INTRODUCTORY PHYSICS MULTIPLE CHOICE QUESTIONS

PREPARED BY:

VARIOUS PHYSICS TEACHERS AT
TAIBAH UNIVERSITY'S PREP YEAR PROGRAM

1435-36 (2014-15)

Table of Contents

CHAPTER 1: INTRODUCTION, MEASUREMENTS, UNITS 1
Formulas \& Constants 1
Key Terms \& Definitions 1
Science; Scientific Method; Scientific Attitude 1
Physics vs. Other Sciences 2
Models, Theories, and Laws 2
Uncertainty, Accuracy, and Precision 3
Significant Figures 4
Scientific Notation 5
Units \& Standards 5
SI Prefixes \& Base Units 6
Unit Conversion 6
Order of Magnitude; Estimation 7
Dimensions 8
CHAPTER 2: MOTION \& ENERGY 9
Formulas \& Constants 9
Key Terms \& Definitions 9
Vectors 9
Linear Motion, Velocity, Acceleration 10
Free Fall 11
Newton's $1^{\text {st }}$ Law of Motion; Inertia;
Equilibrium 11
Force; Support Force; Friction 12
Mass; Weight 12
Newton's $2^{\text {nd }}$ Law 13
Newton's $3^{\text {rd }}$ Law 13
Work; Energy 14
Power 14
CHAPTER 3: HEAT \& MATTER 17
Mechanical Energy 15
Potential Energy 15
Kinetic Energy 15
Conservation of Energy 16
Formulas \& Constants 17
Key Terms \& Definitions 17
Temperature 17
Heat 18
Specific \& Latent Heat; Change of Phase 19
Elasticity; Stress; Hooke's Law 20
Density 20
Properties of Matter (optional). 21
CHAPTER 4: ELECTRICITY 22
Formulas \& Constants 22
Key Terms \& Definitions 22
Electric Charges; Coulomb's Law 22
Electric Field; Electric Potential 23
Capacitor; Resistance 23
Ohm's Law; Electric Power; Electric Circuits 24
CHAPTER 5: OPTICS 26
Formulas \& Constants 26
Key Terms \& Definitions 26
Electromagnetic Waves \& Spectrum. 26
Reflection 27
Refraction 29
Dispersion; Rainbow 30
Lenses 30
CHAPTER 6: MODERN PHYSICS 33
X-Rays 33
Formulas \& Constants 33
Key Terms \& Definitions 33
Correspondence Principle 33
Radioactivity 34
Environmental Radiation 35

CHAPTER 1: INTRODUCTION, MEASUREMENTS, UNITS

Formulas \& Constants

$\mathrm{A}=\mathrm{L} \times \mathrm{W}$ (Rectangle's area)	$\mathrm{A}=\pi \mathrm{R}^{2}$ (Circle's area)	Volume $=$ Area \times Height	$\mathrm{c}=299,792,458 \mathrm{~m} / \mathrm{s}$ (speed of light in vacuum)	$1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$ (atomic mass unit)
$1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$	1 giga $(\mathrm{G})=10^{9}$	1 mega $(\mathrm{M})=10^{6}$	$1 \mathrm{kilo}(\mathrm{k})=10^{3}$	$1 \mathrm{centi}(\mathrm{c})=10^{-2}$
$1 \mathrm{milli}(\mathrm{m})=10^{-3}$	1 micro $(\mu)=10^{-6}$	1 nano $(\mathrm{n})=10^{-9}$	$1 \mathrm{in} .=2.54 \mathrm{~cm}$	$1 \mathrm{ft}=12 \mathrm{in}$.
$1 \mathrm{yd}=3 \mathrm{ft}$	$1 \mathrm{mi}=5280 \mathrm{ft}$	$1 \mathrm{mi}=1.61 \mathrm{~km}$	$1 \mathrm{~L}=1000 \mathrm{~cm}{ }^{3}$	$\mathrm{v}=\mathrm{d} / \mathrm{t}$
$\mathrm{a}=\mathrm{v} / \mathrm{t}$	Dimension of length: $[\mathrm{L}]$	Dimension of time: $[\mathrm{T}]$	Dimension of mass: $[\mathrm{M}]$	$\mathrm{F}=\mathrm{m} . \mathrm{a} ; \mathrm{W}=\mathrm{F} . \mathrm{d}$

Key Terms \& Definitions					
Accuracy	دقَّ	Fact	حقيقة	Relationship	عكاقة
Analysis	تحالـيل	Guess	تخمين	Rounding	تقريب
Base units	\|الوحات الأساسية	Hypothesis	فرضبية	Science	ع
Concept	مفهوم	Law	قانون	Seientific attitude	\|lلاللمنهج
Conversion	تحويل	Measurement	فاس	Scientific method	\|لالطريقة اللعلمية
Data	بيانات	Model	نمؤ	Scientific notation	الترميز العلمي
Decimal place	منزلة عشرية	Observation	ملحـطة	SI System	نظام الوحدات العالمي
Detect	كبشف	Order of magnitude	التنرتيب اللققاري	Significant figures	الأرفام المعنوية
Diameter	\|قطر دائرة	Percentage	نسبة منوية	Speculation	تأكّلْ
Digit	منزلة رقمية	Phenomenon	ظلمرة	Standard	معيار
Dimension	بع	Power-of-ten	أس العشرة	Fechnology	تقنية
Equation	معادلة	Precision	ط.	Test	الختبار
Estimate	تقاير\|	Prediction	توقع	Theory	نظرية
Evidence	لثلبل	Prefix	\|	Uncertainty	هامش الخطأ
Experiment	تجربة	Principle	مبدا	Unit	وحدة

Science; Scientific Method; Scientific Attitude

1. (1) The test of truth in science is:

A experiment
B speculation
C hypothesis
D facts
2. (1)Good science is distinguished (بتميز) by:

A inconsistency (عدم التوافق)
B emotion (العاطفة)
C imagination (الخيال)
D measurements (القياس)
3. (2) Our ability to measure something indicates ((إلى) how well we \qquad that thing.
A like
B ignore (يجهل)
C know

D
4. (2)The scientific method does NOT include:

A	hypothesis (فرضية)
B	speculation (نجربة) (وقة) (ول)
C	experiment
D	prediction

5. (1) A scientific hypothesis is:

A An experiment (تجربة)
B a final conclusion (خلاصة)
C an educated guess (خمينПادرس)
D a verified prediction (وقع
6. (2) A scientific hypothesis:

A	is always true
B	is always false
C	can be tested for falsehood
D	is not important in science

7. (3)The three main elements of a scientific method are:

A hypothesis, prediction, conclusion
B hypothesis, conclusion, speculation
C speculation, hypothesis, experiment
D hypothesis, prediction, experiment
8. (1) Of the following, the only scientific hypothesis is:

A souls (الأرواح) move faster than light
B atoms are the smallest particles in the world
C Einstein was the greatest scientist ever
D space is filled with undetectable (غير مكتشف) matter
9. (1)Which of these is NOT a scientific hypothesis?

A atomic nuclei are the smallest particles in nature
B a magnet will pick up a copper coin
C cosmic rays cannot penetrate a physics textbook
D sound is made of untestable waves
10. (1) A nonscientific hypothesis is:

A an electron is heavier than a proton
B heavy objects fall faster than light objects
C sunset helps poetry
D the Moon is farther than the Sun
11. (1) Which of these is NOT a scientific hypothesis?

A protons carry electric charge
B undetectable particles exist in the nucleus
C charged particles bend in a magnetic field
D electricity can travel in plastic
12. (3)Characteristics (خصائص) of the scientific attitude include:
A inquiry (استطلدع), integrity (نزاهة), humility
B inquiry, integrity, pride (كبرياء)
C submission (سليم), integrity, humility (واضع)
D submission, inquiry, pride

Physics vs. Other Sciences

13. (1)The physical sciences include:

A biology (علم الأحياء)
B botany (علم النبات)
C entomology (علم الحشرات)
D geology (علم طبقات الأرض)
14. (1)The physical sciences do NOT include:

A chemistry
B zoology (علم الحيوان)
C astronomy (علم الفلك)

D
15. (1)The most basic science is:

A	physics
B	chemistry
C	biology
D	geology

16. (2)Physics is considered the basic science because:

A it is most related to our daily experience
B all other sciences depend on it
C it is needed for understanding other sciences
D all of these

Models, Theories, and Laws

17. (2) A scientific model helps in
some scientific phenomena (ظواهر).

A	rejecting (رفض)

B changing
C understanding
D combining (دمج)
18. (2) A scientific model relates (ينسب) a difficult-to-see scientific phenomenon (ظاهرة) to something that is:
A unfamiliar to us
B ambiguous (غامض)
C
D familiar to us
19. (2) The picture that a scientific model gives for a studied phenomenon (ظاهرة) is:

A	approximate (قربي)
B	exact (دقيق)
C	unclear (غبر واضح)
D	reverse (معكوس)

20. (2) An agreement (وافق) by competent (أكفاء) scientists is a scientific:

A	hypothesis (فرضي)
B	fact (حقيق)
C	observation (ملاحظة)
D	model (نموذ)

21. (2) A hypothesis that has been repeatedly (تكراراً) tested without flaws (خلل) becomes a scientific:
A prediction (وقع)
B observation (ملاحظة)
C law (قانون)
D
22. (2) A synthesis (تجميع) of many well-verified (محقق) hypotheses (فرضيات) is a scientific:
A prediction (توقع)
B theory (نظرية)
C law (قانون)
D
23. (2)In science, a theory is:

A an educated guess
B less correct than a fact
C a synthesis (تجميع) of many well-tested hypotheses
D unchangeable
24. (2) A scientific fact is rejected (يرفض) if scientists find that it:
A is disproved (ينقض) by evidence (أدلة)
B has become more than 500 years old
C disagrees with local politics
D actually, a fact is always a fact
25. (1)The equations $\mathrm{F}=\mathrm{ma}$ is an example of a physics:

A theory
B model
C law
D prediction

Uncertainty, Accuracy, and Precision

26. (2)When are measurements absolutely (تماماً) precise?

A	usually
B	sometimes
C	always
D	never

27. (1)There is uncertainty associated with every:

A	measurement
B	law
C	equation
D	principle

28. (1)Main causes of uncertainty in measurements are limitations (محدودية) in:
A instruments' accuracy and experiment time
B instruments’ (أجهزة) accuracy and human ability
C experiment time and human ability
D experiment time and lab conditions
29. (1)When we use a ruler of 1 millimeter smallest divisions, the uncertainty is approximately (تقريباً) equal to:

A	0.1 mm
B	1 mm
C	2.5 mm
D	5 mm

30. (1)Using a ruler with cm and mm divisions to measure a certain length, we get a value of 12.8 cm . Our measurement can then be written as:

A	$\mathrm{L}=12.8 \pm 1.0 \mathrm{~cm}$	
B	$\mathrm{L}=12.8 \pm 0.01 \mathrm{~cm}$	
C	$\mathrm{L}=12.8 \pm 0.2 \mathrm{~cm}$	
D	$\mathrm{L}=12.8 \pm 0.1 \mathrm{~cm}$	

31. (2)Using a ruler with cm and mm divisions to measure a certain length, we get a value of 12.8 cm . Our measurement can then be written as:

A	$\mathrm{L}=12.8 \mathrm{~cm} \pm 1 \%$
B	$\mathrm{~L}=12.8 \mathrm{~cm} \pm 5 \%$
C	$\mathrm{L}=12.8 \mathrm{~cm} \pm 10 \%$
D	$\mathrm{L}=12.8 \mathrm{~cm} \pm 20 \%$

32. (1)The percent uncertainty in the measurement $\mathrm{L}=20.2 \pm 0.4 \mathrm{~cm}$ is:

A	0.5%
B	1%
C	2%
D	4%

33. (2) The percent uncertainty in a measurement $\mathrm{A}=2.03 \mathrm{~m}^{2}$ is:

A	0.5%
B	2%
C	5%
D	10%

34. (3) A scale (ميز) has $\pm 0.05 \mathrm{~g}$ accuracy. Weighing a diamond (ماسة) on it gives 8.17 g one day and 8.09 g another day. These two measurements:
A are unacceptable within the scale's accuracy
B are acceptable within the scale's accuracy
C prove that the scale's accuracy is incorrect
D prove that these are two different diamonds
35. (1)The ability of an instrument (جهاز) to repeatedly (تكراراً) give close (متقارب) measurements is called:

A	accuracy
B	uncertainty
C	deviation
D	precision

36. (1)The ability of an instrument (جهاز) to give
measurements close (مقارب) to the true values is called:

A	accuracy
B	uncertainty
C	deviation
D	precision

Significant Figures

37. (1)The number of reliably (بشكل موثوق) known digits (أرقام) in a number is its:

A	uncertainty
B	accuracy
C	significant figures
D	percent error

38. (1)The number of significant figures in (23.20) is:

A	1
B	2
C	3
D	4

39. (2) The number of significant figures in (0.062) is:

A	1
B	2
C	3
D	4

40. (1)The number of decimal places in (0.062) is:

A	1
B	2
C	3
D	4

41. (1) The area of a $(10.0 \mathrm{~cm} \times 6.5 \mathrm{~cm})$ rectangle is correctly given as:

A	$65 \mathrm{~cm}^{2}$
B	$65.0 \mathrm{~cm}^{2}$
C	$65.00 \mathrm{~cm}^{2}$
D	$65.000 \mathrm{~cm}^{2}$

42. (2) The significant figures in the product of two numbers $(P=A \times B)$ should be the same as the
\qquad significant figures of A and B .

