بنك الوحدة الثالثة هندسة

أولا: أسئلة اختيار إجابة صحيحة

في كل مما يأتي إجابة صحيحة واحدة من بين ثلاث إجابات مقترحة ، اكتبها :

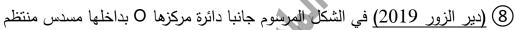
يساوي \hat{BAD} (ادلب 2018) $ABCD$ رباعي دائري فيه قياس $\hat{BCD}=115^\circ$ ، فإن قياس الزاوية المقابلة لها \hat{BAD} يساوي					
115°	С	25°	В	65°	Α
S A	$\widehat{D}C$		اور (2
50° D				فإن قياس الزاوية $C \widehat{B} \chi$ يساوي:	
130°	С	50°	В	40°	Α
(السويداء و طرطوس 2019) AB ضلع في مخمس منتظم $ABCDE$ مركزه O فان قياس $A\hat{O}B$ يساوي:					
60°	С	75°	В	72°	Α
رالحسكة 2019) المستقيم d يمس دائرة d مركزها d نصف قطرها d فان بعد مركز الدائرة عن المستقيم d					
أكبر من 6	С	أقل من 6	В	يساوي 6	Α
 (الرقة 2019) في الرباعي الدائري مجموع الزاويتين المتقابلتين يساوي : 					
90°	С	180°	В	100°	А
الرقة 2019) AB ضلع في مسدس منتظم مركزه O فان قياس الزاوية $A\widehat{O}B$ يساوي:					
60°	C	90°	В	72°	А
: يساوي \widehat{BC} ، O دائرة مركزها \widehat{BC} ، O قوس فيها قياسه \widehat{BC} فان قياس الزاوية المركزية \widehat{BC} يساوي \widehat{BC}					
80°	С	40°	В	20°	Α
يساوي: $A\hat{O}B$ ضلع في مضلع منتظم مركزه O عدد أضلاعه $(n=12)$ فان قياس الزاوية $A\hat{O}B$ يساوي:					
30°	С	45°	В	60°	Α
10%					

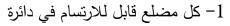
ثانيا: أسئلة الصح والخطأ

في كل مما يأتي أجب بكلمة صح أو خطأ:

- 120° يساوي ياس الزاوية \widehat{CDE} يساوي مسدس منتظم فإن قياس الزاوية مساوي (2018 ± 0.00)
- $\hat{C}=80^{\circ}$ فإن قياس الزاوية المقابلة لها $\hat{A}=100^{\circ}$ في الرباعي الدائري ABCD فإن قياس الزاوية المقابلة لها $\hat{A}=100^{\circ}$
 - دمشق (2018) النقطة (2018) النقطة مركز مثمن منتظم أحد أضلاعه (2018) قياس الزاوية (2018) تساوي ((2018)
 - كانقطة $A \hat{O} B$ تساوي $A \hat{O} B$ تساوي (2018 قياس الزاوية $A \hat{O} B$ تساوي (45° تكميلى 2018) نقطة $A \hat{O} B$ تساوي (45° تكميلى 2018)

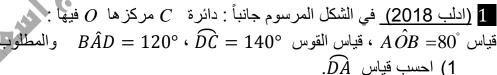
- (5) (تكميلي 2018) تقاس الزاوية المحيطية في الدائرة بنفس قياس القوس المقابل لها
- (تكميلي 2018) تقاس الزاوية المماسية في الدائرة بنصف قياس القوس المقابل لها
- $A\hat{B}D = A\hat{C}D = 90^{\circ}$: رباعي فيه الشكل المجاور (دالب 2018) في الشكل المجاور (دالب 2018)


: وفيه AD = 2CD وفيه AB = BD

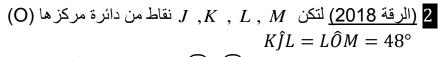

.
$$\hat{ADB} = 45^{\circ}$$
 قياس الزاوية (2

.
$$\hat{ADC} = 30^{\circ}$$
 قياس الزاوية (3

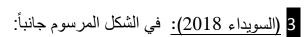
$$\cdot \sin C\hat{A}D = \frac{1}{2} (4$$



والمطلوب: أجب بصح أو خطأ عن كل ممايلي

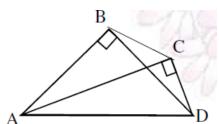


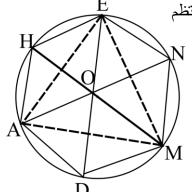
$$N\widehat{O}E = 45^{\circ}$$
 قباس –4

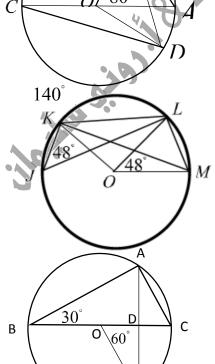

ثالثا: أسئلة (التمارين 40 درجة)

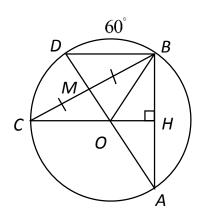
- $A\hat{C}D = A\hat{B}D$ اثبت أن (2
- (3) احسب قياسات زوايا المثلث OCD.

