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Chapter 4

Applications of Derivatives
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DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on

D at a point ¢ 1f
f(x) = f(e) for all x in D

and an absolute minimum value on D at c if
f(x) = f(c) forallxinD.
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FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
[—/2, 7/2]. These values can depend
on the domain of a function.
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FIGURE 4.2 Graphs for Example 1.
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THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers x; and x; in [a, b] with f(x;) = m, f(x,) = M,and m = f(x) = M for
every other x in [a, b] (Figure 4.3).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sl | de 4-7




(x2': M)
l y=f)
‘M
|
|
| | xll 5y
a X, | b
(|l
|
(x1, m)

Maximum and minimum
at interior points

y=fx

a X9 b

Maximum at interior point,
minimum at endpoint

|
| y = f(x)
M
|
|
' RN X
a b
Maximum and minimum
at endpoints
|
|
[
|
|
M
|
|
|
I |
| |
I 1 I ) x
a X b

Minimum at interior point,
maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function’s maximum and

minimum on a closed interval [a, b].
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No largest value
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— FIGURE 4.4 Even a single point of
g < x< ] discontinuity can keep a function from
having either a maximum or minimum

> X

0™\

/f value on a closed interval. The function

Smallest value {x, 0<x<1
Yy = _
0, x=1

1s continuous at every point of [0, 1]
except x = 1, yet its graph over [0, 1]
does not have a highest point.
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DEFINITIONS  Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

f(x) = f(c) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

f(x) = f(c) for all x in some open interval containing c.
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Absolute maximum
No greater value of f anywhere.

Local maximum Also a local maximum.
No greater value of
J nearby. Local minimum
| No smaller value
| | of f nearby
Absolute minimum : :
No smaller value of | | Local minimum |
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FIGURE 4.5 How to classify maxima and minima.
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THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f’ is defined at ¢, then

f'(c) = 0.
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FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.
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DEFINITION Critical Point
An interior point of the domain of a function f where f' is zero or undefined is a
critical point of f.

How to Find the Absolute Extrema of a Continuous Function f on a
Finite Closed Interval

1. Evaluate f at all critical points and endpoints.
2. Take the largest and smallest of these values.
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FIGURE 4.7 The extreme values of
g(t) = 8t — t* on [—2, 1] (Example 3).
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FIGURE 4.8 The extreme values of
f(x) = x** on[—2, 3] occur at x = 0 and
x = 3 (Example 4).
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FIGURE 4.9 Ciritical points without
extreme values. (a) y' = 3x2is 0 at

x = 0, but y = x> has no extremum there.
(b) ' = (1/3)x %3 is undefined at x = 0,
but y = x'/3 has no extremum there.

(b)
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4.2

The Mean Value Theorem
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THEOREM 3 Rolle’s Theorem

Suppose that y = f(x) is continuous at every point of the closed interval [a, b]
and differentiable at every point of its interior (a, b). If

fla) = f(b),

then there 1s at least one number c in (a, b) at which

f'(c) = 0.
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FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may

have just one (a), or it may have more (b).
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(a) Discontinuous at an (b) Discontinuous at an (c) Continuous on [a, b] but not
endpoint of [a, b] interior point of [a, b] differentiable at an interior
point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.
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FIGURE 4.12 As predicted by Rolle’s
Theorem, this curve has horizontal
tangents between the points where it

crosses the x-axis (Example 1).
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(-1,-3)

FIGURE 4.13 The only real zero of the
polynomial y = x* + 3x + 1 is the one
shown here where the curve crosses the
x-axis between —1 and 0 (Example 2).
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THEOREM 4

Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on
the interval’s interior (a, b). Then there is at least one point ¢ in (a, b) at which

The Mean Value Theorem

b —
O ZSD _ ey, (1)
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Tangent parallel to chord

Bf/

> =

> X

FIGURE 4.14 Geometrically, the Mean
Value Theorem says that somewhere
between A and B the curve has at least
one tangent parallel to chord 4B5.
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FIGURE 4.15 The graph of f and the
chord 4B over the interval [a, b].
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> X

FIGURE 4.16 The chord 4B is the graph
of the function g(x). The function A(x) =
f(x) — g(x) gives the vertical distance

between the graphs of f and g at x.
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FIGURE 4.17 The function f(x) =

V1 — x? satisfies the hypotheses (and
conclusion) of the Mean Value Theorem

on [—1, 1] even though f 1s not
differentiable at —1 and 1.
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FIGURE 4.18 As we find in Example 3,
¢ = 1 is where the tangent is parallel to
the chord.
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FIGURE 4.19 Daistance versus elapsed
time for the car in Example 4.
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COROLLARY 1 Functions with Zero Derivatives Are Constant

If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all
x e (a, b), where C is a constant.