A	most (أكثر) $ا$ (أقل)
B	least
C	average (عتوسني) (عكي)
D	inverse

43. (3) The accuracy in the sum of two numbers $(S=$
$A+B)$ should be the same as the \qquad accuracy of A and B .

A	most (أكثر)
B	least (عتّل)
C	average (عكنسي) (عشط)
D	inverse

44. (2)Taking accuracy into account, the difference $\mathrm{D}=$ $\mathrm{A}-\mathrm{B}$ between two numbers, $\mathrm{A}=3.6$ and $\mathrm{B}=0.57$, is correctly written as:

A	3.03
B	3.00
C	3.003
D	3.0

45. (2)Taking accuracy into account, the sum $\mathrm{S}=\mathrm{A}+\mathrm{B}$ of two numbers, $\mathrm{A}=3.6$ and $\mathrm{B}=0.40$, is correctly written as:

A	4.0
B	4.00
C	4
D	04.

46. (2)Taking significant figures into account, the product $\mathrm{P}=\mathrm{A} \times \mathrm{B}$ of two numbers, $\mathrm{A}=12.0$ and $\mathrm{B}=12$, is correctly written as:

A	144
B	140
C	150
D	100

47. (1)Taking significant figures into account, the quotient $\mathrm{Q}=\mathrm{A} \div \mathrm{B}$ of two numbers, $\mathrm{A}=12.0$ and B $=12$, is correctly written as:

A	1.00
B	1
C	1.0
D	1.000

48. (1)Dividing 2.0 by 3.0 with a calculator gives 0.66666666 . Taking significant figures into account, this result should be written as:

A	0.7
B	0.6667
C	0.667
D	0.67

49. (1)For $\mathrm{A}=0.01234, \mathrm{~B}=0.00123$, and $\mathrm{C}=0.00012$, the number with the most significant figures is:

A	A only
B	B only

C C only
D they all are the same
50. (1) For $\mathrm{A}=0.01234, \mathrm{~B}=0.00123$, and $\mathrm{C}=0.00012$, the number with the most decimal places is:

A	A only
B	B only
C	C only
D	they all are the same

Scientific Notation

51. (2)Scientific notation allows the number of significant figures to be:

A	clearly expressed
B	carefully hidden
C	neglected
D	avoided

52. (1) In the scientific notation, 36900 is written as:

A	3.69×10^{3}
B	3.69×10^{4}
C	36.9×10^{3}
D	0.369×10^{4}

53. (1)The scientific notation for 325 is:

A	3.25×10^{2}
B	3.25×10^{1}
C	32.5×10^{0}
D	32.5×10^{-1}

54. (1) In the scientific notation, 0.0021 is written as:

A	21×10^{-2}
B	2.1×10^{-3}
C	21×10^{-3}
D	2.1×10^{-4}

55. (1)The scientific notation for 7.33 is:

A	7.33×10^{2}
B	7.33×10^{1}
C	7.33×10^{0}
D	7.33×10^{-1}

56. (1)The number 3.69×10^{2} is equivalent to:

A	369
B	36.9
C	3.69
D	0.369

57. (1) The number 3.7×10^{-1} is equivalent to:

A	3.70
B	0.37
C	37.0
D	0.037

58. (1)The decimal form for 7.62×10^{2} is:

A	7.62
B	762
C	76.2
D	0.762

59. (1)The decimal form for 6.150×10^{-4} is:

A	0.0615000
B	0.0061500
C	0.0006150
D	0.0000615

60. (2)Taking significant figures into account, the product $\mathrm{P}=\mathrm{A} \times \mathrm{B}$ of two numbers, $\mathrm{A}=2.079 \times 10^{2}$ and $\mathrm{B}=$ 0.072×10^{-1}, is correctly written as:

A	1.49688
B	1.497
C	1.5
D	1.50

61. (2For $\mathrm{A}=3.69 \times 10^{4}, \mathrm{~B}=3.690 \times 10^{2}$, and $\mathrm{C}=$ 3.6900×10^{-3}, the number with the most significant figures is:

A	A only
B	B only
C	C only
D	they have same number of significant figures

Units \& Standards

62. (2) A standard is a fixed reference (مرجع) for a:

A	model
B	equation
C	law
D	unit

63. (1)The standard of the meter is the distance traveled by light in vacuum in $1 / 299792458$ of $a(\mathrm{an})$:

A	hour
B	second
C	minute
D	day

64. (1)The old standard of the second was $1 / 86400$ of an average solar (مسي):

A	hour
B	minute
C	day
D	year

65. (1)The new standard of the second is defined in terms of the frequency of radiation (إلص) emitted by:

A	electronic devices
B	the sun
C	X-rays
D	cesium atoms

66. (1)The standard of the kilogram, kept at the Bureau of weights and Measures in France, is a cylinder of:

A	platinum-iridium
B	gold-silver
C	wood-iron
D	radium-uranium

67. (1)The SI unit of mass is the:

A	newton
B	kilogram
C	pound
D	gram

68. (1) Which of the following is NOT an SI unit?

A	newton
B	kilogram
C	pound
D	ampere

SI Prefixes \& Base Units

69. (1)The SI abbreviation for 36 centimeters is:

A	36 centim
B	36 cmeter
C	36 cm
D	36 centimeters

70. (1) 1 Mm (mega-meter) equals:

A	1000 m
B	1000 km
C	1000000 km
D	100000 m

71. (1) $1 \mu \mathrm{~g}$ (microgram) equals:

A	0.0000001 g
B	0.0001 g
C	0.000001 g

D 0.00001 g
72. (1)Of the following SI units, the only base unit is:

A	newton
B	watt
C	gram
D	ampere

73. (1)Of the following SI units, the only derived (مشتق) unit is:

A	volt
B	kilogram
C	kelvin
D	meter

74. (2) A time interval of $60.0 \mu \mathrm{~s}$ is equal to:

A	0.0600 s
B	0.00600 s
C	0.000600 s
D	0.0000600 s

75. (2) An electric current of $3 \times 10^{-9} \mathrm{~A}$ is equal to:

A	$3 \mu \mathrm{~A}$
B	3 MA
C	3 nA
D	3 mA

Unit Conversion

76. (1)Converting 215 cm to meters gives:

A	0.0215 m
B	0.215 m
C	21.5 m
D	2.15 m

77. (1) A distance of 0.05 km is equal to:

A	5000 cm
B	500 cm
C	50000 cm
D	500000 cm

78. (1) A length of 286.6 mm is equal to:

A	28.66 cm
B	286.6 cm
C	2.866 m
D	$0.00286 \mu \mathrm{~m}$

79. (1)Convert 84 in. to feet:

A	5 ft
B	6 ft
6	

6

C 7 ft
D 8 ft
80. (1)Convert 15 miles to the nearest kilometers:

A	18 km
B	24 km
C	33 km
D	42 km

81. (1) Convert $258 \mathrm{~cm}^{2}$ to m^{2} :

A	$0.0258 \mathrm{~m}^{2}$
B	$0.258 \mathrm{~m}^{2}$
C	$2.58 \mathrm{~m}^{2}$
D	$25.8 \mathrm{~m}^{2}$

82. (2) Convert $0.65 \mathrm{~cm}^{3}$ to mm^{3} :

A	$6500 \mathrm{~mm}^{3}$
B	$6.5 \mathrm{~mm}^{3}$
C	$65 \mathrm{~mm}^{3}$
D	$650 \mathrm{~mm}^{3}$

83. (2) A distance of 10 ft is equal to:

A	305 m
B	305 cm
C	30.5 cm
D	30.5 m

84. (1)Express 10 in . in centimeters:

A	0.254 cm
B	254 cm
C	25.4 cm
D	2.54 cm

85. (2)Convert 2 h 15 min to seconds:

A 8100 s
B 2100 s
C 5900 s
D $3500 \mathrm{~s}^{3}$
86. (2) A school speed-zone (نطاق) is $30 \mathrm{~km} / \mathrm{h}$. Three cars A, B, and C are going at speeds $\mathrm{v}_{\mathrm{A}}=8 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{B}}=$ $9 \mathrm{~m} / \mathrm{s}$, and $\mathrm{v}_{\mathrm{c}}=10 \mathrm{~m} / \mathrm{s}$. The cars that will receive speeding tickets are:

A	A, B, and C
B	C only
C	B and C
D	none

87. (2The maximum capacity in liters of a $3-\mathrm{m}^{3}$ water tank (خزان) is:
A 30 L
Chapter 1: Introduction, Measurements, Units

B	3000 L
C	300 L
D	3 L

88. (2)One light year is:

A the speed of light in vacuum
B the time that sunlight takes to reach the Moon
C the distance light travels in 1 year
D the time that sunlight takes to reach the Earth
89. (3) If there are 3×10^{7} seconds in one year, a distance of one light year is equal to:

A	$9 \times 10^{15} \mathrm{~m}$
B	$9 \times 10^{13} \mathrm{~m}$
C	$9 \times 10^{11} \mathrm{~m}$
D	$9 \times 10^{9} \mathrm{~m}$

Order of Magnitude; Estimation

90. (2Rounding (تقريب) a number to one digit multiplied by its power-of-ten gives its:

A	precision
B	accuracy
C	uncertainty
D	order of magnitude

91. (2The 14 highest peaks in the world are between 8000 m and 9000 m high. The order-of-magnitude of their height (ارتفاع) is:

A	$1 \times 10^{4} \mathrm{~m}$
B	$0.1 \times 10^{4} \mathrm{~m}$
C	$2 \times 10^{4} \mathrm{~m}$
D	$10 \times 10^{4} \mathrm{~m}$

92. (2)A lake (بحيرة) is roughly (تقريباً) circular, with a 1km diameter and $10-\mathrm{m}$ average depth (عمق). Its water capacity can be estimated as:

A	$1 \times 10^{6} \mathrm{~m}^{3}$
B	$1 \times 10^{7} \mathrm{~m}^{3}$
C	$1 \times 10^{8} \mathrm{~m}^{3}$
D	$1 \times 10^{9} \mathrm{~m}^{3}$

93. (1)The thickness (سماكة) of a 200-page book is 1.0 cm . The thickness of one sheet of this book can be estimated as:

A	0.001 mm
B	0.01 mm
C	0.1 mm
D	1 mm

94. (2)If an average human lives for 70 years, and if the 7
heartbeat rate is 80 beats $/ \mathrm{min}$, the number of heartbeats in a lifetime can be estimated as:

A	3×10^{6}
B	3×10^{7}
C	3×10^{8}
D	3×10^{9}

Dimensions

95. (1)The dimensions of area are:

A	$L^{2} T$
B	L^{2}
C	L^{3} / T^{2}
D	$L^{2} T^{-1}$

96. (1)The dimensions of volume are:

A	L^{3}
B	L^{2}
C	L^{3} / T^{2}
D	$L^{2} T^{-1}$

97. (2) The dimensions of force are:

A L M T

B	$\mathrm{~L} \mathrm{M} \mathrm{T}^{-2}$
C	$\mathrm{L}^{3} \mathrm{M}^{2} / \mathrm{T}^{2}$
D	$\mathrm{L}^{2} \mathrm{M} \mathrm{T}^{-1}$

98. (2) The dimensions of acceleration are:

A	L T
B	L^{-2}
C	$\mathrm{L}^{3} / \mathrm{T}^{2}$
D	$\mathrm{L}^{2} \mathrm{~T}^{-1}$

99. (2) The dimensions of momentum $(\mathrm{p}=\mathrm{mv})$ are:

A	L M T $^{-1}$
B	L M T $^{-2}$
C	L M T $^{-1}$
D	L^{2} M T T $^{-1}$

100. (2) Which of the following is dimensionally correct?