- $L\widehat{O}K$ ا حسب قياسات الاقواس \widehat{LK} , \widehat{LM} وقياس الزاوية (1
 - 2) احسب قياسات زوايا المثلث 2

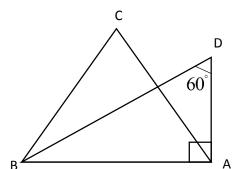


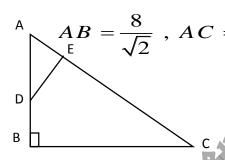

قطر في دائرة مركزها H ، O قطر في دائرة مركزها BCوالمطلوب: $\hat{COH} = 60^{\circ}$ وقياس $\hat{COH} = 60^{\circ}$


1) أثبت أن AC ||OH|


$$\widehat{AB} = 2\widehat{CH}$$
 (2)

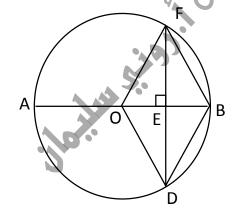
OC يعامد AH أثبت أن



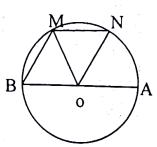

- AD في الشكل المجاور دائرة مركزها (O) فطرها (DB فطرها BC فياس $DB = 60^\circ$ فياس فياس $DB = 60^\circ$ منتصف
 - 1) ما نوع المثلث DBA واحسب قياسات زواياه.
 - 2) أثبت أن OD يعامد (2
 - $B\widehat{O}C$ احسب قياس الزاوية (3

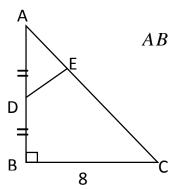
- BD=8 مثلث قائم الزاوية في A وطول الوتر فيه ABD=0 وفيه قياس الزاوية $\widehat{DA}=0$ والمثلث ABC متساوي الاضلاع المطلوب:

 - BA واستنتج طول (2) احسب $Cos \widehat{DB}A$
 - 3) أثبت أن النقط B, C, D, A تقع على دائرة والحدة

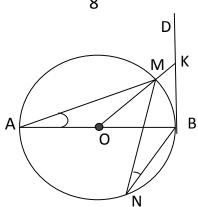


- $AB = \frac{8}{\sqrt{2}}$, $AC = 8\sqrt{2}$, AD = 4 فيه: B فيه: ABC (2018 مثلث قائم في B
 - $\hat{\mathcal{C}}$ واستنتج قیاس الزاویه sin $\hat{\mathcal{C}}$ اوجد
 -) إذا علمت أن $000=30^\circ$ أثبت أن $000=30^\circ$ رباعي دائري ما نوع المثلث 000=100 بالنسبة إلى زواياه ، ثم احسب

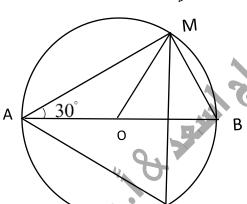

ونصف قطرها 5 AB قطر في الدائرة التي مركزها O ونصف قطرها 5 $\widehat{AF}=2\,\widehat{FB}$ و E فيها E فيها E فيها E فيها و المطلوب :


- $\widehat{BF}=60^\circ$ أثبت أن قياس القوس $BOF=10^\circ$ واستنتج نوع المثلث $BOF=10^\circ$ بالنسبة لأضلاعه.
 - 2) احسب الأطوال EF,EB,FB
- 3)أثبت أن الرباعي FODB معين واحسب مساحته

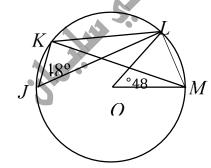
O نقاط من دائرة مركزها O ، O نقاط من دائرة مركزها $\widehat{BM} = \widehat{MN} = \widehat{NA} \ AB = 8$ وطول قطرها $\widehat{BM} = \widehat{MN} = \widehat{NA} \ AB$ احسب كلاً من قياس الزاويتين $\widehat{ABM} \ A\widehat{ON}$


