 kg particle in the table below, if the center of mass of the three particle system has the coordinates ($-0.33 \mathrm{~m}, 1.33 \mathrm{~m}$)

Mass	x-coordinate	y-coordinate
2 kg	3 m	2 m
3 kg	1 m	-4 m
4 kg	-3 m	

a) 2 m
b) -3 m
(C) 5 m
d) -4 m
12. Two particles of masses 2 kg and 3 kg are located at 1 m and 2 m from the origin along the x axis respectively. The position of the center of mass is:
(a) 1.6 m
b) 0
c) 1 m
d) 2.7 m
13. What velocity a 5000 kg truck must have in order to have the same momentum of a 10000 kg truck whose velocity is $20 \mathrm{~m} / \mathrm{s}$?
a) $20 \mathrm{~m} / \mathrm{s}$
(b) $40 \mathrm{~m} / \mathrm{s}$
c) $60 \mathrm{~m} / \mathrm{s}$
d) $80 \mathrm{~m} / \mathrm{s}$

Use the following to answer questions 14-15:
If the kinetic energy of a particle of mass $\mathbf{2} \mathbf{~ k g}$ is initially $\mathbf{1 0} \mathbf{J}$ and there is a net energy transfer of 5 J to the particle
14. The final kinetic energy of the particle is:
a) 25 J
(b) 15 J
c) 30 J
d) zero
15. The initial speed of the particle is:
(a) $3.16 \mathrm{~m} / \mathrm{s}$
b) $15 \mathrm{~m} / \mathrm{s}$
c) $2.24 \mathrm{~m} / \mathrm{s}$
d) $5 \mathrm{~m} / \mathrm{s}$
16. A force of 100 N acts on a box moving with a constant speed of $5 \mathrm{~m} / \mathrm{s}$ along the positive x axis. The power due to this force is :
a) 5 W
b) 50 W
c) 250 W
(1)
500 W
17. A 6 kg body moves with a constant acceleration starting from rest to a speed of $15 \mathrm{~m} / \mathrm{s}$. The work done on the body is:
(a) 675 J
b) 350 J
c) 450 J
d) 100 J
18. A force acts on a spring of length 30 cm and compressed it to a length of 25 cm , if the spring constant is $50 \mathrm{~N} / \mathrm{m}$. The work done by the spring is:
a) 11.38 J
b) 3750 J
c) 678 J
(d) 0.69 J

Use the following to answer questions 19-21:
A force $\vec{F}=5 \hat{i}+10 \hat{j}$ is applied to a block that moves a distance $\vec{d}=2 \hat{i}$ on a surface as shown.

19. The work done on the block by the normal force F_{N} is:
a) $\mathrm{F}_{\mathrm{N}} \mathrm{d} \cos 0^{\circ}$
(b) $\mathrm{F}_{\mathrm{N}} \mathrm{d} \cos 90^{\circ}$
c) $\mathrm{F}_{\mathrm{N}} \mathrm{d}$
d) $\mathrm{F}_{\mathrm{N}} \mathrm{d} \cos 180^{\circ}$
20. The work done on the block by the frictional force f_{k} is:
a) - 3 J
b) 2 J
c) 1 J
(d) -4 J
21. The work done on the block by the force F is:
a) 35 J
b) 30 J
c) 25 J
(d) 10 J
22. The magnitude of the centripetal force is:
a) $F=m \frac{v^{2}}{R^{2}}$
(b) $F=m \frac{v^{2}}{R}$
c) $F=m \frac{v}{R}$
d) $F=\frac{v^{2}}{R}$
23. The vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are related by $\vec{a}+\vec{b}+\vec{c}=\vec{d}$. Which diagram below illustrates this relationship?
a)

b)

c)

(d)

24. A particle travels in a circle of radius \boldsymbol{R} with constant speed \boldsymbol{v}. The period of 3 revolutions is:
a) $\frac{7 \pi R}{v}$
b) $\frac{5 \pi R}{v}$
(c) $\frac{6 \pi R}{v}$
d) $\frac{2 \pi R}{v}$

Use the following to answer questions 25-26:
In the figure a force F is applied to a block of mass m that slides along a floor, the coefficient of kinetic friction between the block and the floor is μ_{K}.

25. The x-component of the net force is:
a) $F \cos \theta-\mu_{K} F_{N}=0$
c) $F \sin \theta-\mu_{K}=m a_{s}$
(b) $F \cos \theta-\mu_{K} F_{N}=m a_{x}$
d) $F \sin \theta-m g=m a_{x}$
26. The y-component of the net force is:
a) $F_{N}-m g=0$
c) $\quad F_{N}+F \cos \theta-m g=0$
b) $F \sin \theta-m g=0$
(d) $F_{N}+F \sin \theta-m g=0$
27. There are two horizontal forces acting on the 2 kg box but only one force $F_{1}=20 \mathrm{~N}$ is shown in the figure, the box moves along the x axis with acceleration $a=20 \mathrm{~m} / \mathrm{s}^{2}$. The second force $\mathrm{F}_{\mathbf{2}}=$

(a) 20 N
b) 10 N
c) 30 N
d) 50 N
28. In which figure of the following $\mathbf{b}_{\mathbf{x}}=8.7 \mathbf{m}$? $(b=10 \mathrm{~m})$
(a)

b)

c)

d)

Use the following to answer questions 29-30:
You throw a ball toward a wall at speed $20 \mathrm{~m} / \mathrm{s}$ and at angle $\theta_{0}=33^{\circ}$ above horizontal. It takes 0.8 s to hit the wall.

29. The vertical component of its velocity as it hits the wall is:
a) $0.31 \mathrm{~m} / \mathrm{s}$
b) $31 \mathrm{~m} / \mathrm{s}$
c) zero
(d) $3.1 \mathrm{~m} / \mathrm{s}$
30. The horizontal component of its velocity as it hits the wall is:
a) zero
b) $11 \mathrm{~m} / \mathrm{s}$
(c) $16.8 \mathrm{~m} / \mathrm{s}$
d) $30 \mathrm{~m} / \mathrm{s}$
31. The components of \vec{a} are: $\mathrm{a}_{\mathrm{x}}=3 \mathrm{~m}$, and $\mathrm{a}_{\mathrm{y}}=4 \mathrm{~m}$, the direction of \vec{a} is:
(a) 53.13°
b) 59°
c) 63.4°
d) 66.8°
32. If $\vec{D}=5 \hat{i}+25 \hat{j}$, then $\frac{2 \vec{D}}{10}$ equals:
a) $\hat{i}-5 \hat{j}$
b) $5 \hat{i}-\hat{j}$
(c) $\hat{i}+5 \hat{j}$
d) $5 \hat{i}+\hat{j}$
33. In circular motion, which figure represents the velocity $\vec{v}=400 \hat{i}+500 \hat{j}$
(a)

b)

c)

d)

34. A particle undergoes a displacement $\Delta \vec{r}=2 \hat{i}-3 \hat{j}+6 \hat{k}$, The average velocity of the particle in $\mathbf{2 s}$ is:
(a) $\hat{i}-1.5 \hat{j}+3 \hat{k}$
b) $\hat{i}-3 \hat{j}+3 \hat{k}$
c) $2 \hat{i}-3 \hat{j}+6 \hat{k}$
d) $2 \hat{i}-3 \hat{j}+3 \hat{k}$
35. The range of a ball thrown at angle 30° above horizontal with velocity V_{0} is
a) $\frac{V_{0}{ }^{2}}{g}$
(b) $\frac{V_{0}{ }^{2}}{g} \sin 60$
c) $\frac{V_{0}{ }^{2}}{g} \sin 30$
d) $\frac{V_{0}{ }^{2}}{g} \sin 120$
36. In which figure \mathbf{R} represents the range of the projectile ?
a)

b)

(C)

d)

37. One Watt equals:
(a) J / s
b) $\mathrm{J} / \mathrm{s}^{2}$
c) $\mathrm{J} . \mathrm{s}^{2}$
d) $\mathrm{J} . \mathrm{s}$
38. The magnitude of $\vec{A} \times \vec{B}=0$ if the angle between \vec{A} and \vec{B} is:
a) 45°
b) 90°
c) 270°
(d) 0^{0}
39. The magnitude of the vector $\vec{A}=5 \hat{k}$ is:
a) 0
(b) 5
c) 10
d) 50
40. The base quantities of the SI units ($\mathrm{m}, \mathrm{kg}, \mathrm{s}$) respectively are:
a) (force, mass, time)
c) (mass, speed, time)
(b) (length, mass, time)
d) (length, weight, time)
41. The position of a particle is given by: $x(t)=10+t^{2}$, the instantaneous acceleration at $\mathbf{t}=\mathbf{1} \mathbf{s}$ is:
a) $8 \mathrm{~m} / \mathrm{s}^{2}$
b) $6 \mathrm{~m} / \mathrm{s}^{2}$
(C) $2 \mathrm{~m} / \mathrm{s}^{2}$
d) $4 \mathrm{~m} / \mathrm{s}^{2}$
42. In which figure of the following the normal force on the block of mass m equals $\mathbf{F}_{\mathbf{N}}=\mathbf{m g}$
a)

b)

c)

(d)

43. Which figure shows $\vec{A}=-\vec{B}$
a)

(b)

c)

d)

44. A particle undergoes a displacement $\Delta \vec{r}=2 \hat{i}-3 \hat{j}+6 \hat{k}$, If $\vec{r}_{2}=3 \hat{j}-4 \hat{k}$ then:
a) $\vec{r}_{1}=2 \hat{i}-9 \hat{j}+10 \hat{k}$
b) $\vec{r}_{1}=2 \hat{i}+2 \hat{k}$
c) $\vec{r}_{1}=2 \hat{i}+10 \hat{k}$
(d) $\vec{r}_{1}=-2 \hat{i}+6 \hat{j}-10 \hat{k}$

$$
\begin{align*}
& \text { rebound }=\sim \\
& \begin{array}{c}
\text { drop } \\
v_{f}=25 \mathrm{~m} / \mathrm{s}
\end{array} \prod_{\ldots}^{\varphi} v_{0}=-35 \mathrm{~m} / \mathrm{s} \\
& =0.4|25-(-35)|=0.4|60|=24 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \tag{d}
\end{align*}
$$

$Q(2) \quad \operatorname{coH}$ is stationary

$$
\begin{align*}
& \sum F_{x}=0 \\
& F_{1 x}+F_{2 x}+F_{3 x}=0 \\
& -9+2+F_{3 x}=0 \Rightarrow F_{3 x}=9 v \tag{C}
\end{align*}
$$

$Q(3)$

$$
\begin{align*}
m & =29 \quad v=500 \mathrm{~m} / \mathrm{s} \quad \Rightarrow k \cdot E=33 \\
& =2 \times 10^{-3} \mathrm{~kg} \tag{C}\\
K \cdot E & =\frac{1}{2} m v^{2}=\frac{1}{2}\left(2 \times 10^{-3}\right)(500)^{2}=250 \mathrm{~J}
\end{align*}
$$

$Q(4)$ (a)

(c)

FT $\downarrow d$ (anti-parallel)

$$
\theta=180 \Rightarrow \omega(-v e)
$$

(d)
b (b)

. is $w \Rightarrow+$ ve $0 \leqslant \theta<90$ or. Frrd (Parallel $Q(5)$ a) $\quad \Theta=76^{\circ}<90$

$$
\Rightarrow w(+v e)
$$

b) $\theta=100>90 \Rightarrow w(-v e)$
c) $w=F \cdot d=7 x-2+0=-145 \Rightarrow-v e$
d) $w=0-10 \times 2=-20 \mathrm{~J} \Rightarrow-v e$

Q(6) $\begin{array}{cccc}\text { particle } & \text { mass } & F_{x} & F_{y} \\ 1 & 2 & +5 & 0 \\ 2 & 4 & 0 & +3 \\ 3 & 5 & 0 & -7 \\ 4 & \frac{3}{M=14} & +3 & 0\end{array}$

$$
\begin{align*}
\Sigma F_{x} & =M a_{c_{0 \mathrm{~m}, x}} \\
a_{\delta_{\mathrm{m}, x}} & =\frac{\Sigma F_{x}}{M}=\frac{F_{1 x}+F_{2 x}+F_{3 x}+F_{4 x}}{M} \\
& =\frac{5+0+0+3}{14}=0.57 \mathrm{~m} / \mathrm{s} \tag{b}
\end{align*}
$$

$\substack{M_{2}=3 N \\ M_{2}=4}$	$\xrightarrow{M_{3}=5}$$F_{3}=7 N \downarrow$
$M_{1}=2 \mathrm{~kg}$	
$F_{4}=3 \mathrm{~N}$ $M_{4}=3 \mathrm{~kg}$	

$Q(8)$ (d)

$Q(9)$

$$
\begin{array}{rlrl}
v_{i} & =-3 \mathrm{~m} / \mathrm{s} & v_{f}=2 \mathrm{~m} / \mathrm{s} \\
k_{i} & =\frac{1}{2} m(-3)^{2} & k_{f} & =\frac{1}{2} m(2)^{2} \\
& =\frac{1}{2} m(9) & 1 & =\frac{1}{2} m(4)
\end{array}
$$

or $\Delta k=k_{f}-k_{i}=\frac{1}{2}, m\left(v_{f}^{2}-\overline{v_{i}^{2}}\right)$
$v:-3$ to 2
$\Rightarrow v$ decreare
\Rightarrow K. E decrease

$$
-\frac{1}{2} m(4-9)=-\frac{5}{2} m
$$

_Ve decrease

$$
\begin{align*}
& \frac{\text { i }}{\text { i }} \\
& \underset{\substack{m=10 \mathrm{~kg} \\
v=+5 \mathrm{~m} / \mathrm{s}}}{\mathrm{P}_{3}} \longrightarrow_{3}^{1} \\
& P \text { initial } \quad P \text { final } \\
& P_{p}=m v=10 \times 5=50 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \tag{a}
\end{align*}
$$

$Q(11) \quad \begin{array}{cc}(-0.33 \mathrm{~m}, & 1.33 \mathrm{~m}) \\ x_{\mathrm{com}}^{2} & y_{\mathrm{com}}^{\prime 2}\end{array}$

Mass	x	y
2	3	2
3	1	-4
4	-3	$y_{3}=? ?$
$M=9$	$x_{\mathrm{cm}}=-0.33$	$y_{\text {com }}=1.33$

$$
\begin{aligned}
& y_{6 m}=\frac{m y_{1}+m_{2} y_{2}+m_{1} y_{3}}{M} \\
& 1.33=\frac{2 \times 2+3 x-4+4 \times y_{3}}{9} \\
& 9 \times 1.33=4-12+4 y_{3} \\
& 4 y_{3}=11.97-4+12=19.97 \\
& y_{3}=\frac{19.97}{4}=4.99=5 \mathrm{~m}
\end{aligned}
$$

$Q(12)$

$$
\begin{array}{rl}
P & M \tag{a}\\
1 & X \\
2 & 1 \\
2 & \frac{3}{M=5}
\end{array} \quad \Rightarrow \text { Position }=x_{\text {com }}=\frac{2 \times 1+3 \times 2}{5}=\frac{2+6}{5} .
$$

$Q(13)$

$$
\begin{array}{ll}
m_{1}=5000 \mathrm{~kg} & v_{1}=2 ? \\
m_{2}=10000 \mathrm{~kg} & v_{2}=20 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
\begin{align*}
& P_{1}=P_{2} \\
& m_{1} v_{1}=m_{2} v_{2} \Rightarrow V_{1}=\frac{m_{2} v_{2}}{m_{1}}=\frac{10000120}{5000}=40 \mathrm{~m} / \mathrm{s} \tag{b}
\end{align*}
$$

$Q(14)$

$$
z=2 \mathrm{~kg} \quad k_{1}=10 \mathrm{~J} \quad w_{\text {net }}=\Delta k=\underset{t_{0}^{t}}{t} 5 \mathrm{~J}
$$

Q(14)

$$
\begin{align*}
\Delta k & =k_{f}-k_{i} \\
5 & =k_{f}-10 \Rightarrow k_{f}=5+10=15 \mathrm{~J} \tag{b}
\end{align*}
$$