COROLLARY 2 Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a con-
stant C such that f(x) = g(x) + C forall xe (a, b). Thatis, f — g is a constant
on (a, b).
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FIGURE 4.20 From a geometric point of
view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative
2x are the parabolas y = x> + C, shown
here for selected values of C.
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Monotonic Functions and
The First Derivative Test
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DEFINITIONS  Increasing, Decreasing Function
Let f be a function defined on an interval 7 and let x; and x; be any two points in /.

1. If f(x1) < f(x,) whenever x; < x,, then f is said to be increasing on /.

2. If f(xp) < f(x;) whenever x; < x;, then f is said to be decreasing on /.

A function that is increasing or decreasing on / is called monotonic on /.

Slide 4 - 34

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



COROLLARY 3 First Derivative Test for Monotonic Functions
Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].
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Function Function
decreasing increasing
y' <0 y' >0

| | | > X
-2 -1 1 2

FIGURE 4.21 The function f(x) = x?is
monotonic on the intervals (—o0, 0] and
[0, ©0), but it is not monotonic on

(—00, 00),
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FIGURE 4.22 The function f(x) =
x> — 12x — 5 is monotonic on three
separate intervals (Example 1).
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First Derivative Test for Local Extrema

Suppose that ¢ is a critical point of a continuous function f, and that f is differen-
tiable at every point in some interval containing ¢ except possibly at ¢ itself.
Moving across ¢ from left to right,

1. if f’ changes from negative to positive at ¢, then f has a local minimum at c;
2. if f' changes from positive to negative at ¢, then f has a local maximum at c;

3. if f' does not change sign at ¢ (that is, f’ is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.
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FIGURE 4.23 A function’s first derivative tells how the graph rises and falls.
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FIGURE 4.24 The function f(x) =
x!3(x — 4) decreases when x < 1 and
increases when x > 1 (Example 2).
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Concavity and Curve Sketching
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DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval /if f' is increasing on /

(b) concave down on an open interval 7 if f’ is decreasing on /.
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> X

FIGURE 4.25 The graph of f(x) = x* is

concave down on (—00, 0) and concave up
on (0, 00) (Example 1a).
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The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval /.

1. If f” > 0on [, the graph of f over / is concave up.

2. If f” < 0on [/, the graph of f over I is concave down.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 4 - 44



FIGURE 4.26 The graph of f(x) = x*is
concave up on every interval (Example
1b).
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DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.
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y= 3+ sinx

FIGURE 4.27 Using the graph of y” to
determine the concavity of y (Example 2).
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FIGURE 4.28 The graph of y = x* has
no inflection point at the origin, even

though y” = 0 there (Example 3).
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y'" does not

exist.
\
0

FIGURE 4.29 A point where y" fails
to exist can be a point of inflection
(Example 4).
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THEOREM 5 Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = c.

1. Iff'(¢) = 0and f"(c) < 0, then f has a local maximum at x = c.
2. Iff'(¢) = 0and f"(c) > 0, then f has a local minimum at x = c.

3. If f'(¢) = 0and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.
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f'=0,f"<0 f'=0,f">0
= local max = local min
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Local
minimum

FIGURE 4.30 The graph of f(x) =
x* — 4x* + 10 (Example 6).
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Strategy for Graphing y = f(x)

1. Identify the domain of f and any symmetries the curve may have.

2. Find y' and y".

3. Find the critical points of f, and identify the function’s behavior at each one.
4. Find where the curve is increasing and where it is decreasing.
5

. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes.