واستنتج أن $\|BM\|$ ، أثبت أن المثلث $\|ONM\|$ متساوي الأضلاع واحسب مساحته

AB و منتصف B و ABC و ABC و ABC عائم في B فيه B=BC=8 و ABC

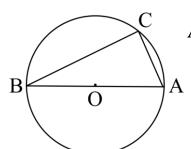

DE رباعی دائری استنتج قیاس $E\widehat{D}A$ ثم احسب (2

، $\hat{MNB}=15^\circ$ قياس (O) قياس (O) دائرة مركزها BK=5 دائرة مركزها OM ليقطع المماس في BD بحيث BD

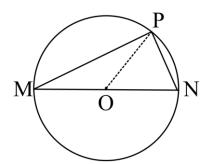

 $M\widehat{A}B$ واستنتج قياس $K\widehat{O}B$ وقياس الم $\widehat{M}B$ احسب قياس

2) احسب طول [OK] ، ثم احسب OB نصف قطر الدائرة .

C ونصف قطرها يساوي C على الدائرة D قطر في دائرة C مركزها D ونصف قطرها يساوي D النقطة D تقع على الدائرة بحيث يكون D D


- مرب قياس الزاوية $\widehat{AM}B$ وقياس القوس \widehat{AM} .
 - 2) ما نوع المثلث OMB مع التعليل.
- $A\widehat{H}M$ يساوي قياس الزاوية $A\widehat{B}M$ يساوي قياس الزاوية

12 (ريف دمشق & طرطوس 2018):

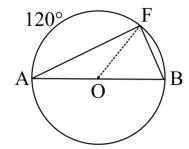

 $K\hat{J}L=L\hat{O}M=48^\circ$ ، O نقاط من دائرة مركزها M , L , K , J المطلوب:

- 1) احسب قياسات زوايا المثلث LKM
 - $K\widehat{O}M$ احسب قياس الزاوية

AB=8 في الشكل المجاور دائرة C مركزها O وطول قطرها O

- : والمطلوب فقطة تحقق : $\widehat{BC} = 2\widehat{CA}$
- $\widehat{CA}=60^\circ$ واحسب قياسات زوايا المثلث ABC اثبت ان
 - 2- احسب طول BC

C في الشكل المجاور دائرة لموحد C

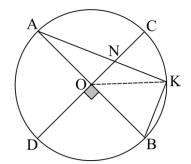

MN = 8 مرکزها O وطول قطرها

: والمطلوب $\widehat{PN} = \frac{1}{3} \widehat{MN}$

 $\widehat{PN}=60^\circ$ اثبت ان-1

2- احسب قياسات زوايا المثلث PNM

3- احسب طول PM

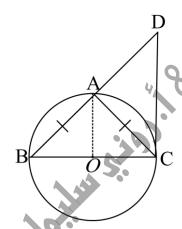

AB=6 في الشكل المجاور دائرة C مركزها O قطرها 15

 $\widehat{AF}=120^\circ$ والمطلوب:

 $F\hat{O}B$ احسب قياس الزاوية $F\hat{O}B$

2- احسب قياسات زوايا المثلث ABF

3- احسب طول كلا من AF, BF

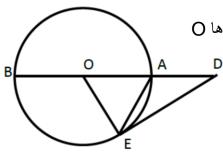


و [CD] قطران متعامدان [AB] و [CD] قطران متعامدان في دائرة مركزها $\widehat{BC}=40^\circ$ المطلوب:

 $A\widehat{O}K$ ، \widehat{BK} من علا من احسب قیاس کا

2- احسب قياسات زوايا المثلث ABK

3- اثبت ان NOBK رباعي دائري وعين مركز الدائرة المارة برؤوسه

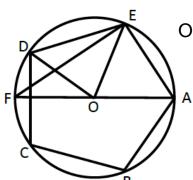

17 (الحسكة 2019) في الشكل المجاور ABC مثلث متساوي الساقين

: مرسوم في دائرة قطرها CD ، $BC=3\sqrt{2}$ مماس للدائرة في

AB = 3 أثبت أن

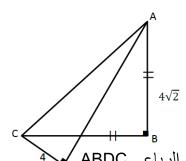
 \widehat{AB} احسب قياس القوس 2-

CD واستنتج طول AOB , DCB واثبت ان CD واكتب النسب الثلاث للمثلثين CD واستنتج طول

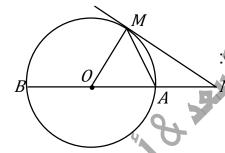

18 (الرقة & حلب 2019) في الشكل المجاور ED مماس للدائرة التي مركزها O

: ولدينا $\hat{OE} = 120$ والمطلوب

 $O\widehat{E}D$ و $A\widehat{O}E$ احسب قياسات الزوايا

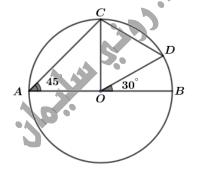

2- اثبت ان المثلث AOE متساوي الاضلاع

OD=2AD استنتج ان3


19 (اللاذقية & القنيطرة 2019) ABCDE مخمس منتظم مرسوم في دائرة مركزها O

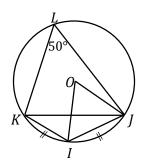
- وقطرها AF والمطلوب:
- $A\widehat{O}E = 72^{\circ}$ اثبت ان قياس الزاوية -1
- \widehat{EDF} واستنتج قياس القوس EAF واستنتج قياس القوس EAF
 - $F\widehat{O}D$ احسب قياس الزاوية -3

20 (حماة 2019) في الشكل المرسوم جانبا ABC مثلث قائم في B ومتساوي الساقين


- فيه $ADC = AB = CB = 4\sqrt{2}$ فيه ADC = CD = 4 والمطلوب:
 - 1- احسب طول AC
 - \hat{CAD} واستنتج قياس sin \hat{CAD} وحسب عند المثلث CAD من المثلث
- ABDC دائري واستنتج قياس القوس \widehat{CD} من الدائرة المارة برؤوس الرباعي -3

 $_{O}$ مماس للدائرة $_{C}$ التي مركزها $_{MN}$ مماس للدائرة

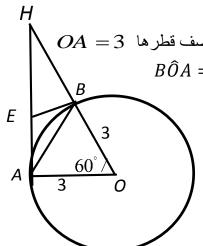
ونصف قطرها A = A = 0 وقياس القوس \widehat{AM} يحقق $\widehat{AB} = \widehat{AB}$ المطلوب


- OMN ثم أثبت أن $\widehat{AM}=60^{\circ}$ ثم احسب قياسات زوايا المثلث (1
 - MN واحسب ON واحسب (2

دمشق 2019) في الشكل المجاور دائرة مركزها 0 ونصف قطرها 4 (دمشق 2019)

: والمطلوب خيما $\hat{CAO} = 45^{\circ}$ والمطلوب

- $A\widehat{o}C$ و \widehat{CD} احسب قیاس کلاً من \widehat{CD} و
- CD واستنتج طول COD

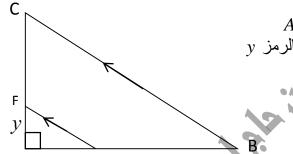


 $_{O}$ مركزها $_{C}$ مركزها $_{C}$ الشكل المجاور، دائرة $_{C}$ مركزها $_{C}$

فيها \widehat{KI} ، المطلوب: المطلوب: المطلوب:

- $I\widehat{O}J$ احسب قياس القوس \widehat{KJ} و قياس الزاوية
 - 2) احسب قياسات زوايا المثلثات [KI].

المسائل الرئيسية (100 درجة)

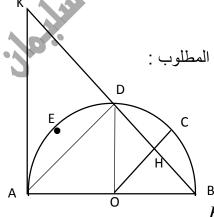


OA=3 المسألة الأولى (الرقة 2018) : في الشكل المرسوم جانباً : دائرة مركزها O ونصف قطرها $B\hat{O}A=60^\circ$ مماسان للدائرة في النقطتين OA=1 و OA=1 مماسان للدائرة في النقطتين OA=1 و OA=1

- \widehat{H} , $B\widehat{A}E$ احسب قیاس کلاً من الزاویتین (1
 - AH ثم احسب طول OH = 6 ثم احسب طول (2
 - AE احسب $\cos E \widehat{H} B$ واستنتج طول (3
- 4) أثبت أن النقط A , E , B , O النع على دائرة واحدة ، ثم عين مركزها .

 $AB=8\ cm,\ AC=6\ cm$ المسألة الثانية (السويداء ABC: (2018) مثلث قائم في A، طولا ضلعه القائمين

 $an \hat{B}$ واحسب طول الوتر BC



- AC ويقطع BC ويقطع AB رُسم منها مستقيم يوازي BC ويقطع AB بالرمز AB بالرمز AB في A ، لنرمز إلى الطول AB بالرمز AB بالرمز AB
 - . $y = \frac{3}{4}x$ اكتب النسب الثلاث المتساوية ثم استنتج أن

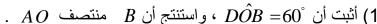
$$\left(rac{S_{AHF}}{S_{ABC}}
ight)$$
 افي حالة $x=4$ احسب (3

4) انقل الشكل إلى ورقة إجابتكُ ثُم أرسم من النقطة H مستقيماً يعامد CB في النقطة N ، ثم أثبت أن HNCA رباعي دائري، وعيّن مركز الدائرة المارة برؤوسه.