هi
Q(15)

$$
\begin{aligned}
k=\frac{1}{2} m v^{2} \Rightarrow & k_{i}=\frac{1}{2} m v_{i}^{2} \\
& 10=\frac{1}{3}(x) v_{i}^{2} \quad \Rightarrow v_{i}=\sqrt{10}=3.16 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$Q(16) \quad F=100 \mathrm{~N} \quad V=5 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
P=F \cdot \gamma r & =F v \cos \theta \\
& =(100)(5) \cos (6)=500 w_{\text {att }}
\end{aligned}
$$

$Q(17) \quad m=6 \mathrm{~kg} \quad a_{i}$ const. $\quad v_{i}=0 \quad v_{f}=15 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
W=\Delta K & =\frac{1}{2} m\left[v_{f}^{2}-v_{i}^{2}\right] \\
& =\frac{1}{2} \text { (6) }\left[15^{2}-0\right]=675 \mathrm{~J} \text { (a) }
\end{aligned}
$$

$$
\vec{F}=5 i+10 j \quad d=2 i
$$

$Q(19) \quad W F_{N}=F_{N} d \cos 90=0 \quad$ (b)
Q(20) $\quad w_{f}=-f d=-(2)(2)=-4 \mathrm{~J}$

$$
\begin{equation*}
Q(21) \quad W_{F}=F \cdot d=5 \times 2+10 \times 0=10 \mathrm{~J} \tag{d}
\end{equation*}
$$

$Q(18)$

$$
\begin{array}{rlrl}
x_{p} & =30 . \mathrm{cm} & x_{f} & =25 \mathrm{~cm} \\
& =30 \times 10^{-2} \mathrm{~m} & =25 \times 10^{-2} \mathrm{~m} . & k=50 \mathrm{~N} / \mathrm{m} \\
w_{s} & =\frac{1}{2} k\left(x_{1}^{2}-x_{f}^{2}\right)=\frac{1}{2}(50)\left[\left(30 \times 10^{-2}\right)^{2}-\left(25 \times 10^{-2}\right)^{2}\right]=0.69 \mathrm{~J}
\end{array}
$$

$Q(22) \quad\left|F_{\perp}\right|=m a_{\perp}=m \frac{v^{2}}{r}$
$\frac{j \text { 人 }}{\mathrm{Q}(23)} \overrightarrow{\mathrm{a}} \mathrm{a}+\vec{b}+\vec{c}=\vec{d}$

(6)

(c)

(d)

(d)
$Q(z 4) \quad 3$ revolution $=3 T$

$$
\begin{align*}
T & =\frac{2 \pi R}{v} \\
t=3 T & =3\left(\frac{2 \pi R}{v}\right)=6 \frac{\pi R}{v} \tag{c}
\end{align*}
$$

$Q(25)$

$$
\begin{aligned}
\sum F_{x} & =m a_{x} \\
\sum F_{x} & =F \cos \theta-f_{k}=m a \\
F & \cos \theta-\mu_{k} F_{N}
\end{aligned}=m a \text { (b) }
$$

$Q(26) \quad \sum F_{y}=0$

$$
\begin{equation*}
F_{N}+F \sin \theta=m g=0 \tag{d}
\end{equation*}
$$

$Q(27)$

$$
\begin{align*}
& a=+20 \mathrm{~m} / \mathrm{s} \\
& \sum F_{x}=m a_{x} \\
& F_{1 x}+F_{2 x}=+m a \\
& F_{2 x}=m a-F_{1 x}=(2)(20)-(+20)=20 \mathrm{~N} \tag{a}
\end{align*}
$$

$Q(28)$) $b_{x}=b \cos \theta$
a) $b_{x}=10 \cos 30$
b] $b_{x}=10 \quad \cos 40$

$$
\text { c] } \begin{aligned}
b_{x} & =10 \subset 0550 \\
& =6.4 \mathrm{~m}
\end{aligned}
$$

d] $b_{x}=10 \cos 60$

$$
=8.7 \mathrm{~m}
$$

$$
=7.7 \mathrm{~m}
$$ $=5 \mathrm{~m}$

$$
v_{0}=20 \mathrm{~m} / \mathrm{s} \quad \theta_{0}=33^{\circ} \quad t=0.85
$$

$Q(29)$

$$
\begin{aligned}
V_{y} & =V_{0 y}-g t \\
& =V_{0} \sin \theta_{0}-g t \\
& =20 \sin (33)-9.8(0.8)=3.1 \mathrm{~m} / \mathrm{s} \text { (d) }
\end{aligned}
$$

Q(30)

$$
\begin{align*}
V_{x}=V_{o x} \frac{E}{E} & =V_{0} \cos \theta \\
& =20 \cos (33)=16.8 \mathrm{~m} / \mathrm{s} \tag{C}
\end{align*}
$$

$Q(31) \quad \Theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1} \frac{4}{3}=53.13^{\circ}$
$Q(32) \quad \bar{D}=5 i+25 j$

$$
\frac{2 \vec{D}}{10}=\frac{2}{10}(5) i+\frac{2}{10}(25) j=i+5 j
$$

$$
\frac{2}{10}=\frac{1}{5}
$$

$Q(33)$
$v_{y} \rightarrow+, v_{x} \rightarrow(t)$ ن v
Q(34) $\quad \Delta w=2 p-3 j+6 k \quad \Delta t=2 S$

$$
\begin{equation*}
V_{a v g}=\frac{\Delta k}{\Delta t}=\frac{2}{2} i-\frac{3}{2} j+\frac{6}{2} k=i-1.5 j+3 k \tag{a}
\end{equation*}
$$

Q(35)

$$
\begin{aligned}
& R=\frac{v_{0}^{2}}{g} \sin 2 \theta . \\
& R=\frac{v_{0}^{2}}{g} \sin 60
\end{aligned}
$$

$$
\theta_{0}=30
$$

$$
2 \theta_{0}=2 \times 30=60
$$

$Q(36)$

 اك
$\frac{1}{\text { Q }}$ watt $=\frac{\mathrm{J}}{\mathrm{s}}$

$$
P=\frac{w}{s}
$$

Q(38) $\quad A \times B=A B \sin \phi$

$$
\begin{equation*}
A \times B=0 \Rightarrow \sin \phi=0 \Rightarrow \phi=0 \tag{d}
\end{equation*}
$$

Q(39) $\quad \vec{A}=5 \hat{k} \quad \Rightarrow|A|=\sqrt{5^{2}}=5$ (b)
Q(40) $\quad(\underset{\downarrow}{m}, \mathrm{~kg}, \mathrm{~s})$
(1.0.gth, mass, time) (b)

Q(41) $\quad x=10+t^{2} \Rightarrow v \frac{d x}{a t}=2 t \Rightarrow a=\frac{d v}{d t}=2 \mathrm{~m} / \mathrm{s}^{2}$ at any time (c)

$$
\begin{aligned}
& F_{N}+F=m g \\
& F_{N}=m g-F
\end{aligned}
$$

$F_{N}=m g$
(d)

Q(43) $\quad A=-B$
A and B equals in
mag. and oppose dir.
(b)
$Q(44)$

$$
\begin{align*}
& \Delta r=2 i-3 j+6 k \\
& r_{2}=3 j-4 k \\
& \Delta r=(+2) i(-3) j-6 k \\
& \tilde{r}_{1}=-2 i+6 j-10 k \tag{d}
\end{align*}
$$

Examples:

1. A 5 kg object moving at a speed of $6 \mathrm{~m} / \mathrm{s}$. Calculate its kinetic energy.

Solution

The kinetic energy is defined as

$$
\mathrm{K}=1 / 2 \mathrm{~m} v^{2}=1 / 2 \times 5 \times 6^{2}=90 \mathrm{~J}
$$

2. A car of mass 1000 kg accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s from an initial speed of $5 \mathrm{~m} / \mathrm{s}$. Determine the work done by the car.

Solution

The work is defined as the change in the kinetic energy. Therefore

$$
\mathrm{W}=\Delta \mathrm{K}=\mathrm{K}_{2}-\mathrm{K}_{1}=1 / 2 \mathrm{~m}\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right)
$$

We know the initial speed ($v_{1}=5 \mathrm{~m} / \mathrm{s}$) but we have to find out the final speed $\left(v_{2}\right)$ using the equation of motion. We know that

$$
v_{2}=v_{1}+a t
$$

Therefore

$$
v_{2}=5+2 \times 10=25 \mathrm{~m} / \mathrm{s}
$$

Hence the work done by the car is

$$
\mathrm{W}=1 / 2 \times 1000 \times\left(25^{2}-5^{2}\right)=3 \times 10^{5} \mathrm{~J}
$$

3. A force, $\mathbf{F}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}(\mathrm{N})$ is applied on a box. If the displacement of the box due to the force is $\mathbf{d}=\mathbf{i}+3 \mathbf{k}(\mathrm{~m})$, find the work done.

Solution

The work done by the force is the scalar product of the force and its
displacement, such as

$$
W_{F}=\mathbf{F} \cdot \mathbf{d}=(2 \times 1)+(-3 \times 0)+(1 \times 3)=5 \mathrm{~J}
$$

4. A box is pulled across the floor by a horizontal force of magnitude 80

N . How much work does the force exert to pull the object 5 m ?

Solution

The work done by the force is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{Fd} \cos \theta
$$

But the force and displacement are parallel; the angle between them is zero. Therefore

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{F} \mathrm{~d}=80 \times 5=400 \mathrm{~J}
$$

5. A box is dragged across the floor by a force of magnitude 50 N directed 60° above the horizontal. Calculate the work done by the force to pull the object 6 m ?

Solution

The work done by the force is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{Fd} \cos \theta=50 \times 6 \times \cos (60)=150 \mathrm{~J}
$$

6. A horizontal force F is applied to move a 5 kg carton across the floor. If the acceleration of the carton is measured to be $2 \mathrm{~m} / \mathrm{s}^{2}$, how much work does F do in moving the carton 7 m ?

Solution

While the force and displacement are parallel, the work done is

A. Z. ALZAHRANI

$$
W_{F}=\mathrm{Fd}
$$

The force can be determined from Newton's second law as

$$
\mathrm{F}=m a=5 \times 2=10 \mathrm{~N}
$$

Therefore the work is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{Fd}=10 \times 7=70 \mathrm{~J}
$$

7. A horizontal force \mathbf{F} is applied to move a 6 kg carton across the floor. If the carton starts from rest and its speed after 3 sec is $6 \mathrm{~m} / \mathrm{s}$, how much work does F do in moving the carton 4 m ?

Solution

While the force and displacement are parallel, the work done is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{Fd}
$$

However the force, F, can be determined from Newton's second law as

$$
\mathrm{F}=m a
$$

The acceleration cab be found using the motion equation

$$
v=v_{0}+a t
$$

Since the carton starts its motion from rest ($v_{0}=0$), the acceleration is

$$
a=v / t=6 / 3=2 \mathrm{~m} / \mathrm{s}^{2}
$$

Therefore the force is

$$
\mathrm{F}=m a=6 \times 2=12 \mathrm{~N}
$$

Hence the work done by the force \mathbf{F} is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{F} \mathrm{~d}=12 \times 4=48 \mathrm{~J}
$$

8. A $5.0-\mathrm{kg}$ box is raised a distance of 2.5 m from rest by a vertical applied force of 90 N . Find (a) the work done on the box by the applied force, and (b) the work done on the box by gravity.

Solution

(a) Using the definition of work in which the force and displacement are in the same direction (parallel), we get

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{F} \mathrm{~d}=90 \times 2.5=225 \mathrm{~J}
$$

(b) Using the definition of work done by gravity for moving up object (the force and displacement are anti-parallel), we get

$$
\mathrm{W}_{\mathrm{g}}=-\mathrm{mg} \mathrm{~d}=-5 \times 9.8 \times 2.5=-122.5 \mathrm{~J}
$$

9. A box rests on a horizontal, frictionless surface. Ali pushes on the box with a force of 18 N to the right and Dima pushes on the box with a force of 12 N to the left. The box moves 4.0 m to the right. Find the work done by (a) Ali, (b) Dima, and (c) the net force.

Solution

(a) While the force applied by Ali is in the same direction of displacement (their angle is zero), the work done by Ali is

$$
\mathrm{W}_{\mathrm{Ali}}=\mathrm{F}_{\mathrm{Ali}} \mathrm{~d}=18 \times 4=72 \mathrm{~J}
$$

(b) While the force applied by Dima is in the opposite direction of displacement (their angle is 180), the work done by Dima is

$$
\mathrm{W}_{\text {Dima }}=-\mathrm{F}_{\text {Dima }} \mathrm{d}=-12 \times 4=-48 \mathrm{~J}
$$

(c) The net force is

$$
\mathrm{F}_{\text {net }}=\mathrm{F}_{\mathrm{Ali}}+\mathrm{F}_{\mathrm{Dima}}=18-12=6 \mathrm{~N}
$$

A. Z. ALZAHRANI

We can also calculate the net force using the work concept where the net work is

$$
\mathrm{W}_{\mathrm{net}}=\mathrm{F}_{\mathrm{net}} \mathrm{~d}
$$

But the total (net) work is

$$
\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{Ali}}+\mathrm{W}_{\mathrm{Dima}}=72-48=24 \mathrm{~J}
$$

Therefore we get

$$
\mathrm{F}_{\text {net }}=\mathrm{W}_{\text {net }} / \mathrm{d}=24 / 4=6 \mathrm{~N}
$$

10. A 40 kg box is pulled 30 m on a horizontal floor by applying a force $\left(\mathrm{F}_{\mathrm{p}}\right)$ of magnitude 100 N directed by an angle of 60° above the horizontal. If the floor exerts a friction force $\left(f_{\mathrm{r}}\right)$ of magnitude 20 N , calculate the work done by each one of these forces. Calculate the work done by the weight and the normal force. Calculate also the total work done on the box.

Solution

(a) The work done by the force is

$$
W_{F}=F_{p} d \cos \theta=100 \times 30 \times \cos 60=1500 \mathrm{~J}
$$

(b) The work done by the friction force is

$$
\mathrm{W}_{f}=f_{\mathrm{r}} \mathrm{~d} \cos \theta=20 \times 30 \times \cos 180=-600 \mathrm{~J}
$$

Note that the angle between f_{r} and displacement is 180° because they point

A. Z. ALZAHRANI

in opposite directions.
(c) The work done by the gravity force is

$$
\mathrm{W}_{\mathrm{g}}=0 \mathrm{~J}
$$

Note that the box is moving along x -axis and there is no displacement along the vertical direction, therefore its work is zero.
(c) The work done by the normal force is

$$
\mathrm{W}_{\mathrm{N}}=0 \mathrm{~J}
$$

The normal force does no work because it is normal (perpendicular) to the displacement.
(d) The total work done on the box is

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{f}+\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{N}}=1500-600+0+0=900 \mathrm{~J}
$$

11. A stationary block of 10 kg is pulled up along a smooth incline of length 10 m and height 5 m by applying an external force of 50 N parallel to the incline. At the end of incline, find (i) work done by the external force, (ii) work done by gravity, and (iii) speed of the block.

Solution

(i) The work done by the force is

$$
\mathrm{W}_{\mathrm{F}}=\mathrm{F} \mathrm{~d} \cos \theta=50 \times 10 \times \cos 0=500 \mathrm{~J}
$$

A. Z. ALZAHRANI

Note that both the force and displacement are in the same direction.
(ii) The work done by the gravity force is

$$
W_{g}=F_{g} d \cos \theta=F_{g} d \cos \theta=2 \times 9.8 \times 5 \times \cos 180=-98 \mathrm{~J}
$$

(iii) The total work done is

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{g}}=500-98=402 \mathrm{~J}
$$

Therefore the change in the kinetic energy is

$$
\mathrm{W}=\Delta \mathrm{K}=\mathrm{K}_{2}-\mathrm{K}_{1}=1 / 2 \mathrm{~m} v_{2}^{2}
$$

Where the initial speed is zero. Hence the final speed is

$$
\begin{gathered}
v_{2}^{2}=2 \Delta \mathrm{~K} / \mathrm{m}=2 \times 402 / 10=80.4(\mathrm{~m} / \mathrm{s})^{2} \\
v_{2}=9 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

12. Maha slides a 1-kg toy for 3 m along the floor to her sister Reem. The toy is moving at $4 \mathrm{~m} / \mathrm{s}$ when Maha lets go, and at $2 \mathrm{~m} / \mathrm{s}$ when Reem catches it. (a) Find the work done by friction and (b) calculate the force of friction.