7. Plot key points, such as the intercepts and the points found in Steps 3—5, and
sketch the curve.
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{ Point of inflection
where x = V3

 (, 2)/

y=1
Horizontal
asymptote
. |
/ - | > X
Point of inflection
where x = — V3
(x + 1)
FIGURE 4.31 The graphof y = 5
1 + x

(Example 7).
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y =fx) y =f(x) y=f(x
Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy

SN TN A

y"" changes sign

y" > 0 = concave up y" < 0 = concave down Inflection point
throughout; no waves; graph | throughout; no waves;
may rise or fall graph may rise or fall

/‘\ oo \= T

+ —_

y' changes sign = graph y'=0and y"<0 y'=0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum
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Applied Optimization Problems
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|x
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| |
! {%
s L sl
= 12 o
(a)

FIGURE 4.32 An open box made by

12 = 2x cutting the corners from a square sheet of
12 tin. What size corners maximize the box’s
/
12 = 2’“\%)6;7’ X / volume (Example 1)?
(b)
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y = x(12 - 2x)?,
= 0=x=<6
=
©
>
. min
min
\ . /
0 2 6
NOT TO SCALE

FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.
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FIGURE 4.34 This 1-L can uses the least
material when 2 = 2r (Example 2).
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A=2mr’+ M r>0

Tall and thin

> I

Short and wide

FIGURE 4.35 The graph of 4 = 27r? + 2000/r is concave up.
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FIGURE 4.36 The rectangle inscribed in
the semicircle in Example 3.
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Medium 2 bl 2 refraction

FIGURE 4.37 A light ray refracted
(deflected from its path) as it passes
from one medium to a denser medium
(Example 4).
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negative Zero positive

Y4 /
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FIGURE 4.38 The sign pattern of dt/dx
in Example 4.
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y
A
Cost c(x)
c_% Revenue r(x)
I=
A | Break-even point
N Maximum profit, c'(x) = r'(x)

I
I
B |
I
I
I
|

Local maximum for loss (minimum profit), ¢'(x) = r'(x)

' > X
0 Items produced

FIGURE 4.39 The graph of a typical cost function starts concave down and later turns concave up. It
crosses the revenue curve at the break-even point B. To the left of B, the company operates at a loss. To
the right, the company operates at a profit, with the maximum profit occurring where ¢'(x) = r'(x).
Farther to the right, cost exceeds revenue (perhaps because of a combination of rising labor and
material costs and market saturation) and production levels become unprofitable again.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 4- 64



c(x) = x> — 6x% + 15x

r(x) = 9x

: Maximum
| for profit

|
|
|
.'
: Local maximum for loss
| | |
02-V2 2 2+V2

NOT TO SCALE

FIGURE 4.40 The cost and revenue
curves for Example 5.
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Cost

Cycle length

FIGURE 4.41 The average daily cost c(x)
1s the sum of a hyperbola and a linear
function (Example 6).
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L" Hopital’s Rule
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THEOREM 6  L'Hopital’s Rule (First Form)

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that g’'(a) # 0.
Then

L f0) S
x—a g(x) 8’(0)'
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THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val I containing a, and that g’(x) # O on/if x # a. Then
f) o f'®)

lim — = lim ——,
x—a g(x)  x—a g'(x)

assuming that the limit on the right side exists.
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THEOREM 8 Cauchy’s Mean Value Theorem

Suppose functions f and g are continuous on [a, b] and differentiable throughout
(a, b) and also suppose g'(x) # 0 throughout (a, b). Then there exists a number ¢

in (a, b) at which
/') _ fb) — f(a)
g'(c) g(b) —gla)
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A
(g(c), f(c)) (&), f(b))
slope = f(b) — f(a)
g(b) — gla)
/>‘
(g(a), f(a))
0 > X

FIGURE 4.42 There is at least one value
of the parameter t = c,a < ¢ < b, for
which the slope of the tangent to the curve
at (g(c), f(c)) is the same as the slope of
the secant line joining the points

(g(a), f(a)) and (g(b), f(D)).

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 4- 71



Using I’Hopital’s Rule
To find
. fx)
lim ——
x—a & (X)
by 1’Hopital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is differ-

ent from zero at x = a we stop differentiating. I’Hopital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.
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Procedure for Newton’s Method
1. Guess a first approximation to a solution of the equation f(x) = 0. A graph
of y = f(x) may help.

2. Use the first approximation to get a second, the second to get a third, and so
on, using the formula

f(xn)
f'(xn)’

Xn+1 = Xp —

if f'(xa) # 0 (1)
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y = fx)
(x> f(x0))
(x4, f(x3))
Root \
sought
AN
[ > X
0 g B X] *0
Fourth  Third Second First
APPROXIMATIONS

FIGURE 4.43 Newton’s method starts
with an initial guess xy and (under
favorable circumstances) improves the
guess one step at a time.
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y=f)

Point: (x,, f(x,,))
Slope: f'(x,,)
Tangent line equation:

y _f(xn) :fr(xn)(x - -xn)
(xmf(xn))