AB المسألة الثالثة (الحسكة 2018): في الشكل المجاور نصف دائرة مركزها O

Н

 $\widehat{AE} = \widehat{ED} = \widehat{DC} = \widehat{CB}$ تحقق: E,D,C النقاط


وليكن AK مماس للدائرة في النقطة A و A نقطة تقاطع OC مع AK المطلوب

- $OC \parallel\!AD$ واستنتج \hat{COB} , \hat{DAB} واستنتج (1
 - 2) إذا كان المثلث OHB تصغير للمثلث ADB اذا كان المثلث واستنتج معامل التصغير
- KAB واستنتج أن المثلث DOB واستنتج أن المثلث $DOD \perp AB$ تصغير المثلث (3
 - $(DB)^2 = BH \times BK$ أثبت صحة العلاقة (4

OB=4 المسألة الرابعة (حماه OB=4) : في الشكل المرسوم جانباً دائرة مركزها O ونصف قطرها

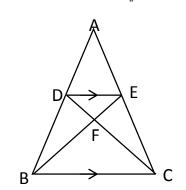
على الترتيب EN ,NA ,BC ثلاثة مماسات للدائرة في النقاط EN ,NA ,

: وقياس الزاوية $\hat{A}=30^\circ$ ، والمطلوب

2) أثبت أن النقاط B , C , D , C تقع على دائرة واحدة ، عين مركزها.

. $AD = 4\sqrt{3}$ أثبت أن (3

 $2EA = \sqrt{3}AN$ واستنتج $\cos \hat{A}$ احسب (4


Fفيه المستقيمان (DE)و (BC) متوازيان والمستقيمان (BE) , (DE) متقاطعان في اذا علمت أن $BF=4\ cm$, $DB=3\ cm$, $AD=2\ cm$ والمطلوب

1) اذا كان المثلث ADE تصغير للمثلث ABC اكتب النسب الثلاث ثم اكتب معامل التصغير.

2) اذا كان المثلث FBC تصغير للمثلث FBC تصغير المثلث.

EF واستنتج طول $\frac{FE}{FB} = \frac{2}{5}$ (3) اثبت ان

 $D\hat{C} ext{E}= ext{E}\hat{B}D$ دائري واستنتج BCED اثبت ان الرباعي

C

0

المسألة السادسة (حلب 2018): في الشكل المرسوم جانباً:

دائرة مركزها O و [NB] قطر فيها و D نقطة من الدائرة بحيث C

ماسان للدائرة في النقطة B و D على التوالي $\overline{ND}=\frac{2}{3}\overline{NB}$ و المطلوب :

. $\widehat{DB}=60^\circ$ أثبت أن قياس القوس (1

 $B\hat{E}D$ رباعي دائري، واستنتج قياس الزاوية ODEB .

. $B\widehat{O}E$ متساوي الساقين، واحسب قياس الزاوية OEH .

DN ||OE أثبت أن (5

A C_2 C_1 BC

المسألة السابعة (ديرالزور & حمص 2018): في الشكل المرسوم جانباً:

N دائرة مركزها O و Oقطراً للدائرة $C_{_2}$ التي مركزها O دائرة مركزها O دائرة مركزها و O دائرة مركزها و O دائرتان O دائرتان O دائرتان داخلاً في النقطة و O متماستان داخلاً في النقطة و O

A قياس القوس $\widehat{OM}=60^\circ$ و $\widehat{OM}=60^\circ$ مماس مشترك للدائرتين في النقطة والمطلوب:

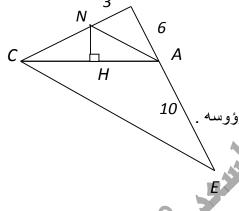
- $BA = 4\sqrt{3}$ اثبت أن (1
- 2) احسب قياسات زوايا المثلث AMO
- 3) احسب طول كل من OM و AM و 3
 - 4) أثبت أن الرباعي BAOK دائري وعيّن مركز الدائرة المارة برؤوسه.