Solution

(a) We know that the total work done on a body equals the change in its kinetic energy. Since we have only a friction force, then the total work is due to it. Hence, we have

$$
\mathrm{W}_{f}=\Delta \mathrm{K}=\mathrm{K}_{2}-\mathrm{K}_{1}=1 / 2 \mathrm{~m}\left(v_{2}^{2}-v_{1}^{2}\right)=1 / 2 \times 1 \times\left(2^{2}-4^{2}\right)=-6 \mathrm{~J}
$$

(b) It is well known that the work done by the friction force is given by

$$
\mathrm{W}_{f}=-f_{\mathrm{k}} \mathrm{~d}
$$

Therefore the friction force is

$$
f_{\mathrm{k}}=-\mathrm{W}_{f} / \mathrm{d}=-(-6) / 3=2 \mathrm{~N}
$$

13. An 8.0 kg block initially at rest is pulled to the right for 3.0 m with a force of 12 N over a surface. Determine its final speed if: (a) the surface has no friction and (b) the surface has a coefficient of kinetic friction of 0.15

Solution

(a) In the case of frictionless surface (no friction force), the total work of the system is only the work done by the external force. We have

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{F}}=\mathrm{F} \mathrm{~d}=12 \times 3=36 \mathrm{~J}
$$

Therefore the change in kinetic energy is equivalent to the total work. Hence the final speed of the block is

$$
\mathrm{W}_{\mathrm{T}}=\Delta \mathrm{K}=\mathrm{K}_{2}-\mathrm{K}_{1}=1 / 2 \mathrm{~m}\left(v_{2}^{2}-v_{1}^{2}\right)
$$

But the block starts from rest; therefore its initial speed is zero. The final speed is then

$$
\mathrm{W}_{\mathrm{T}}=1 / 2 \mathrm{~m} v_{2}^{2}
$$

Or

$$
v_{2}^{2}=2 \mathrm{~W}_{\mathrm{T}} / \mathrm{m}=2 \times 36 / 8.0=9(\mathrm{~m} / \mathrm{s})^{2}
$$

Or

$$
v_{2}=3 \mathrm{~m} / \mathrm{s}
$$

(b) In the case of frictional surface (there is friction force), the total work of the system is the work done by the external force and friction force. We have

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{f}=\mathrm{F} \mathrm{~d}-f_{\mathrm{k}} \mathrm{~d}
$$

The friction force is defined (from the previous chapter) as:

$$
f_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{~N}=\mu_{\mathrm{k}} \mathrm{mg}=0.15 \times 8 \times 9.8=11.76 \mathrm{~N}
$$

The total work, then, is

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{F} \mathrm{~d}-f_{\mathrm{k}} \mathrm{~d}
$$

That gives

$$
\mathrm{W}_{\mathrm{T}}=12 \times 3-11.76 \times 3=0.72 \mathrm{~J}
$$

The final speed can be determined using the work-energy theorem as

$$
\mathrm{W}_{\mathrm{T}}=1 / 2 \mathrm{~m} v_{2}^{2}
$$

Or

$$
v_{2}^{2}=2 \mathrm{~W}_{\mathrm{T}} / \mathrm{m}=2 \times 0.76 / 8.0=0.18(\mathrm{~m} / \mathrm{s})^{2}
$$

Or

$$
v_{2}=0.42 \mathrm{~m} / \mathrm{s}
$$

14. A block of mass 1.6 kg resting on a frictionless surface is attached to a horizontal spring with a spring constant $\mathrm{k}=1.0 \times 10^{3} \mathrm{~N} / \mathrm{m}$. The spring is compressed to 2.0 cm and released from rest. Find the velocity of the block when released.

Solution

We know that the work done by a spring is given by

$$
\mathrm{W}_{\mathrm{s}}=1 / 2 k x^{2}=1 / 2 \times 1.0 \times 10^{3} \times(0.02)^{2}=0.2 \mathrm{~J}
$$

The total work is (there is only one kind of work due to the spring)

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{s}}=0.2 \mathrm{~J}
$$

Therefore the final speed is

$$
\mathrm{W}_{\mathrm{T}}=1 / 2 \mathrm{~m} v^{2}
$$

That will give us the following value

$$
v=0.5 \mathrm{~m} / \mathrm{s}
$$

15. A 5 kg ball is freely dropped from a height of 20 m above the ground.

Calculate its speed when it hits the ground.

Solution

We know that the work done by the gravity is given by

$$
\mathrm{W}_{\mathrm{g}}=\mathrm{mgd}=5 \times 9.8 \times 20=980 \mathrm{~J}
$$

The total work is (there is only gravity work)

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{g}}=980 \mathrm{~J}
$$

Using the work-energy theorem, we get

$$
\mathrm{W}_{\mathrm{T}}=1 / 2 \mathrm{~m} v^{2}
$$

Or

$$
v=\left(2 \mathrm{~W}_{\mathrm{T}} / \mathrm{m}\right)^{1 / 2}=(2 \times 980 / 5)^{1 / 2}=19.8 \mathrm{~m} / \mathrm{s}
$$

16. Zain does 240 J of work in pushing a box. If he does the work in 4 s , what is his power output?

Solution

The output power is defined as

$$
\mathrm{P}=\mathrm{W} / \mathrm{t}=240 / 4=60 \mathrm{~W}
$$

17. Ahmad pushes a box along a smooth floor using a force of 210 N and a power output of 350 W . How long does it take Ahmad to push the box 20 m ?

Solution

The output power is defined as

$$
\mathrm{P}=\mathrm{W} / \mathrm{t}
$$

A. Z. ALZAHRANI

Therefore the time taken for this operation is

$$
\mathrm{t}=\mathrm{W} / \mathrm{P}
$$

But the work is

$$
\mathrm{W}=\mathrm{F} \mathrm{~d}=210 \times 20=4200 \mathrm{~J}
$$

Hence the time is

$$
\mathrm{t}=\mathrm{W} / \mathrm{P}=4200 / 350=12 \mathrm{~s}
$$

17. A box is lifted at a constant speed of $7.0 \mathrm{~m} / \mathrm{s}$ by a machine. If the power of the machine is 21000 W , find the force applied.

Solution

The output power is defined as

$$
\mathrm{P}=\mathbf{F} \cdot \mathbf{v}
$$

But the force and velocity are parallel (both upwards), the force is

$$
\mathrm{F}=\mathrm{P} / \mathrm{v}=21000 / 7.0=3000 \mathrm{~N}
$$

$$
\begin{aligned}
& \text { بسم الله الرحمن الرحيم } \\
& \text { نموذج اختبار النصفي للفصل الاراسي الثاني } \\
& \text { للعام }
\end{aligned}
$$

1. A particle goes from $x=-2 \mathrm{~m}, y=3 \mathrm{~m}, z=1 \mathrm{~m}$ to $x=3 \mathrm{~m}, y=-1 \mathrm{~m}$, $z=4 \mathrm{~m}$. Its displacement is:
a) $(1 \mathrm{~m}) \hat{i}+(2 \mathrm{~m}) \hat{j}+(5 \mathrm{~m}) \hat{k}$
b) $\quad(5 \mathrm{~m}) \hat{i}-(4 \mathrm{~m}) \hat{j}+(3 \mathrm{~m}) \hat{k}$
c) $-(5 m) \hat{i}+(4 m) \hat{j}-(3 m) \hat{k}$
d) $-(5 m) \hat{i}-(2 m) \hat{j}=(3 m) \hat{k}$
2. A projectile is fired over level ground with an initial velocity that has a vertical component of $\mathbf{2 0} \mathbf{~ m} / \mathrm{s}$ and a horizontal component of $30 \mathrm{~m} / \mathrm{s}$. The distance from launching to landing points is:
a) 40 m
b) 60 m
c) 80 m
d) 122.5 m
3. A stone is tied to the end of a string and is swung with constant speed around a horizontal circle with a radius of 1.5 m . If it makes two complete revolutions each second, its acceleration is:
a) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
b) $240.7 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.4 \mathrm{~m} / \mathrm{s}^{2}$
d) $24 \mathrm{~m} / \mathrm{s}^{2}$
4. Two blocks weighting 250 N and 350 N respectively, are connected by a string that passes over a massless pulley as shown. The tension in the string is:
a) 210 N
b) 410 N
c) 290.8 N
d) 500 N

5. A 6-kg object is moving south. A net force of $\mathbf{1 2} \mathbf{N}$ north on it result in the object having an acceleration of:
a) $\mathbf{2 ~ m} / \mathrm{s}^{2}$, north
b) $\mathbf{2 m} / \mathrm{s}^{2}$, south
c) $18 \mathrm{~m} / \mathrm{s}^{2}$, north
d) $\mathbf{1 8 \mathrm { m } / \mathrm { s } ^ { 2 } \text { , south }}$
6. The "reaction" force does not cancel the "action" force because:
a) the action force is greater than the reaction force
b) they are in the same direction
c) the reaction force is greater than the action force
d) they act on different bodies
7. A box with a weight of 50 N rests on a horizontal surface with a coefficient of static friction is $\mathbf{0 . 4}$. If person pulls horizontally on it with a force of 10 N , then
a) the block will not move
b) the block will move to the left
c) the block will move to the right

d) the block will move upward
8. Block A, with a mass of 10 kg , rests on a 30 incline. The coefficient of kinetic friction is $\mathbf{0 . 2 0}$. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 8.0 kg , is attached to the dangling end of the string. The acceleration of B is:
a) $0.69 \mathrm{~m} / \mathrm{s}^{2}$, up the plane
b) $0.69 \mathrm{~m} / \mathrm{s}^{2}$, down the plane
c) $2.6 \mathrm{~m} / \mathrm{s}^{2}$, up the plane
d) $2.6 \mathrm{~m} / \mathrm{s}^{2}$, down the plane

Answer key:
1-b
2-d
3-b
4-c
5-a
6-d
7-a
8-b

```
KING ABDULAZIZ UNIVERSITY
SCIENCE FACULTY
PHYSICS DEPARTMENT
Summer Term
Second Exam
Summer Term
Second Exam
```


Student Number:
Group:

CHOOSE THE CORRECT ANSWER:

1. A Ball is thrown from ground level making an angle of 30° above the horizontal. The ball speed is $980 \mathrm{~m} / \mathrm{s}$. What is the of Range the projectile?
a) $4.3 \times 10^{3} \mathrm{~m}$
b) $8.5 \times 10^{3} \mathrm{~m}$
c) $43 \times 10^{3} \mathrm{~m}$
d) $84.8 \times 10^{3} \mathrm{~m}$
2. Acceleration is defined as:
a) Rate of change of position with time.
b) Distance divided by time.
c) Rate of change of velocity with time.
d) A position of an object.
3. Which of the following is a scalar quantity?
a) Speed
b) Velocity
c) Displacement
d) Acceleration
4. A force of 1 N is:
a) $1 \mathrm{~kg} / \mathrm{s}$
b) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
d) $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
5. In which figure of the following the \mathbf{Y} - Component of the net forces is Zero :

(a)

(b)

(c)

(d)
6. A block of mass m is connected to a block of mass M as shown, the normal force on block m is :
a) $\mathrm{F}_{\mathrm{N}}=m g-\mathrm{T}$
b) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}-\mathrm{T}$
c) $\mathrm{F}_{\mathrm{N}}=m g$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$

7. In the diagram, if we cut the cord, the acceleration of mass M is :
a) $\mathrm{a}=$ zero
b) $\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
c) $\mathrm{a}=4.9 \mathrm{~m} / \mathrm{s}^{2}$
d) $\mathrm{a}=735 \mathrm{~m} / \mathrm{s}^{2}$

8. The coefficient of static friction $\mu_{\mathrm{s}}=0.4$ between a 5 kg block and horizontal surface. The maximum horizontal force that can be applied to the block before it slips is:
a) 10 N
b) 19.6 N
c) 5.5 N
d) 8.7 N
9. A 40-N box rests on a rough horizontal floor. A 12 N horizontal force is then applied to it but the box does not move. What is the magnitude of the frictional force on the box?
a) 28 N
b) 52 N
c) 3.3 N
d) 12 N

10. The two physical quantities measured in the same units are;
a) velocity and acceleration
b) weight and force
c) mass and weight
d) force and mass
11. An 800 N person is standing in an elevator. If the normal force on the person is 600 N , the person is;
a) at rest
b) accelerating upward
c) accelerating downward
d) moving up at a constant speed
12. From the diagram; the acceleration of the two blocks is;
a) $1 \mathrm{~m} / \mathrm{s}^{2}$
b) $2 \mathrm{~m} / \mathrm{s}^{2}$
c) $30 \mathrm{~m} / \mathrm{s}^{2}$
d) $50 \mathrm{~m} / \mathrm{s}^{2}$

13. If the position of an object changes from $\vec{r}_{1}=-2 \hat{i}+3 \hat{j}$ to $\vec{r}_{2}=\hat{i}-2 \hat{j}$, the displacement is:
a) $\Delta \vec{r}=3 \hat{i}+5 \hat{j}$
b) $\Delta \vec{r}=-\hat{\imath}-5 \hat{\jmath}$
c) $\Delta \vec{r}=-3 \hat{i}-5 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}-5 \hat{j}$
14. Two masses $m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=4 \mathrm{~kg}$ situated on a frictionless horizontal surface are connected by a string. A force $\mathrm{F}=12 \mathrm{~N}$ is exerted on m_{2} as shown in fig. The acceleration of the
system is
a) $4 \mathrm{~m} / \mathrm{s}^{2}$
b) $3 \mathrm{~m} / \mathrm{s}^{2}$
c) $2 \mathrm{~m} / \mathrm{s}^{2}$
d) $1 \mathrm{~m} / \mathrm{s}^{2}$

15. The position of a particle is given by $\vec{r}(\mathrm{t})=25 \mathrm{t} \hat{\imath}+4 \mathrm{t}^{2} \hat{\jmath}$, the instantaneous acceleration at $\mathrm{t}=1 \mathrm{~s}$ is:
a) $(25 \hat{\imath}+8 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
b) $(25 \hat{\imath}+8 t \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$
c) $8 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}$
d) $2 \mathrm{~m} / \mathrm{s}^{2}$
16. A box, has mass of 4 kg , is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:
a) 39.2 N
b) 59.2 N
c) 19.2 N
d) 40 N

17. If the net forces applied to a 5.0 kg box is 10 N , then the magnitude of the acceleration of the box is:
a) $0.50 \mathrm{~m} / \mathrm{s}^{2}$
b) $2.0 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.8 \mathrm{~m} / \mathrm{s}^{2}$
d) $10 \mathrm{~m} / \mathrm{s}^{2}$
18. The angle that gives the maximum range for a projectile is:
a) $\theta=40^{\circ}$
b) $\theta=44^{\circ}$
c) $\theta=90^{\circ}$
d) $\theta=45^{\circ}$
19. A 400 N steel ball is suspended by a light rope from the ceiling. The tension in the rope is:
a) 400 N
b) 800 N
c) zero
d) 200 N
20. Which law says that force is equal to mass times acceleration ($\mathrm{F}=\mathrm{MA}$) ?
a) Newton's first law of motion
b) Newton's third law of motion
c) Newton's second law of motion
d) none
21. A particle's displacement is given by $r_{x}=4 t^{2}+2$ and $r_{y}=2 t^{3}$. The velocity components are:
a) $v_{x}=8 t, v_{y}=6 t^{2}$
b) $\mathrm{v}_{\mathrm{x}}=-8 \mathrm{t}, \mathrm{v}_{\mathrm{y}}=6 \mathrm{t}$
c) $v_{x}=8 t+2, v_{y}=6 t^{2}$
d) $v_{x}=4 t, v_{y}=0$
22. As in Newton's second law, acceleration is always in the direction:
a) of the displacement
b) of the final velocity
c) of the initial velocity
d) of the net force
23. From the diagram; the magnitude of the normal force F_{N} acting on the box
a) Mg
b) $\mathrm{Mg} \cos \theta$
c) $\mathrm{Mg} \sin \theta$
d) $\mathrm{Mg} \tan \theta$