A	speed $=$ acceleration $/$ time
B	distance $=$ speed $/$ time
C	force $=$ mass \times acceleration
D	density $=$ mass \times volume

CHAPTER 2: MOTION \& ENERGY

Formulas \& Constants

Average speed: $\overline{\mathrm{v}}=\frac{\mathrm{d}}{\mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}}{2}$	$\mathrm{a}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}}$	$\mathrm{vf}^{2}-\mathrm{v}_{\mathrm{i}}{ }^{2}=2 \mathrm{a} \cdot \mathrm{d}$	$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{g} \cdot \mathrm{t}$ $\mathrm{v}=\mathrm{g} \cdot \mathrm{t}\left(\mathrm{v}_{\mathrm{i}}=0\right)$	$\mathrm{d}=1 / 2$ a.t $\mathrm{t}^{2}+\mathrm{v}_{\mathrm{i}} \cdot \mathrm{t}$ $\mathrm{d}=1 / 2 \mathrm{~g} \cdot \mathrm{t}^{2} \quad\left(\mathrm{v}_{\mathrm{i}}=0\right)$	$\sum \mathrm{E}=$ constant (energy consrv.)
$\mathrm{F}=\mathrm{m} \cdot \mathrm{a}$	$\mathrm{w}=\mathrm{m} \cdot \mathrm{g}$	$\mathrm{P}=\mathrm{W} / \mathrm{t}$	$\mathrm{W}=\mathrm{F} \cdot \mathrm{d} \cdot \cos \theta$	$\mathrm{PE}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h}$ $\mathrm{KE}=1 / 2 \mathrm{~m} \cdot \mathrm{v}^{2}$	$\mathrm{~V}_{\mathrm{f}}=\sqrt{2 \mathrm{~g} \cdot \mathrm{~h}}$
$\mathrm{~F}_{\mathrm{A} \text { on } \mathrm{B}}=\mathrm{F}_{\mathrm{B} \text { on } \mathrm{A}}$	$\mathrm{R}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$	$\tan \theta=\mathrm{Y} / \mathrm{X}$	$1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$	$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{hp}=3 / 4 \mathrm{~kW}$

Key Terms \& Definitions

Acceleration	تسارع
Action	فع
Air resistance	مقاومة\|【هِهواء
Average	متوسط
Component	عنصر / مُكوِّن/ مُركِبِّ
Direction	اتجاه
Displacement	إِاحة
Distance	مسافة
Dynamic	حركي
Energy	طاقة
Equilibrium	اتزان
Force	قوة
Free fall	س
Friction	احتكاك
Gravity	جاذبية

Horizontal	أفقي				
Inertia	\|				
Instantaneous	حظي				
Interaction	تفاعل				
Kinetic energy	\|طاقة				
Mass	كتلة				
Magnitude	مقدار				
Mechanical	ميكانيكي				
Motion	حركة				
Net force	\|قوة إجماية / صافية				
Normal force	\|	فوة		\mid \|	
Potential energy	طاقة\|وضع				
Power	قارة				
Projectile	قذيفة أو مقفوف				
Projection	إسقاط				

Resultant	محصّنّة			
Reaction	ردة فعل			
Resolution	تحليل			
Speed				
Static	سكوني			
Support force	\|قوة	دعم		
Tension	توتر			
Terminal speed				
Vector	كمية متجهة			
Velocity	\|	اسر عة		
Vertical	رأسي أو عمودي			
Volume	حج			
Weight	وزن			
Work	شخل			

Vectors

1. Scalar is a quantity that does not need:

A	value
B	magnitude
C	direction
D	unit

2. Vector is a quantity that needs:

A direction only
B magnitude only
C unit only
D magnitude and direction
3. Example of a scalar is:

A velocity
B distance
C acceleration
D force
4. Example of a vector is:

A velocity

B distance
C speed
D time
5. For linear motion, the angle between the velocity and acceleration vectors is:

A	always 0°
B	always 180°
C	0° or 180°
D	always 90°

6. Adding two perpendicular vectors (\vec{A}) and (\vec{B}) gives a resultant $(\overrightarrow{\mathrm{R}})$ with magnitude:

A	$\mathrm{R}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$
B	$\mathrm{R}=\mathrm{A}^{2}+\mathrm{B}^{2}$
C	$\mathrm{R}=\sqrt{\mathrm{A}+\mathrm{B}}$
D	$\mathrm{R}=1 / \sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$

7. Two perpendicular forces, $\mathrm{F}_{1}=40 \mathrm{~N}$ and $\mathrm{F}_{2}=30 \mathrm{~N}$, act on a brick. The magnitude of the net force ($\mathrm{F}_{\text {net }}$) on the brick is:

| A 70 N |
| :--- | :--- |

8. If an airplane heading north with speed $v_{P}=400$ km/h faces a westbound wind (ريح نحو الغرب) of speed $\mathrm{v}_{\mathrm{A}}=300 \mathrm{~km} / \mathrm{h}$, the resultant velocity of the plane ($\overrightarrow{\mathrm{v}}$) is:

9. Decomposing (or resolving) a vector ($\overrightarrow{\mathrm{A}}$) into two components in perpendicular directions $\left(\mathrm{A}_{\mathrm{x}}\right.$ and $\left.\mathrm{A}_{\mathrm{y}}\right)$ gives:

| A | $\mathrm{A}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}}=\mathrm{A}$ | |
| :--- | :--- | :--- | :--- |
| B | $\mathrm{A}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}}=\mathrm{A}^{2}$ | |
| C | $\mathrm{A}_{\mathrm{x}}{ }^{2}+\mathrm{A}_{\mathrm{y}}{ }^{2}=\mathrm{A}$ | |
| D | $\mathrm{A}_{\mathrm{x}}{ }^{2}+\mathrm{A}_{\mathrm{y}}{ }^{2}=\mathrm{A}^{2}$ | |

Linear Motion, Velocity, Acceleration

10. To calculate an object's average speed we need to know the:
A acceleration and time
B velocity and time
C distance and time
D velocity and distance
11. A horse gallops (يجري) a distance of 10 kilometers in 30 minutes. Its average speed is:
A $15 \mathrm{~km} / \mathrm{h}$
B $20 \mathrm{~km} / \mathrm{h}$
C $30 \mathrm{~km} / \mathrm{h}$
D $40 \mathrm{~km} / \mathrm{h}$
12. A car maintains for 10 seconds a constant velocity of $100 \mathrm{~km} / \mathrm{h}$ due east. During this interval its acceleration is:

A	$0 \mathrm{~km} / \mathrm{h}^{2}$
B	$1 \mathrm{~km} / \mathrm{h}^{2}$
C	$10 \mathrm{~km} / \mathrm{h}^{2}$
D	$100 \mathrm{~km} / \mathrm{h}^{2}$

13. While an object near Earth's surface is in free fall, its increases:

A	velocity
B	acceleration
C	mass

D	height

14. The speed at a specific moment is called \qquad speed:

A	average
B	instantaneous
C	initial
D	final

15. Acceleration is the rate of change in:

A	force
B	distance
C	speed
D	velocity

16. If the speed is constant, the acceleration must be:

A	constant
B	zero
C	negative
D	unknown

17. A car moves along a straight road with constant acceleration. If its initial and final speeds are $v_{i}=$ $10 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{f}}=20 \mathrm{~m} / \mathrm{s}$, its average speed is:

A	$12 \mathrm{~m} / \mathrm{s}$
B	$15 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

18. If an object in linear motion moves a distance of 20 m in 5 seconds, its average speed is:

A	$4 \mathrm{~m} / \mathrm{s}$
B	$5 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

19. If an object is in linear motion, and its speed changes from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 10 seconds, its acceleration is:

A	$20 \mathrm{~m} / \mathrm{s}^{2}$
B	$10 \mathrm{~m} / \mathrm{s}^{2}$
C	$5 \mathrm{~m} / \mathrm{s}^{2}$
D	$1 \mathrm{~m} / \mathrm{s}^{2}$

20. If your average speed is $80 \mathrm{~km} / \mathrm{h}$ on a 4 -hour trip, the total distance you cover is:

A	40 km
B	80 km
C	120 km
D	320 km

21. If you travel 300 km in 4 hours, your average speed is:

A	$50 \mathrm{~km} / \mathrm{h}$
B	$75 \mathrm{~km} / \mathrm{h}$
C	$80 \mathrm{~km} / \mathrm{h}$
D	$100 \mathrm{~km} / \mathrm{h}$

Free Fall

22. If air resistance on a falling rock can be neglected, we say that this rock is:

A	heavy
B	at terminal speed
C	in free fall
D	light

23. If a stone drops in a free fall from the edge of a high cliff, its speed after 5 seconds is:

A	$10 \mathrm{~m} / \mathrm{s}$
B	$40 \mathrm{~m} / \mathrm{s}$
C	$50 \mathrm{~m} / \mathrm{s}$
D	$100 \mathrm{~m} / \mathrm{s}$

24. If a stone drops in a free fall from the edge of a high cliff, the distance it covers after 4 seconds is:

A	40 m
B	80 m
C	120 m
D	160 m

25. If an object in free fall has an initial speed of $10 \mathrm{~m} / \mathrm{s}$, its speed after 10 seconds is:
A $80 \mathrm{~m} / \mathrm{s}$
B $90 \mathrm{~m} / \mathrm{s}$
C $100 \mathrm{~m} / \mathrm{s}$
D $110 \mathrm{~m} / \mathrm{s}$
26. Neglecting air resistance, if a player throws a ball straight up with a speed of $30 \mathrm{~m} / \mathrm{s}$, the ball will reach its maximum height after:
A 6 seconds
B 5 seconds
C 4 seconds
D 3 seconds
27. If an object is in free fall, the distance it travels every seconds is:
A the same as the previous (السابق) second
B more than the previous second
C less than the previous second

D undefined

28. If an object is in free fall, its speed every seconds is:

A	the same as the previous (السابق) second
B	more than the previous second
C	less than the previous second
D	undefined

Newton's $1^{\text {st }}$ Law of Motion; Inertia; Equilibrium

29. If no external forces act on a moving object, it will:

A	continue moving at the same speed
B	continue moving at the same velocity
C	move slower and slower until it finally stops
D	make a sudden stop

30. If an object is in mechanical equilibrium, we can say that:

A	a nonzero net force acts on it
B	it has constant velocity
C	it has small acceleration
D	it has large acceleration

31. Inertia means that:

A an object at rest tries to remain at rest, and a moving object tries to stop
B an object at rest tries to move, and a moving object tries to stop
C \quad an object at rest tries to move, and a moving object tries to keep moving
D an object at rest tries to remain at rest, and a moving object tries to keep moving
32. The SI unit of inertia is the:

A	kilogram
B	newton
C	joule
D	none of these

33. If two equal forces act on a moving cart in opposite directions, we can say about it that:
A it has acceleration
B it is in static equilibrium
C it is in dynamic equilibrium
D nonzero net force acts on it
34. If two equal forces act on a stationary (\square (\square) book in opposite directions, we can say about it that:

A	it has acceleration
B	it is in static equilibrium

C it is in dynamic equilibrium
D a nonzero net force acts on it
35. If you stand at rest on a pair of identical bathroom scales, the readings on the two scales will always be:
A each equal to your weight
B each equal to half your weight
C each equal to double your weight
D different from each other
36. A man weighing 800 N stands at rest on two bathroom scales so that his weight is distributed evenly between them. The reading on each scale is:
A 400 N
B 200 N
C 1600 N
D 800 N
37. A $80-\mathrm{kg}$ painter stands on a $20-\mathrm{kg}$ painting staging) that hangs on two ropes. If the staging is at rest and both ropes have the same tension, the tension in each rope is:

A	200 N
B	500 N
C	800 N
D	1000 N

Force; Support Force; Friction

38. The support force is on an object results from the of atoms in the surface:

A	compression
B	speed
C	acceleration
D	energy

39. The support force on a $2-\mathrm{kg}$ book lying on a level table is:

A	1 N
B	2 N
C	10 N
D	20 N

40. In the following, check the correct statement:

A	force is a vector, mass is a scalar
B	force is a vector, weight is a scalar
C	mass is a vector, weight is a scalar
D	force is a vector, mass is a vector

41. Two forces act on an object: $\overrightarrow{\mathrm{F}}_{1}=(6 \mathrm{~N}$, east $) ; \overrightarrow{\mathrm{F}}_{2}=(8$ N , west). The net force $(\Sigma \overrightarrow{\mathrm{F}})$ on it is:

A	$(14$ N, east $)$
B	$(14 \mathrm{~N}$, west $)$
C	$(2 \mathrm{~N}$, west $)$
D	$(-2$ N, west $)$

42. Two forces act on an object: $\overrightarrow{\mathrm{F}}_{1}=(10 \mathrm{~N}$, up $) ; \overrightarrow{\mathrm{F}}_{2}=(10$ N , down). The net force $(\Sigma \overrightarrow{\mathrm{F}})$ on it is:

A	$(20 \mathrm{~N}$, up $)$
B	$(20 \mathrm{~N}$, down $)$
C	$(10 \mathrm{~N}$, up $)$
D	zero

43. Two forces act on a crate and the crate is in equilibrium. These two forces are:

A	$(100 \mathrm{~N}$, right $),(100 \mathrm{~N}$, left $)$
B	$(100 \mathrm{~N}$, right $),(50 \mathrm{~N}$, left $)$
C	$(50 \mathrm{~N}$, right $),(100 \mathrm{~N}$, left $)$
D	$(100 \mathrm{~N}$, right $),(100 \mathrm{~N}$, right $)$

44. If the force of friction on a moving object is 10 N , the force needed to keep it at constant velocity is:

A	0 N
B	5 N
C	10 N
D	more than 10 N

45. When an object falling through air stops gaining speed, we say that it has reached its \qquad speed:

A	average
B	instantaneous
C	final
D	terminal

46. Air drag depends on a falling object's:

A	size and speed
B	size and density
C	density and speed
D	none of these

Mass; Weight

47. Mass is a measure of an object's:

A	inertia
B	volume
C	density
D	speed

48. Mass is an object's quantity of:

A energy

B	matter
C	dimensions
D	momentum

49. The SI unit for weight is the:

A	newton
B	kilogram
C	gram
D	pound

50. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

A	same mass and different inertia

B same inertia and different weight
C same volume and different mass
D same weight and different density
51. If the Earth's gravitational pull is 6 times that of the Moon, an object taken to the Moon will have:
A same mass and less weight
B same weight and less mass
C same mass and same weight
D less mass and less weight

Newton's $2^{\text {nd }}$ Law

52. An object's acceleration is directly proportional to the:
A net force
B average speed
C mass
D inertia
53. If an object's mass decreases while a constant force is applied to it, its acceleration:

A	decreases
B	increases
C	remains constant
D	changes according to volume

54. If the net force acting on an object decreases, its acceleration:

A	decreases
B	increases
C	remains constant
D	changes direction

55. The net force on an $50-\mathrm{kg}$ crate is 100 N , its acceleration is:
A $0.5 \mathrm{~m} / \mathrm{s}^{2}$

B	$1 \mathrm{~m} / \mathrm{s}^{2}$
C	$2 \mathrm{~m} / \mathrm{s}^{2}$
D	$5 \mathrm{~m} / \mathrm{s}^{2}$

56. A $1-\mathrm{kg}$ falling ball encounters 10 N of air resistance. The net force on the ball is:

A	0 N
B	4 N
C	6 N
D	10 N

Newton's $3^{\text {rd }}$ Law

57. The number of forces involved (الداخلة) in an interaction between two objects is:

A	0
B	1
C	2
D	3

58. A force is defined (تعريفها) as:

A	part of an interaction between two objects
B	a push from an object on itself
C	a pull from an object on itself
D	a push and a pull on the same object

59. Newton's $3^{\text {rd }}$ law states that, for two objects X and Y, whenever X exerts a force on Y , then:

A	Y exerts double that force on X

B Y moves in the opposite direction
C Y exerts half that force on X
D Y exerts an equal but opposite force on X
60. In an interaction between two objects, the action and reaction forces are:

A	perpendicular
B	in opposite directions
C	in the same direction
D	on the same object

61. When a man pushes on a wall with force F, the wall pushes back on him with force of magnitude:

A	zero
B	F/2
C	F
D	2 F

62. When a cannon shoots a cannonball with acceleration a_{b}, the cannon recoils (يرند) with acceleration a_{c} such that:

A	$a_{c}=a_{b}$
B	a_{c} is much larger than a_{b}
C	a_{c} is much smaller than a_{b}
D	$a_{c}=0$

63. When a cannon shoots a cannonball with force F_{b}, the cannon recoils (برتد) with force F_{c} such that:

A	$F_{c}=F_{b}$
B	F_{c} is much larger than F_{b}
C	F_{c} is much smaller than F_{b}
D	$F_{c}=0$

64. When a cannon shoots a cannonball, the cannon's recoil (ارتداد) is much slower than the cannonball because:
A the force on the cannon is much less
B the mass of the cannon is much greater
C the cannon's mass is more distributed (موز)
D there is more air resistance
65. When a man stretches a spring with a $100-\mathrm{N}$ force (within its elasticity range), the spring pulls him back with:

A	0 N
B	50 N
C	100 N
D	200 N

Work; Energy

66. Work is produced only if there is:

A	force and motion
B	force and elevation (ارتفاع))
C	force and time
D	time and elevation

67. Work is proportional to:

A	(force) and (1/distance)
B	(force) and (distance)
C	(1/force) and (distance)
D	(force) and (distance) 2

68. The SI unit of work is:

A	newton
B	watt
C	joule
D	ampere

69. A joule is equivalent to:

A N/m ${ }^{2}$

B	m / N
C	N / m
D	N.m

70. A cart moves 10 m in the same direction as a $20-\mathrm{N}$ force acting on it. The work done by this force is:

A	200 J
B	2 J
C	0.5 J
D	20 J

71. A man does 2000-J work in pushing a crate a distance of 10 m on a frictionless floor. The force applied by the man is:

Power

72. An engine (محرك) can do $100,000-\mathrm{J}$ work in 10 s . The power of this engine is:

A	1 MW
B	100 kW
C	1000 W
D	10 kW

73. An engine (محرك) can do $75-\mathrm{kJ}$ work in 10 s . The power of this engine in horsepower is:

A	10 hp
B	1 hp
C	0.1 hp
D	100 hp

74. The SI unit of power is:

A	newton
B	watt
C	joule
D	ampere

75. A watt is equivalent to:

A	$\mathrm{kg} \cdot \mathrm{m}^{3} / \mathrm{s}^{2}$
B	$\mathrm{kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}$
C	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$
D	$\mathrm{kg}^{2} \cdot \mathrm{~m}^{2} / \mathrm{s}$

76. Of the following quantities, the ones that have the same unit are:

A	work and energy

B	work and power
C	energy and power
D	work and pressure

Mechanical Energy

77. Mechanical energy results from an object's:

A	position only
B	position and/or motion
C	motion only
D	neither position nor motion

78. Mechanical energy consists of:

A kinetic energy and power
B potential energy and power
C potential and kinetic energy
D power and work

Potential Energy

79. Of the following, the form of energy that is NOT potential is the energy of:
A ${ }^{\text {A }}$ a moving car
B a stretched bow (قوس مشدود)
C a compressed spring (زنبرك مضخوط)
D water in a high reservoir (خزان)
80. Potential energy is the energy stored in an object because of its:

A	speed
B	position
C	charge
D	mass

81. A $20-\mathrm{kg}$ box rests on a $2-\mathrm{m}$ high shelf. Its potential energy relative to the ground is:

A	100 J
B	200 J
C	400 J
D	800 J

82. The mass of a box of 200-J potential energy when resting on a 2 -m-high shelf is:

A	10 kg
B	20 kg
C	40 kg
D	80 kg

83. If a $5-\mathrm{kg}$ box sitting on a shelf of height (h) has 100-J potential energy relative to the ground, h equals:

A	1 m
B	2 m
C	4 m
D	8 m

84. Three $5-\mathrm{kg}$ rocks are raised to a height of 5 m , with Rock $_{1}$ raised with a rope, Rock $_{2}$ raised on a ramp (منحدر), and Rock ${ }_{3}$ raised with an lift (مصعد). The rock that attains the most potential energy is:

A	Rock $_{1}$
B	Rock $_{2}$
C	Rock $_{3}$
D	all the same

Kinetic Energy

85. Kinetic energy is the energy stored in an object because of its:

A	motion
B	position
C	charge
D	mass

86. The kinetic energy of a $1000-\mathrm{kg}$ car traveling at a speed of $20 \mathrm{~m} / \mathrm{s}$ is:

A	50 kJ
B	100 kJ
C	200 kJ
D	400 kJ

87. The mass of a bicycle of 4000-J kinetic energy traveling at $10 \mathrm{~m} / \mathrm{s}$ is:

A	40 kg
B	50 kg
C	60 kg
D	80 kg

88. The speed of a $40-\mathrm{kg}$ bicycle of $1620-\mathrm{J}$ kinetic energy is:

A	$9 \mathrm{~m} / \mathrm{s}$
B	$3 \mathrm{~m} / \mathrm{s}$
C	$27 \mathrm{~m} / \mathrm{s}$
D	$90 \mathrm{~m} / \mathrm{s}$

89. If an object's speed doubles, its kinetic energy:

A	remains the same
B	doubles
C	triples
D	quadruples

90. If an object's mass doubles while moving at a constant speed, its kinetic energy:

A	remains the same
B	doubles
C	triples
D	quadruples

91. The kinetic energy of a car traveling at $20 \mathrm{~m} / \mathrm{s}$ is 500 kJ . If it travels at $40 \mathrm{~m} / \mathrm{s}$, its kinetic energy becomes:

A	500 kJ
B	1000 kJ
C	2000 kJ
D	4000 kJ

92. The work done by the engine of a $1000-\mathrm{kg}$ car to move it from rest to a speed of $20 \mathrm{~m} / \mathrm{s}$ is:

A	50 kJ
B	100 kJ
C	200 kJ
D	400 kJ

93. The force exerted by the engine of a $1000-\mathrm{kg}$ car to move it from rest to a speed of $20 \mathrm{~m} / \mathrm{s}$ within 100 m is:

A	1000 N
B	2000 N
C	4000 N
D	5000 N

Conservation of Energy

94. The total energy of an object of mass (m), falling at height (h) with speed (v) can be written as:

A	$E=1 / 2 \mathrm{mv}^{2}+2 \mathrm{mgh}$
B	$E=1 / 2 \mathrm{mv}^{2}+\mathrm{mgh}$
C	$E=\mathrm{mv}^{2}+1 / 2 \mathrm{mgh}$
D	$E=1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{mgh}$

95. As an object falls, its potential energy and its kinetic energy \qquad .

A increases, decreases

B	decreases, decreases
C	decreases, increases
D	increases, increases

96. The ram of pile-driver (مدَّكّ) falls from a height of 20 m . Its speed just before touching ground is:

A	$2 \mathrm{~m} / \mathrm{s}$
B	$5 \mathrm{~m} / \mathrm{s}$
C	$10 \mathrm{~m} / \mathrm{s}$
D	$20 \mathrm{~m} / \mathrm{s}$

97. A simple pendulum's bob has speed (v) at its lowest point (1); its highest point (3) has height (h).
If $\mathrm{h}=20 \mathrm{~cm}$, v equals:

A	$2 \mathrm{~m} / \mathrm{s}$	
B	$5 \mathrm{~m} / \mathrm{s}$	
C	$10 \mathrm{~m} / \mathrm{s}$	
D	$20 \mathrm{~m} / \mathrm{s}$	

98. When a simple pendulum's bob of mass $\mathrm{m}=0.5 \mathrm{~kg}$ is at its highest point (3), its height is $\mathrm{h}=40 \mathrm{~cm}$. Its kinetic energy at its lowest point (1) is:

A	0 J
B	2 J
C	5 J
D	10 J

99. When a simple pendulum's bob of mass $\mathrm{m}=0.5 \mathrm{~kg}$ is at its highest point (3), its height is $\mathrm{h}=40 \mathrm{~cm}$. Its kinetic energy at point (2) of height $1 / 2 \mathrm{~h}$ is:

A	5 J
B	2 J
C	1 J
D	0 J

100. When a simple pendulum's bob of mass $\mathrm{m}=$ 0.5 kg is at its highest point (3), its height is $\mathrm{h}=40$ cm . Its total energy at point (2) of height $1 / 2 \mathrm{~h}$ is:

A	5 J
B	2 J
C	1 J
D	0 J

CHAPTER 3: HEAT \& MATTER

Formulas \& Constants

mass density $=\frac{\mathrm{m}}{\mathrm{V}}$	weight density $=\frac{\mathrm{mg}}{\mathrm{V}}$	$\operatorname{stress}(\mathrm{S})=\frac{\mathrm{F}}{\mathrm{A}}$	$\mathrm{T}_{\mathrm{C}}=\frac{5}{9}\left(\mathrm{~T}_{\mathrm{F}}-32^{\circ}\right)$	$\mathrm{T}_{\mathrm{F}}=\frac{9}{5}\left(\mathrm{~T}_{\mathrm{C}}\right)+32^{\circ}$
$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$	$1 \mathrm{cal}=4.19 \mathrm{~J}$	$\mathrm{Q}=$ c.m. $\Delta \mathrm{T}$	melting: $\mathrm{Q}=\mathrm{m} . \mathrm{L}_{\mathrm{f}}$ vaporization: $\mathrm{Q}=\mathrm{m} \cdot \mathrm{L}_{\mathrm{V}}$	$\mathrm{F}=\mathrm{k} \cdot \Delta \ell$ (Hooke's Law)

Absolute zero	\|الصفر المطلق	
Absorption	\|امتصاص	
Atom	ذرّة	
Boiling	غلبان	
Bonding	تز ابط	
Charge	شـّنـ	
Compound	مركب	
Compression	ضغط	
Condensation	تكثف	
Deform	بشوه	
Density	كثافة	
Dew	ندى	
Diffusion	\|انتشار	
Elastic limit	[د المرونة	
Elastic range	\|r	
Elasticity	مرونة	
Element	عنصر	

Key Terms \& Definitions

Evaporation	تبخير
Expansion	تمدد
Fluid	مائع
Freezing	تجمد
Fusion	انصهار
Gas	غاز
Heat	■
Heat transfer	انتقال الــرارة
Humidity	رطوبة
Inelastic	غبر مرن
Liquid	سائل
Latent Heat	\|الــرارة الكامنة
Matter	مادة
Melting	ذوبان
Metal	معدنِ فِلِّ
Mixture	خليط أو مزيج
Molecule	جُزيْء

Neutral	متعادل
Nucleus	نواة
Particle	جُسِّم
Phase	طوْر
Pressure	ضi
Saturated	مشبع
Solid	صل
Solidification	تصلب
Specific Heat	\|الــرارة النو
Strain	\|انفعال
State	الة
Stress	إجهاد
Substance	صنف
Temperature	درجة الــرارة
Tensiom	توتر
Vaporization	تبخر
Volume	ج-

Temperature

1. Converting 77 degrees F to Celsius gives:

| A 25 degrees C |
| :--- | :--- |

B 55 degrees C
C 75 degrees C
D 95 degrees C
2. Converting 113 degrees F to Celsius gives:

A 35 degrees C
B 45 degrees C
C 110 degrees C
D 165 degrees C
3. Converting 257 degrees F to Celsius gives:

A	55 degrees C
B	

B 220 degrees C
C 125 degrees C
D 335 degrees C
4. Converting 10 degrees F to Celsius gives:

A	25 degrees C
B	5 degrees C
C	0 degrees C
D	-12 degrees C

5. Converting 20 degrees F to Celsius gives:

A	-7 degrees C
B	30 degrees C
C	42 degrees C
D	-12 degrees C

6. Converting -50 degrees F to Celsius gives:

A	-46 degrees C
B	-32 degrees C
C	-23 degrees C
D	-18 degrees C

7. Converting -40 degrees F to Celsius gives:

A	-20 degrees C
B	-30 degrees C
C	-40 degrees C

D -50 degrees C
8. The Fahrenheit and Celsius temperature scales have the same reading at:

A	32 degrees
B	0 degrees
C	-32 degrees
D	-40 degrees

9. Converting 15 degrees C to Fahrenheit gives:

A	59 degrees F
B	47 degrees F
C	21 degrees F
D	-12 degrees F

10. Converting 145 degrees C to Fahrenheit gives:

| A | 177 degrees F |
| :--- | :--- | :--- |

B 293 degrees F
C 112 degrees F
D 217 degrees F
11. Converting 35 degrees C to Fahrenheit gives:

A 59 degrees F
B 77 degrees F
C 95 degrees F
D 3 degrees F
12. Converting 95 degrees C to Fahrenheit gives:

A	63 degrees F
B	127 degrees F
C	275 degrees F
D	203 degrees F

13. Converting 75 degrees C to Kelvin gives:

A	348 K
B	198 K
C	32 K
D	212 K

14. Converting 25 degrees C to Kelvin gives:

A	248 K
B	298 K
C	47 K
D	237 K

15. Converting -50 degrees C to Kelvin gives:

A	-40 K
B	323 K
C	223 K
D	-273 K

16. Converting 406 degrees K to Celsius gives:

A 337 degrees C

B	276 degrees C
C	579 degrees C
D	133 degrees C

17. Converting 175 degrees K to Celsius gives:

A	-98 degrees \mathbf{C}
B	112 degrees C
C	-213 degrees C
D	45 degrees C

18. Converting 6000 degrees K to Celsius gives:

A	6273 degrees C
B	5727 degrees C
C	5911 degrees C
D	6196 degrees C

19. The melting point of pure iron is 1505 degrees C . What Fahrenheit temperature is this?

A	1689 degrees F
B	3563 degrees F
C	2741 degrees F
D	4112 degrees F

20. The melting point of mercury is -38.0 degrees F . What Celsius temperature is this?

A	-36 degrees C
B	-37 degrees C
C	-38 degrees C
D	-39 degrees C

Heat

21. Find the amount of heat in cal generated by 95 J of work.

A	23 cal
B	25 cal
C	27 cal
D	24 cal

22. Find the amount of heat in kcal generated by 7510 J of work.

A	1.43 kcal
B	1.79 kcal
C	8.11 kcal
D	31.7 kcal

23. Find the amount of work in MJ that is equivalent to 3850 kcal .

A	3.17 MJ
B	0.918 MJ
C	16.1 MJ
D	8.23 MJ

24. Find the amount of work in kJ that is equivalent to 7.65 kcal of heat.

A	17.7 kJ
B	9.18 kJ
C	1.83 kJ
D	32.1 kJ

25. Find the mechanical work equivalent (in kJ) of 8550 cal of heat.

A	35.8 kJ
B	2.04 kJ
C	15.3 kJ
D	23.1 kJ

26. Find the heat equivalent (in kcal) of 763 kJ of work.

A	17.5 kcal
B	182 kcal
C	1232 kcal
D	3200 kcal

27. How much work must a person do to offset eating a piece of cake containing 625 Cal ?
A 39.2 kJ
B 92.4 kJ
C 2.62 MJ
D 13.3 MJ
28. How much work must a person do to offset eating a $200-\mathrm{g}$ bag of potato chips if 28 g of chips contain 150 Cal ?

A	320 kJ
B	610 kJ
C	1.2 MJ
D	4.5 MJ

29. A fuel yields $11.5 \mathrm{kcal} / \mathrm{g}$ when burned. How many joules of work are obtained by burning 1 kg of the fuel?

A	48 MJ
B	36 MJ
C	24 MJ
D	12 MJ

30. A fuel produces $16 \mathrm{kcal} / \mathrm{g}$ when burned. If 500 g of the fuel is burned, how many joules of work are produced?
A 22 MJ
B 34 MJ
C 47 MJ
D 65 MJ
31. Natural gas burned in a gas turbine has a heating value of $110 \mathrm{kcal} / \mathrm{g}$. If the turbine is 25% efficient
and 2.5 g of gas is burned each second, find the power output in kilowatts.

A	35 kW
B	160 kW
C	290 kW
D	1900 kW

32. An industrial engine produces $38,000 \mathrm{kcal}$ of heat. What is the mechanical work equivalent of the heat produced?

A	33 MJ
B	85 MJ
C	120 MJ
D	160 MJ

Specific \& Latent Heat; Change of Phase

33. What heat is needed to change the temperature of 100 kg of copper ($\mathrm{c}=0.092 \mathrm{kcal} / \mathrm{kg}$ degree- C) from 100 to 200 degrees-C?

A	920 kcal
B	9.2 kcal
C	92 kcal
D	9200 kcal

34. What heat is needed to change the temperature of 10 kg of water $(\mathrm{c}=1.00 \mathrm{kcal} / \mathrm{kg}$ degree-C) from 10 to 20 degrees-C?

A	10 kcal
B	100 kcal
C	200 kcal
D	419 kcal

35. What heat is needed to change the temperature of 100 kg of steel $(\mathrm{c}=0.115 \mathrm{kcal} / \mathrm{kg}$ degree-C) from 1000 to 1100 degrees-K?

A	100 kcal
B	300 kcal
C	1150 kcal
D	4600 kcal

36. What heat should be given off by 10 kg of aluminum $(\mathrm{c}=0.22 \mathrm{kcal} / \mathrm{kg}$ degree-C) to change their temperature from 200 to 100 degrees-C?

A	51 kcal
B	430 kcal
C	910 kcal
D	220 kcal

37. How many calories of heat are required to melt 7 g of ice at 0 degrees C? (L-fusion $=80 \mathrm{cal} / \mathrm{g}$)

| A | 560 cal |
| :--- | :--- | :--- |

B 135 cal
C 2300 cal
D 1500 cal
38. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 100 degrees C ? (L-vaporization $=540 \mathrm{cal} / \mathrm{g}$)
A 540 cal
B 5400 cal
C 54000 cal
D 540000 cal
39. How many calories of heat are given off by 10 g of steam at 100 degrees C to condense to water at 0 degrees C ? (c-water $=1 \mathrm{cal} / \mathrm{g}$ degree C , Lvaporization $=540 \mathrm{cal} / \mathrm{g}$)

A	640000 cal
B	64000 cal
C	6400 cal
D	640 cal

40. How many calories of heat are required by 50 g of ice at 0 degrees C to melt to water at 40 degrees C ? (c-water $=1 \mathrm{cal} / \mathrm{g}$ degree C, L-fusion $=80 \mathrm{cal} / \mathrm{g}$)
A 2000 cal
B 4000 cal
C 5000 cal
D 6000 cal

Elasticity; Stress; Hooke's Law
41. When a deforming (مشوّه) force acts on an elastic object, the object is:

A	never deformed
B	permanently (بشكل) deformed
C	temporarily (وقتّا) deformed
D	broken into pieces

42. An elastic material can be:

A dough (عجين)
B clay (طين)
C lead (رصاص)
D rubber (مطاط)
43. When a $10-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it extends to 25 cm . What would be its length when a $30-\mathrm{N}$ force is applied to it within its elastic range?

A	35 cm
B	15 cm
C	30 cm
D	20 cm

extends to 21 cm . What would be its length when a $1000-\mathrm{N}$ force is applied to it within its elastic range?

A	25 cm
B	30 cm
C	35 cm
D	5 cm

45. When a $50-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it extends to 22 cm . What would be its length when a $75-\mathrm{N}$ force is applied to it within its elastic range?

A	3 cm
B	21 cm
C	23 cm
D	30 cm

46. When a $10-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it is compressed to 18 cm . What would be its length when a $30-\mathrm{N}$ compressing force is applied to it within its elastic range?