المسألة الثامنة (درعا 2018): في الشكل المرسوم جانباً:

CA=10 , CB=8 , AB=6 مثلث أطوال أضلاعه ABC

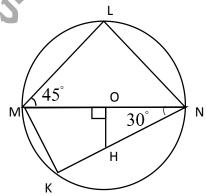
BA ، والنقطة E على امتداد CB ، والنقطة N على امتداد

وبحيث AE=10 و $NH\perp CA$ و المطلوب:


. B قائم في ABC قائم في (1

2) أثبت أن HNBA رباعي دائري، واحسب طول قطر الدائرة المارة برؤوسه

. وقارن بينهما ، $\frac{BN}{BC}$ و $\frac{BA}{BE}$ ، وقارن بينهما (3


. CE ||NA واستنتج أنّ

 \hat{CAB} منصف للزاوية \hat{AN}

المسألة التاسعة (دمشق MN:M,L,N:(2018) نقاط من دائرة مركزها O حيث MN قطر في الدائرة طوله $L\widehat{M}N=45^\circ$, $M\widehat{N}K=30^\circ$ ، 8 cm المطلوب:

- . $M\widehat{N}L$ ما نوع المثلث LMN بالنسبة لأضلاعه؟ واستنتج قياس الزاوية
 - $L\widehat{M}K$ ا و کا کا من $M\widehat{K}N$ و کا د
 - (3) احسب طول كلاً من KN, MK, ML) احسب طول
 - 4) إذا كان OHKM أثبت أن الرباعي OHKM دائري ، عين مركز الدائرة المارة برؤوسه.

المسألة العاشرة (ريف دمشق 2018):

في الشكل المرسوم جانباً ABC مثلث قائم في

طول ضلعيه القائمتين: AC = 6 ، AB = 8 المطلوب:

 $\cos \hat{B}$ ، واحسب طول (BC

DE (2) ريطة من DE بحيث يكون طول DE (2) ريسم DE (2) مستقيماً يوازي DE ، لنرمز إلى الطول DE بالرمز DE وللطول DE بالرمز DE ، احسب قيمة كل من DE و

3) احسب نسبة مساحة المثلث CED إلى مساحة المثلث (3

عمود على CB ، أثبت أن الرباعي BAEF رباعي دائري EF (4

المسألة الحادية عشر (طرطوس 2018): في الشكل المجاور دائرة مركزها O وقطرها AB طوله O

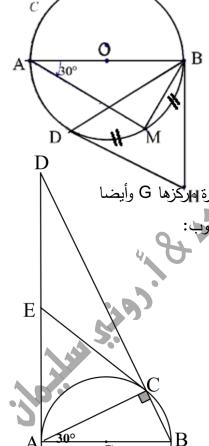
C

 $B\hat{A}M=30^\circ$ و $\widehat{MD}=\widehat{MB}$ و M على الترتيب و M مماسان للدائرة في النقطتين D,B على الترتيب ويتقاطعان في النقطة H . المطلوب :

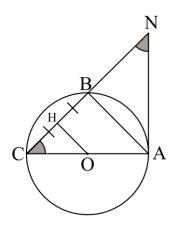
 \widehat{AD} , \widehat{BM} ، واستنتج قياس الزاوية \widehat{AMB} ، واستنتج قياس (1

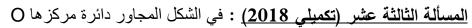
 $B\widehat{D}H$ واستنتج قياس $D\widehat{B}M$ واستنتج الحسب قياس

3) إحسب أطوال أضلاع المثلث AMB واحسب مساحته.


4) أثبت أن المثلث DBH متساوي الأضلاع

المسألة الثانية عشر (تكميلي ABC: (2018 مثلث قائم في C ومرسوم في دائرة المركزها C وأيضا ABC: BAC مماس الدائرة في A يتقاطع مع ACD في ACD والمطلوب: ACD احسب مساحة المثلث ACD

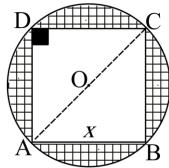

2− اذا كانت E منتصف AD اثبت ان المستقيم CE مماس للدائرة في النقطة C


3- اثبت ان الرباعي AGCE دائري

4- احسب حجم الكرة التي قطرها AB

Ġ

CB مماس للدائرة في A والنقطة AN، $AC=2\sqrt{2}$ وقطرها $\widehat{N}=\widehat{C}$ وأيضا


 \widehat{AB} أم استنتج قياس الزاوية \widehat{ACN} ثم استنتج قياس القوس 1-

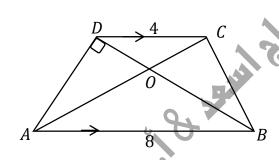
 $\sin A\hat{C}N$ واحسب طول CN واحسب طول