24. A car travels east at constant velocity. The net force on the car is;
a) east
b) west
c) up
d) zero
25. The gravitational force of earth acting on a 1 kg is
a) 8.9 N
b) 9.8 N
c) 980 N
d) 1 N
26. An 80 kg man stands on a scale in an elevator cab, if the cab accelerate upward with 1.2 $\mathrm{m} / \mathrm{s}^{2}$, the normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$ is;
a) 80 N
b) 880 N
c) zero N
d) 680 N
27. Two forces act on a particle that moves with constant velocity, one of the forces is $\vec{F}_{1}=3 \hat{i}-5 \hat{j} \mathrm{~N}$, what is the other force?
a) $\vec{F}_{2}=3 \hat{i}-5 \hat{j}$
b) $\vec{F}_{2}=5 \hat{i}-8 \hat{j}$
c) $\vec{F}_{2}=-3 \hat{i}+5 \hat{j}$
d) $\vec{F}_{2}=-5 \hat{i}+8 \hat{j}$
28. A 10 N horizontal force pushes a block of weight 50 N to make it move with constant speed, the value of the coefficient of friction μ_{k} is;
a) 0.2
b) 0.4
c) 0.5
d) 0.10
29. A man of mass 72 kg stands on a scale in an elevator cab. What does the scale read if the cab is not moving?
a) 21 N
b) 200 N
c) 705.6 N
d) 0
30. The y component of a vector \mathbf{A}; $\left(\mathrm{A}_{y}\right)$ is given by:
a) $\mathrm{A} \tan \theta$
b) $\mathrm{A} \sin \theta$
c) $A \cos \theta$
d) $\mathrm{A} \cot \theta$
31. A ball in projectile motion at the highest point,
a) $v_{y}=0$.
and $\quad \mathrm{v}_{\mathrm{x}}=$ constant
b) $\mathrm{v}_{\mathrm{y}}=$ constant
$\mathrm{v}_{\mathrm{x}}=0$
c) $v_{y}=$ constant and $v_{x}=$ constant
d) $\mathrm{v}_{\mathrm{y}}=0$.
and $\quad v_{x}=0$
32. A girl weighs 489 N on Earth. Her mass is;
a) 489 kg
b) 9.8 kg
c) 0 kg
d) 50 kg
33. In Newton's third law the action and reaction forces are;
a) Both forces are equal and opposite in direction.
b) Both are in the same direction.
c) The action force is greater than the reaction force.
d) The reaction force is greater than the action force.

King Abdulaziz University
Faculty of Sciences
Physics Department

First Term

CHOOSE THE CORRECT ANSWER

1. A girl of mass 50 kg standing in a stationary elevator, her weight is:
a) 490 N
b) 550 N
c) 245 N
d) 392 N
2. Three forces act on a 2 kg object give it an acceleration $\vec{a}=-8 \hat{i}+6 \hat{j}$. if $\vec{F}_{1}=30 \hat{i}+16 \hat{j}$ and $\vec{F}_{2}=-12 \hat{i}+8 \hat{j}$ the third force is
a) $\quad \vec{F}_{3}=34 \hat{i}+12 \hat{j}$
b) $\vec{F}_{3}=-34 \hat{i}-12 \hat{j}$
c) $\vec{F}_{3}=-30 \hat{i}-6 \hat{j}$
d) $\vec{F}_{3}=8 \hat{i}-16 \hat{j}$
3. A particle in uniform circular motion of radius $r=2 m$ moved one period. The distance that the particle travelled in meters is:
a) 4π
b) 2π
c) π
d) 3π
4. A particle is said to be in uniform circular motion if
a) its velocity has a constant magnitude
b) its velocity has a constant direction
c) its velocity is directed towards the center
d) its velocity equals zero
5. 10.3 N is equal to
a) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$
b) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
c) $10.3 \frac{\mathrm{~kg}^{2} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
d) $10.3 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}$
6. At the maximum height of a projectile, what of the following is correct?
a) Its velocity is zero
c) Its x-component velocity is zero
b) Its y-component velocity is zero
d) Its acceleration is zero

Use the following to answer questions 7-9:
In the figure, a cord holds stationary a block of mass $\mathrm{m}=8.5 \mathrm{~kg}$ on a frictionless plane that is inclined at an angle $\theta=30^{\circ}$.

7. The tension in the cord T equals:
a) 72.14 N
b) 83.3 N
c) 53.14 N
d) 41.65 N
8. The normal Force F_{N} acting on the block is
a) 53.14 N
b) 41.65 N
c) 83.3 N
d) 72.14 N
9. If the cord is cut, the magnitude of the acceleration of the block is
a) zero
b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
c) $6 \mathrm{~m} / \mathrm{s}^{2}$
d) $4 \mathrm{~m} / \mathrm{s}^{2}$
10. A bag rests on a table, exerting a downward force on the table. The reaction to this force is:
a) The force of Earth on the bag
b) The force of the table on the bag
c) The force of the Earth on the table
d) The force of the bag on Earth
11. The figure shows a train of four blocks being pulled across a frictionless floor by force $\vec{F}=60 \mathrm{~N}$, what is the magnitude of the system's acceleration?

a) $3 \mathrm{~m} / \mathrm{s}^{2}$
b) $6 \mathrm{~m} / \mathrm{s}^{2}$
c) $12 \mathrm{~m} / \mathrm{s}^{2}$
d) $20 \mathrm{~m} / \mathrm{s}^{2}$
12. The cable in the figure is raising a box of mass $M=250 \mathrm{~kg}$ with an upward acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. The tension \mathbf{T} in the cable is

a) 863 N
b) 1725 N
c) 3450 N
d) 6900
13. In the figure the net force on the block is:

a) 1 N -right
b) 6 N -up
c) 3 N -left
d) 4 N -down
14. Ignoring air resistance, the acceleration of any projectile along the x direction a_{x} in (SI units) is
a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
b) zero
c) not constant
d) less than zero
15. Three forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}, \vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ and $\vec{F}_{3}=-6 \hat{j}$ acting on a body, the value of $F_{\text {net, } x}$ and $F_{\text {net, }}$ are:
a) $F_{\text {net }, x}=6 \mathrm{~N}$ and $F_{\text {net, }, y}=-8 \mathrm{~N}$
b) $F_{\text {net }, x}=-6 \mathrm{~N}$ and $F_{\text {net, }, y}=8 \mathrm{~N}$
c) $F_{\text {net }, x}=0$ and $F_{\text {net }, y}=-6 \mathrm{~N}$
d) $F_{\text {net }, \mathrm{x}}=9 \mathrm{~N}$ and $F_{\text {net, }, ~}=16 \mathrm{~N}$
16. Two forces $\vec{F}_{1}=3 \hat{i}-4 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body, from the free body diagram the vectors that represent \vec{F}_{1} and \vec{F}_{2} are

a) \vec{F}_{1} is vector $\mathbf{1}, \vec{F}_{2}$ is vector $\mathbf{3}$
b) \vec{F}_{1} is vector $\mathbf{2}, \vec{F}_{2}$ is vector $\mathbf{4}$
c) \vec{F}_{1} is vector $\mathbf{3}, \vec{F}_{2}$ is vector $\mathbf{1}$
d) \vec{F}_{1} is vector $\mathbf{4}, \vec{F}_{2}$ is vector $\mathbf{2}$

Use the following to answer questions 17-20:
A block lies on a floor as shown in the figure

17. The magnitude of the frictional force on it from the floor when $F=0$
a) 0
b) 5 N
c) 20 N
d) 8 N
18. When F pulls the block to the right with an acceleration a_{x}, The coefficient of Kinetic friction μ_{K} is:
a) $\mu_{k}=\frac{F-m a_{x}}{F_{N}}$
b) $\mu_{k}=\frac{F_{N}}{F-m a_{x}}$
c) $\mu_{k}=\frac{m a_{x}}{F_{N}}$
d) $\mu_{k}=\frac{m a_{x}-F}{F_{N}}$
19. The magnitude of the frictional force on it from the floor when $F=8 \mathbf{N}$, but the block does not move
a) 0
b) 5 N
c) 20 N
d) 8 N
20. If the maximum static frictional force $f_{s, \max }=20 \mathrm{~N}$, the block will move to the right when F is equal to
a) 21 N
b) 15 N
c) 19 N
d) 12 N
21. A car moves in a circular road of radius $r=7.6 \mathrm{~m}$ with a speed $96.6 \mathrm{~km} / \mathrm{h}$, the car's acceleration is:
a) $18.4 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
b) $12.3 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
c) $20.7 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
d) $15.8 \times 10^{2} \mathrm{~km} / \mathrm{h}^{2}$
22. Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force (Fg) on $\mathbf{m}_{\mathbf{2}}$ is

a) 25 N
b) 245 N
c) 2450 N
d) 5 N
23. The position vector of a moving car in meters is: $\vec{r}=\left(3 t^{3}\right) \hat{i}+\left(4 t^{2}+3\right) \hat{j}$, its acceleration at $\mathbf{t}=1 \mathrm{~s}$ is:
a) $\vec{a}=18 \hat{i}+8 \hat{j}$
b) $\vec{a}=8 \hat{i}+18 \hat{j}$
c) $\vec{a}=9 \hat{i}+18 \hat{j}$
d) $\vec{a}=9 \hat{i}+8 \hat{j}$
24. The position of a moving particle is $\vec{r}=\hat{i}+4 t^{2} \hat{j}+t \hat{k}$, its velocity as a function of time is;
a) $\vec{v}=8 \hat{j}$
b) $\vec{v}=8 t \hat{j}+\hat{k}$
c) $\vec{v}=\hat{i}+8 t \hat{j}+\hat{k}$
d) $\vec{v}=8 t \hat{j}$
25. According to Newton's second law, the force and acceleration are:
a) in the opposite direction.
c) perpendicular to each other.
b) in the same direction.
d) scalar quantities.
26. The position of a particle was initially at $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and later at $\vec{r}=-2 \hat{i}+6 \hat{j}+2 \hat{k}$. The particle's displacement vector is:
a) $\Delta \vec{r}=-7 \hat{i}+12 \hat{j}$
b) $\Delta \vec{r}=3 \hat{i}+4 \hat{j}$
c) $\Delta \vec{r}=7 \hat{i}-12 \hat{j}$
d) $\Delta \vec{r}=3 \hat{i}+12 \hat{j}+4 \hat{k}$
27. A rabbit runs across a field. The coordinates of the rabbits position as a function of time are given by: $x=-2 t^{2}+10 t+30$, and $y=t^{2}-5 t+10$ at $\mathbf{t}=$ $10 \boldsymbol{s}$ the position vector \vec{r} is:
a) $\vec{r}=70 \hat{i}-60 \hat{j}$
b) $\vec{r}=60 \hat{i}-70 \hat{j}$
c) $\vec{r}=-60 \hat{i}+70 \hat{j}$
d) $\vec{r}=-70 \hat{i}+60 \hat{j}$

Use the following to answer questions 28-30:
A ball rolls horizontally off the top of a building with a speed of $30 \mathrm{~m} / \mathrm{s}$. If the ball landed on the ground in a time $t=3.03 \mathrm{~s}$
28. The height of the building from the ground is
a) 45 m
b) 14.8 m
c) 90 m
d) 22 m
29. At what horizontal distance from the rolling point does the projectile strikes the ground
a) 9.9 m
b) 90.9 m
c) 0.9 m
d) 99 m
30. What is the magnitude of the vertical component of its velocity as it strikes the ground
a) $2.9 \mathrm{~m} / \mathrm{s}$
b) $0.31 \mathrm{~m} / \mathrm{s}$
c) $3.2 \mathrm{~m} / \mathrm{s}$
d) $29.7 \mathrm{~m} / \mathrm{s}$
31. A block of mass M is connected to a block of mass m as shown. The normal force on block M is:

a) $\mathrm{F}_{\mathrm{N}}=\mathrm{Mg}$
b) $F_{N}=M g-T$
c) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{T}$
d) $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$
32. A particle moves from $\vec{r}_{1}=(-10 m) \hat{k}$ to $\vec{r}_{2}=(24 m) \hat{i}$ in 2 s . Its average velocity is:
a) $\vec{v}_{\text {avg }}=\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
b) $\vec{v}_{\text {avg }}=\left(12 \frac{m}{s}\right) \hat{i}+\left(5 \frac{m}{s}\right) \hat{k}$
c) $\vec{v}_{\text {avg }}=\left(-10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{i}+\left(24 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \hat{k}$
d) $\vec{v}_{\text {avg }}=\left(-5 \frac{m}{s}\right) \hat{i}+\left(12 \frac{m}{s}\right) \hat{k}$
33. A force F is applied to an object of mass $m_{1}=45 \mathrm{~kg}$ produces an acceleration of 2 $\mathrm{m} / \mathrm{s}^{2}$. The same force is applied to a second object of mass m_{2} produces an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. The value of m_{2} is
a) 45 kg
b) 60 kg
c) 30 kg
d) 67 kg

Answer Key

1. a
2. b
3. a
4. a
5. a
6. b
7. d
8. d
9. b
10. b
11. a
12. c
13. c
14. b
15. c
16. d
17. a
18. a
19. d
20. a
21. b
22. b
23. a
24. b
25. b
26. a
27. d
28. a
29. b
30. d
31. a
32. b
33. b

السم الطالب:		

Q1-1. If the position of an object changes from $\vec{r}_{1}=-2 \hat{i}+3 \hat{j}$ to $\vec{r}_{2}=\hat{i}-2 \hat{j}$, the displacement is:
A) $\Delta \vec{r}=3 \hat{i}+5 \hat{j}$
B) $\Delta \vec{r}=-\hat{\imath}-5 \hat{\jmath}$
C) $\Delta \vec{r}=-3 \hat{i}-5 \hat{j}$
D) $\Delta \vec{r}=3 \hat{i}-5 \hat{j}$

Q2-A projectile is launched at an angle of 30° to the horizontal with a speed of $100 \mathrm{~m} / \mathrm{s}$. The maximum height of the projectile is :
A) 100 m
B) 127.55 m
C) 250 m
D) 44.0 m

Q3- Referring to Q2, the range of the projectile is:
A) 88.37 m
B) 383 m
C) 8.8 m
D) 883.69 m

Q4- Referring to Q2, its time of flight is:
A) 10.2 s
B) 25.2 s
C) 6.04 s
D) 5.02 s

Q5. A man throws a stone horizontally off a cliff that is 40 m above the sea level. If the velocity of the stone is $30 \mathrm{~m} / \mathrm{s}$, the time it takes to hit the sea level is:
A) 3.49 s
B) 4 s
C) 2.85 s
D) 6 s

Q6- An object was fired with an angle 30° with the horizontal with a speed of $80 \mathrm{~m} / \mathrm{s}$. The vertical component of the velocity is:
A) $40 \mathrm{~m} / \mathrm{s}$
B) $4.0 \mathrm{~m} / \mathrm{s}$
C) $15 \mathrm{~m} / \mathrm{s}$
D) $35 \mathrm{~m} / \mathrm{s}$

Q7- An object is in equilibrium, the acceleration of the object is:
A) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
B) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
C) Zero
D) Constant

Q8- If a body sliding down on an incline smooth plane. The force causing the body to slide is:
A) $m g \sin \theta$
B) $\mathrm{mg} \cos \theta$
C) $m g \tan \theta$
D) mg

Q9- An object weighing 600 N is pulled up a frictionless inclined plan of an angle of 30° at a constant velocity. The force causing the motion is:
A) 200 N
B) 245 N
C) 520 N
D) 300 N

Q10- A body moves in a circular orbit with constant velocity. Its acceleration is:
A) zero
B) in the direction of the tangent
C) toward the center
D) outward, of the center