Tangent line

| (graph of
: linearization
: of fatx,)
|
|
|
|
& > X
0 /" \ a
_ J(x,)
xn+l - xﬂ - ff(x )
n

FIGURE 4.44 The geometry of the
successive steps of Newton’s method.
From x, we go up to the curve and follow
the tangent line down to find x,,+.
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FIGURE 4.45 The graph of f(x) =
x? — x — 1 crosses the x-axis once; this is

the root we want to find (Example 2).
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TABLE 4.1 The result of applying Newton’s method to f(x) = x> — x — 1

with xop = 1
, f(xn)

n xﬂ xﬂ xﬂ xn == xn - !

f( ) f( ) +1 f (xn)
0 1 —1 2 1.5
1 1.5 0.875 5.75 1.3478 26087
2 1.3478 26087 0.1006 82173 4.4499 05482 1.3252 00399
3 1.3252 00399 0.0020 58362 4.2684 68292 1.3247 18174
4 1.3247 18174 0.0000 00924 4.2646 34722 1.3247 17957
5 1.3247 17957 —1.8672E-13 4.2646 32999 1.3247 17957
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y=x—x—1

(1.5, 0.875)
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FIGURE 4.46 The first three x-values in
Table 4.1 (four decimal places).
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A
25 +
B, (3, 23)
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20 |- |
y = —x=1 :
|
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B,(2.12, 6.35) :
I
31 Root sought : :
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“1/V3 | 1/V3 | | .
| | | ] M i E > X
A ¥ 16212 3

FIGURE 4.47 Any starting value x; to the
rightof x = 1/ \/3 will lead to the root.
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> X

FIGURE 4.48 Newton’s method will
converge to » from either starting point.
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(%, f (X))

> X

Xp

FIGURE 4.49 If f'(x,) = 0, there is no
intersection point to define x,,+.
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FIGURE 4.50 Newton’s method fails to
converge. You go from x to x; and back to
Xo, never getting any closer to ».

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 4 - 83



|
LY =f()
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|
> X s > X
X0
Root found Root Starting

FIGURE 4.51 If you start too far away, Newton’s method may miss the root you want.

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4 - 84



() (b)

S

&

Oy
S

()
FIGURE 4.52  (a) Starting values in (—00, =V/2/2), (=V21/7, V21/7), and (V/2/2, 00) lead

respectively to roots 4, B, and C. (b) The values x = + \/QT/ 7 lead only to each other. (c¢) Between

\5/ 7 and \/5/ 2, there are infinitely many open intervals of points attracted to A alternating with
open intervals of points attracted to C. This behavior is mirrored in the interval (— \/S__’/ 2, — \/2_1/ 7) .
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FIGURE 4.53 This computer-generated initial value portrait uses color to show where different
points in the complex plane end up when they are used as starting values in applying Newton’s
method to solve the equation z° — 1 = 0. Red points go to 1, green points to (1/2) + (\/g/ 2)1‘ ,
dark blue points to (—1/2) + (\/3/ 2)1‘ , and so on. Starting values that generate sequences that do
not arrive within 0.1 unit of a root after 32 steps are colored black.
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4.3

Antiderivatives
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DEFINITION Antiderivative

A function F'is an antiderivative of f on an interval / if F'(x) = f(x)
forallxin /.
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If F' 1s an antiderivative of f on an interval /, then the most general antiderivative
of fon/is

Fix) + C

where C is an arbitrary constant.
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TABLE 4.2 Antiderivative formulas
Function General antiderivative

xn+1

1. x" + C, n # —1, nrational
n—+ 1

2. sin kx — Cozk:x + C, kaconstant, k # 0

3. cos kx Sm;'(kx + C, kaconstant, kK # 0

4, sec’ x tanx + C

5. csc? x —cotx + C

6. sec x tan x secx + C

7. csc x cot x —cscx + C
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TABLE 4.3 Antiderivative linearity rules

Function

General antiderivative

1. Constant Multiple Rule:  kf(x)
2. Negative Rule: —f(x)
3. Sum or Difference Rule:  f(x) £ g(x)

kF(x) + C, ka constant
—F(x) + C,
F(x) £ Gx) + C
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FIGURE 4.54 Thecurvesy = x> + C
fill the coordinate plane without
overlapping. In Example 5, we identify the
curve y = x> — 2 as the one that passes
through the given point (1, —1).
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DEFINITION Indefinite Integral, Integrand
The set of all antiderivatives of f is the indefinite integral of f with respect to x,

denoted by
/ f(x) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.
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