3- اثبت ان B منتصف NC واستنتج طول B

4- اثبت ان المثلث COH تصغيرا للمثلث CAB واستنتج معامل التصغير

5- اثبت ان الرباعي ANHO دائري، وعين مركز الدائرة المارة برؤوسه

المسألة الرابعة عشر (النصفي الموجد 2018): في الشكل المرسوم جانبا


مربع مرسوم في دائرة مركزها Q وطول ضلعه AB=x والمطلوب:

x احسب طول قطره AC بدلالة x

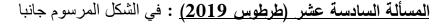
 Δc احسب قياس القوس Δc وحسب Δc

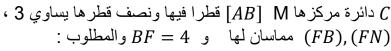
x احسب مساحة الدائرة بدلالة -3

 $S=(\pi-2)$: واحسب قيمة x اذا كانت $S=x^2rac{(\pi-2)}{2}$: اذاكانت S مساحة المنطقة المظللة اثبت ان

المسألة الخامسة عشر (حمص 2019) : في الشكل المرسوم جانباً:

و CD=4 , AB=8 شبه منحرف قاعدتاه ABCD

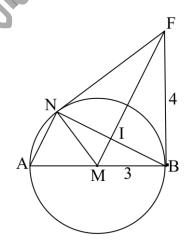

فيه قياس الزاوية ° $A\widehat{D}B=90$ و $BD=4\sqrt{3}$ المطلوب:

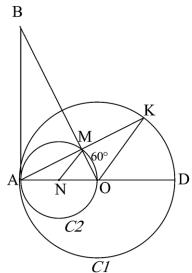

 $A\widehat{B}D$ احسب AD و استنتج قیاس الزاویة

2) اكتب النسب الثلاث للمثلثين OCD و OAB.

3) إذا كانت S مساحة المثلث OAB، و S مساحة المثلث OCD ، احسب النسبة $\frac{S}{2}$.

4) إذا علمتَ أنّ ABCD رباعي دائري، جِدْ قياس الزاوية $B\hat{C}A$ ، عيّن مركز الدائرة المارة برؤوسه، و احسب نصف قطر ها.

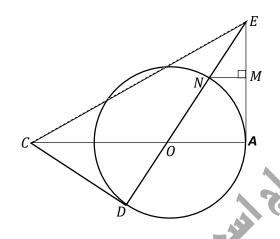

1- اثبت ان المثلثان ANB و FMB قائمان


 $F\widehat{B}N = N\widehat{A}B$: اثبت ان

3- اثبت ان الرباعي BFNM دائري وعين مركز الدائرة المارة

من رؤوسه واحسب طول نصف قطرها

 $AN \| FM$ أنبت ان MF منصف للزاوية $N\widehat{F}B$ ثم استنتج ان MF

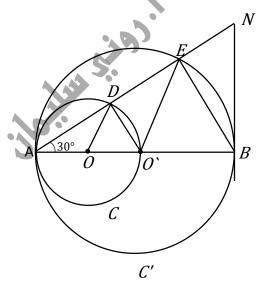

المسألة السابعة عشر (ادلب 2019):

AO=3 في الشكل المرسوم جانبا C1 دائرة مركزها O ونصف قطرها C

دائرة مرکزها N و AO قطرا فیها ، الدائرتان C1 و C2 متماستان داخلا C2

في
$$\widehat{OM}=60^\circ$$
 و $BO=6$, $BA=3\sqrt{3}$ قياس

- 1) اثبت ان المثلث BAO قائم في A ، مانوع المثلث (1
 - \widehat{KD} احسب قياس الزاوية \widehat{MAO} وقياس القوس (2
- ANM , AOK واكتب النسب الثلاث للمثلثين $MN \parallel KO$ (3
- AOK مساحة المثلث S' مساحة المثلث AMN تساوي $\frac{9\sqrt{3}}{16}$ احسب S' مساحة المثلث (4


المسألة الثامنة عشر (الحسكة و اللاذقية 2019) :

lphaفي الشكل المرسوم جانباً: دائرة مركز ها o و نصف قطر ها

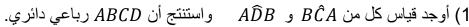
D مماس لها في A و CD مماس لها في A

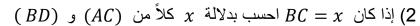
و المطلوب: AE و المطلوب: AE و المطلوب:

- 1) أثبت أنّ *OA* (1
- NE احسب طول OE ثم استنتج طول OE.
- MN و استنتج طول MNE و MNE و استنتج طول MN
 - 4) أثبت أنّ AECD رباعي دائري، و عيّن مركز الدائرة المارّة برؤوسه

المسألة التاسعة عشر (حلب و الرقة 2019):

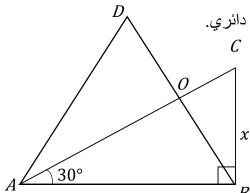
O ` الشكل المجاور C دائرة قطرها AB ومركزها


، O`A مماس للدائرة C ، C ، ماس للدائرة NB


قياس الزاوي ة $30^\circ = D\widehat{A}$ ، والمطلوب:

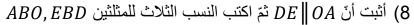
- \widehat{DO} و \widehat{EB} احسب قياس كل من القوسين الحسب قياس كل من القوسين
- $O^*E \mid\mid OD\mid$ واستنتج أنّ $D\widehat{O}O^*=E\widehat{O}^*B$ (2) أثبت أن
 - AOD احسب النسبة: مساحة المثلث (3
- 4) أثبت أنّ الرباعي 'BNDO دائري ، وعين مركز الدائرة المارة برؤوسه.