Q11- A car travels in a circular track of 200 m in circumference at a constant velocity of $18 \mathrm{~m} / \mathrm{s}$. The radial acceleration of the car is:
A) $8.37 \mathrm{~m} / \mathrm{s}^{2}$
B) $12.8 \mathrm{~m} / \mathrm{s}^{2}$
C) $7.31 \mathrm{~m} / \mathrm{s}^{2}$
D) $10.2 \mathrm{~m} / \mathrm{s}^{2}$
Q. 12 In figure(1) a block of mass $\mathrm{m}=1 \mathrm{~kg}$ hangs from the ceiling by means of two cords. The angle between each cord and the ceiling is 60°. The tension in the right cord is:
A) 56.6 N
B) 28.65 N
C) 20.63 N
D) 5.66 N
A) 3.26
B) 1.25
C) 1.09
D) 1.9

Q14- A force of 50 N pulls a 5 kg crate up an inclined rough surface with angle 30°. If the coefficient of friction $\mu_{\mathrm{k}}=0.5$, the acceleration of the crate is:
A) $0.6 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.2 \mathrm{~m} / \mathrm{s}^{2}$
C) $0.86 \mathrm{~m} / \mathrm{s}^{2}$
D) $1.39 \mathrm{~m} / \mathrm{s}^{2}$

Q15- An object weighing 24 N is placed on a 30° slope as shown in figure (3). The normal force is:
A) 20.78 N
B) 17.02 N
C) 23.02 N
D) 24.78 N

Q16- Referring to Q15, the force preventing the object from moving is:
A) 8.38 N
B) 12 N
C) 10 N
D) Zero

Q17- Weight of 50 N is supported by a rod and a cable as shown in figure (4). The tension (T_{1}) is:
A) 45.77 N
B) 138.59 N
C) 77.78 N
D) 87.77 N

Q18- The coefficient of static friction μ_{s} of inclined plane depends on:
A) angle
B) mass
C) velocity
D) acceleration

Q19- A projectile is fired with a velocity of $80 \mathrm{~m} / \mathrm{s}$ at an angle of θ to the horizontal. If the vertical component of the initial velocity was $60 \mathrm{~m} / \mathrm{s}$, the angle θ is:
A) 48.6°
B) 54.5^{0}
C) 32.23^{0}
D) 20^{0}

Q20- A bullet is fired horizontally from the roof of a building with a velocity of $850 \mathrm{~m} / \mathrm{s}$. Its height in 3.0 s is:
A) 29.4 m
B) -44.1 m
C) -100 m
D) 19.60 m

Q21- Referring to Q21, If the building is 100 m height, the time for the bullet to reach the ground is:
A) 3.13 s
B) 81.32 s
C) 4.52 s
D) 20.41 s

Q22- A ball kicked with a velocity of $15 \mathrm{~m} / \mathrm{s}$ and with an angle of θ from the horizontal. The maximum range is:
A) 25.85 m
B) 40.82 m
C) 50.20 m
D) 22.96 m

Q23- A man weighing 800 N is standing in an elevator moving with a constant velocity. The force exerted by the man on the floor of the elevator is:
A) less than 80 N
B) 800 N
C)between 80 and 800 N
D) more than 800 N

Q24- A 25 kg box is pushed across a frictionless horizontal floor with a force of 30 N , directed 20° below the horizontal. The acceleration of the box is:
A) $1.13 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.82 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.75 \mathrm{~m} / \mathrm{s}^{2}$

Q25- Referring to Q24, the normal force acting on the ground by the box is:
A) 108.26 N
B) 25 N
C) 255.26 N
D) 125 N

Q26- A car moves in a circular road of radius 120 m . If $\mu_{\mathrm{s}}=0.5$, then the maximum speed of the car without sliding is:
A) $24.25 \mathrm{~m} / \mathrm{s}$
B) $22.1 \mathrm{~m} / \mathrm{s}$
C) $19.79 \mathrm{~m} / \mathrm{s}$
D) $17.15 \mathrm{~m} / \mathrm{s}$

Q27- A car of mass 1050 kg is traveling at $72 \mathrm{~km} / \mathrm{h}$ on a curved road with radius of 60 m . The force of friction needed to prevent the car from sliding is:
A) 6800 N
B) 5124.1 N
C) 7000 N
D) 6600 N

Q28- A block of mass 80 kg is moving along a rough horizontal surface with a coefficient of kinetic friction equal 0.2. If its initial speed is $14 \mathrm{~m} / \mathrm{s}$, the block will stop after covering a distance:
A) 57.39 m
B) 50.0 m
C) 106.3 m
D) 33.33 m

Q29- Two masses $m_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=4 \mathrm{~kg}$ situated on a frictionless horizontal surface are connected by a string. A force $\mathrm{F}=12 \mathrm{~N}$ is exerted on m_{2} as shown in fig. (5). The acceleration of the system is
A) $4 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $2 \mathrm{~m} / \mathrm{s}^{2}$
D) $1 \mathrm{~m} / \mathrm{s}^{2}$

Q 30- A 25 kg block moves with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ on a frictionless surface. The block came to rest by the effect of an external force $\mathrm{F}=-235 \mathrm{i} \mathrm{N}$. The distance the block moved is:
A) 76.1 m
B) 266.66 m
C) 33.24 m
D) 14.6 m

Fig (1)

m_{1}

Fig. (3)

Fig. (4)

Fig. 2

Fig. 5

Referring	العودة الى	Tension	الثد	Ceiling	سقف
Skier	متزلج على الثنج	Launched	\|طّقت	Hang	معلق
Vertically	عامودي	Elevator	مصعد	Prevent	يمنع
Circumference	محيط الدائرة	Circular	دائري	Tangent	مماس
Crate	صندوق	Rough	خشن	Cliff	جرف بحري
Radius	نصف قطر	Coefficient	معامل	Friction	الاحتكاك
Sliding	ينزلق	Static	السكوني	causing	المسبب للحركة
Radial	دائري	Kinetic	الحركي	equilibrium	متزن
Support	يدعم	Rod	قضيب	Situated	موضو ع على

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180°
(d) 45^{0}

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m, is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass $(\mathrm{m}=20 \mathrm{~kg})$ at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley. If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- Two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(c) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 0.1
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قف̇	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	اللوزن الظاهرهي
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	معامل	Frictional	الاحنكاك
Sliding	بيزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	بق

1- In the projectile motion, the y-component of the velocity at the maximum height is:
(a)Zero
(b) constant
(c) the maximum value
(d) Negative

2- In the projectile motion, the x-component of the velocity is:
(a) $v_{0} \sin \theta$
(b) $-v_{0} \sin \theta$
(c) $v_{0} \cos \theta$
(d) $-v_{0} \tan \theta$

3- In the projectile motion, the angle for the maximum range is:
(a) 90^{0}
(b) 75°
(c) 180^{0}
(d) 45°

4- In the projectile motion, the maximum range is:
(a) $\frac{v_{0}^{2}}{g}(\cos 2 \theta)$
(b) $\frac{v_{0}^{2}}{g}$
(c) $\frac{v_{0}}{g}$
(d) $\frac{v_{0}^{2}}{g}(\cos \theta)^{2}$

5-A body move with a velocity $\vec{v}=2 \hat{i}-3 \hat{j} \mathrm{~m} / \mathrm{s}$ and acceleration $\vec{a}=2 \hat{i}+\hat{j} \mathrm{~m} / \mathrm{s}^{2}$. The velocity after 2 s (in SI unit) is:
(a) $\vec{v}=6 \hat{i}-\hat{j}$
(b) $\vec{v}=6 \hat{i}+\hat{j}$
(c) $\vec{v}=-6 \hat{i}-\hat{j}$
(d) $\vec{v}=+6 \hat{i}+\hat{j}$

6-A ball is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. The y-component of the velocity is :
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

7- In question (6), the x-component of the velocity is:
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) $7.5 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $13 \mathrm{~m} / \mathrm{s}$

8- In question (6), the maximum height is :
(a) 2870 m
(b) 287 m
(c) 2.87 m
(d) 28.7 m

9- In question (6), the range is:
(a) 19.88 m
(b) 198.8 m
(c) 1988 m
(d) 1.988 m

10- In question (6), the time of flight is:
(a) 0.015 s
(b) 0.15 s
(c) 15 s
(d) 1.5 s

11- A boy hold a rope of 30 cm long, from one end and the other end a stone, he rotate the stone in a horizontal circle with speed of $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the stone is:
(a) $0.03 \mathrm{~m} / \mathrm{s}^{2}$
(b) $30 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.0 \mathrm{~m} / \mathrm{s}^{2}$
(d) $300 \mathrm{~m} / \mathrm{s}^{2}$

12- A man stand on the ground level, if his mass is 80 kg , his weight is:
(a) 7.84 N
(b) 784 N
(c) 78.4 N
(d) 7840 N

13- A body of mass m , is hung by the ropes, at equilibrium, as shown in the figure.
The value of mass is:
(a) 950 kg
(b) 0.97 kg
(c) 9.5 kg
(d) 95 kg

14- The force needed to keep the mass ($\mathrm{m}=20 \mathrm{~kg}$) at rest , as shown in the figure, the force is:
(a) 98 N
(b) 980 N
(c) 9.8 N
(d) 0.98 N

15- In question (14), the normal force on the body is:
(a) 1.69 N
(b) 10.0 N
(c) 16.97 N
(d) 169.7 N

16- From the figure $m_{1}=20 \mathrm{~kg}$ and $\mathrm{m}_{2}=10 \mathrm{~kg}$. The force acting to accelerate the two bodies by $2 \mathrm{~m} / \mathrm{s}^{2}$, the force is:
(a) 60 N
(b) 6.0 N
(c) 600 N
(d) 0.06 N

17- A racing car of mass 600 kg moves is decelerated by $4.5 \mathrm{~m} / \mathrm{s}^{2}$ using the brakes, the frictional force is:
(a) 225 N
(b) 0.225 N
(c) 2700 N
(d) 2.25 N

18- In the figure shown, if $\mathrm{m}_{1}=5 \mathrm{~kg}$ and the system move with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ and the tension in the rope was 10 N . The value of m_{2} is:
(a) 2.5 kg
(b) 1.28 kg
(c) 8.0 kg
(d) 50 kg

19- In question (18), the normal force on the m_{1} is:
(a) 0.49 N
(b) 490 N
(c) 4.9 N
(d) 49 N

20- A block of mass 10 kg , was pulled by a force 30 N , the block was going with a constant speed (as shown in the figure) on a rough surface. The friction force is:
(a) 25.98 N
(b) 259.8 N
(c) 2.598 N
(d) 0.2598 N

21- A space satellite moves in a circular orbit around the earth, at altitude of 530 km and with speed of $8.2 \mathrm{~km} / \mathrm{s}$. The acceleration of the satellite is: (the earth radius $6.37 \times 10^{6} \mathrm{~m}$)
(a) $0.974 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.74 \mathrm{~m} / \mathrm{s}^{2}$
(d) $5.5 \mathrm{~m} / \mathrm{s}^{2}$

22- In the figure shown two bodies are hung by a rope over a frictionless pulley.
If $m_{1}=3 \mathrm{~kg}$ and $\mathrm{m}_{2}=1.5 \mathrm{~kg}$. the acceleration of the two bodes is:
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.327 \mathrm{~m} / \mathrm{s}^{2}$
(c) $7.27 \mathrm{~m} / \mathrm{s}^{2}$
(d) $3.27 \mathrm{~m} / \mathrm{s}^{2}$

23- In the figure, two boxes $m_{1}=10 \mathrm{~kg}$ and $m_{2}=15 \mathrm{~kg}$, the gravitational force on m_{2} is
(a) 25 N
(b) 245 N
(c) 2450 N
(d) 5 N

24- In question 23, the gravitational force on m_{1} is:

(a) 0.98 N
(b) 9.8 N
(c) 980 N
(d) 98 N

25- A man of mass 80 kg stand on elevator, if the elevator is going upward with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, the apparent weight of the man is:
(a) 944 N
(b) 80 N
(c) 44 N
(d) 9.8 N

26- In question (25), if the elevator is going with constant velocity $5 \mathrm{~m} / \mathrm{s}$, the weight of the man is:
(a) 80 N
(b) 7.84 N
(c) 784 N
(d) 78.4 N

27- A box stands on rough incline plane of 30°, when just about to move, the static coefficient of friction is:
(a) 1.00
(b) 5.8
(c) Zero
(d) 0.58

28- A box stands on rough incline plane of θ, the box is moving with a constant velocity, the frictional force is:
(a) $\mathrm{mg} \sin \theta$
(b) $m g \tan \theta$
(c) $\mathrm{mg} \cos \theta$
(d) mg

29- A box of mass 5 kg is sliding down with a constant velocity on a rough incline surface at an angle 20° with the horizontal. The kinetic friction coefficient is:
(a) 0.1
(b) 2.6
(c) 0.36
(d) 1.00

30- A car was going in a circular road with a radius of 50 m with constant velocity of $25 \mathrm{~m} / \mathrm{s}$, the static friction coefficient is:
(a) 0.816
(b) 1.27
(c) 1.00
(d) 1.27

Referring	العودة الى	Initial	ابتدائي	Hitting	اصطدم
Thrown	قنف	altitude	إرنفاع عن سطح الارض	Magnitude	القيمة العددية
Vertically	عامودي	Elevator	مصع	Prevent	يمنع
Hangs	معلق	Circular	دائري	Apparent weigh	الوزن الظاهري
Horizontal	أفقي	Rough	خشن	Gravitational	الجاذبية الارضية
Radius	نصف قطر	Coefficient	م	Frictional	الاحنكاك
Sliding	ينزلق	Static	السكوني	Floor	الارض
Upward	إلى اعلى	Kinetic	الحركي	Stand	يق

Second Term

Date: 2 / 6 / 1433H

Name:
ID No:
Section:

CHOOSE THE CORRECT ANSWER

1. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 8957.4 m
B) 3064.6 m
C) 2245.9 m
D) 1598.6 m
2. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{a v g}=\hat{i}-6 \hat{j}$
B) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
C) $\vec{a}_{\text {avg }}=3 \hat{i}$
D) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
3. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) $3 \pi^{3}$
B) 4π
C) 20
D) π
4. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its maximum height
B) its initial height
C) the origin
D) the start point

Use the following to answer questions 5-6:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
5. The velocity as a function of time is:
A) $10 t \hat{i}-3 t^{2} \hat{j}$
В) $10 \hat{i}-6 t^{2} \hat{j}$
C) $5 t \hat{i}-6 \hat{j}$
D) $t \hat{i}+6 t \hat{j}$
6. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $26 \hat{i}-7 \hat{j}$
В) $36 \hat{i}-3 \hat{j}$
C) $81 \hat{i}+3 \hat{j}$
D) $15 \hat{i}-5 \hat{j}$

Use the following to answer questions 7-9:

A block of mass $m=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

7. From the figure, F $_{\text {net, }, \mathrm{x}}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
B) $-T_{1} \cos 30+T_{2} \cos 45=0$
C) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
D) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
8. The magnitude of weight (W) in Newtons is equal to:
A) 9.8 N
B) -9.8 N
C) -49 N
D) 49 N
9. The free body diagram representing the forces on m is:
A)

B)

C)

D)

10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) has a magnitude of exactly 1
C) is in the direction of the normal force
B) is dimensionless
D) is in the direction of motion
11. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}}(\cos \theta) \mathrm{t}$
B) $v_{y}=v_{o}(\sin \theta) t$
C) $v_{y}=v_{o} \sin \theta-g t$
D) $v_{y}=v_{o} \sin \theta+g t$
12. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 7.14 N
B) 4.12 N
C) 13.2 N
D) 10 N
13. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $\mathrm{t}=3.40 \mathrm{~s}$ is
A) $-7.98 \hat{i}$
B) $12.4 \hat{i}$
C) $-5.21 \hat{i}$
D) $8.52 \hat{i}$
14. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
C) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
D) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
15. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
16. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
B) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
C) $\quad 4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
D) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
17. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
A) 4141.5 N
B) 1245.7 N
C) 3340.5 N
D) 6241.6 N
18. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
B) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
D) $3 \mathrm{~m} / \mathrm{s}^{2}$
19. A particle is projected with an initial velocity ${\overrightarrow{v_{0}}}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $7 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $2 \mathrm{~m} / \mathrm{s}$
D) $5 \mathrm{~m} / \mathrm{s}$
 velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 49°
В) 67°
C) 85°
D) 33°
21. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.8
B) 0.6
C) 0.3
D) 0.4

Use the following to answer questions 22-23:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

22. The magnitude of force \vec{F} on the four blocks is
A) 40 N
B) 30 N
C) 20 N
D) 60 N
23. The total mass accelerated to the right by Cord 3 is
A) 18 kg
B) 20 kg
C) 10 kg
D) 13 kg
24. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 523.4 N
B) 700.5 N
C) 323.9 N
D) 607.5 N

Use the following to answer questions 25-26:
In the figure, a block of mass $\mathrm{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=60^{\circ}$

25. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) mg
B) $\mathrm{m} a$
C) $\mathrm{mg} \cos \theta$
D) $m g \sin \theta$
26. The magnitude of the force that causes the block sliding down is
A) 212.17 N
B) 150 N
C) 90.44 N
D) 311 N
27. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 50 N
B) 60 N
C) 57 N
D) 40 N
28. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is :
A) accelerating upward
C) moving up with constant velocity.
B) accelerating downward
D) stationary
29. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $80 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $40 \mathrm{~m} / \mathrm{s}$
D) $42.3 \mathrm{~m} / \mathrm{s}$
30. The force that always perpendicular to the surface is called
A) Gravitational force
B) Tension
C) Friction
D) Normal force
31. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with v $=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
B) $\frac{a_{1}}{a_{2}}=2$
C) $a_{1}=a_{2}$
D) $a_{1}=a_{2}=0$
32. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least ?
A)

C)

В)

D)

33. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلقَ) is:
A) 25.4 N
B) 19.6 N
C) 45.8 N
D) 10.3 N

Answer Key

1. B
2. B
3. B
4. B
5. A
6. B
7. B
8. D
9. A
10. B
11. C
12. B
13. A
14. A
15. A
16. B
17. C
18. B
19. D
20. B
21. D
22. D
23. A
24. D
25. C
26. A
27. A
28. A
29. D
30. D
31. C
32. D
33. B
34. Motion in 2 and 3 dimensions: A. Z. ALZAHRANI

1.