A	6 cm
B	16 cm
C	26 cm
D	14 cm

47. A block of lead with dimensions $(10 \mathrm{~cm} \times 5 \mathrm{~cm} \times$ 4 cm) has a mass of 2.3 kg . It exerts the greatest stress on a flat surface when it lies on the side with dimensions:

A	$5 \mathrm{~cm} \times 10 \mathrm{~cm}$

B	$5 \mathrm{~cm} \times 4 \mathrm{~cm}$
C	$10 \mathrm{~cm} \times 4 \mathrm{~cm}$

C $10 \mathrm{~cm} \times 4 \mathrm{~cm}$
D
48. A cube (مكعب) of iron of $10-\mathrm{cm}$ sides weighs 80 N . The stress it exerts on a flat surface is:

A	80 Pa
B	800 Pa
C	8000 Pa
D	$80,000 \mathrm{~Pa}$

49. A cylinder of lead is of $5.64-\mathrm{cm}$ radius, $20-\mathrm{cm}$ height, and $23-\mathrm{kg}$ mass. The stress it exerts on a flat surface when it lies on its flat side is:

A	23 Pa	radius	height
B	230 Pa		
C	2.3 kPa		
D	23 kPa		

Density

50. Density of a substance (صنف) depends on the and \qquad of its atoms.
51. When a $100-\mathrm{N}$ force is applied on a $20-\mathrm{cm}$ spring, it

B mass, spacing
C spacing (باعد), charge
D mass, color
51. A $500-\mathrm{g}$ block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has density of:

A	$0.5 \mathrm{~g} / \mathrm{cm}^{3}$
B	$1.5 \mathrm{~g} / \mathrm{cm}^{3}$
C	$2.5 \mathrm{~g} / \mathrm{cm}^{3}$
D	$3.5 \mathrm{~g} / \mathrm{cm}^{3}$

52. A $500-\mathrm{g}$ block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has density of:

A	$2500 \mathrm{~kg} / \mathrm{m}^{3}$
B	$2.5 \mathrm{~kg} / \mathrm{m}^{3}$
C	$0.8 \mathrm{~kg} / \mathrm{m}^{3}$
D	$800 \mathrm{~kg} / \mathrm{m}^{3}$

53. A $500-\mathrm{g}$ block of wood with dimensions $(10 \mathrm{~cm} \times$ $5 \mathrm{~cm} \times 4 \mathrm{~cm}$) has weight density of:

A	$2.5 \mathrm{kN} / \mathrm{m}^{3}$
B	$5 \mathrm{kN} / \mathrm{m}^{3}$
C	$10 \mathrm{kN} / \mathrm{m}^{3}$
D	$25 \mathrm{kN} / \mathrm{m}^{3}$

Properties of Matter (optional)
54. Two or more atoms that bond together by sharing
electrons are called $\mathrm{a}(\mathrm{n})$:

A	molecule
B	atom
C	mixture
D	ion

55. Examples of molecules do NOT include:

A	water
B	carbon
C	ammonia
D	methane

56. When two atoms of hydrogen bond with one atom of oxygen, they form a molecules of:

A	carbon dioxide
B	ammonia
C	water
D	methane

57. When atoms of different elements chemically bond together, they form a :

A	noble gas
B	new element
C	mixture
D	compound

CHAPTER 4: ELECTRICITY

Formulas \& Constants

$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ $1 / \mathrm{e}=6.25 \times 10^{18}$	$\mathrm{q}_{\text {proton }}=+\mathrm{e}$ $\mathrm{q}_{\text {electron }}=-\mathrm{e}$	$\mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \cdot \mathrm{q}_{2}}{\mathrm{~d}^{2}}$	$\mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$	Electric field: $\mathcal{E}=\frac{\mathrm{F}}{\mathrm{q}}$
Elec. potential energy: E_{p}	$\mathrm{E}_{\mathrm{p}}=\mathrm{k} \frac{\mathrm{Q} \cdot \mathrm{q}}{\mathrm{d}} ; \mathrm{V}=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{q}}$	$\mathrm{I}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}$	$\mathrm{R}=\rho \frac{l}{\mathrm{~A}} ; A=\pi \cdot r^{2}$	
$\mathrm{~V}=\mathrm{I} . \mathrm{R}$	V	$\mathrm{P}=\mathrm{V} . \mathrm{I}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\mathrm{I}^{2} \cdot \mathrm{R}$	$\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots$	$\frac{1}{\mathrm{R}_{\text {parallel }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\cdots$

Key Terms \& Definitions

Alternating current	تيار متردد
Capacitor	مكثّف
Charge	شٌ
Conductor	موصِّل
Current	تيار
Direct current	تيار مباشر

Electric field	\|المجال الكهربائي
Electric potential	الجهد الكهربائي
Electricity	كهرباء
Electrostatics	الكهرباء الـ\اكنة
Insulator	عازل
Parallel circuit	دائرة متو ازية

Potential difference	فرق الجه*
Power	قارة
Resistance	مقاومة
Resistivity	مقاومية
Semiconductor	شبه موصِّل
Series circuit	دائرة متتالية أو مـلـلـلة

Electric Charges; Coulomb's Law

1. Normally, an atom's net charge is:

A	negative
B	positive
C	zero
D	a vector

2. The number of electrons needed to make up one coulomb of charge is:

A	1.6×10^{-19}
B	$1.6 \times 10^{+19}$
C	6.25×10^{-18}
D	6.25×10^{18}

3. A positively charged object is an object with:

A	extra electrons
B	lack (نصص) of protons
C	extra neutrons
D	lack of electrons

4. A negatively charged object is an object with:

A	extra electrons
B	extra protons
C	extra neutrons
D	lack of (نص⿱) $)$ electrons

5. The electrostatic force equation for two charged objects, q_{1} and q_{2}, gives a positive result if:

A	q_{1} is positive and q_{2} is negative
B	q_{1} is negative and q_{2} is positive
C	q_{1} and q_{2} have the same sign
D	q_{1} and q_{2} are neutral

6. The electrostatic force equation for two charged objects, q_{1} and q_{2}, gives a negative result if:

A	q_{1} repels q_{2}
B	$\mathrm{q}_{2}=\mathrm{q}_{1}$
C	$\mathrm{q}_{1}=1 / 2 \mathrm{q}_{2}$
D	q_{1} attracts q_{2}

7. The electrostatic force between two charged objects, q_{1} and q_{2}, is located at:

A	q_{1}
B	q_{2}
C	q_{1} for force from q_{2}, and q_{2} for force from q_{1}
D	halfway between q_{1} and q_{2}

8. The attractive force between two charges $q_{1}=1 / 3 \mathrm{C}$ and $q_{2}=-1 / 3 \mathrm{C}$ separated by 1 km is:

A	1000 N
B	100 N
C	10 N
D	1 N

9. The repulsive force between two identical 1-C charges separated by 300 m is:

A	100 N
B	1 kN

C 10 kN
D 100 kN

Electric Field; Electric Potential

10. The following quantities are all scalar, except for:

A	electric current
B	electric field
C	electric charge
D	electric potential

11. A group of charges (Q) exert a net force $\mathrm{F}=10 \mathrm{~N}$ on a charge $\mathrm{q}=0.2 \mathrm{C}$ located at point (X). This means that the magnitude of the electric field resulting from Q at X equals:

A	$0.2 \mathrm{~N} / \mathrm{C}$
B	$5 \mathrm{~N} / \mathrm{C}$
C	$10 \mathrm{~N} / \mathrm{C}$
D	$50 \mathrm{~N} / \mathrm{C}$

12. The electric field around a negative point-charge (Q) points (بتجه):
A radially away from Q
B radially toward Q
C in circles around Q
D in ellipsoids (مجسم بيضوي) around Q
13. The electric field around a positive point-charge (Q) points (يتجه):

A	radially away from Q
B	radially toward Q
C	in circles around Q
D	in ellipsoids (مجس بيضوي) around Q

14. The electric field between two point charges (+Q) and (-Q) separated by a distance (d) points (يتج):
A on a straight line from +Q to -Q
B radially toward +Q
C radially toward -Q
D on a straight line from -Q to +Q
15. The electric field around two point charges $(+Q)$ and (-Q) separated by a distance (d) is:
A concentric (متداخل) cubes
B radially toward Q
C radially toward -Q
D concentric ellipsoids (مجسم بيضوي)

16. The SI unit for the electric potential energy is the:

A ampere

B	watt
C	volt
D	joule

17. The SI unit for the electric potential is the:

A	ampere
B	watt
C	volt
D	joule

18. One volt is equal to:

A	1 joule/second
B	1 joule/coulomb
C	ampere/second
D	ampere/coulomb

19. A charge $\mathrm{q}=0.5 \mathrm{C}$ located at point (X) has electric potential energy $\mathrm{PE}=10 \mathrm{~J}$ caused by a group of charges (Q). This means that the electric potential resulting from Q at X equals:

A	0.5 V
B	5 V
C	10 V
D	20 V

Capacitor; Resistance

20. Electric energy can be stored in a:

A	resistance
B	capacitor
C	switch
D	light bulb

21. A capacitor consists of:

A	a conductor between two insulating plates
B	an insulator between two conducting plates
C	two insulating plates in vacuum
D	two conducting plates in vacuum

22. When a capacitor is connected to a battery, the plate connected to the \qquad terminal becomes \qquad :

A	positive, positive
B	negative, positive
C	positive, negative
D	positive, neutral

23. If a capacitor is connected to a battery of potential difference V , the capacitor becomes fully charged when the potential difference between its plates equals:

A	0
B	V
C	$\mathrm{V} / 2$
D	2 V

24. A $10-\mathrm{km}$ copper wire (resistivity $=1.7 \times 10^{-8} \Omega . \mathrm{m}$) has cross-sectional area $=1 \mathrm{~mm}^{2}$. Its resistance is:

A	1.7Ω
B	17Ω
C	170Ω
D	1700Ω

Ohm's Law; Electric Power; Electric Circuits

25. An electric circuit consists of a $24-\Omega$ resistance connected across the terminals of a $12-\mathrm{V}$ battery. The electric current in this circuit is:

A	24 amperes
B	12 amperes
C	2 amperes
D	0.5 amperes

26. An electric circuit consists of a light bulb connected across the terminals of a $12-\mathrm{V}$ battery. If the electric current in this circuit is 6 mA , the resistance of the light bulb is:

A	$0.5 \mathrm{k} \Omega$
B	$2 \mathrm{k} \Omega$
C	20Ω
D	2Ω

27. If the power rating of a vacuum cleaner is 550 W , the current it draws in a $220-\mathrm{V}$ electric circuit is:

A	0.4 amperes
B	1.5 amperes
C	2.5 amperes
D	5 amperes

28. If a light bulb in a $220-\mathrm{V}$ electric circuit draws 0.5 amperes, its power rating is:

A	110 W
B	440 W
C	40 W
D	75 W

29. A classroom has ten $25-\mathrm{W}$ compact fluorescent lamps (CFL). If these lamps are turned on for 10 hours every day, their energy consumption (استهالكا) in 20 days is:
[^0]Chapter 4: Electricity

C	10 kWh
D	50 kWh

30. In electricity, the kilowatt-hour is a unit of:

A	electric current
B	electric power
C	electric potential
D	electric energy

31. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. Their equivalent
 resistance is:

A	$4 \boldsymbol{\Omega}$
B	$12 \boldsymbol{\Omega}$
C	24Ω
D	36Ω

32. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. The potential difference across each light bulb is:

A	0 V
B	4 V
C	8 V
D	12 V

33. Three identical light bulbs, each of resistance 12Ω, are connected in series to a $12-\mathrm{V}$ battery. The current passing through each light bulb is:

A	$1 / 3$
A	
B	$2 / 3$
A	
C	1
A	A
D	3
A	

34. Three identical light bulbs, each of resistance 12Ω, are connected in parallel to a $12-\mathrm{V}$ battery. Their equivalent resistance is:

A	4Ω
B	12Ω
C	24Ω
D	36Ω

35. Three identical light bulbs, each of resistance 12Ω, are connected in parallel to a $12-\mathrm{V}$ battery. The potential difference across each light bulb is:

A	0 V
B	4 V
C	8 V
D	12 V

36. Three identical light bulbs, each of resistance 12Ω,
are connected in parallel to a $12-\mathrm{V}$ battery. The current passing through each light bulb is:

A	$1 / 3 \mathrm{~A}$
B	$2 / 3 \mathrm{~A}$
C	1 A
D	3 A

37. In an electric circuit consisting of two resistances (10Ω and 5Ω) connected in series, if the current through the $10-\Omega$ resistance is 1 A , the current through other resistance is:
A 0 A

B	0.5 A
C	1 A
D	2 A

38. In an electric circuit consisting of two resistances (10Ω and 5Ω) connected in parallel, if the current through the $10-\Omega$ resistance is 1 A , the current through other resistance is:

A	0 A
B	0.5 A
C	1 A
D	2 A

CHAPTER 5: OPTICS

Formulas \& Constants

$\mathcal{f}=\mathrm{c} / \lambda$ or: $\mathrm{c}=\boldsymbol{f} \cdot \lambda$ $\mathscr{f}=$ frequency; $\lambda=$ wavelength)	$\begin{gathered} \mathcal{f}=1 / \mathrm{T} \\ (\text { frequency }=1 /(\text { time of } 1 \text { cycle }) \end{gathered}$	$\mathrm{E}=\mathrm{h} \boldsymbol{\mathcal { F }} \quad$ (photon energy $=$ constant \times wave frequency)	$\begin{gathered} \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ \mathrm{~h}=6.6 \times 10^{-34} \mathrm{I} \end{gathered}$
$10^{0} \text { to } 10^{24+} \mathrm{Hz}$ (frequencies in the e-m spectrum)	$4 \times 10^{14} \text { to } 8 \times 10^{14} \mathrm{~Hz}$ (frequency range of visible light)	$\begin{gathered} \theta_{\mathrm{i}}=\theta_{\mathrm{r}} \\ \text { (law of reflection) } \end{gathered}$	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
Snell's law: $\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{r}} \sin \theta_{\mathrm{r}}$ ($\mathrm{i}=$ incidence; $\mathrm{r}=$ refraction)	Index of refraction: $\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}$ ($\mathrm{v}=$ speed of light in medium)	$\begin{gathered} \frac{1}{\mathrm{f}}=\frac{1}{\mathrm{~s}_{\mathrm{o}}}+\frac{1}{\mathrm{~s}_{\mathrm{i}}} \text { or: } \mathrm{s}_{\mathrm{i}}=\frac{\mathrm{s}_{\mathrm{o}} \cdot \mathrm{f}}{\mathrm{~s}_{\mathrm{o}}-\mathrm{f}} \\ (\mathrm{o}=\text { object } ; i=\text { image }) \end{gathered}$	$\begin{aligned} & M=\frac{h_{i}}{h_{o}}=-\frac{s_{i}}{s_{o}} \\ & =\frac{1}{1-s_{o} / f} \end{aligned}$