<u>المسألة العشرون (درعا و السويداء 2019)</u> : في الشكل المرسوم جانباً


مثلث قائم في B وفيه $C\hat{A}B=30^\circ$ و $C\hat{A}B=30^\circ$ مثلث متساوي الأضلاع. والمطلوب:

(BD) و (AC) و (BD)

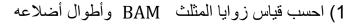
 χ إذا علمت أنّ مساحة المثلث OCB تساوي $2\sqrt{3}$ احسب قيمة χ


المسألة الواحد والعشرون (القنيطرة و حماه 2019) : في الشكل المجاور $\dot{C}(\dot{O},r),C(O,r)$ دائرتان طبوقتان و

متقاطعتان، النقطة I منتصف OO و DEB مثلث قائم في \hat{E} ، والمطلوب:

C مماس للدائرة AB أثبت أن

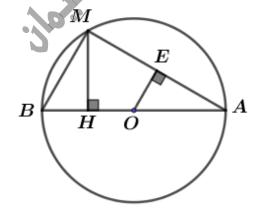
6) أبت أن المثلث AOÓ متساوى الأضلاع.

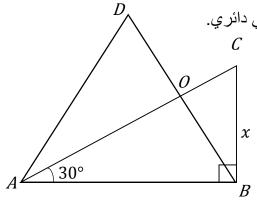

7) أثبت أن الرباعي EDIA رباعي دائري، و عين مركز الدائرة المارة برؤوسه.

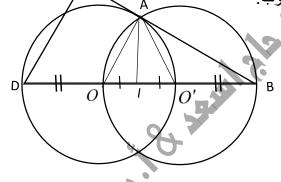
 $BA = \frac{2}{3}EB$ و استنتج أن

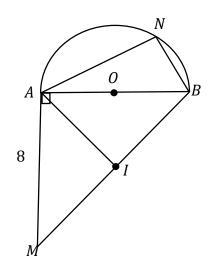
المسألة الثانية والعشرون (دمشق 2019) : في الشكل المرسوم جانباً دائرة مركزها O ونصف قطرها O

فيها \widehat{AM} يعامد \widehat{AB} و \widehat{AB} يعامد \widehat{AM} وقياس القوس $\widehat{AM}=120^\circ$ والمطلوب:

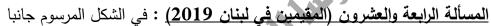



2) احسب طول OE ثم (cos(EÔA)


ثم علل تساوى الزاويتين BMH و OÂE


3) أثبت أنّ الرباعي HOEM دائري

عين مركز الدائرة المارة برؤوسه واحسب نصف قطرها

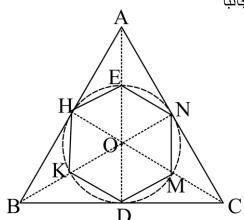


المسألة الثالثة والعشرون (دير الزور 2019): في الشكل المجاور:

AB نصف دائرة مركزها ، (0) طول قطرها (8) وفيها: ، AM يعامد

AB = AM = 8 ، $\widehat{AN} = 2\widehat{NB}$ [MB] منتصف I

- \widehat{NB} احسب قياس القوس
- $\widehat{NAB} = 30^{\circ}$: اثبت ان قياس الزاوية (2
 - 3) احسب طول كل من NA ، NB.
- 4) اثبت ان الرباعي BNAI دائري واحسب مساحة الشكل BNAM


داائرة مركزها O تمس داخلا أضلاع المثلث ABC المتساوي الاضلاع الشكل EHKDMN مسدس منتظم طول ضلعه 4 والمطلوب:

 $^{ extsf{N}}$ اثبت ان قياس وان المثلث OAN قائم في -1

AN و OA واحسب طول E اثبت ان E منتصف [OA] واحسب طول

3- اثبت ان الرباعي AHON دائري وعين مركز الدائرة المارة برؤوسه

4- اثبت ان HBCN شبه منحرف متساوي الساقين

تمت بعونه تعالى وكل الشكر للزملاء المدرسين

ممن ساهمو بكتابة أسئلة الدورات السابقة

لاتنسونا من الدعاء

مدرسا المادة: أ . أحمد حسين حاج اسعد aأ . روني سليمان