At the maximum height, what of the followings is correct?
Its velocity is zero
Its y-component velocity is zero
Its x -component velocity is zero
Its acceleration is zero
2.

To have the maximum range, a projectile must be launched at an angle of 25
35
45
60

```
3.
Ignoring air resistance, the acceleration of any projectile along the x-direction is
(SI units)
9.8
0
varied from one to another
less than zero
```

4.

Ignoring air resistance, the acceleration of any projectile along the \mathbf{y}-direction is (SI units)
9.8

0
varied from one to another
less than zero

5.

A projectile is fired at an angle of 30 above the horizontal with an initial speed of v . If the maximum range it reaches is $\mathbf{1 4 0} \mathrm{m}$, what its initial speed?
$20 \mathrm{~m} / \mathrm{s}$
$40 \mathrm{~m} / \mathrm{s}$
$60 \mathrm{~m} / \mathrm{s}$
$80 \mathrm{~m} / \mathrm{s}$
6.

A projectile is fired with an angle Q above the horizontal. It takes 15 s to reach its range of $\mathbf{1 3 5} \mathbf{~ m}$. What is its speed at the highest point?
$9 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
$11 \mathrm{~m} / \mathrm{s}$
$12 \mathrm{~m} / \mathrm{s}$

7.

A projectile is fired horizontally from a height of $\mathbf{1 0 0} \mathbf{m}$ above the ground. If it takes 2 sec to hit the ground, what is its initial speed?
$20.2 \mathrm{~m} / \mathrm{s}$
$30.2 \mathrm{~m} / \mathrm{s}$
$40.2 \mathrm{~m} / \mathrm{s}$
$50.2 \mathrm{~m} / \mathrm{s}$

8.

A projectile is fired horizontally from a building of height of 100 m above the ground. If it hits the ground at a point 20 m away from the edge of the building, what is its initial speed?
$4.4 \mathrm{~m} / \mathrm{s}$
$6.4 \mathrm{~m} / \mathrm{s}$
$8.4 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$

9.

A projectile is fired with initial speed of \mathbf{v} at an angle \mathbf{Q} above the horizontal. ITwo seconds later, the velocity of the projectile is determined to be $v(t)=18.2 \mathrm{i}$ $11.15 \mathrm{j}(\mathrm{m} / \mathrm{s})$. What is its initial speed ?
$20 \mathrm{~m} / \mathrm{s}$
$30 \mathrm{~m} / \mathrm{s}$
$40 \mathrm{~m} / \mathrm{s}$
$50 \mathrm{~m} / \mathrm{s}$
10.

A projectile is fired with initial speed of \mathbf{v} at an angle \mathbf{Q} above the horizontal. ITwo seconds later, the velocity of the projectile is determined to be $v(t)=18.2 \mathrm{i}$ $11.15 \mathrm{j}(\mathrm{m} / \mathrm{s})$. What is angle Q ?
15
25
35
45

5-6. Force \& Motion : A. Z. ALZAHRANI

1.

Force is a scalar quantity. Is it right?
Yes
No
2.

If the body moves with a constant acceleration, the net force is zero. Is it right?
Yes
No
3.

If the body moves with a constant velocity, the net force is zero. Is it right?
Yes
No

4.

Two forces F and P act on a body, the body will move in the direction of the force F
force P
net force

5.
 Static force on a body equals the net force if the body
 moves with a constant speed
 moves with a constant acceleration
 just starts its motion
 does not move

6.

The direction of kinetic friction force is always in the
direction of the greater force
direction of the net force
opposite direction of the net force
opposite direction of the normal force
7.

The reaction 'normal' force is always equivalent to the weight of the body. Is it right?
Yes
No

8.

The direction of the acceleration of moving system is in the direction of its velocity
its net force
its displacement
its weight

9.

If the summation of total forces acting on a body is zero, the body is in
static equilibrium
kinetic equilibrium
both are correct
none is correct
10.

Two blocks of masses $M=40.0 \mathrm{~kg}$ and m , are connected by a light string that passes over a massless pulley. If the tension in the string is $\mathbf{T}=\mathbf{3 0 0} \mathbf{N}$. Find the value of m . (Ignore friction)
24.8 kg

40 kg
30.5 kg
28.6 kg

11.

A 10 kg box is lowered with a downward acceleration of $1.8 \mathrm{~m} / \mathrm{s}^{\wedge} \mathbf{2}$ by means of a rope. The tension in the rope is
116 N
18 N
80 N
98 N
12.

Ali (super strong man) is pushing his car (1000 kg) with a uniform acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ by applying a force F at an angle 20 with the horizontal. if the coefficient of kinetic friction between the tyre and road is 0.65 , the magnitude of
13.

A car (1000 kg) is moving in a round-about with a constant speed of $40 \mathrm{~km} / \mathrm{h}$. If the radius of the round is 10 m , the force acting on the car is
980 N
12345 N
160000 N
200000 N
14.

A car orbits a circular road of diameter 40 m . If the acceleration is $20 \mathrm{~m} / \mathrm{s}^{\wedge} \mathbf{2}$, the speed of the car is
$28.28 \mathrm{~m} / \mathrm{s}$
$20 \mathrm{~m} / \mathrm{s}$
$15 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
15.

A car takes 4 min to complete 6 turns around $25-\mathrm{m}$ radius road. The speed of the car is
$60 \mathrm{~km} / \mathrm{hr}$
$34 \mathrm{~km} / \mathrm{hr}$
$14 \mathrm{~km} / \mathrm{hr}$
$10 \mathrm{~km} / \mathrm{hr}$
16.

The direction of the acceleration due to a circular motion is
towards the centre of the circle
outwards the centre of the circle
tangent to the circle
none
17.

An 8-kg box is pulled over a frictionless floor with a horizontal force $\mathrm{F}=\mathbf{5 0} \mathbf{N}$. If the box starts its motion from the rest, its speed after 2 sec is
18.

An 8-kg box is pulled over a rough floor (kinetic friction coefficient is 0.25) with a horizontal force $\mathrm{F}=50 \mathrm{~N}$. If the box starts its motion from the rest, its speed after 2 sec is
$12.5 \mathrm{~m} / \mathrm{s}$
$10.3 \mathrm{~m} / \mathrm{s}$
$9.5 \mathrm{~m} / \mathrm{s}$
$7.6 \mathrm{~m} / \mathrm{s}$
19.

A 5-kg box is pulled up an inclined plane (angle $=30$) with a horizontal force $\mathrm{F}=50 \mathrm{~N}$. If the box moves with a constant speed, what is the coefficient of kinetic friction?
0.17
0.27
0.37
0.47
20.

An $80-\mathrm{kg}$ box is affected by a force of 500 N with an angle of 40 with the horizontal. If the box is started its motion from rest and covered $\mathbf{8} \mathbf{m}$ in $\mathbf{2 ~ s e c}$, what is the kinetic friction coefficient?
0.24
0.14
0.34
0.44

1. convert 15.0 in . to meter. $1 \mathrm{in}=2.54 \mathrm{~cm}$
a) 0.37 m
b) 3.7 m
c) 6.1 m
d) 0.61 m
e) 0.2 .54 m
2. Assuming that the density (mass/ volume) of water is exactly $1 \mathrm{~g} / \mathrm{cm}^{3}$, express the density of water in kilograms per cubic meter ($\mathrm{kg} / \mathrm{m}^{3}$).
a) $10^{6} \mathrm{~kg} / \mathrm{m}^{3}$
b) $0.001 \mathrm{~kg} / \mathrm{m}^{3}$
c) $1000 \mathrm{~kg} / \mathrm{m}^{3}$
d) $100 \mathrm{~kg} / \mathrm{m}^{3}$
e) $2000 \mathrm{~kg} / \mathrm{m}^{3}$
3. Suppose that it take 20 h to drain a container of $7200 \mathrm{~m}^{3}$ of water. What is the " mass flow rate' 'in kilograms per second, of water from the container?
a) $36 \mathrm{~kg} / \mathrm{s}$
b) $144 \mathrm{~kg} / \mathrm{s}$
c) $72 \mathrm{~kg} / \mathrm{s}$
d) $1000 \mathrm{~kg} / \mathrm{s}$
e) $100 \mathrm{~kg} / \mathrm{s}$
4. the maximum highway speed is $70 \mathrm{mi} / \mathrm{h}$ in some places. What is the speed in kilometre per hour ?
a) $50 \mathrm{~m} / \mathrm{s}$
b) $70 \mathrm{~km} / \mathrm{h}$
c) $110.9 \mathrm{~km} / \mathrm{h}$
d) $112.7 \mathrm{~km} / \mathrm{h}$
e) $120 \mathrm{~km} / \mathrm{h}$
5. Aluminum has a density of $2.70 \mathrm{~g} / \mathrm{cm} 3$, express the mass of Aluminum for a piece of volume $2 \mathrm{~m}^{3}$ In kg .
a) 5400 kg
b) 6000 kg
c) 2700 kg
d) 1350 kg
e) 270 kg
6. The speed for small racing airplane increase from $35 \mathrm{~m} \mathrm{~s}^{-1}$ to $75 \mathrm{~m} \mathrm{~s}^{-1}$ in 4 s . determine the acceleration of the plane during this interval
a) $10 \mathrm{~m} / \mathrm{s}^{2}$
b) $40 \mathrm{~m} / \mathrm{s}^{2}$
c) $110 \mathrm{~m} / \mathrm{s}^{2}$
d) $30 \mathrm{~m} / \mathrm{s}^{2}$
e) $5 \mathrm{~m} / \mathrm{s}^{2}$
7. An object moving with constant acceleration changes its speed from $30 \mathrm{~m} / \mathrm{s}$ to $50 \mathrm{~m} / \mathrm{s}$ in 2.0 s . How far did it move in this time?
a) 40 m
b) 160 m
c) 50 m
d) 80 m
e) 200 m
8. A ball thrown straight up takes 2.0 s to reach a height of 40 m . Find Its initial speed
a) $29.8 \mathrm{~m} / \mathrm{s}$
b) $20.2 \mathrm{~m} / \mathrm{s}$
c) $9.8 \mathrm{~m} / \mathrm{s}$
d) 24.9
e) 35.7 m
9. A ball is thrown down vertically with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ from a height of 60 m . Find its speed just before it strikes the ground and
a) $27.9 \mathrm{~m} / \mathrm{s}$
b) $0 \mathrm{~m} / \mathrm{s}$
c) $39.7 \mathrm{~m} / \mathrm{s}$
d) $60 \mathrm{~m} / \mathrm{s}$
e) $1576 \mathrm{~m} / \mathrm{s}$
10. three vectors $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}$ and $\vec{B}=4 \hat{\imath}+6 \hat{\jmath}$ and \vec{C} is unknown, the resultant $\vec{A}+\vec{B}+\vec{C}=0$, then the vector \vec{C} is
a) $5 \hat{\imath}+6 \hat{\jmath}$
b) $6 \hat{\imath}+9 \hat{\jmath}$
c) $-6 \hat{\imath}-9 \hat{j}$
d) $-9 \hat{\jmath}$
e) $0^{-6 \hat{\imath}}$
11. referring to question 10 the angle between \vec{B} and the positive x-axis is:
a) 37.5°
b) 62.7°
c) 0°
d) 90°
e) 56.3°
12.

$\vec{A}=4 \hat{\imath}-\hat{\jmath}$ and $\vec{B}=2 \hat{\jmath}+2 \hat{k}$, then $\vec{A} \times \vec{B}$ is
a)
b) $-2 \hat{\imath}-8 \hat{\jmath}+8 \hat{k}$
c) $8 \hat{\imath}-2 \hat{\jmath}+8 \hat{k}$
d) ${ }^{-2}$
e) $-2 \hat{\imath}-6 \hat{\jmath}+8 \hat{k}$
13. referring to question 12 the angle of vector \vec{A} is
a) 45°
b) 0°
c) 14°
d) 345.9°
e) 59°
14.
and
a) $12 \hat{i}-9 \hat{j}+8 \hat{k}$
b) $-12 \hat{i}-9 \hat{j}-8 \hat{k}$
c) -18
d) $-10 \hat{i}+9 \hat{j}-18 \hat{k}$
e) +6

A

B

40
15
0
0
0
15. Find the scalar product of the two vectors in the figure.