Key Terms \& Definitions

Aberration	زيغ
Absorption	امتصاص
Amplitude	\|ارتفاع الموجة
Astigmatism	انحراف في القرنية
Beam	حزمة
Chromatic	لونيّ
Concave	مقعر
Converge	بركز
Convex	محدب
Cornea	\|القرنية
Critical angle	\|الزاوية الحرجة
Defect	خلل
Deformation	تشوّه
Diffuse	\|مبعثر أو منتشر
Dispersion	انتشار
Diverge	عوزع
Fiber optics	\|Pتالكياف البصرية
Focal distance	البعد البؤري

Focal point	البؤرة
Frequency	تردد
Electromagnetic	كهرومغناطيسي
Incidence	سقوط
Infrared	تحت الحمراء
Inverted image	صورة مقلوبة
Least time principle	قاعدة الزمن الأقصر
Lens	عدسة
Magnify	يكبّر
Medium	وسط
Microwaves	الموجات شديدة القصر
Mirage	سراب
Mirror	مرآة
Oscillation	\|ارتجاج أو اهتزاز
Period	فترة الموجة
Photon	فوتون
Plane	مسطح
Polished	مصقول

Prism	منشور
Rainbow	قوس المطر
Ray	شعاع
Real image	صورة حقبقية
Reflection	انعكاس
Refraction	انكسار
Resonance	رنين
Source	مصدر
Spectrum	طيف
Specular	مرئي؛ بصري
Transparent	شفاف
Ultraviolet	فوق البنفسي
Upright image	صورة قائمة
Violet	بنفسجي
Virtual image	صورة وهية
Visible light	\|الضوء المرئي
Wave	موجة
Wavelength	طول الموجة

Electromagnetic Waves \& Spectrum
THE ELECTROMAGNETIC SPECTRUM

1. Light is the oscillation of:

A electric \& sound fields
B electric \& magnetic fields
C sound \& magnetic fields
D electric \& gravitational fields
2. Shaking an electrically charged rod to-and-fro in empty space produces:

A	air waves

B sound waves
C electromagnetic waves
D vacuum waves
3. Electromagnetic waves start from a vibrating:

A	fork (\%ُوَ)
B	string (Eَ)
C	spring (زنبر)
D	charge

4. In an electromagnetic wave, the electric and magnetic fields are:
A perpendicular to each other and to the direction of

	motion
B	parallel to each other and to the direction of motion
C	perpendicular to each other and parallel to the direction of motion
D	parallel to each other and perpendicular to the direction of motion

5. A wave's frequency is:

A the number of waves repeating (تنكرر) every second
B the time duration for one complete wave
C the maximum value of a wave
D the length of a single wave
6. A wave's wavelength is:

A the number of waves repeating (تتكرر) every second
B the time duration for one complete wave
C its maximum value
D the length of a single wave
7. Going from left to right in the electromagnetic spectrum, the following happens:
A both wavelength and frequency increase
B both wavelength and frequency decrease
C wavelength increases and frequency decreases
D wavelength decreases and frequency increases
8. In the electromagnetic spectrum, the narrowest range is that of:
A radio waves
B x-ray waves
C visible light waves
D ultraviolet waves
9. Electromagnetic waves that travel in vacuum slower than light are:
A gamma-ray waves
B x-ray waves
C ultraviolet waves
D none of these
10. In the electromagnetic spectrum, the highest energy is that of:
A gamma-ray waves
B x-ray waves
C blue light waves
D ultraviolet waves
11. In the electromagnetic spectrum, the lowest frequency is that of:
A ultraviolet waves
B x-ray waves

C red light waves
D \quad radio waves
12. Among the following electromagnetic waves, the longest wavelength is for:

A	infrared waves
B	microwaves
C	visible light waves
D	ultraviolet waves

13. The wavelength of $300-\mathrm{MHz}$ microwave is:

A	$1 \mu \mathrm{~m}$
B	1 mm
C	1 cm
D	1 m

14. The frequency of $0.5-\mu \mathrm{m}$ green light is:

A	$2 \times 10^{14} \mathrm{~Hz}$
B	$4 \times 10^{14} \mathrm{~Hz}$
C	$6 \times 10^{14} \mathrm{~Hz}$
D	$8 \times 10^{14} \mathrm{~Hz}$

Reflection

15. Wave reflection means that the wave always:

A	enters from one medium into another
B	remains in the same medium
C	returns along the same line of incidence
D	slides along the border between two media

16. We see most things around us because:

A	they are primary sources of light
B	they are secondary sources of light
C	they reflect light
D	they absorb light

17. If light beam (X) falls obliquely on a mirror and reflects into beam (Y), we can say that:
A X is always perpendicular to the mirror
B Y is always perpendicular to the mirror
C X and Y make equal angles with the mirror
D X and Y are perpendicular to each other
18. When a light beam is reflected, it keeps a constant:

A	speed
B	frequency
C	wavelength
D	all of these

19. The angle of reflection is always:

A equal to the angle of incidence
B smaller than the angle of incidence
C larger than the angle of incidence
D equal to the angle of refraction
20. An object placed in front of a plane mirror forms an image that is of \qquad size and distance to the mirror.

A	same; same
B	larger; same
C	same; nearer
D	same; farther

21. An object placed between a concave (مقر) mirror and its focus forms an image that is of \qquad size and \qquad distance to the mirror.

A	smaller; farther
B	larger; nearer
C	smaller; nearer
D	larger; farther

22. An object placed in front of a convex (محدب) mirror forms an image that is of ___ size and distance to the mirror.

A	smaller; farther
B	larger; nearer
C	smaller; nearer
D	larger; farther

23. An image formed behind a mirror is virtual for:

A plane, convex and concave
B plane and concave, and real for convex
C plane and convex, and real for concave
D convex and concave, and real for plane
24. Diffuse reflection occurs when light is incident on a surface that is:

A	smooth (أملس)
B	polished (شصقول) (خشن) (خنر)
C	transparent
D	rough

25. Specular (بصري) reflection occurs when light is incident on a:

A	lens
B	mirror
C	painted wall
D	page of a book

26. After diffuse reflection, light goes in:

A one direction

B two opposite directions
C no direction
D all directions
27. You can see the road ahead of your car at night because of:

A	specular reflection
B	absorption
C	diffuse reflection
D	refraction

28. If a convex mirror of 2-m focal length is placed 8 m away from a 2.5 -m-high door, the image of the door will appear in the mirror at a distance of:

A	1.6 m
B	2.4 m
C	0.8 m
D	3.2 m

29. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.1 m
B	0.5 m
C	1 m
D	1.25 m

30. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the mirror will be:

A	5
B	2
C	0.5
D	0.2

31. If a convex mirror of $2-\mathrm{m}$ focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and reduced
B	upright and enlarged
C	inverted and reduced
D	inverted and enlarged

32. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the image of the door will appear in the mirror at a distance of:

A	1.4 m
B	2.8 m
C	0.7 m
D	5.6 m

33. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m
away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.1 m
B	0.5 m
C	1 m
D	1.25 m

34. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the mirror will be:

A	-2
B	+2
C	-0.4
D	+0.4

35. If a concave mirror of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and reduced
B	upright and enlarged
C	inverted and reduced
D	inverted and enlarged

Refraction

36. The process of light bending when passing obliquely from one medium into another is called:

A	specular reflection
B	absorption
C	diffuse reflection
D	refraction

37. When light is refracted, it keeps a constant:

A speed
B frequency
C wavelength
D all of these
38. When light is refracted in passing from air into water, its angle of refraction is:
A equal to the angle of incidence
B more than the angle of incidence
C less than the angle of incidence
D zero
39. Mirage (سراب) happens on hot days because light rays coming toward us from the sky:
A bend toward the ground
B bend away from the ground
C bounce (يرتد) off the ground

D stick to the ground
40. What we actually see in a mirage (سراب):

A	water vapor collecting above the road
B	water that evaporates very fast
C	sky light that appears like water
D	only an imaginary image

41. If the speed of light in water is 0.75 c , the index of refraction of water is:

A	1.33
B	0.75
C	2.25
D	0.25

42. The index of refraction of water is $4 / 3$. A beam of light incident from air into water at $30^{\circ}\left(\sin 30^{\circ}=1 / 2\right)$ refracts at an angle of:

A	13°
B	9°
C	49°
D	22°

43. The index of refraction of water is $4 / 3$. A beam of light incident from water into air at $30^{\circ}\left(\sin 30^{\circ}=1 / 2\right)$ refracts at an angle of:

A	42°
B	90°
C	49°
D	22°

44. The index of refraction of water is $4 / 3$. This means that the critical angle of water (into air) is:

A	42°
B	90°
C	49°
D	22°

45. If a beam of light is incident from water into air at the critical angle, its angle of refraction in air is:

A	0°
B	90°
C	60°
D	30°

46. A beam of light is directed from the bottom of a swimming pool so as to hit the top surface at a 60° angle. This beam will then undergo (بخضع ل) a total:

A	dispersion
B	diffuse reflection
C	internal reflection

D refraction
47. A beam of light falling obliquely on a pane (لوح) of glass leaves the pane such that it is:
A parallel to the pane
B perpendicular to the pane
C perpendicular to its original direction
D parallel to its original (أصلي) direction
48. A fish under water appears nearer because of:

A	refraction
B	aberration
C	reflection
D	dispersion

49. Light travels through an optical fiber by:

A	dispersion
B	diffuse reflection
C	total internal reflection
D	total refraction

Dispersion; Rainbow						
	Visible Spectrum					
Red	Orange	Yellow	Green	Blue	Indigo	Violet
$\mathcal{f} \approx 4 \times 10^{14} \mathrm{~Hz}$			$6 \times 10^{14} \mathrm{~Hz}$			$8 \times 10^{14} \mathrm{~Hz}$
$\lambda \approx 800 \mathrm{~nm}$			600 nm			400 nm

50. In the visible light spectrum, red appears at the:

A right
B left
C middle
D outside
51. In the visible light spectrum, the longest-wavelength light is:

A	red
B	blue
C	green
D	violet

52. In the visible light spectrum, the highest-frequency light is:

A	red
B	blue
C	green
D	violet

53. The light component that travels the fastest through glass or water is:

A	blue light

B	red light
C	violet light
D	green light

54. Separation of light falling on a prism into colors is called:

A	dispersion
B	reflection
C	absorption
D	mirage

55. When white light falls on a prism (as shown), its color components separate so that the highest (from base) is:

A	blue light
B	

B green light
C violet light
D red light

56. You can see a rainbow on a humid day only if the sunlight is coming from:
A above
B nowhere
C behind you
D in front of you

57. Rainbow results from that:

A	raindrops make the shape of prisms in the air
B	light disperses inside raindrops
C	raindrops form water ponds on the ground
D	raindrops reflect light at different angles

58. Rainbow is formed in the following sequence (ترتيب):

A	refraction \rightarrow reflection \rightarrow refraction
B	reflection \rightarrow refraction \rightarrow reflection
C	refraction \rightarrow refraction \rightarrow reflection
D	reflection \rightarrow reflection \rightarrow refraction

Lenses

59. A converging lens usually has two \qquad surfaces and is \qquad at its center than its edges.

A	convex (محدب); thinner
B	concave (مقر); thinner
C	concave; thicker
D	convex; thicker

60. A diverging lens usually has two \qquad surfaces and is \qquad at its center than its edges:
A convex (محدب); thinner

B	concave (مقر); thinner
C	concave; thicker
D	convex; thicker

61. A converging lens converges a beam of light that is parallel to its principal axis into:
A the focal point on the other side
B the focal point on the same side
C the center of curvature on the same side
D the center of curvature on the other side
62. A diverging lens diverges a beam of light that is parallel to its principal axis so as to appear coming from:
A the focal point on the other side
B the focal point on the same side
C the center of curvature on the same side
D the center of curvature on the other side
63. Light passing through the center of a lens:

A	bends up for a diverging lens

B bends up for a converging lens
C passes without deviation for both types
D gets reflected for both types
64. When an object is placed inside the focal point of a converging lens, its image is:

A	real and farther
B	real and nearer
C	virtual and nearer
D	virtual and farther

65. When an object is placed outside the focal point of a converging lens, its image is:
A real and inverted (مقلوبة)
B real and upright (قائمة)
C virtual and upright
D virtual and inverted
66. Distortion (تشويه) in the image of a lens is called:

A	conversion
B	aberration
C	dispersion
D	refraction

67. Distortion (تشويه) in the image of a lens caused by different speeds of the color components (مكونات) of light is called:
A spherical aberration
B linear aberration
C astigmatic aberration

D chromatic aberration
68. An eye defect (خلل) where the cornea (القرنية) is curved unevenly (بعدم اتساق) is called:

A	conversion
B	dispersion
C	astigmatism
D	refraction

69. If a converging lens of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the distance of the door's image from the lens will be:

A	1.4 m
B	2.8 m
C	0.7 m
D	5.6 m

70. If a converging lens of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.1 m
B	0.5 m
C	1 m
D	1.25 m

71. If a converging lens of $2-\mathrm{m}$ focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the lens will be:

A	-2
B	+2
C	-0.4
D	+0.4

72. If a converging lens of 2-m focal length is placed 7 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and virtual
B	inverted and virtual
C	upright and real
D	inverted and real

73. If a diverging lens of 2-m focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the distance of the door's image from the lens will be:

A	1.6 m
B	2.4 m
C	0.8 m
D	3.2 m

74. If a diverging lens of 2-m focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the height of the door's image will be:

A	0.2 m
B	0.5 m
C	1 m
D	2 m

75. If a diverging lens of 2-m focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the magnification of the door in the lens will be:

A	-0.4
B	+0.4
C	-0.2
D	+0.2

76. If a diverging lens of 2-m focal length is placed 8 m away from a $2.5-\mathrm{m}$-high door, the image of the door will be:

A	upright and virtual
B	inverted and virtual
C	upright and real
D	inverted and real

CHAPTER 6: MODERN PHYSICS

Formulas \& Constants

$\mathrm{m}=\frac{\mathrm{m}_{0}}{\sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}}$	$\mathrm{~L}=\mathrm{L}_{0} \cdot \sqrt{1-(\mathrm{v} / \mathrm{c})^{2}}$	Correspondence principle: When quantum physics explains issues that can be successfully explained by classical physics, both explanations must agree.

Key Terms \& Definitions

Anode	مصعد؛ آنود
Beta rays	أشتعة بيتا
Cathode	كاثود؛ القطب السّالب
Correspondence	تناظر
Cosmic radiation	الأشعة الكونية
Electron beam	حزمة إلكترونية

Energy levels	مستويات الطاقة
Environment	\|البيئة
Gamma rays	أشُعة غاما
Rad (Radiation Absorption Dose)	جرعة الإشعاع الممتص
Radiation-dose	جر عة إشعاعبة
Radiation-therapy	\|المعالجة بالأشعة

Radioactivity	نشاط إشعاعي
Radon (86)	غاز الرادون (^7)
Relativity	النظرية النسبية
Rem (Roentgen Equivalent Man)	مكافئ رونجين للثخص
Stable	مستقر
X-rays	أشعة أكس

Correspondence Principle

1. The correspondence principle tells us that:

A Modern physics and classical (تقليدي) physics contradict (يناقض) each other
B Modern physics and classical physics agree with each other in the common areas
C Modern physics cannot explain classical physics phenomena (ظواهر)
D Modern physics and classical physics have no common areas
2. * As an example of the correspondence principle, applying the relativistic equation of mass to an object of rest mass $\left(m_{0}\right)$ moving at a $3000-\mathrm{m} / \mathrm{s}$ speed gives relativistic mass (m) equal to:

A	zero
B	m_{0}
C	$2 \mathrm{~m}_{0}$
D	∞

3. * As an example of the correspondence principle, applying the relativistic equation of length to an object of rest length $\left(\mathrm{L}_{0}\right)$ moving at a $3000-\mathrm{m} / \mathrm{s}$ speed gives relativistic length (L) equal to:

A	zero
B	$2 \mathrm{~L}_{0}$
C	L_{0}
D	∞

X-Rays

4. In 1895, Wilhelm Roentgen discovered:

A	x-rays
B	radioactivity
C	the element radium
D	gamma-rays

5. The cathode ray tube consists of two electrodes: a negative \qquad and a positive \qquad :

A	cathode; anode
B	anode; cathode
C	anode; anode
D	cathode; cathode

6. The cathode ray tube contains:

A	oxygen
B	hydrogen
C	helium
D	vacuum

7. In a cathode ray tube, electrons are emitted (تقف்) from a tungsten filament (سلك دقيق) near the:

A	glass walls
B	anode
C	cathode

D vacuum pump (مضخة)
8. In a cathode ray tube, electrons are accelerated between the cathode and anode by a:
A vacuum pump (مضخة تفريغ)
B high potential difference
C mechanical generator (مود)
D magnetic field
9. In a cathode ray tube, the high-speed electrons generate x-rays after bombarding (مصادمة):
A gas molecules inside the tube
B a metal target (هدف) near the cathode
C the heated filament (سلك دقيق) near the cathode
D a metal target near the anode

10. When a beam of high-speed electrons strikes (يصـادم) a metal target (هدف), it dislodges (يقتلع) the of the atoms.

A	inner protons
B	outer protons
C	inner electrons
D	outer electrons

11. Electron current in a fluorescent lamp produces ultraviolet and visible light by exciting the of atoms.

A inner protons
B outer protons
C inner electrons
D outer electrons
12. When an electron is dislodged (تقنلح) from the lowest energy level of an atom, the atom emits (تُصدِر) xrays by an:

A outer electron falling into the lowest energy level
B inner electron falling out of the lowest energy level
C inner electron falling into the nucleus
D outer electron falling into the nucleus
13. Before being absorbed (تُمتص) or scattered (تُشتَّت), xray photons can penetrate (تخترق) many layers of:

A	lead
B	bone

C rock
D atoms
14. The energy of x-ray photons is:

A more than gamma-ray photons
B less than microwave photons
C more than violet-light photons
D less than infrared photons
15. X-rays produce an image of the bones inside our body by:
A scattering (تشتّ) from soft tissues and penetrating ($ل$) bones
B penetrating soft tissues and getting absorbed by bones
C scattering from soft tissues and getting absorbed (امتصـا \square) by bones
D penetrating both soft tissues and bones

Radioactivity

16. In 1896, Antoine Bacquerel discovered:

A	x-rays
B	radioactivity
C	the element radium
D	gamma-rays

17. Marie and Pierre Curie discovered:

A	x-rays
B	radioactivity
C	the element radium
D	gamma-rays

18. Radioactivity started:

A	in the $19^{\text {th }}$ Century
B	after $2^{\text {nd }}$ World War
C	after $1^{\text {st }}$ World War
D	before the human race

19. Radioactivity is a(n) \qquad phenomenon (ظاهرة):

A	natural
B	new
C	artificial (مصطنع)
D	American

20. More than 99.9% of the atoms in our environment are:

A	unstable
B	stable
C	radioactive

21. The nucleus of a stable atom:

A	changes frequently
B	decays in a few years
C	does not change
D	emits radiation

22. All elements with atomic number greater than 82 are:

A	gaseous (غاز)
B	artificial (مصنّ)
C	stable
D	radioactive

23. Radioactive decay results in the following types of radiation:

A	alpha, beta, gamma
B	gamma, beta, x-ray
C	alpha, gamma, x-ray
D	alpha, beta, x-ray

24. Of the radioactive radiations, those affected by a magnetic field are:
A alpha and gamma, but not beta
B alpha and beta, but not gamma
C beta and gamma, but not alpha
D alpha, beta and gamma
25. Of the radioactive radiations, those with an electric charge are:
A alpha and gamma, but not beta
B beta and gamma, but not alpha
C alpha and beta, but not gamma
D alpha, beta and gamma
26. Of the radioactive radiations, those that consist of helium nuclei are:
A alpha and beta
B only gamma
C only beta
D only alpha
27. To absorb (يمنص) and collimate (يوجه) nuclear radiation, we use a block of:
A lead
B aluminum
C glass
D brick

Environmental Radiation

28. Common rocks and minerals contain trace (فليل جداً) amounts of:

A	potassium
B	uranium
C	helium
D	sodium

29. Common rocks and minerals contain significant (مهم) quantities of:

A	magnetic poles
B	harmful microbes
C	radioactive isotopes
D	sodium

30. The leading source of naturally occurring (حاصل ! (■) radiation is:

A	lead-210

B uranium-238
C radium-226
D radon-222
31. Radon is a:

A	heavy inert gas
B	transition metal
C	radiation detector
D	semiconductor

32. Radon arises from deposits (ترسبا) of:

A	sodium
B	uranium
C	calcium
D	potassium

33. You can check radiation level (مستوى الآ \square) with a:

A	thermometer
B	voltmeter
C	radiation detector
D	smoke detector

34. Most of our annual exposure to radiation (اتعرض comes from:

A	food and water
B	medicine and diagnostics (وسائلחتشخيص)

B medicine and diagnostics (وسائل|تنخيص)

C natural background (إلفية|طبيعية)
D consumer products (منتجا \quad الاستهلاكية)
35. The combustion of coal (حرق ■חفم ■حجري) annually releases into our atmosphere (يُصْلِر سنوياً إلى $\mathbb{\text { (يو) }}$ 13 million kg of:
A electricity
B heat
C water vapor
D radioactive elements
36. The unit "rad" stands for (تمثل):

A radiation absorbed dose (جر عة الإلعاعףممتصـ)
B roentgen equivalent man (مكافئ رونتجين لشخصر)
C radio frequency monitor (مر اقب آلَعةّار اديو)
D real atomic mass
37. The unit "rem" stands for (تمثل):

B roentgen equivalent man (مكافئ رونتجينГلشخص)
C radio frequency monitor (مر اقب أَعةّاراديو)
D real atomic mass
38. The unit "rad" equals:

A 0.01 J of scattered energy/ 1 kg of tissue
B 0.01 J of released energy/ 1 g of tissue
C 0.01 J of absorbed energy/ 1 kg of tissue
D 0.01 J of absorbed energy/ 1 g of tissue
39. The unit of radiation dosage based on potential damage is:

A	alpha
B	beta
C	ram
D	rem

40. Of the following, the most harmful radiation to people is:
A 5 rad alpha + 10 rad beta
B 5 rad alpha +5 rad beta
C 5 rad alpha +20 rad beta
D 10 rad alpha +5 rad beta
41. Lethal doses (جرعاه قاتلة) of radiation, taken over a short period of time, begin at:

A	500 rem
B	50 rem
C	5 rem
D	0.5 rem

42. Radiation-therapy patients (مر \square (میهعلاج الإهعاعي) may
receive more than 200 rems of localized doses (جر عال مركزة) each \qquad for several \qquad -.

A	day; years
B	day; weeks
C	hour; days
D	month; year

43. Radiation to which an average person in the world is exposed per day is approximately:

A	1 krem
B	1 rem
C	1 mrem
D	1 rem

44. A chest x-ray exposes a person to a radiation dose (جرعة إصاع) approximately equal to:

A	20 krem
B	20 rem
C	$20 \mu \mathrm{rem}$
D	20 mrem

45. The human body contains an amount of potassium that is approximately equal to:

A	0.2 kg
B	1 kg
C	2 kg
D	zero

46. The human body contains an amount of radioactive potassium-40 (K-40) that is approximately equal to:

A	2 g
B	20 mg
C	200 mg
D	zero

47. Between every two heartbeats (نبضا \quad (\square), potassium-40 (K-40) in an average human's body emits approximately \qquad gamma rays.

A	20
B	40 million
C	60 thousand
D	zero

48. When cells in our body are damaged by radiation, they may:

A	die
B	regenerate (يتجدد)
C	become mutated (يتحول)
D	do any of these

49. Radiation is harmful to us because:

A	it increases our heart rate
B	it makes us too hot
C	it damages some of our cells
D	it burns our skin

A	an
B	L
C	0
D	CO

50. The international symbol of radioactivity is:

[^0]: A 1 kWh
 B 5 kWh