The magnitude of the vectors are $A=4.00$, and $B=5.00$.
a) 5.9
b) -6.8
c) 20
d) 5
e) 4

Section:

CHOOSE THE CORRECT ANSWER

1. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $v_{y}=v_{o} \sin \theta+g t$
B) $v_{y}=v_{o} \sin \theta-g t$
C) $v_{y}=v_{o}(\cos \theta) t$
D) $v_{y}=v_{o}(\sin \theta) t$
2. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

B)

C)

D)

3. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
D) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
4. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
А) 2245.9 m
B) 1598.6 m
C) 3064.6 m
D) 8957.4 m
5. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
B) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
D) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
6. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating downward
C) stationary
B) moving up with constant velocity.
D) accelerating upward
7. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:
A) 45.8 N
B) 25.4 N
C) 10.3 N
D) 19.6 N
8. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $\frac{a_{1}}{a_{2}}=2$
B) $a_{1}=a_{2}$
C) $a_{1}=a_{2}=0$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
9. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
A) $-5.21 \hat{i}$
В) $-7.98 \hat{i}$
C) $8.52 \hat{i}$
D) $12.4 \hat{i}$
10. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is in the direction of motion
C) is dimensionless
B) has a magnitude of exactly 1
D) is in the direction of the normal force
11. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 10 N
B) 7.14 N
C) 4.12 N
D) 13.2 N
12. The force that always perpendicular to the surface is called
A) Friction
B) Normal force
C) Tension
D) Gravitational force
13. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its initial height
B) the origin
C) the start point
D) its maximum height

Use the following to answer questions 14-15:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

14. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) $\mathrm{mg} \cos \theta$
B) mg
C) $m g \sin \theta$
D) $\mathrm{m} a$
15. The magnitude of the force that causes the block sliding down is
A) 150 N
B) 90.44 N
C) 311 N
D) 212.17 N

Use the following to answer questions 16-17:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
16. The velocity as a function of time is:
A) $t \hat{i}+6 t \hat{j}$
B) $10 t \hat{i}-3 t^{2} \hat{j}$
C) $10 \hat{i}-6 t^{2} \hat{j}$
D) $5 t \hat{i}-6 \hat{j}$
17. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $15 \hat{i}-5 \hat{j}$
В) $81 \hat{i}+3 \hat{j}$
C) $26 \hat{i}-7 \hat{j}$
D) $36 \hat{i}-3 \hat{j}$
18. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) π
B) $3 \pi^{3}$
C) 4π
D) 20
19. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 607.5 N
B) 323.9 N
C) 523.4 N
D) 700.5 N
20. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
B) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
C) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
D) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
21. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $3 \mathrm{~m} / \mathrm{s}^{2}$
C) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
D) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
22. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
А) $40 \mathrm{~m} / \mathrm{s}$
B) $80 \mathrm{~m} / \mathrm{s}$
C) $42.3 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$
23. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
B) $\vec{a}_{\text {avg }}=3 \hat{i}$
C) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
D) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
24. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
А) 6241.6 N
B) 3340.5 N
C) 4141.5 N
D) 1245.7 N
 velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 85°
B) 49°
C) 33°
D) 67°
26. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $5 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $12 \mathrm{~m} / \mathrm{s}$
D) $2 \mathrm{~m} / \mathrm{s}$

A block of mass $\mathbf{m}=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

27. The free body diagram representing the forces on m is:
A)

B)

C)

D)

28. The magnitude of weight (W) in Newtons is equal to:
A) -49 N
B) 9.8 N
C) 49 N
D) -9.8 N
29. From the figure, $F_{\text {net }, x}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
B) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
C) $-\mathrm{T}_{1} \cos 30+\mathrm{T}_{2} \cos 45=0$
D) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
30. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 40 N
B) 50 N
C) 60 N
D) 57 N
31. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.6
B) 0.4
C) 0.8
D) 0.3

Use the following to answer questions 32-33:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

32. The magnitude of force \vec{F} on the four blocks is
A) 20 N
B) 60 N
C) 30 N
D) 40 N
33. The total mass accelerated to the right by Cord 3 is
A) 20 kg
B) 13 kg
C) 18 kg
D) 10 kg

Answer Key

1. B
2. A
3. C
4. C
5. C
6. D
7. D
8. B
9. B
10. C
11. C
12. B
13. A
14. A
15. D
16. B
17. D
18. C
19. A
20. A
21. A
22. C
23. D
24. B
25. D
26. A
27. B
28. C
29. C
30. B
31. B
32. B
33. C

CHOOSE THE CORRECT ANSWER

1. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
A) 4141.5 N
B) 6241.6 N
C) 3340.5 N
D) 1245.7 N
2. A particle is projected with an initial velocity $\vec{v}_{0}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $2 \mathrm{~m} / \mathrm{s}$
B) $7 \mathrm{~m} / \mathrm{s}$
C) $5 \mathrm{~m} / \mathrm{s}$
D) $12 \mathrm{~m} / \mathrm{s}$
3. The force that always perpendicular to the surface is called
A) Normal force
B) Gravitational force
C) Tension
D) Friction
4. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلّ) is:
A) 25.4 N
B) 10.3 N
C) 45.8 N
D) 19.6 N
5. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $40 \mathrm{~m} / \mathrm{s}$
B) $80 \mathrm{~m} / \mathrm{s}$
C) $42.3 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$

Use the following to answer questions 6-7:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

6. The total mass accelerated to the right by Cord 3 is
A) 20 kg
B) 18 kg
C) 10 kg
D) 13 kg
7. The magnitude of force \vec{F} on the four blocks is
А) 60 N
B) 40 N
C) 30 N
D) 20 N
8. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $v_{y}=v_{o} \sin \theta+g t$
B) $v_{y}=v_{o} \sin \theta-g t$
C) $v_{y}=v_{o}(\cos \theta) t$
D) $v_{y}=v_{o}(\sin \theta) t$
9. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is in the direction of the normal force
C) is dimensionless
B) is in the direction of motion
D) has a magnitude of exactly 1

Use the following to answer questions $10-11$:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
10. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $81 \hat{i}+3 \hat{j}$
В) $36 \hat{i}-3 \hat{j}$
C) $26 \hat{i}-7 \hat{j}$
D) $15 \hat{i}-5 \hat{j}$
11. The velocity as a function of time is:
A) $t \hat{i}+6 t \hat{j}$
В) $10 t \hat{i}-3 t^{2} \hat{j}$
C) $10 \hat{i}-6 t^{2} \hat{j}$
D) $5 t \hat{i}-6 \hat{j}$

Use the following to answer questions 12-13:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

12. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) $\mathrm{mg} \cos \theta$
B) mg
C) $m g \sin \theta$
D) $m a$
13. The magnitude of the force that causes the block sliding down is
A) 311 N
B) 90.44 N
C) 212.17 N
D) 150 N
14. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

C)

B)

D)

15. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$
B) $\vec{a}_{\text {avg }}=3 \hat{i}$
C) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
D) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
16. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 8957.4 m
B) 2245.9 m
C) 3064.6 m
D) 1598.6 m
17. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
A) 523.4 N
B) 323.9 N
C) 700.5 N
D) 607.5 N
18. A bomb (${ }^{(}{ }^{4}$) is fired from a cannon and has initial horizontal and vertical components of velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
А) 67°
B) 49°
C) 85°
D) 33°
19. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
C) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
D) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
20. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 40 N
B) 50 N
C) 60 N
D) 57 N
21. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is $(6 \mathrm{~m} / \mathrm{s}) \hat{i}$. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively
C) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
D) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
22. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its initial height
B) the origin
C) the start point
D) its maximum height
23. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
А) 4.12 N
B) 10 N
C) 7.14 N
D) 13.2 N
24. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
B) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
C) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
D) $3 \mathrm{~m} / \mathrm{s}^{2}$

A block of mass $\mathbf{m}=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

25. The magnitude of weight (W) in Newtons is equal to:
A) 49 N
B) -49 N
C) 9.8 N
D) -9.8 N
26. From the figure, $F_{\text {net }, x}$ on the block is:
A) $-T_{1} \cos 30+T_{2} \cos 45=0$
B) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
C) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
D) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
27. The free body diagram representing the forces on m is:
А)

B)

C)

D)

28. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
А) $8.52 \hat{i}$
B) $12.4 \hat{i}$
C) $-5.21 \hat{i}$
D) $-7.98 \hat{i}$
29. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity $\left(\vec{v}_{\text {avg }}\right)$ in unit vector notation is
A) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
C) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
В) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
D) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
30. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.6
B) 0.8
C) 0.3
D) 0.4
31. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) π
B) $3 \pi^{3}$
C) 4π
D) 20
32. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
A) $a_{1}=a_{2}=0$
B) $a_{1}=a_{2}$
C) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
D) $\frac{a_{1}}{a_{2}}=2$
33. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating downward
C) accelerating upward
B) stationary
D) moving up with constant velocity.

Answer Key

1. C
2. C
3. A
4. D
5. C
6. B
7. A
8. B
9. C
10. B
11. B
12. A
13. C
14. D
15. D
16. C
17. D
18. A
19. A
20. B
21. A
22. A
23. A
24. A
25. A
26. A
27. A
28. D
29. B
30. D
31. C
32. B
33. C

CHOOSE THE CORRECT ANSWER

1. A 12 kg object is moving with a net force of 7 N north on it. The object having an acceleration of:
A) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ north
B) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ north
C) $1.71 \mathrm{~m} / \mathrm{s}^{2}$ south
D) $0.58 \mathrm{~m} / \mathrm{s}^{2}$ south
2. A car goes from $\vec{v}_{i}=2 \hat{i}+4 \hat{j}$ to $\vec{v}_{f}=3 \hat{i}+9 \hat{j}$ in 5 s . The average acceleration of the car
A) $\vec{a}_{\text {avg }}=3 \hat{i}$
B) $\vec{a}_{\text {avg }}=\hat{i}-6 \hat{j}$
C) $\vec{a}_{\text {avg }}=0.2 \hat{i}+\hat{j}$
D) $\vec{a}_{\text {avg }}=\hat{i}-\hat{j}$

Use the following to answer questions 3-5:
A block of mass $m=5 \mathrm{~kg}$ is hanging by two ropes as shown in the figure:

3. The magnitude of weight (W) in Newtons is equal to:
A) -9.8 N
B) 9.8 N
C) 49 N
D) -49 N
4. The free body diagram representing the forces on m is:
A)

B)

C)

D)

5. From the figure, $\mathbf{F}_{\text {net, }, x}$ on the block is:
A) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=0$
B) $\mathrm{T}_{1} \cos 30-\mathrm{T}_{2} \cos 45=\mathrm{m} a_{x}$
C) $-\mathrm{T}_{1} \cos 30+\mathrm{T}_{2} \cos 45=0$
D) $\mathrm{T}_{1} \cos 45-\mathrm{T}_{2} \cos 30=\mathrm{m} a_{x}$
6. A bomb (قَنبّة) is fired from a cannon and has initial horizontal and vertical components of velocity equal to $23 \mathrm{~m} / \mathrm{s}$ and $54 \mathrm{~m} / \mathrm{s}$, respectively. The angle the bomb fired with the horizontal is
A) 49°
B) 33°
C) 67°
D) 85°
7. The position vector for an airplane initially is $\vec{r}=5 \hat{i}-6 \hat{j}+2 \hat{k}$ and then 10 s later is $\vec{r}=-2 \hat{i}+8 \hat{j}-2 \hat{k}$, all in meters, its average velocity ($\vec{v}_{\text {avg }}$) in unit vector notation is
A) $-0.3 \hat{i}-1.4 \hat{j}+0.6 \hat{k}$
B) $4.7 \hat{i}-1.4 \hat{j}+0.9 \hat{k}$
C) $-5 \hat{i}+2.4 \hat{j}+0.4 \hat{k}$
D) $-0.7 \hat{i}+1.4 \hat{j}-0.4 \hat{k}$
8. A 980 kg car is traveling at constant speed $28 \mathrm{~m} / \mathrm{s}$ around circular track of radius $R=230 \mathrm{~m}$. The magnitude of the frictional force on the car is
А) 3340.5 N
B) 1245.7 N
C) 6241.6 N
D) 4141.5 N
9. A man of mass 75 kg stand on an elevator, if the elevator is going downward with acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$, the normal force on the man from the elevator is:
А) 700.5 N
B) 523.4 N
C) 607.5 N
D) 323.9 N

Use the following to answer questions $10-11$:
The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F}, with an acceleration equal to $3 \mathrm{~m} / \mathrm{s}^{2}$

10. The magnitude of force \vec{F} on the four blocks is
А) 30 N
B) 60 N
C) 20 N
D) 40 N
11. The total mass accelerated to the right by Cord 3 is
A) 10 kg
B) 20 kg
C) 13 kg
D) 18 kg
12. An objects move at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on a circular path of radius 10 m . The period in seconds is:
A) 4π
В) 20
C) $3 \pi^{3}$
D) π
13. In the figure, two blocks slide over a frictionless surface along an x-axis with an acceleration equals $2 \mathrm{~m} / \mathrm{s}^{2}$. The force F on block A from block B is:

A) 57 N
B) 40 N
C) 50 N
D) 60 N
14. A ball is shot at an angle of 25° above the horizontal with an initial speed of v_{0}. If the range it reaches is 140 m , what its initial speed?
A) $42.3 \mathrm{~m} / \mathrm{s}$
B) $20 \mathrm{~m} / \mathrm{s}$
C) $80 \mathrm{~m} / \mathrm{s}$
D) $40 \mathrm{~m} / \mathrm{s}$
15. The force that always perpendicular to the surface is called
A) Friction
B) Normal force
C) Gravitational force
D) Tension
16. A 0.15 kg particle moves along an x-axis with acceleration $a(t)=8-18 t$ with a in $\mathrm{m} / \mathrm{s}^{2}$ and t in seconds. The net force in Newtons acting on the particle at $t=3.40 \mathrm{~s}$ is
А) $-7.98 \hat{i}$
B) $-5.21 \hat{i}$
C) $8.52 \hat{i}$
D) $12.4 \hat{i}$
17. From the figure, the acceleration of the block of mass 3 kg moving along an x-axis on a frictionless table is:

A) $3 \mathrm{~m} / \mathrm{s}^{2}$
B) $-2.3 \mathrm{~m} / \mathrm{s}^{2}$
C) $1.75 \mathrm{~m} / \mathrm{s}^{2}$
D) $2.45 \mathrm{~m} / \mathrm{s}^{2}$
18. Two forces, have magnitudes 5 N and 10 N , are applied to an object moving along an x-axis. In which figure of the following the magnitude of the acceleration of the object is the least?
A)

C)

B)

D)

19. A particle is projected with an initial velocity $\overrightarrow{v_{0}}=5.0 \hat{i}+4.0 \hat{j}$ in meters per second. The horizontal component of its velocity at the maximum height is:
A) $5 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $7 \mathrm{~m} / \mathrm{s}$
D) $2 \mathrm{~m} / \mathrm{s}$
20. In the figure, a car moves at constant speed around the circle path in a horizontal $x y$ plane, with the center at the origin. When it is at point A its coordinates are $x=0, y=3 \mathrm{~m}$ and its velocity is ($6 \mathrm{~m} / \mathrm{s}$) \hat{i}. When it is at point \mathbf{B} its velocity and acceleration are:

A) $\vec{v}=+4 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
B) $\vec{v}=+6 \hat{j}$ and $\vec{a}=+12 \hat{i}$, respectively
C) $\vec{v}=+6 \hat{i}$ and $\vec{a}=-12 \hat{i}$, respectively
D) $\vec{v}=-6 \hat{j}$ and $\vec{a}=+12 \hat{j}$, respectively

Use the following to answer questions 21-22:
In the figure, a block of mass $\mathbf{m}=\mathbf{2 5} \mathbf{k g}$ is sliding down on a frictionless plane inclined at $\theta=$ 60°

21. The magnitude of the force that causes the block sliding down is
A) 90.44 N
B) 212.17 N
C) 150 N
D) 311 N
22. The normal force $\left(\vec{F}_{N}\right)$ on the block is:
A) mg
B) $\mathrm{m} a$
C) $\mathrm{mg} \cos \theta$
D) $m g \sin \theta$

Use the following to answer questions 23-24:
The coordinates of a particle's position vector as a function of time are given by $x=5 t^{2}+16$, and $y=-t^{3}+5$, with x and y in meters and t in seconds:
23. The velocity as a function of time is:
A) $5 t \hat{i}-6 \hat{j}$
B) $t \hat{i}+6 t \hat{j}$
C) $10 t \hat{i}-3 t^{2} \hat{j}$
D) $10 \hat{i}-6 t^{2} \hat{j}$
24. The position vector \vec{r} at $t=2 \mathrm{~s}$ is
A) $15 \hat{i}-5 \hat{j}$
В) $81 \hat{i}+3 \hat{j}$
C) $36 \hat{i}-3 \hat{j}$
D) $26 \hat{i}-7 \hat{j}$
25. A horizontal force of 4 N pushes a block of weight 10 N to make it move with constant velocity, the value of the coefficient of kinetic friction $\left(\mu_{k}\right)$ is :

А) 0.4
В) 0.3
C) 0.6
D) 0.8
26. In the projectile motion ,the vertical component of the velocity at any time in the y-direction is equal to
A) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}}(\cos \theta) \mathrm{t}$
B) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}} \sin \theta+\mathrm{gt}$
C) $\mathrm{v}_{\mathrm{y}}=\mathrm{V}_{\mathrm{o}}(\sin \theta) \mathrm{t}$
D) $\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{o}} \sin \theta-\mathrm{gt}$
27. A projectile is fired from the ground level with an initial velocity $283 \mathrm{~m} / \mathrm{s}$ with an angle of 60° with the horizontal. The maximum height the projectile reached
A) 2245.9 m
B) 1598.6 m
C) 8957.4 m
D) 3064.6 m
28. The horizontal range is the horizontal distance the projectile has traveled when it returns to
A) its maximum height
B) its initial height
C) the origin
D) the start point
29. The coefficient of static friction between a 5 kg block and horizontal surface is 0.4 . The maximum horizontal force that can be applied to the block before it slips (ينزلق) is:
A) 10.3 N
B) 19.6 N
C) 25.4 N
D) 45.8 N
30. When a person is standing on a scale in an elevator, the scale reads higher than the normal weight of the person if the elevator is:
A) accelerating upward
C) moving up with constant velocity.
B) accelerating downward
D) stationary
31. The coefficient of static friction $\left(\mu_{s}\right)$:
A) is dimensionless
C) has a magnitude of exactly 1
B) is in the direction of the normal force
D) is in the direction of motion
32. Two objects having masses of 1 Kg and 2 Kg moving around a circle of radius $r=1 \mathrm{~m}$ and with $v=1 \mathrm{~m} / \mathrm{s}$. Their accelerations are related by:
А) $a_{1}=a_{2}$
B) $\frac{a_{1}}{a_{2}}=2$
C) $a_{1}=a_{2}=0$
D) $\frac{a_{1}}{a_{2}}=\frac{1}{2}$
33. Two forces $\vec{F}_{1}=7 \hat{i}-5 \hat{j}$ and $\vec{F}_{2}=-3 \hat{i}+4 \hat{j}$ acting on a body that can move over frictionless floor, the magnitude of the net force is :
A) 13.2 N
B) 7.14 N
C) 4.12 N
D) 10 N

Answer Key

1. B
2. C
3. C
4. C
5. C
6. C
7. D
8. A
9. C
10. B
11. D
12. A
13. C
14. A
15. B
16. A
17. C
18. B
19. A
20. B
21. B
22. C
23. C
24. C
25. A
26. D
27. D
28. B
29. B
30. A
31. A
32. A
33. C
بسم الله الرحمن الرحتبار
34. A particle goes from $x=-2 \mathrm{~m}, y=3 \mathrm{~m}, z=1 \mathrm{~m}$ to $x=3 \mathrm{~m}, y=-1 \mathrm{~m}, z=4 \mathrm{~m}$. Its displacement is:
a) $(1 \mathrm{~m}) \hat{i}+(2 \mathrm{~m}) \hat{j}+(5 \mathrm{~m}) \hat{k}$
b) $(5 \mathrm{~m}) \hat{i}-(4 \mathrm{~m}) \hat{j}+(3 \mathrm{~m}) \hat{k}$
c) $-(5 \mathrm{~m}) \hat{i}+(4 \mathrm{~m}) \hat{j}-(3 \mathrm{~m}) \hat{k}$
d) $-(5 \mathrm{~m}) \hat{i}-(2 \mathrm{~m}) \hat{j}=(3 \mathrm{~m}) \hat{k}$
35. A projectile is fired over level ground with an initial velocity that has a vertical component of $20 \mathrm{~m} / \mathrm{s}$ and a horizontal component of $30 \mathrm{~m} / \mathrm{s}$. The distance from launching to landing points is:
a) 40 m
b) 60 m
c) 80 m
d) 122.5 m
36. A stone is tied to the end of a string and is swung with constant speed around a horizontal circle with a radius of 1.5 m . If it makes two complete revolutions each second, its acceleration is:
a) $0.24 \mathrm{~m} / \mathrm{s}^{2}$
b) $240.7 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.4 \mathrm{~m} / \mathrm{s}^{2}$
d) $24 \mathrm{~m} / \mathrm{s}^{2}$
37. Two blocks weighting 250 N and 350 N respectively, are connected by a string that passes over a massless pulley as shown. The tension in the string is:
a) 210 N
b) 410 N
c) 290.8 N
d) 500 N

38. A $6-\mathrm{kg}$ object is moving south. A net force of 12 N north on it result in the object having an acceleration of:
a) $2 \mathrm{~m} / \mathrm{s}^{2}$, north
b) $2 \mathrm{~m} / \mathrm{s}^{2}$, south
c) $18 \mathrm{~m} / \mathrm{s}^{2}$, north
d) $18 \mathrm{~m} / \mathrm{s}^{2}$, south
39. The "reaction" force does not cancel the "action" force because:
a) the action force is greater than the reaction force
b) they are in the same direction
c) the reaction force is greater than the action force
d) they act on different bodies
40. A box with a weight of 50 N rests on a horizontal surface with a coefficient of static friction is 0.4 . If person pulls horizontally on it with a force of 10 N , then
a) the block will not move
b) the block will move to the left
c) the block will move to the right
d) the block will move upward

41. Block A, with a mass of 10 kg , rests on a 30° incline. The coefficient of kinetic friction is 0.20 . The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 8.0 kg , is attached to the dangling end of the string. The acceleration of B is:
a) $0.69 \mathrm{~m} / \mathrm{s}^{2}$, up the plane
b) $0.69 \mathrm{~m} / \mathrm{s}^{2}$, down the plane
c) $2.6 \mathrm{~m} / \mathrm{s}^{2}$, up the plane
d) $2.6 \mathrm{~m} / \mathrm{s}^{2}$, down the plane

Answer key:
1-b
2-d
3-b
4-c
5-a
6-d
7-a
8-b

1. The volume of a sphere of radius r is given by $V=4 / 3 \pi r^{a}$. The value of the power a is:
(a) 1
(b) 2
(c) 3
(d) 4
2. A dimensionless quantities A is described as $A=k v l$, where v and l are velocity and length, respectively. The SI unit of k is:
(a) $\mathrm{s} / \mathrm{m}^{2}$
(b) $\mathrm{m} / \mathrm{s}^{2}$
(c) m / s
(d) s
3. Given a formula of force as $F=\alpha \beta+\lambda$. The unit of λ is:
(a) Dimensionless
(b) N.s
(c) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
(d) N
4. The velocity of a particle in terms of its acceleration is given by $v=k a$, the unit of k is:
(a) m / s
(b) m
(c) $\mathrm{m} . \mathrm{s}$
(d) s
5. The acceleration of a car, starting its motion with a speed of $5 \mathrm{~m} / \mathrm{s}$, is given by the equation $a(\mathrm{t})=2 \mathrm{t}\left(\mathrm{m} / \mathrm{s}^{2}\right)$. The average acceleration of the car in the interval $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$ is:
(a) $3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4 \mathrm{~m} / \mathrm{s}^{2}$
6. The position of a particle is given by the equation $x=1.5 t^{2}-t^{4}(m)$, the speed of the ball when its acceleration vanishes is:
(a) $0.5 \mathrm{~m} / \mathrm{s}$
(b) $1.0 \mathrm{~m} / \mathrm{s}$
(c) $1.5 \mathrm{~m} / \mathrm{s}$
(d) $2.0 \mathrm{~m} / \mathrm{s}$
7. A car moves with a constant speed of $12 \mathrm{~m} / \mathrm{s}$. If the driver uniformly increases the speed in which it covers 240 m in 12 s , the acceleration of the car is:
(a) $5.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
(d) $13 \mathrm{~m} / \mathrm{s}^{2}$
8. A particle moves along the x-axis with constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. If its initial position is 1.2 m and initial speed is $2.1 \mathrm{~m} / \mathrm{s}$, its position at $\mathrm{t}=2 \mathrm{~s}$ is:
(a) 9.4 m
(4) 10.4 m
(c) 11.4 m
(d) 12.4 m
9. A stone is thrown vertically upwards from the top of a tall building with a speed of $19.6 \mathrm{~m} / \mathrm{s}$. The height of the building if the stone took 12 s to hit the ground is:
(a) 490 m
(b) 470.4 m
(c) 380 m
(d) 19.6 m
10. A ball is thrown vertically upwards. If the ball takes 2 s to pass a window of height 1.2 m located at 10 m above the ground, the maximum height of the ball is:
(a) 10.4 m
(b) 11.2 m
(c) 13.5 m
(d) 15.5 m
11. A rock is thrown down at $2 \mathrm{~m} / \mathrm{s}$ from a height of 25.8 m above the ground. The rock will take:
(a) 1.2 s
(b) 2.1 s
(c) 4.2 s
(d) 5 s
12. For vectors $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-\hat{k}$, the length of the vector $\vec{A}-\vec{B}$ is:
(a) 2
(b) 3
(c) 4
(d) 5
13. The angle that the vector $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ makes with the positive x-axis is:
(a) 42^{0}
(b) 58^{0}
(c) 98°
(d) 109°
14. The vector that is normal to both vectors $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-\hat{k}$ is:
(a) $-5 \hat{\imath}+5 \hat{j}+5 \hat{k}$
(b) $5 \hat{\imath}-5 \hat{j}+5 \hat{k}$
(c) $5 \hat{\imath}+5 \hat{j}$
(d) $-5 \hat{\imath}$
15. If vector $\overrightarrow{\mathrm{A}}=2 \hat{i}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ is perpendicular to vector $\overrightarrow{\mathrm{D}}=x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$, the value of x will be:
(a) 1
(b) 2
(c) 3
(d) 4
16. The result of $(\hat{i} \times \hat{k}) \times \hat{j}$ is:
(a) -1
(b) $-\hat{\mathrm{j}}$
(c) 0
(d) \hat{j}
17. For non-zero vectors \vec{A} and $\vec{B}, \vec{A} \cdot \vec{B}=\frac{4}{5}|\vec{A} \times \vec{B}|$ when the angle between them is:
(a) 0^{0}
(b) 36.7^{0}
(c) 51.3^{0}
(d) 90°
18. Vector \vec{a} is added to vector \vec{b}, the result is $2 \hat{\imath}+2 \hat{j}$. If \vec{b} is subtracted from \vec{a}, the result is $-8 \hat{i}+6 \hat{j}$. The magnitude of \vec{a} is:
(a) 5.4
(b) 5
(c) 4
(d) 3.2
19. A particle starts from origin with initial speed of $5 \mathrm{~m} / \mathrm{s}$ along the positive x -axis. If its acceleration is $\vec{a}=2 \hat{i}-4 \hat{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, the position vector of the particle at $\mathrm{t}=1 \mathrm{~s}$ is:
(a) $6 \hat{i}-2 \hat{j}$
(b) $2 \hat{i}+6 \hat{j}$
(c) $\hat{i}-2 \hat{j}$
(d) $6 \hat{\imath}$
20. A ball is kicked at an angle of 50° above the horizontal with an initial speed of $24 \mathrm{~m} / \mathrm{s}$. The maximum height of the ball is:
(a) 57.9 m
(b) 34.5 m
(c) 28.9 m
(d) 17.3 m
21. A projectile is fired to achieve a maximum range of 140 m , the speed of the projectile must be:
(a) $17 \mathrm{~m} / \mathrm{s}$
(b) $27 \mathrm{~m} / \mathrm{s}$
(c) $37 \mathrm{~m} / \mathrm{s}$
(d) $45 \mathrm{~m} / \mathrm{s}$
22. A projectile is fired at an angle θ above the horizontal. It takes 15 s to reach its range of 140 m . Its speed at the highest point is:
(a) $9.3 \mathrm{~m} / \mathrm{s}$
(b) $15.2 \mathrm{~m} / \mathrm{s}$
(c) $19.6 \mathrm{~m} / \mathrm{s}$
(d) $22 \mathrm{~m} / \mathrm{s}$
23. A projectile is fired in such a way that its horizontal range equals three times its maximum height, the launch angle is:
(a) 82.1°
(b) 60.9°
(c) 53.1^{0}
(d) 65.8^{0}
24. An object having a speed of $1.256 \mathrm{~m} / \mathrm{s}$ rotates in a circular path. If it completes two revolutions in 5 s , the centripetal acceleration is:
(a) $2.51 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.16 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4.4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $6 \mathrm{~m} / \mathrm{s}^{2}$
25. A force of 20 N is applied to move a stationary body of mass 5 kg . The speed of the body after 4 s will be:
(a) $1.25 \mathrm{~m} / \mathrm{s}$
(b) $12.5 \mathrm{~m} / \mathrm{s}$
(c) $16 \mathrm{~m} / \mathrm{s}$
(d) $18 \mathrm{~m} / \mathrm{s}$
26. A force of 10 N is applied to move a stationary body. If the speed of the body after 2 s is 4 m / s, the mass of the body is:
(a) 2 kg
(b) 5 kg
(c) 8 kg
(d) 10 kg
27. A box, has mass of 4 kg , is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:
(a) 39.2 N
(b) 59.2 N
(c) 19.2 N
(d) 40 N
28. A box, has weigh of 98 N , is pulled over a rough, flat surface with a horizontal force of magnitude 50 N . If the box moves with constant speed of $2 \mathrm{~m} / \mathrm{s}$, the coefficient of kinetic friction is:
(a) 0.51
(b) 0.31
(c) 0.22
(d) 0.15
29. A car rotates a circular path of radius 200 m with constant speed of $25 \mathrm{~m} / \mathrm{s}$. The car's mass if it has a centripetal force of $\mathbf{2 5 0 0} \mathrm{N}$ is:
(a) 600 kg
(b) 700 kg
(c) 800 kg
(d) 1000 kg
30. A block of mass 4.2 kg is pulled up a frictionless inclined plane of angle 30° by a horizontal force. If the block moves with constant speed of $2.6 \mathrm{~m} / \mathrm{s}$, the magnitude of the force is:
(a) 23.8 N
(b) 71.3 N
(c) 42.2 N
(d) 13.9 N
31. A 5 kg body is horizontally moving with constant speed of $6 \mathrm{~m} / \mathrm{s}$. The work done to increase the speed of the body to $10 \mathrm{~m} / \mathrm{s}$ is:
(a) 64 J
(b) 128 J
(c) 160 J
(d) 192 J
32. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope that makes an angle of 30° with the horizontal. The work done by the gravity is:
(a) 80 J
(b) 0 J
(c) 160 J
(d) 200 J
33. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope that makes an angle of 30° with the horizontal. The work done by the normal force is:
(a) 80 J
(b) 0 J
(c) 160 J
(d) 200 J
34. A person lifts a 100 N weight 2 m above the ground during 2 s . The power required is:
(a) 40 W
(b) 60 W
(c) 80 W
(d) 100 W
35. A 2 kg block is released from rest 8 m above the ground. Its kinetic energy when it has fallen 6 m is:
(a) 80 J
(b) 117.6 J
(c) 176.2 J
(d) 185.3 J
36. A block attached to a spring with a spring constant of $80 \mathrm{~N} / \mathrm{m}$ oscillates on a horizontal frictionless floor. If the total mechanical energy is 0.1 J , the greatest extension of the spring from its equilibrium length is:
(a) 0.02 m
(b) 0.03 m
(c) 0.025 m
(d) 0.05 m
37. Three particles of masses $m_{1}=3 \mathrm{~kg}, m_{2}=5 \mathrm{~kg}$, and $m_{3}=2 \mathrm{~kg}$ are located in $x y$ plane as $(0,0)$, $(1,2)$, and $(2,0)$, respectively. The coordinates of the center of mass are
(a) $0.9,0.9$
(b) $0.9,1.0$
(c) $1.0,0.9$
(d) 1.0, 1.0
38. A car has a kinetic energy of 72000 J and a momentum of $12000 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$. The car's speed is:
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $16 \mathrm{~m} / \mathrm{s}$
(d) $18 \mathrm{~m} / \mathrm{s}$
39. In a perfectly inelastic collision, a car of mass 800 kg moving with a speed of $20 \mathrm{~m} / \mathrm{s}$ collides with another stationary car of mass 1200 kg . If they move together after the collision, their speed is:
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~m} / \mathrm{s}$
(d) $6 \mathrm{~m} / \mathrm{s}$
40. A 0.075 kg bullet moving at $250 \mathrm{~m} / \mathrm{s}$ strikes a wooden block that is initially at rest. If the bullet embeds the block and move together with a speed of $17 \mathrm{~m} / \mathrm{s}$, the mass of the block is:
(a) 1.03 kg
(b) 1.25 kg
(c) 1.4 kg
(d) 1.9 kg
